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Abstract 
 

 The recent de-emphasizing of the role of “money” in both theoretical macroeconomics as well 
as in the practical conduct of monetary policy sits uneasily with the idea that inflation is a 
monetary phenomenon. Empirical evidence has, however, been accumulating, pointing to an 
important leading indicator role for money and credit aggregates with respect to long term 
inflationary trends. Such a role could arise from monetary aggregates furnishing a nominal 
anchor for inflationary expectations, from their influence on the term structure of interest rates 
and from their affecting transactions costs in markets. Our paper attempts to assess the 
informational content role of money in the Indian economy by a separation of these effects 
across time scales and frequency bands, using the techniques of wavelet analysis and band 
spectral analysis respectively. Our results indicate variability of causal relations across 
frequency ranges and time scales, as also occasional causal reversals.  
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The Vanishing Role of Money in the Macroeconomy: 
An Empirical Investigation Based On Spectral and Wavelet 

Analysis  
 

D. M. Nachane and Amlendu Kumar Dubey 
 

1. Introduction 

Recent years have witnessed a considerable downgrading of the status of “money” in 
both theoretical macroeconomics as well as in the practical conduct of monetary policy.  If 
Milton Friedman’s (1963) dictum that “inflation is always and everywhere a monetary 
phenomenon” was a fairly accurate reflection of macroeconomic thinking in the 1970s, the 
prevailing mood today is best summarized by the statement a few years ago by Lawrence 
Meyer (FRB) (2001) to the effect that “money plays no explicit role in today’s consensus 
macro model, and it plays virtually no role in the conduct of monetary policy.” The factors 
contributing to this development are by now too well known to merit a detailed discussion. 
Briefly, the shift of attitude reflects partly the disillusionment with the monetary targeting 
experience of the 1970s and partly the dip in the secular inflation trend which has been widely 
attributed to the increased central bank credibility, associated with inflation targeting and the 
switchover to interest rate (Taylor type) rules. 

The theoretical basis for de-emphasizing the role of money comes from two main 
sources. Some of the earlier literature had suggested that money should have a limited role for 
predicting output in equilibrium models where business cycle fluctuations have real rather than 
monetary origins (King & Plosser (1984), Bernanke (1986), Eichenbaum & Singleton (1986) 
etc.) Recent literature (e.g. Rotemberg & Woodford (1999)) basing itself on variants of New 
Keynesian economics, tries to demonstrate that a Taylor interest rate rule, set independently of 
monetary growth, is near optimal in such a framework. Several empirical studies ( Estrella & 
Mishkin (1997), Stock & Watson (1999), Gerlach & Svensson (2003) etc.)  also are in general 
agreement with this reduced role for “money” in monetary policy. This strand of academic 
thinking has also heavily influenced central bank thinking on policy. The European Central 
Bank’s (ECB) decision to review its two-pillar concept of policy-making in 1999, furnishes a 
prime example of the shift in thinking. Earlier the First Pillar (monetary analysis) gave a very 
prominent role to the growth of money  and credit aggregates, and even provided reference 
values for the growth of the broad money aggregate M3. The Second Pillar (economic 
analysis) was envisaged as supplementing the First Pillar by providing a wide range of real and 
financial indicators. Bowing to the criticism frequently aired by several influential academic 
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economists2, the ECB reversed the role of presentation of the two pillars , de-emphasizing its 
stance on monetary aggregates by explicitly stating that “monetary analysis mainly serves as a 
means of cross-checking from a medium to long-term perspective, the short to medium-term 
indications coming from economic analysis” (ECB 2003). 

There is thus, an apparent paradox between the idea that inflation is a monetary 
phenomenon (which is widely agreed) and the declining role of monetary aggregates in 
monetary policy.  

The older vintage of models employed to assess the impact of monetary policy on the 
macro-economy, typically comprised four components viz., an aggregate demand function (the 
IS curve relating total demand to interest rates and expected inflation), an aggregate supply 
curve (the Phillips-Lucas supply curve), a demand for money function (LM curve) and finally, 
a money supply equation relating the supply of a monetary aggregate to changes in the base 
money (money multiplier relationship). The more recent models replace the money multiplier 
equation by an explicit feedback rule for nominal interest rates, and additionally posit a passive 
adjustment of the money supply to the demand (at any given interest rate), thus easing 
monetary aggregates totally out of the picture. 

If these newer models were accurate descriptions of reality, one would reasonably 
expect monetary aggregates to be devoid of any “informational content” for future inflation, 
beyond that contained in nominal interest rates. Several recent studies, most notably Nicoletti-
Altimari (2001), Trecroci & Vega (2002), Gerlach & Svensson (2003), Jansen (2004) etc. 
have, however, found a useful leading indicator role for monetary and credit aggregates with 
respect to low-frequency trends in inflation.3  

There could be several explanations for such a leading indicator role for monetary 
aggregates vis-à-vis inflation. Firstly, as noted by Trecroci & Vega (2002), monetary 
aggregates may play a nominal anchor role, whereby the announcement of a reference 
trajectory for future monetary growth, helps agents form expectations about future prices (this 
role is strongly conditioned by the credibility of the central bank).  

Secondly, monetary aggregates could influence macroeconomic developments through 
changes in the term structure of interest rates. This transmission mechanism has two causal 

                                                 
2For example, Begg et al (2002) pointedly comment “Sensibly, the second pillar is the real deal. So why not say 
so?” 

3 Most of these studies are for the ECB area. 
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links –the effects of debt management policy on yield structure4 (Agell et al (1992)) and the 
importance of “funding policy” in the determination of broad money supply (Goodhart (1999)).  

Thirdly, the quantity of money can affect the size of transaction costs in the markets for 
goods and services as well in financial markets. Recognition of the role of money in reducing 
frictions in financial markets can provide a potentially more significant role for monetary and 
credit aggregates in the transmission mechanism (Aiyagari et al (1998)).  

There is thus a convincing theoretical case for paying attention to the role of the money 
stock in the transmission of monetary policy. It would be generally agreed that  this is largely 
conditioned by the institutional settings in any particular economy, though (as mentioned 
above) there is in marked evidence a tendency for central bankers the world over to  
increasingly relegate money supply to a secondary status as  one of several monetary policy 
indicators. At least a part of the reason for this apathy towards monetary aggregates stems 
from a conviction of their vanishing role in influencing the macroeconomy. However the 
evidence for such a conviction derives from studies which neglect the possibility of monetary 
aggregates being related to other macroeconomic variables across varying time horizons5. The 
realization of this neglect has revived attempts  to assess the role of money in monetary policy 
making, by examining the “information content” of monetary aggregates for predicting 
inflation (as well as interest rates and output) over alternate time horizons (Masuch et al 
(2003), Bruggeman et al (2005) etc.). 6 

Much of the recent literature on this aspect has been for OECD countries where 
financial liberalization is fairly advanced, where central banks are near full autonomy and 
government ownership and control of financial institutions is virtually absent. In many 
emerging market economies (henceforth EMEs), these features do not necessarily obtain, and 
hence the role of money in the macroeconomy is still open to question.  In India, for example,  
there has been some tendency to look at the role of money somewhat disparagingly. This drift 
in emphasis on money is partly a simple reflection of a similar drift (remarked on above) for 
the advanced economies untempered by any realization that India is not a fully liberalized 

                                                 
4 Traditional finance theory maintains that equilibrium asset yields are independent of the supplies of different 
assets, thus denying any role to debt management policy in influencing the shape of the yield curve. The failure of 
“Operation Twist” in the USA is an oft cited example in support of this position. 

5There have been notable exceptions to this statement even in the earlier literature (see e.g. Engle (1974), Thoma 
(1994), Cochrane (1989), Artis et al (1991), Ramsey & Lampart (1998) etc.) 

6One particularly interesting (but tentative) conclusion to emerge from these studies is that the link between broad 
money aggregates and inflation seems to be stronger at long horizons but less apparent at shorter horizons.  
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economy but rather a liberalizing one.  Neither is this de-emphasis supported by any 
noteworthy empirical evidence based on rigorous statistical testing. Our study is an attempt to 
fill in this lacuna, and hopefully contribute to improved understanding of the process of 
financial liberalization and financial innovation under way (in India) and their impact on 
operating procedures and monetary policy efficacy7.    

As mentioned above, a correct assessment of the role of money in the macroeconomy 
needs some attention to a decomposition over different time horizons. Such decomposition can 
be attempted via either of two avenues viz. traditional band-spectrum analysis (Engle (1974), 
Harvey (1978) etc.) and the recently arrived literature on wavelets (Ramsey & Lampart (1998), 
Kim & In (2003), Crowley (2007) etc.).  The two approaches are conceptually distinct though 
not unrelated and throw light on different aspects of any relationship. There is thus some merit 
in using both and noting points of consonance and dissimilarity, so that any emerging evidence 
can be presented with a greater degree of confidence for analytic and policy purposes.  

The plan of our paper is as follows. Section 1 has laid out the context for the study. 
Section 2 briefly discusses how various relationships of interest can be decomposed either by 
frequency (band-spectrum analysis) or by timescales (wavelet analysis). It also offers the major 
points of distinction between the two approaches. Section 3 discusses the salient institutional 
features of the Indian economy in its current liberalizing context, sets out the variables and 
their data base, and presents the benchmark causality results connecting money, output and 
inflation in three model variants. Section 4 examines the behaviour of the causal relations 
across various frequency bands, while the decomposition across timescales (using wavelets) is 
attempted in Section 5. Conclusions are gathered in Section 6.  

 

2. Decomposing Relations by Frequency and by Scale 

The idea that the nature of economic relationships can vary according to the time 
horizon considered, is hardly new. Economists like Marshall, Edgeworth, Keynes and others 
recognized that behaviour of economic agents could vary over different decision making 
horizons. However, partly from a reluctance to get too deeply involved in mathematical 
technicalities (which many of them believed detracted from the economic essence of a theory) 
and partly from the underdevelopment of the techniques themselves, their analyses rarely 
transcended broad time classifications such as the short, medium and long runs. Taking the 

                                                 
7 The Reserve Bank of India abandoned monetary targeting and switched to a more eclectic multiple indicator 
approach towards the end of the 1990s. This shift has often been viewed as a de-emphasizing of the role of money 
and monetary aggregates in monetary policy. However, in the recent period, whenever there have been signs of 
inflation resurgence, the need to focus more closely on the quantum channel for money has resurfaced.  
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lead from natural scientists, several modern economists have not hesitated to look in greater 
depth at the possibility that economic relations could vary across a cascade of time scales. The 
two basic approaches here are band spectrum analysis (decomposition across frequency bands) 
and the more recent wavelet analysis (decomposition across time scales). As the first is now 
well entrenched in the literature, we provide only a thumbnail sketch of the same. The second 
being of a more recent vintage, merits somewhat greater attention. We also try to pinpoint 
some essential differences in   the two approaches, which need to be borne in mind in 
interpreting and comparing their results.   

 

A. Band-Spectrum Regression: 

The essence of this approach lies in defining conceptually interesting components of 
the data by their frequency ranges8. Recall that in spectral analysis each series is viewed as 
being composed of a superposition of trigonometric cycles of different frequencies. Thus long-
term movements in the data series may be identified with the  low frequency components of 
the series (as captured by passing the data through a low-pass filter) while the short term 
movements can be assigned to the high frequency components (captured similarly by a high 
pass filter). The long or short term can then be appropriately defined as per the investigator’s 
requirements by deciding on the appropriate cut-off frequency for the filter. Similarly by using 
band pass filters (i.e. filters which only allow frequencies within particular bands to pass 
through) we can obtain approximations to movements of the series corresponding to cycles 
within specified time spans. 

Suppose we are given the observed series )1.....(2,1; −= TtX t  (monthly observations) and 
wish to focus on cycles within a specific set of frequencies.  We define (see Engle (1974), 
Thoma (1994) etc.) a row vector kw   as  

( ) ( ) ( ){ }kkkk )iθ(iθ=w 1-T......exp2iθexp,exp1,                                                          (1) 
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8 The approach is usually attributed to Engle (1974) but has precursors in the work of Hannan (1967), Wahba 
(1968), etc. 
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Suppose now that interest centers on frequencies corresponding to integral values of k 
in the range [ ]21 , kk . We then construct a ( )TT ×    matrix A with 1’s on the diagonal 
corresponding to values of k in the range [ ]21 ,kk  and zeros everywhere else.  

Define AWXX =∗  and let [X]IFT=X ⊕  be the inverse Fourier transform of ∗X . Then 
the entity ⊕X  represents the cyclical component of the original series X  with cycles 
corresponding to integral values of k in the range [ ]21 , kk  .9 

 

B. Wavelets : A Quick Overview 

The basic aim of wavelet analysis is to represent a function of time X(t) as a linear 
superposition of  wavelets , which are essentially functions with narrow support  i.e. rapidly 
converging to zero as t becomes large.10 Wavelets possess the attractive feature of rescaling i.e. 
they can be represented in the form  

 
( ) ⎟

⎠
⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

s
utg

s
tg 1

                                                                                                             (2) 

 

so that g(.) may be viewed as being centered at u, with a scale of s. The effect of s is to increase 
the support of g(.) - a process which is referred to as integral dilation in the time domain (see 
Ramsey (1998)). A number of standard wavelets are now available in the literature e.g. Haar, 
Daubechies (often called Daublets), Symmlets, Coiflets, Morlet, wavelets trousa'  etc. Within 
each family, there are two types of wavelets : 

Father Wavelets:       ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
j

j
j

kj,
ktΦ=Φ

2
22 2/                                                                   (3) 

With ( )∫ =Φ 1dtt                                                                     

 

                                                 
9As an illustration suppose we wish to focus on cycles ranging in duration from 6 to 12 months. These correspond 
to angular frequencies in the range ( )12/2)6/2( ππ to  i.e. values of k between 30 and 60 (if T=360 say). 
Thus the matrix A will have 1’s on the diagonal for these values of k and zeros elsewhere. 

 

10The mathematical properties of wavelets are investigated by Daubechies (1992), Brillinger (1994), Mallat (1998) 
etc. and an excellent advanced text is Percival & Walden (2000).  
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Mother Wavelets:       ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
Ψ=Ψ −

j

j
j

kj
kt

2
22 2/

,                                                                  (4) 

With ( )∫ =Ψ 0dtt                                                                    

                                                          

The essence of wavelet analysis consists in projecting the time series of interest ⎨X(t)⎬, 
onto a sequence of father and mother wavelets from a specific family (e.g. Haar, Morlet etc.), 
indexed both by the number of translations k = {0,1,2…….} and the scale factor 

{ }...3,2,12 == js j . The coefficients of this projection may be approximated by    

( ) ( )∫≈ dttΦtXs kJ,kJ,                                                                                                    

 

( ) ( ) J,=j;dttΨtXd kj,kj, .......12∫≈                                                                          
 

In actual data analysis, involving finite discretely sampled data the above coefficients 
will have to be computed over a lattice. It is convenient to assume the series ⎨X(t)⎬ to be of 
dyadic length N (i.e. N=2J, where J is a positive integer). 

 

The multi-resolution representation of the signal X(t) is now given by  

 
( ) ( ) ( )

( ) ( )∑∑
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kJkJ

k
kJkJ
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                                                                (5) 

where the basis functions )(, tkJΦ and )(, tkjΨ  are assumed to be orthogonal (see 
Crowley (2007)) 

 
kkkJkJ tt ′′ =ΦΦ∫ ,,, )()( δ  

 
0)()( ,, =ΦΨ∫ ′ tt kJkJ  

 

jjkkkjkj tt ′′′′ =ΨΨ∫ ,,,, )()( δδ  
 
where kkifkk ′≠=′ ,0,δ  and ,1, =kkδ  

 

In (5), the term ( )∑
k

kj,kj, tΨd  represents the variation of X(t) at time scale Jjj ...2,1;2 = ,  

whereas ( )∑ Φ
k

kJkJ ts ,,   is a scalar representing the averages on a scale of length J2  (see 
Gencay et al (2002) p.117-125). Higher scales correspond to longer term movements in the 
given series X(t), with the  scale J2 identified with the secular (smooth) movement of the 
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series. The number of coefficients }{ ,kjd at scale j are ⎟
⎠
⎞

⎜
⎝
⎛

j

N
2

. These coefficients may be called 

“atoms” following Ramsey & Lampart (1998). Define the “crystals”  

 
{ } JjdD

j

kkjj ...2,1;2
1, ==

=  and  { } J

kkJJ sS 2
1, =

=  

The actual derivation of the atoms and crystals may be done via  the so-called discrete 
wavelet transform (DWT), which can be computed in several alternative ways. The intuitively 
most appealing procedure is the pyramid algorithm, suggested in Mallat (1989) (and fully 
explained in Percival & Walden (2000)).  

The crystals JJ SDDD ,......2,1  represent a convenient way of decomposing a given 
series ⎨X(t)⎬  into changes attributable at different scales. Such a decomposition is referred to 
as a Multi-resolution analysis (MRA) and is defined by the relationship 

 

      ( ) ( ) ( )∑
=

+=
J

j
Jj tStDtX

1
                                                                              (6) 

The discrete wavelet transform (DWT) introduced above is often referred to as the 
decimated transform as the pyramid algorithm  arises from a successive down-sampling 
process, in which only alternate observations are picked up at each sub sampling stage (see 
Gencay et al (2002), p.121-124)  However as indicated by Kim & In (2003) for many 
economic and financial applications, an undecimated DWT is more appropriate, and this is 
furnished by the so-called maximum overlap discrete wavelet transform or MODWT, 
described in Coifman & Donoho (1995), Percival & Walden (2000) etc. The MODWT 
coefficients can be obtained via a pyramid algorithm, as in the case of the decimated DWT, 
except that no down-sampling is involved (so that the wavelet coefficients at each level j 
comprise N elements). The MODWT provides all basic functions of the DWT, but possesses 
several advantages over the latter.  

a) It does not require the series length N to be dyadic. As a matter of fact, N can be arbitrary 
(Percival & Walden (2000) p.159). 

b) The MODWT coefficients { }kjd ,  at scale jk 2=  of the signal ( ) ( ) ( )( )1 , 2 ,......X X X m , m 
< N, are strictly the same as the first m coefficients at the same scale of the signal 

( ) ( ) ( )( )1 , 2 ,......X X X N .  

c) In contrast to the DWT, the MODWT details and smooth are associated with zero-phase 
filters, thus making it straightforward to match features in the MRA with those in the 
original series. (The application of any filter to a series results in a shift in the phase of the 
original series (Gencay et al (2002), p. 35).  A zero-phase filter is a special type of filter, 
which leaves the phase of the original series unchanged).  Unlike the MODWT, the DWT 
detail and smooth filters are not zero phase filters (Gencay et al (2002), p. 138). 
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C. Spectral Analysis & Wavelets : A Comparison 

The basic and obvious analogy between Fourier analysis (and spectral analysis, which 
is closely based on it) and wavelets is that both approaches involve representing a function as a 
linear superposition of certain basis functions. These basis functions are the complex 
exponentials ( ){ }tiωexp  in the case of Fourier analysis and the mother and father wavelet pair 
{ })(),( ,, tt kjkj ΦΨ  in the case of wavelet analysis. Further as pointed out by Strang (1993) and 
Priestley (1996), a somewhat tenuous connection between wavelets and spectral analysis can 
be established. Certain types of wavelet families  such as the Mexican hat family11, have what 
are called “oscillatory characteristics” (see Priestley (1988), p. 147) and then low values of the 
parameter j (in { })(, tkjΨ )   indicate compression in the time domain and may be interpreted as 
corresponding to high frequency cycles. Similarly high values of j correspond to time dilation, 
and may be interpreted as low frequency cycles. We may thus identify the parameters j and k 
as loosely corresponding to the concepts of frequency and time respectively in Fourier analysis.  

It cannot be overstressed that the above interpretation is only valid for wavelet families 
possessing the “oscillatory property”. In general, there are important differences between 
wavelets and Fourier analysis. Firstly, whereas Fourier coefficients are indexed by a single 
parameter ω , wavelets are indexed by two parameters j and k, (with j corresponding to the 
width of the wavelet and k to the time location). Put differently the wavelet coefficients are 
localized , being time varying and dependent only on the local properties of X(t) in the vicinity 
of any time point (see Priestley (1996). By contrast Fourier coefficients depend on the global 
properties12 of X(t).  

A second difference stressed by Priestley (1996) is that in Fourier and spectral analysis 
both high and low frequency components are evaluated over the same time interval (the width 
of the spectral window does not vary with frequency), whereas in wavelet analysis high 
frequency components (or noise) are evaluated over short time intervals, whereas the low 
frequency components (or the smooth) are evaluated over longer time intervals. This enables 
wavelet analysis to highlight short duration transitory features of the data. 

Priestley (1996) has also shown that for a restricted class of mother wavelets13 the 
DWT (discrete wavelet transform) could be viewed as a discrete approximation (in both the 
                                                 
11 The Mexican hat family has a mother wavelet (see (4)) described by  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎥
⎦

⎤
⎢
⎣

⎡
−=Ψ 2

2

2

2

3 2
exp1

2
1

σσσπ
ttt  where 

2σ is a constant 

 
12 This confers one advantage on wavelets viz. that they are relatively less affected by irregular or discontinuous 
behaviour (spikes) of X(t) at a particular point.  

13One type of mother wavelet belonging to this restricted class  is defined by ( ) ( ) [ ]1,0;2sin2 επ ttt =Ψ  
with ( )tΨ vanishing elsewhere  
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time and frequency domain) to the evolutionary spectral representation of an oscillatory 
process14. However, it cannot be over-emphasized that this analogy is sustainable only for this 
special class of mother wavelets and breaks down, for example, with Haar wavelets.  

Further points of analogy between Fourier and wavelet approaches to time series analysis are 
explored in Hogan & Lakey (2003), Chapter 3. 
 

3. Benchmark Results 

The main purpose of this paper is to examine whether money has a useful role to play 
in explaining variations in macroeconomic activity, mainly output and inflation. The rationale 
and importance of such an inquiry has been set out in Section 1. The techniques discussed in 
Section 2 can provide deeper insights into several aspects of this problem by decomposing this 
influence across frequency bands and time scales.  

Our earlier discussion makes out the case for a serious re-examination of the role of 
money in an EME such as India, where the institutional features obtaining may be markedly 
different from those in OECD countries, which constitute the context for most of the current 
studies on this subject. Our data set is composed of 176 monthly observations from March 
1992 to October 2006 on 5 basic macroeconomic aggregates : index of industrial production 
(IIP), wholesale price index (WPI), interbank call money rate (CMR), broad monetary 
aggregate (M3) and the bilateral US$-INR (Indian rupee) exchange rate (EXR)15. Plots of 
Ln(IIP), Ln(M3), Ln(WPI), Ln(EXR) and CMR are shown in Figure 1(a) –(e) .  

 
 

                                                 
14 These concepts have been introduced into the literature by Priestley (1965, 1966)  

15 Since prior to 1992, the Indian financial system was a highly regulated one, financial prices were a poor 
indicator of monetary policy impulses and the interest rate transmission channel of monetary policy was virtually 
non-existent.  This together with a pegged exchange rate implies a totally different regime for monetary policy in 
the pre-reforms period as opposed to the post-reforms period. Hence we decided on 1992 as the starting date for 
our analysis. Our excuse for the choice of IIP (on which data is available monthly) as a proxy for national output 
15 is that the methods we propose to use are heavy consumers of degrees of freedom, though we are fully aware of 
the limitations of this choice in an era when an increasing proportion of national income is being accounted for by 
the services sector. An identical argument applies for the choice of the bilateral US$-INR exchange rate over the 
conceptually more satisfying NEER (nominal effective exchange rate)  The choice of the WPI over the CPI is 
mainly because the former has been traditionally used by official agencies (including the Reserve Bank of India) 
to measure “headline inflation”. There are tricky problems associated with the choice of an appropriate short-term 
interest rate. Of the three possible candidates viz. TB-91(yield on 91-day treasury bills), CP (commercial paper) 
rate, and the CMR (call money rate), the last seems to best capture the market liquidity sentiment. TB-91 is 
subject to the vagaries of government short-term borrowing requirements and the CP market is a fragmented as 
well as a narrow one. Finally of the six measure of money supply in current usage in India, M3 is the one most 
frequently used as a reference point by analysts and policymakers alike. 
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Unit root tests (Phillips-Perron)  (not presented here in the interest of brevity) point to 
Ln(WPI), Ln(M3) and Ln(EXR) being I(1) processes, with  Ln (IIP) and CMR being  I(0) 
(around a linear trend).  

The sensitivity of the Granger causality results to issues such as the period of analysis 
chosen, the number of variables included, the treatment of unit roots and cointegration etc. has 
been well documented in the earlier literature (see in particular Eichenbaum & Singleton 
(1986), Stock & Watson (1989), Friedman & Kuttner (1993) etc.). Our preliminary analysis 
confirmed that this is so for the Indian case too, with results changing somewhat significantly 
depending on the choice of the period of analysis16. We also found that results using a three 
variable model (Ln(IIP), LN(WPI) and Ln(M3)) or a four variable model (including 
                                                 
16This is particularly noticeable if we restrict our period of analysis to March 1992 to April 2004, as compared to 
our current choice of March 1992 to October 2006.One possible explanation could be of the Indian economy 
entering a high growth phase subsequent to 2004. 
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additionally the interest rate variable CMR) varied in several details from the full model (based 
on the five variables Ln(IIP), LN(WPI), Ln(EXR) , CMR and Ln(M3) ). To avoid too much 
cluttering of results, we will henceforth concentrate on the full 5-variable model, occasionally 
drawing attention to the sensitivity of some of our conclusions to this particular version of our 
model by comparing conclusions with the lower order models.  

For the 5 variable model, we tested for cointegration between the three I(1) variables 
Ln(WPI), Ln(EXR), Ln(M3), treating the I(0) variables CMR and Ln(IIP) as exogenous to the 
system. We tested jointly for the appropriate model specification and the number of 
cointegarting vectors using the MacKinnon-Haug-Michelis (1999) approach, based on the AIC. 
As shown by the results in Table 1, the appropriate model is one in which the co-integration 
equation has both an intercept and a linear trend and the indicated number of cointegrating 
vectors is one. This cointegrating vector (normalized on Ln(M3)) is given by  

( )
[ ] [ ] [ ]30302.245381.93078.36

)(129135.0)(287769.0)(010639.01550.113
−−−

+++= WPILnEXRLnTMLn      (7) 

(Figures in square parentheses denote t-values of the corresponding coefficients) 

TABLE 1: AIC for Different Types of Models  

Type of Trend in Data     → None None  Linear Linear  Quadratic 

Nature of Cointegrating Vector  
→ 

No Intercept  

No Trend 

Intercept 

No Trend 

Intercept 

No Trend 

Intercept 

 Trend 

 Intercept 

 Trend 

Number of Cointegrating 
Vectors           ↓ 

     

0 -18.9829 -18.9829 -19.0338 -19.0338 -19.0707 

1 -19.0513 -19.0553 -19.0726 -19.1325 -19.1314 

2 -19.0296 -19.0443 -19.0567 -19.1065 -19.0984 

3 -18.9597 -19.0066 -19.0066 -19.0477 -19.0477 

Notes: The underlined entry denotes the minimum AIC, corresponding to a single cointegrating vector which 
has both an intercept and a trend.  

We now conduct benchmark causality tests for exploring the relation between (i) 
money and output and (ii) money and inflation. To place the discussion in a general context, let 

( ) ( ) ( )[ ]tZtZtZtZ m............,)( 21=  be an m-dimensional vector of I(1) processes, which are 
cointegrated  with a single cointegrating relationship. Further let 

( ) ( ) ( )[ ]tWtW,tW=(t)W p2 ............1  be a p-dimensional vector of I(0) processes. Then the null 
hypothesis that  “ ( )tZ 2  does not cause ( )tZ1 ” may be tested via the equation 

( ) ( ) ( ) ( )tuECjtWjtZtZ
p

i

L

j
iji

m

i

L

j
iji ++−+−Δ+=Δ ∑∑∑∑

= == =

)(
1 1

,
1 1

,1 λδβα                  (8) 

where EC denotes the error correction term.  
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The null hypothesis corresponds to a joint test for  

0.... ,21,2 === pββγ                                                                                               (9) 

which is tested by the usual F-statistic.  

Using the procedure outlined above we conducted benchmark causality tests for our 
hypotheses of interest, with this variation that since our I(0) variables CMR and Ln(IIP) are 
stationary around linear trends, we also introduce a trend term in (8). The benchmark results 
are presented in Table 2, Column (2) along with the results for the lower order models for the 
sake of facilitating comparison.  

TABLE 2: Benchmark Granger Causality Results for All Three Model Variants 

Null Hypothesis 

↓ 

F-statistic & P-value 
(in parenthesis) 

(5-Variable Model) 

F-statistic & P-value 
(in parenthesis) 

(4-Variable Model) 

F-statistic & P-value 
(in parenthesis) 

(3-Variable Model) 

∆Ln(M3) does not cause ∆Ln(IIP) 2.096891* (0.0479) 2.955241** (0.0095) 4.461017** (0.0002) 

∆Ln(M3) does not cause ∆Ln(WPI) 1.962003 (0.0646) 2.203893** (0.0459) 1.839677 (0.0837) 

∆Ln(IIP) does not cause ∆Ln(M3) 6.795166** (0.0001) 6.625299** (0.0000) 6.046809** (0.0001) 

∆Ln(WPI) does not cause ∆Ln(M3) 2.493396** (0.0193) 1.073550 (0.3811) 1.443194 (0.1922) 

              Notes: (*) and (**) denote significance at 5% and 1% respectively 

The main features to emerge from the causality tests are the following: 

a) Money supply growth continues to play a useful role in anticipating growth in real output 
(as proxied by industrial production). This conclusion is sustained in all the three model 
variants we have used. Interestingly, we note that the inclusion of an interest rate variable 
in our model reduces the causal significance of money growth for output growth (compare 
the results for the 3-varaible model with those in the 4-variable model). This conclusion 
supports the existence of the puzzle first noted by Sims (1980) for the US economy, that the 
money-output relationship is weakened in the presence of the interest rate. Our study 
additionally also brings out a further reduction in the causal significance of money (for 
output) when the exchange rate is allowed to enter the picture. Following Friedman & 
Kuttner (1993), this could be taken as evidence of the interest rate and exchange rate 
carrying important information about future output behaviour, beyond that conveyed by 
money supply.  

b) There is at best weak evidence for money stock growth as a predictor of future inflation (at 
10% level of significance rather than at the conventional 5% level). 



 16

c) A strong feedback seems to prevail from output growth to money stock growth but 
evidence of feedback from inflation to monetary growth obtains only in the full (5-variable) 
model.  

The strong relationship between money supply growth and output growth is in keeping 
with several other studies (such as Spence (1989), Feldstein & Stock (1993), Abate & Boldin 
(1993) etc.). Our results also conform to another pattern uncovered in such studies viz. that the 
relationship displays a tendency to weaken as more financial variables are added to the 
model.17 The disconnect that we observe between monetary growth and inflation, in a sense, is 
the obverse reflection of the strong relation between money and output. The traditional 
theoretical justification for this observed  non-neutrality  of money runs in terms of sticky 
prices and wages stemming from features such as implicit contracts, customer markets, 
efficiency wages, countercyclical mark-ups etc. (see e.g. Bils (1987), Rotemberg & Saloner 
(1986), Ball & Romer (1990) etc.). In recent years following from the seminal works of 
Mankiw (1985), Calvo (1983), Blanchard &  Kiyotaki (1987) among others, a new generation  
of theoretical models ( the so-called neomonetarist models) has sprung up which  attempts to 
explain non-neutrality of money via state-dependent pricing.18  

The theoretical literature clearly points to the relationship between money and output 
(and inflation) still being largely unsettled. Part of the ambiguity could be attributable to the 
possibility that this relationship could vary across time scales and the empirical evidence for 
such variation has so far been sparse (except for stray attempts such as Ramsey & Lampart 
(1998), Artis et al (1992), Thoma (1994) etc.). Decomposing empirically the relationship 
across timescales and/or frequency bands could thus usefully supply further stimulus to 
theoretical research aimed at shedding light on this conundrum.19 

 

 

 
                                                 
17 However the weakening evidenced in our model is much less sharp than that noticed in some of these models 
(see e.g. Friedman & Kuttner (1993)) 

18This refers simply to the phenomenon of individual firms’ price responses depending on the state of the 
economy. The aggregate price level then depends on the fraction of firms that adjust and the degree of price 
adjustment (see Dotsey et al (1999), Kimball (1995), Christiano et al (2005) etc.). 

19As two important instances we could mention (i) the possibility of identifying the short-term component of the 
money-income relationship as a money supply relationship with the long-term component as a money demand 
relation and (ii) the theoretical possibility raised in Caplin & Leahy (1991) and Dotsey et al (1999) that permanent 
(low frequency) changes in money stock will only affect output temporarily but will in the long run only affect 
prices (see also  Nicoletti-Altimari (2001), , Gerlach & Svensson (2003), Jansen (2004) etc.). 
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4. Decomposition Across Frequency (Band-Spectral Analysis) 

As mentioned in Section 1, our attempt is to study whether the direction of causality 
between money growth on the one hand and output growth and inflation on the other could be 
sensitive to the time horizon of interest. We first approach the issue from the band-spectral 
perspective which decomposes relationships across spectral frequency bands in the manner 
indicated in Section 2A.  

Causality testing across specific frequency bands proceeds as follows. Suppose the null 
hypothesis of interest to be that  “ ( )tZ 2  does not cause ( )tZ1  in the frequency band ( )21 ,ωω ”, 
then letting  )(1 tZ ⊕Δ  and )(2 tZ ⊕Δ denote )(1 tZΔ and )(2 tZΔ  with only the frequencies in the 
band ( )21 ,ωω   retained (and all other frequencies set to zero), we once again use the prototype 
of equation (8) with )(1 tZ ⊕Δ  and )(2 tZ ⊕Δ   replacing )(1 tZΔ and )(2 tZΔ  respectively. As 
before the null hypothesis corresponds to an F-test (where λ as before is the coefficient of the 
error correction term but  1,2β  etc. correspond to the coefficients of  ( )tZ ⊕Δ 2  

0... ,21,2 === pββλ                                        

To maintain some comparability with the wavelet results to be discussed in the next 
section, we zero-pad the original series of 176 observations to a total of 380 observations (i.e. 
by approximately a factor of 2).20   We then isolate the following 6 frequency bands for study: 

monthstobetweencyclestoingcorrespondB 42)5000.0,2500.0(:1                                                        
monthstobetweencyclestoingcorrespondB 84)2500.0,1250.0(:2

monthstobetweencyclestoingcorrespondB 168)1250.0,0625.0(:3

monthstobetweencyclestoingcorrespondB 3216)0625.0,0313.0(:4

monthstobetweencyclestoingcorrespondB 6432)0313.0,01563.0(:5

)(64)01563.0,0000.0(:5 trendmonthsthanlongercyclestoingcorrespondS ′  

The frequency band corresponding to the trend has been dubbed 5S ′  to emphasize the 
comparison with the wavelet smooth to be discussed in the next section.  

We now present the Granger causality results across each of our 6 frequency bands 
above in Table 3 for the following 4 relationships (using the model variant with 5 variables): 

(i) ∆Ln(M3) causes ∆Ln(IIP)  

(ii) ∆Ln(M3) causes ∆Ln(WPI) 

(iii) ∆Ln(IIP) causes ∆Ln(M3) and 

(iv) ∆Ln(WPI) causes ∆Ln(M3) 

                                                 
20 On the general desirability of zero-padding with a view to minimizing the so-called picket-fencing and 
scalloping effects, see Jones (2006). Padding to 380 observations enables us to study cycles of upto 64 months. 
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The benchmark causality results have already been presented in Table 2. 

Table 3: Granger Causality Results Across Spectral Frequency Bands (5 Variable Model) 

Notes: (*) and (**) denote significance at 5% and 1% respectively 

As the results in table 3 indicate, decomposing the various relationships across spectral 
frequency bands brings to light the changing dimension of the relationships depending on the 
horizon over which they are studied. Thus money supply growth is a leading indicator of 
output growth both for cycles as short as 2 to 4 months, as well as, for medium term cycles of 
between 32 to 64 months. However the trend monetary growth (sometimes called as core 
money growth) has little predictive value for the secular growth of output. Obversely, almost 
as a mirror image of the money stock-output relation, money Granger causes output only in the 
long run (in our analysis covering oscillations of periodicity greater than 64 months). This last 
feature may serve to highlight the usefulness of such decomposition. The benchmark result of 
“no causality from money to inflation” actually masks the fact that secular money growth is a 
useful indicator of secular inflation. There is feedback from both output and inflation to money 
stock at the short and long ends of the spectral field but the feedback is absent over the middle 
range (i.e. the bands covering cycles ranging from 16 to 32 months for the output to money 
feedback and 8 to 32 months for the inflation to money feedback). The low frequency feedback 
most likely reflects the long run transactions demand for money. So far as the short-term 
feedback is concerned, two possible explanations could be in order. Firstly, it could be 
capturing the fact that the monetary authority responds to any perceived temporary shocks to 
inflation and output with a short term monetary policy response. Secondly, short-term 
variations in economic activity lead to an immediate response in bank deposits (especially 

Null Hypothesis 

↓  
Band 1B  

F-statistic 
&  

P-value (in 
brackets) 

Band 2B  

F-statistic 
&  

P-value (in 
brackets) 

Band 3B  

F-statistic 
&  

P-value (in 
brackets) 

Band 4B  

F-statistic 
&  

P-value (in 
brackets) 

Band 5B  

F-statistic 
&  

P-value (in 
brackets) 

Band 5S ′  

F-statistic 
&  

P-value (in 
brackets) 

∆Ln(M3) does not 
cause ∆Ln(IIP) 

4.9374** 

(.0052) 

3.9230** 

(0.0048) 

2.7892** 

(0.0073) 

3.0216** 

(.0095) 

1.8653 

(0.0090) 

4.8681** 

(0.9143) 

∆Ln(M3) does not 
cause ∆Ln(WPI) 

1.1834 

(0.1757) 

1.3694 

(0.1453) 

1.9658 

(0.5941) 

0.9902 

(0.8355) 

1.8356 

(0.6704) 

3.0409** 

(0.0087) 

∆Ln(IIP) does not 
cause ∆Ln(M3) 

2.9638** 

(.0089) 

8.3515** 

(0.0001) 

7.9302** 

(0.0001) 

1.1853 

(0.3146) 

2.6619* 

(0.0145) 

6.8602** 

(0.0001) 

∆Ln(WPI) does not 
cause ∆Ln(M3) 

2.4357* 

(0.0351) 

3.0872** 

(0.0061) 

1.5431 

(0.0974) 

1.2257 

(0.1846) 

2.7325** 

(0.0097) 

6.4583** 

(0.0001) 
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demand deposits) and this could also partly account for the observed feedback. The absence of 
feedback in the middle ranges of frequency is more difficult to explain. No theoretical 
explanation seems to be available, but a plausible empirical explanation could be that the series 
involved move in and out of phase over the frequency band considered (see Ramsey & 
Lampart (1998)). We postpone an examination of this issue till after we complete the analysis 
based on wavelets in the next section.  

 

5. Decomposition by Time Scales (Wavelet Analysis) 

We now repeat the causality testing exercise conducted in the previous section, but 
using wavelet analysis. The procedure is very similar to that employed earlier except that the 
frequency bands are now replaced by wavelet decomposition across timescales.  

Suppose once again that the null hypothesis of interest is “ ( )tZ 2Δ does not cause ( )tZ1Δ  
at the j-th time scale ( ) Jjj j ...2,1;2 ==ς ”  Let   ( )][ 1 tZD j  and ( )][ 2 tZD j Δ denote the 
respective crystals of ( )tZ1Δ and ( )tZ 2Δ  at the j-th scale. Re-invoking equation (8) with    

( )][ 1 tZD j  and ( )][ 2 tZD j Δ  replacing  ( )tZ1Δ and ( )tZ 2Δ   respectively, the null hypothesis 
corresponds to the following F-test  (where λ as before is the coefficient of the error correction 
term but  1,2β  etc. correspond to the coefficients of  ( )][ 2 tZD j Δ  

0... ,21,2 === pββλ                              

However, care has to be taken in the choice of the type of wavelet, the length of the wavelet 
filter and the highest time scale. As in other areas of econometrics, no hard and fast rules apply 
here, though some indicative guidelines are available. On the choice of wavelet, the symmlet is 
often recommended for economic applications, as it is nearly symmetric and fairly smooth 
(being twice differentiable), and has a reasonably narrow compact support (see Strang & 
Nguyen (1996)).21 The highest scale of decomposition (i.e scale J in the notation of Section 2) 
is determined by the number of observations and in our case is taken to be five.22 We thus get 
the following crystals for each of our series 

monthsofscaletimeatoingcorrespondD 421 −      
monthsofscaletimeatoingcorrespondD 842 −

monthsofscaletimeatoingcorrespondD 1683 −

monthsofscaletimeatoingcorrespondD 32164 −

                                                 
21 Of course it needs hardly be stressed that the choice of the wavelet is guided by the characteristics of the signal 
on analyzing. Given that our series of interest are relatively smooth over the period of analysis, a symmlet was 
thought appropriate. For a discontinuous signal, the Haar wavelet, for example, could be a better choice.  

22 For 176 observations, the maximum number of scales could be seven, but the two highest scales will have poor 
resolution, and hence we restrict attention to only five scales (see Crowley (2007)).  
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monthsofscaletimeatoingcorrespondD 64325 −                                                   
)64(sec5 monthsexceedingmovemnetstrendorulartoingcorrespondS  

The length of the wavelet filter (or the width of its support) depends both on the 
frequency of the data and the number of observations23. As a rough rule (see Bruce & Gao 
(1996), p.69) the length of the filter may be taken as around or slightly less than twice ⎟

⎠
⎞

⎜
⎝
⎛

J

N
2  

where N is the number of observations and J the highest scale of decomposition. Our choice of 
the wavelet is thus a Symmlet (8). 

We note that the choice of the time scales ensures that the crystals  521 ....., DDD  closely 
corresponds to the cycles in the spectral bands 521 ....., BBB , whereas the wavelet smooth 5S   
corresponds to the low frequency cycles in band 5'S . This imparts a measure of comparability 
to the results obtained via wavelet and band spectral analysis, subject of course to the general 
caveats discussed in Section 2C. Our wavelet based Granger-causality results are presented in 
Table 4 for the four basic relationships (see Section 3A) which constitute the focus of this 
study (with the underlying model being the variant with 5 variables). 

TABLE 4: Granger Causality Results for Varying Time Scale Crystals (5-Variable Model) 

Null Hypothesis 

↓  
1D  

F-statistic &  

P-value (in 
brackets) 

2D  
F-statistic & 

P-value (in 
brackets) 

3D  
F-statistic &  

P-value (in 
brackets) 

4D  
F-statistic &  

P-value (in 
brackets) 

5D  
F-statistic &  

P-value (in 
brackets) 

5S  
F-statistic &  

P-value (in 
brackets) 

∆Ln(M3) does 
not cause 
∆Ln(IIP) 

7.637938** 

(0.0001) 

9.411278** 

(0.0001) 

7.42056** 

(0.0001) 

1.299128 

(0.2553) 

5.158549** 

(0.0001) 

0.580294 

(0.7710) 

∆Ln(M3) does 
not cause 
∆Ln(WPI) 

0.950730 

(0.4699) 

1.194923 

(0.3098) 

3.530709** 

(0.0016) 

0.265281 

(0.9663) 

1.549067 

(0.1559) 

6.081876** 

(0.0001) 

∆Ln(IIP) does 
not cause 
∆Ln(M3) 

3.433105** 

(0.0021) 

17.84190** 

(0.0001) 

9.189834** 

(0.0001) 

1.053112 

(0.3974) 

2.558939* 

(0.0166) 

4.482722** 

(0.0002) 

∆Ln(WPI) does 
not cause 
∆Ln(M3) 

2.237738* 

(0.0348) 

2.931290** 

(0.0069) 

1.890190 

(0.0756) 

0.379729 

(0.9129) 

2.217092* 

(0.0364) 

7.534296** 

(0.0001) 

Notes: (*) and (**) denote significance at 5% and 1% respectively 

 

 

                                                 
23 As the length increases the mother wavelet becomes wider and smoother  
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TABLE 5: Crystal-wise Examination of Sims’ Puzzle 

F-values for the Null Hypothesis ∆Ln(M3) does not cause ∆Ln(IIP) Crystal 

↓  3-Variable Model 4-Variable Model  5-Varaible Model 

1D  7.5729** 7.5178** 7.6379** 

2D  12.6816** 14.7431** 9.4113** 

3D  6.1522** 7.9207** 7.4200** 

4D  1.5951 1.4574 1.2991 

5D  4.0487** 5.1804** 5.1585** 

5S  2.4587* 0.7616 0.5803 

Notes:  1. (*) and (**) denote significance at 5% and 1% respectively.  2. Figures in parentheses indicate P values. 

The results in Table 4 once again point to how the nuances of the various relationships 
studied vary across different time scales. To illustrate further the usefulness of wavelet 
analysis, let us probe a little further into the so-called Sims puzzle (noted above in our 
discussion of the benchmark causality results in Section 3) about the causal significance of 
money for output declining successively with the inclusion of the interest rate and exchange 
rate into our model. Table 5 therefore presents the causality results for the relationship “money 
growth causes output growth” for the wavelet crystals in each of our models.  We find that the 
puzzle really arises only at the crystal 5S , which refers to the long-term (more than 64 months) 
movements of the variables in our model, and is absent at lower scales (i.e. for short-term 
movements). Thus essentially the extra information contained in the interest rate and exchange 
rate (beyond that contained in the money supply) about future output growth really is 
essentially confined to the long-term.  

We have utilized two alternative decompositions for our relationships viz. by frequency 
and by time scales. We now turn to an examination of how sensitive our results are to the 
choice of the decomposition method. A comparison of Tables 3 and 4 shows that disagreement 
among the two methods is limited viz. (i) For the money growth-inflation feedback relationship 
at the crystal 3D  (or frequency band 3B  ) and (ii) For the “money growth Granger-causes 
output growth” at crystal  4D (or frequency band 4B ).  

The ambiguity at crystals  3D  (money growth-inflation) and 4D   (money growth-
output growth) can be probed further. One possible reason could be that at these crystals, the 
concerned series move continuously in and out of phase and this fact could be responsible   for 
the observed ambiguity. In Figures 2(a) & 2(b) we present the spectra for the crystal 3D   for 

)3(MLnΔ   and  )(WPILnΔ   as also for the crystal  4D  for )3(MLnΔ   and )(IIPLnΔ . Further 
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Figures 3(a) & 3(b) overlay the graphs for )3(MLnΔ   and  )(WPILnΔ   at the crystal 3D   and 
of   )3(MLnΔ   and  )(IIPLnΔ   as at the crystal 4D . 
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Figure 3(a) & 3(b) 

 These figure bring out the following interesting features that  

(i) For crystal  3D    the two series of interest viz.  )3(MLnΔ   and  )(WPILnΔ  move 
continuously in and out-of-phase24  as follows: 

Period 1992:03-
1994:03 

1994:04-
1999:07

1999:08-
2002:06

2002:07-
2004:12 

2005:01-
2006:10

Phase Out-In In-Out Out-In In-Out Out-In 

                                                 
24 This is due to the difference in the dominant periodicities at crystal 3D  for  )3(MLnΔ   and  )(WPILnΔ   
which are respectively 6.7 months and 5 months respectively. 
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(ii) For crystal  4D   also, the two series of interest viz. )3(MLnΔ   and  )(IIPLnΔ  move 
continuously in and out-of-phase25  as follows: 

Period 1992:03-1998:03 1998:04-2004:06 2004:07-2006:10   

Phase In-Out   Out-In   In-Out        

To account for the varying phase relationships, we conduct separate Granger causality 
tests over each distinct part of the cycle. For crystal, 3D   five such distinct phases are 
identified, whereas for crystal 4D , there are three distinct phases. However, because the total 
number of observations in some of these phases are too few to permit meaningful causality 
testing, we concentrate only on the following two phases for the crystal 3D  

Period 1994:05- 1999:08  In-Out                  Period 1999:09 - 2002:07  Out-In   

 and further for crystal 4D , we single out for attention the two phases 

Period: 1992:03-1998:04  In-Out             Period 1998:05 – 2004:07  Out-In      

The results of conducting Granger causality tests for each of these phases are displayed 
in Table 6. 

TABLE 6: Granger Causality Results: Variation by Phases 

Time Period Crystal : 3D  
1994:05- 1999:08 1999:09 - 2002:07 

Phase Relationship →  In-Out Out-In 

∆Ln(M3) does not cause ∆Ln(WPI) F-Statistics 8.8482** (0.0001) 5.1366** (0.0047) 

∆Ln(WPI) does not cause ∆Ln(M3) F-Statistics 0.7504 (0.5900) 2.7377 (0.0543) 

Time Period Crystal : 4D  
1992:03-1998:04 1998:05 – 2004:07

Phase Relationship →  In-Out Out-In 

∆Ln(M3) does not cause ∆Ln(IIP) F-Statistics 2.82496* (0.0245) 3.2555* (0.0199) 

∆Ln(IIP) does not cause ∆Ln(M3) F-Statistics 6.3647** (0.0001) 1.0248 (0.4120) 

Notes: (*) and (**) denote significance at 5% and 1%.Figures in parentheses indicate P-values.  

Interestingly, this further breakdown indicates (see Table 6) that the nature of the causal 
relationship does show changes over the different phases. For example, (crystal 4D ) money 
growth uni-directionally Granger-causes output growth in the Out-In phase, whereas in the In-
                                                 
25The dominant periodicities at crystal 4D  for )3(MLnΔ   and  )(IIPLnΔ   are 10 months and 22 months 
respectively. 
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Out phase there is feedback. Similarly, (at crystal 3D )  money growth leads inflation when the 
two series are moving out of phase, whereas when the two series are moving into phase there is 
also in evidence a mild feedback from inflation to money growth. Thus part of the explanation 
of the disagreement between the band-spectral and wavelet results could lie in the fact of the 
nature of the relation itself being phase-dependent (see e.g. Ramsey & Lampart (1998)).  

 

6. Conclusion 

There has been a marked reduction in the importance of monetary aggregates in the 
conduct of monetary policy in the wake of the on-going process of financial liberalization in 
developed countries as well as EMEs. This de-emphasis sits somewhat uneasily with those 
macro-economic theories that assign a prime causal role to monetary phenomena in 
explanations of inflation. Further, as shown by Christiano et al (2007), even if monetary 
aggregates play no useful role in the monetary transmission mechanism, this does not 
constitute an argument for their abandonment. Such aggregates could still play a useful role in 
anchoring inflationary expectations and guard against some of the negative consequences of an 
inflationary targeting regime in the presence of nominal rigidities such as wage frictions. Thus 
it is a worthwhile exercise to carefully scrutinize the empirical role of monetary aggregates in 
the macro-economy. In the context of an EME, such an examination assumes even greater 
significance, since the role of monetary aggregates is even less understood here, many such 
economies being in transition from a stage of financial repression to one of financial openness. 
These and other similar considerations underscore the rationale for studies such as this. 

In examining the causal significance of monetary aggregates in the macro-economy, 
earlier research had been focused on two important puzzles viz.  sensitivity of the results to the 
choice of the sample period (Eichenbaum & Singleton (1986), Christiano & Ljungqvist (1987) 
etc.), and to the model specification26 (Bernanke (1986), Stock & Watson (1989) , Friedman & 
Kuttner (1993) etc.), the Sims’ puzzle being a specific instance of the latter. Developments in 
spectral and wavelet analysis opened up the additional possibility of examining the varying 
role of money across distinct time horizons and indeed studies such as Artis et al (1992), 
Ramsey & Lampart (1998), Kim & In (2003) etc. bear out this possibility empirically.  

Our benchmark results reinforce the first two puzzles noted above. The results alter 
significantly if the period of analysis is extended beyond April 2004 to October 2006, to 
include the recent high growth phase. As the high growth phase is widely expected to be 
persistent, we included it in our period of analysis (see Section 3). The sensitivity of the 
benchmark causality results to the model specification are well brought out  in Table 3, which 
shows that the causality results are indeed affected by the variables included in the model. In 
                                                 
26This also includes issues like the choice of the appropriate interest rate as well as  the treatment of trend. 
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particular there is a clear indication of the existence of   Sims’ puzzle27. But the most interesting 
aspects of the paper refer to the decomposition of the underlying benchmark causality results 
across different time horizons. There is substantial agreement among the results following from 
the two alternative decompositions (see Tables 3 and 4). The  money-output relationship seems 
to be characterized by feedback for short-term cycles of upto 16 months duration and then 
again for longer-term cycles of between 32 months and 64 months duration. The secular 
relationship (time periods exceeding 64 months) seems to be one of unidirectional causality 
from output to money growth. Similarly there is unidirectional causation from inflation to 
money growth at the short end of the cyclical span (upto 8 months) and over the longer end (32 
to 64 months). The secular relationship seems to be characterized by feedback between the two 
series.  

The two decomposition methods however show different results for cycles in the range 
of 8-16 months (for the money-inflation relation) and in the range of 16-32 months (for the 
money-output relation). Probing this discrepancy further brings out the interesting phenomenon 
of phase drift and the sensitivity of the causality results to whether the series are moving into 
phase or out of phase.  

The wavelet decomposition was also utilized to throw further light on the issue of Sims’ 
puzzle. It was found that the puzzle was absent throughout the business cycle  span (upto 64 
months) but surfaced strongly at the secular time scale (crystal 5S   ) (see Table 5).  

The role of monetary aggregates in predicting macroeconomic movements has been a 
subject of enduring fascination for economists. In recent years the issue has acquired 
substantive policy connotations. However spectral and wavelet analysis can uncover further 
layers of complexity in the underlying relationships by permitting a look into what happens at 
different time horizons of interest. Our results for example show that causal relations can vary 
across frequencies and timescales, and causality reversals across differing decompositions 
occur all too frequently to be ignored as data vagaries. At the moment it is difficult to explain 
such causality reversals within existing theoretical structures, as the latter almost invariably 
proceed within broad time classifications such as the short, medium and long runs. There is no 
denying that the next big stage in the development of macroeconomic theory will be one in 
which time horizons can be graded on a much finer scale than hitherto and in which 
phenomena like causality reversal across different time periods, varying time scales and 
successive business cycle stages will get a fair share of attention.  

 

 

 

                                                 
27This puzzle is discussed in Section 3 of the paper. 
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