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Robust learning stability with operational monetary 
policy rules 

Bank of Finland Research 
Discussion Papers 31/2007 

George W Evans – Seppo Honkapohja 
Monetary Policy and Research Department 
 
 
Abstract 

We consider the robust stability of a rational expectations equilibrium, which we 
define as stability under discounted (constant gain) least-squares learning, for a 
range of gain parameters. We find that for operational forms of policy rules, ie 
rules that do not depend on contemporaneous values of endogenous aggregate 
variables, many interest-rate rules do not exhibit robust stability. We consider a 
variety of interest-rate rules, including instrument rules, optimal reaction 
functions under discretion or commitment, and rules that approximate optimal 
policy under commitment. For some reaction functions we allow for an interest-
rate stabilization motive in the policy objective. The expectations-based rules 
proposed in Evans and Honkapohja (2003, 2006) deliver robust learning stability. 
In contrast, many proposed alternatives become unstable under learning even at 
small values of the gain parameter. 
 
Keywords: commitment, interest-rate setting, adaptive learning, stability, 
determinacy 
 
JEL classification numbers: E52, E31, D84 
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Robusti stabiilisuus oppimiskäyttäytymisen suhteen ja 
operationaaliset rahapolitiikan säännöt 

Suomen Pankin keskustelualoitteita 31/2007 

George W Evans – Seppo Honkapohja 
Rahapolitiikka- ja tutkimusosasto 
 
 
Tiivistelmä 

Tutkimuksessa tarkastellaan rationaalisten odotusten tasapainon ”robustia stabiili-
suutta”, joka määritellään stabiilisuutena oppimisprosessin suhteen kun esti-
mointialgoritmina on diskontattu (constant gain) pienimmän neliösumman mene-
telmä ja gain-parametri vaihtelee tietyissä rajoissa. Jos vaaditaan politiikka-
säännön operationaalisuus eli että sääntö ei riipu endogeenisten muuttujien 
samanaikaisista arvoista, niin monet korkosäännöt eivät ole robustisti stabiileja. 
Tutkimuksessa tarkastellaan useita korkosääntöjä, ml. instrumenttisäännöt, opti-
maaliset reaktiofunktiot harkinnan ja sitoutumisen oloissa sekä sääntöjä, jotka 
approksimoivat optimaalista politiikkaa sitoutumisen tilanteessa. Joissakin 
reaktiofunktioissa on mukana koron stabilointimotiivi. Evansin ja Honkapohjan 
(2003, 2006) tutkimuksissa ehdotetut, odotusperusteiset optimaaliset säännöt joh-
tavat robustisti stabiiliin tasapainoon. Sen sijaan monet muut korkosäännöt 
implikoivat epästabiilisuuden jopa pienillä gain-parametrin arvoilla. 
 
Avainsanat: sitoutuminen, koron asetanta, adaptiivinen oppiminen, stabiilisuus, 
tasapainon yksikäsitteisyys 
 
JEL-luokittelu: E52, E31, D84 
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1 Introduction

Recently, the conduct of monetary policy in terms of interest rate rules has been
examined from the viewpoint of imperfect knowledge and learning by economic
agents. In this literature stability of rational expectations equilibrium (REE)
is taken as a key desideratum for good monetary policy design.1 Most of this
literature postulates that agents use least squares or related learning algorithms
to carry out real-time estimations of the parameters of their forecast functions
as new data becomes available. Moreover, it is usually assumed that the
learning algorithms have a decreasing gain; in the most common case the gain
is the inverse of the sample size so that all data points have equal weights. Use
of such a decreasing-gain algorithm makes it possible for learning to converge
exactly at the REE in environments without structural change. Convergence
requires that REE satisfies a stability condition, known as E-stability.
Decreasing-gain algorithms do not, however, perform well when occasional

unobservable structural changes take place. So-called constant-gain algorithms
are a natural alternative for estimating parameters in a way that is alert to
possible structural changes. If agents use a constant-gain algorithm, then
parameter estimates of the forecast functions do not fully converge to the REE
values. Instead, they remain random, even asymptotically. However, for small
values of the gain parameter the estimates remain for most of the time in a
small neighborhood of the REE, provided that the REE is E-stable.2 Recently,
constant-gain algorithms have been employed in empirical work, eg see Milani
(2005), Milani (2007a), Orphanides and Williams (2005b), Orphanides and
Williams (2005a) and Branch and Evans (2006).
It should be emphasized that the connection between convergence of

constant-gain learning and E-stability noted above is a limiting result for gain
parameters sufficiently small. For finite values of the gain parameter, the
stability condition for constant-gain learning is more stringent than E-stability.
In this paper we examine the stability implications of various interest rate rules
when agents use constant-gain learning rules with plausible positive values of
the gain. We will say that an interest rate rules yields robust learning stability
of the economy if stability under constant-gain learning obtains for all values
of the gain parameter in the range suggested by the empirical literature.3

In this study we focus on interest rate rules that are operational in
the sense discussed by McCallum (1999). He argues that monetary policy
cannot be conditioned on current values of endogenous aggregate variables.
Thus, the rules we consider assume that policy responds to expectations of

1For surveys see Evans and Honkapohja (2003a), Bullard (2006) and Evans and
Honkapohja (2007).

2See Chapters 3 and 7 of Evans and Honkapohja (2001) for the basic theoretical results
on constant-gain learning. See also Evan, Honkapohja, and Williams (2006) for references
on recent papers on constant-gain learning.

3There are numerous concepts of robustness that are relevant to policymaking reflecting,
eg, uncertainty about the structure of the economy, and a desire by both private agents
and policymakers to guard against the risk of large losses. We do not mean to downplay
the importance of such factors, but we here abstract from them in order to focus on the
importance of setting policy in such a way as to ensure stability in the face of constant-gain
learning.
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contemporaneous (or future) values of inflation and output but not on their
actual values in the current period.
We consider robust learning stability for a variety of operational interest

rate rules that have been suggested in the recent literature. These include
Taylor rules and optimal reaction functions under discretion and commitment
when central bank policy aims for interest-rate stabilization in addition to
the usual motives for flexible inflation targeting. The reaction function may
be expectations-based in the spirit of Evans and Honkapohja (2003b) and
Evans and Honkapohja (2006), or of the Taylor-type form suggested by Duffy
and Xiao (2007). We also analyze two interest rate rules that approximate
optimal policy under commitment and were suggested by Svensson and
Woodford (2005) and McCallum and Nelson (2004). Our results show that
expectations-based rules deliver robust learning stability, whereas the proposed
alternatives often become unstable under learning even at quite small values
of the constant gain parameter.

2 Constant gain steady-state learning

2.1 Theoretical results

In this paper we employ multivariate linear models. In this simplest case in
which the shocks are white noise and there are no lagged endogenous variables,
the REE takes the form of a stochastic steady state. We now briefly review
the basics of steady state learning in linear models.4

The steady state can be computed by postulating that agents’ beliefs, called
the ‘perceived law of motion’ (PLM), take the form

yt = a+ et

for a vector yt, where et ∼ iid(0, σ2). Using the model, one then computes the
‘actual law of motion’ (ALM), which describes the temporary equilibrium in
the current period, given the PLM. We write the ALM using a linear operator
T as

yt = α+ Ta+ et

where the matrix T depends on the structural parameters of the model.
Examples of the T map will be given below. An REE is a fixed point ā of
the T map, ie

ā = α+ T ā

We assume that I − T is non-singular, so that there is a unique solution
ᾱ = (I − T )−1α. For convenience, and without loss of generality, we now
assume that the model has been written in deviation from the mean form,

4See Chapters 8 and 10 of Evans and Honkapohja (2001) for a detailed discussion of
adaptive learning in linear models.
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so that α = 0. Thus in our analysis the REE corresponds to ā = 0. Under
learning agents attempt to learn the value of ā, and hence in deviation from
mean form we are examining whether agents’ estimates of the mean converge
to a = 0.
Steady-state learning under decreasing gain is given by the recursive

algorithm

at = at−1 + γt(yt − at−1) (2.1)

where the gain γt is a sequence of small decreasing numbers such as γt = 1/t.
Assuming that yt = Tat−1 + et, ie that expectations are formed using the
estimate at−1 based on data through time t− 1, the convergence condition of
algorithm (2.1) is given by the conditions for local asymptotic stability of ā
under an ‘associated differential equation’

da

dτ
= Ta− a

known as the E-stability differential equation. Here τ denotes notional or
virtual time. It is easily seen that the E-stability condition holds if and only
if all eigenvalues of the matrix T have real parts less than one.5

Under constant-gain learning, the estimate at of a is updated according to

at = at−1 + γ(yt − at−1) (2.2)

where 0 < γ ≤ 1 is the constant gain parameter. The only difference to (2.1)
is constancy of the gain sequence. We now have

at = at−1 + γ (Tat−1 + et − at−1) or

at = (γT + (1− γ)I) at−1 + γet

This converges to a stationary stochastic process around the REE value ā = 0
(in deviation from mean form) provided all roots of the matrix γT + (1− γ)I
lie inside the unit circle.
It is evident that stability under constant-gain learning depends on the

value of γ, and we have the following result.

Proposition 2.1 For a given 0 < γ ≤ 1, the stability condition is that the
eigenvalues of T lie inside a circle of radius 1/γ and origin at (1 − 1/γ, 0).
This condition is therefore stricter for larger values of γ.

Proof. The stability condition is that the roots of γ(T + γ−1(1 − γ)I)
lie inside the unit circle centered at the origin. Equivalently, the roots of
(T + γ−1(1− γ)I) must lie inside a circle of radius 1/γ centered at the origin.
Since the roots of T+γ−1(1−γ)I are the same as the roots of T plus γ−1(1−γ),
this is equivalent to the condition given.

Note that the right edge of the circle is at (1, 0) in the complex plane and that
as γ → 0 we obtain the standard (decreasing gain) E-stability condition that
the real parts of all roots of T are less than than one. Looking at the other
extreme γ = 1 gives the following:

5Throughout, we rule out boundary cases in which the real part of some eigenvalue of
the T -map is one.
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Corollary 2.2 We have stability for all 0 < γ ≤ 1 if and only if all eigenvalues
of T lie inside the unit circle.

We remark that stability for all constant gains 0 < γ ≤ 1 is equivalent
to a condition known as iterative E-stability, sometimes called ‘IE-stability.’
Iterative E-stability is said to hold when T j → 0 as j →∞.6
Note that when the stability condition holds, the parameter at converges to

a stationary stochastic process that we can fully describe. This in turn induces
a stationary stochastic process for yt = Tat−1 + et.

2.2 Application to Taylor rules

Consider the standard forward-looking New Keynesian (NK) model

xt = −ϕ(it − πet+1) + xet+1 + gt (2.3)

πt = λxt + βπet+1 + ut (2.4)

For convenience we here assume that (gt, ut)0 are iid, so that the preceding
technical results can be applied. Later we will consider cases with AR(1)
shocks. We use xet+1 and πet+1 to denote expectations of πt+1 and xt+1. Below
we will be precise about the information sets available to agents when forming
expectations and throughout the paper we will be exploring the implications
of alternative assumptions.
Bullard and Mitra (2002) consider Taylor rules of various forms, including

the ‘contemporaneous data’ rule

it = χππt + χxxt (2.5)

and the ‘contemporaneous expectations’ rule

it = χππ
e
t + χxx

e
t (2.6)

In this section, when analyzing the contemporaneous expectations rule we
follow Bullard and Mitra (2002) in assuming that all expectations are based
on information at time t − 1, ie πet = Êt−1πt, xet = Êt−1xt, πet+1 = Êt−1πt+1
and xet+1 = Êt−1xt+1. Since we have iid shocks, forecasts are based purely on
the estimated intercept.
Bullard and Mitra (2002) show that the determinacy and E-stability

conditions are the same and are identical for both interest rate rules, and
given by

λ(χπ − 1) + (1− β)χx > 0 (2.7)

They considered this finding important because of the argument by McCallum
(1999) that it is not plausible that interest-rate rules can be conditioned on

6In many models, iterative E-stability is known to be a necessary condition for the
stability of ‘eductive’ learning, eg see Evans and Guesnerie (1993).

10



contemporaneous observations of endogenous aggregate variables like inflation
and output, whereas they could plausibly be conditioned on central bank
forecasts or ‘nowcasts’ Êt−1πt, Êt−1xt.
We reconsider this issue from the vantage point of constant-gain learning.

For the interest-rate rule (2.6) the model takes the form

yt =M0y
e
t +M1y

e
t+1 + Pvt (2.8)

where y0t = (xt, πt) and vt = (gt, ut), and where

M0 =

µ −χxϕ −χπϕ
−χxϕλ −χπϕλ

¶
and M1 =

µ
1 ϕ
λ β + ϕλ

¶
(2.9)

and P =

µ
1 0
λ 1

¶
.

Since our shocks are iid the PLM is simply yt = a + et, and the
corresponding ALM is yt = (M0 + M1)a + et, where et = Pvt. The usual
E-stability condition is that the eigenvalues ofM0+M1 have real parts less than
one, which leads to the condition (2.7). Applying Corollary 2, for convergence
of constant-gain learning for all gains 0 < γ ≤ 1 we need that both eigenvalues
of M0 +M1 lie inside the unit circle.
We investigate stability of constant-gain learning numerically, using the

Woodford calibration of ϕ−1 = 0.157, λ = 0.024, β = 0.99. Setting χπ = 1.5,
eigenvalues with real parts less than−1 arise for χx > 0.31 and eigenvalues with
real parts less than −9 arise for χx > 1.57. This implies that when χπ = 1.5
and χx > 1.57 the equilibrium is unstable under learning for constant gains
γ ≥ 0.10. This is perhaps not a significant practical concern since Taylor’s
recommended parameters are χπ = 1.5 and (based on the quarterly calibration
of Woodford) χx = (0.5)/4 = 0.125. However, it does show a previously
unrecognized danger that arises under constant-gain learning if the Taylor rule
has too strong a response to Êt−1xt, and this finding foreshadows instability
problems that arise in more sophisticated rules discussed below.
Finally, we remark that the potential for instability under constant-gain

learning arises specifically because of the necessity to use forecasts Êt−1yt. For
the current data Taylor rule (2.5) it can be shown that the condition (2.7)
guarantees stability under learning for all constant gains 0 < γ ≤ 1.7

3 Optimal discretionary monetary policy

We now consider optimal policy under constant-gain learning, starting in this
Section with optimal discretionary policy. We focus on homogeneous learning
by private agents and the policy-maker. We initially restrict attention to
the case of iid exogenous shocks, so that steady-state learning is appropriate.
However, we also analyze the more general case, where the observable shocks
follow AR(1) processes.

7The model now takes the form yt = M1Êtyt+1 + Pvt and the required condition is the
same as the determinacy condition.
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Consider the loss function

E0

∞X
t=0

£
(πt − π∗)2 + αx(xt − x∗)2 + αi(it − i∗)2

¤
(3.1)

where π∗, x∗ and i∗ represent target values. For simplicity, we set π∗ = x∗ =
0. The weights αx, αi > 0 represent relative weights given by policy-makers
to squared deviations of xt and it from their targets, compared to squared
deviations of πt from its target.
The first-order condition (FOC) for discretionary optimal policy is

λπt + αxxt − αiϕ
−1(it − i∗) = 0 (3.2)

We first consider a Taylor-type rule proposed by Duffy and Xiao (2007)
and then discuss the expectations-based rule recommended by Evans and
Honkapohja (2003b).

3.1 Taylor-type optimal rules

Duffy and Xiao (2007) propose using the equation (3.2) directly to obtain a
Taylor-type rule that implements optimal discretionary policy. Solving the
FOC for it yields the rule

it =
ϕλ

αi
πt +

ϕαx

αi
xt

where at this point we drop the term i∗ since for brevity we are suppressing
all intercepts. As discussed by Duffy and Xiao (2007), this is formally a
contemporaneous-data Taylor rule. They show that for calibrated values of
structural parameters and policy weights this leads to a determinate and
E-stable equilibrium.
Because it is problematical that the Central Bank can observe

contemporaneous output and inflation,8 we instead examine the rule

it =
ϕλ

αi
Êt−1πt +

ϕαx

αi
Êt−1xt (3.3)

where the information set for the ‘nowcasts’ πet = Êt−1πt, xet = Êt−1xt is past
endogenous variables and exogenous variables. This again leads to a model of
the form (2.8) with coefficients (2.9), where χπ = ϕλ/αi and χx = ϕαx/αi.
We assume that private agents and Central Banks estimate the same PLM,
Since we are here assuming steady-state learning we also have πet = Êt−1πt+1
and xet = Êt−1xt+1.
We first note that for αi sufficiently large the model under this Taylor-type

rule will suffer from indeterminacy. This follows from the Bullard-Mitra result

8An alternative would be to assume that agents and the policymaker sees the
contemporaneous value of the exogenous shocks but not the contemporaneous values of
xt and πt. This would not alter our results.
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that the determinacy condition is (2.7), from which the critical value of αi can
be deduced. The condition for determinacy is

αi < ᾱi ≡ ϕλ+ (1− β)λ−1ϕαx (3.4)

If the central bank’s desire to stabilize the interest rate is too strong, ie
condition (3.4) is not met, then the central bank fails to adjust the interest rate
sufficiently to ensure that the generalized Taylor principle (2.7) is satisfied. To
assess this point numerically, we use the calibrated parameter values of Table
6.1 of Woodford (2003), with αx = 0.048, ϕ = 1/0.157, λ = 0.024, β = 0.99
and get approximately ᾱi = 0.28. Woodford’s calibrated values of αi are 0.077
or 0.233, where the latter value is from Woodford (1999). Thus the condition
for determinacy does hold for these calibrations.
We next consider stability under learning. For the PLM yt = a + et we

again get the ALM yt = (M0 +M1)a+ et, and

T ≡M0 +M1 =

µ
1− α−1i αxϕ

2 ϕ− α−1i λϕ2

λ− α−1i λϕ2αx β + λϕ− α−1i λ2ϕ2

¶
It can be shown that

det(T ) = β(1− α−1i αxϕ
2)

For stability under all values 0 < γ < 1 we need¯̄
β(1− α−1i αxϕ

2)
¯̄
< 1

and it is clear that for given β, αx, ϕ this condition will not be satisfied for
αi > 0 sufficiently small. Hence

Proposition 3.1 Let α̂i = β(1 + β)−1αxϕ
2. For 0 < αi ≤ α̂i there exists

0 < γ̂(β, ϕ, αi, αx) < 1 such that the optimal discretionary Taylor-type rule
(3.3) renders the REE unstable under learning for γ̂ < γ ≤ 1.

Thus, in addition to the indeterminacy problem for ‘large values’ of αi, the
Taylor-type optimal rule suffers from a more serious problem of instability
under constant-gain learning for ‘small values’ of αi. The source of this
difficulty is the interaction of strong policy responses seen in equation (3.3)
and a large gain parameter. This combination leads to cyclical overshooting
of inflation and output gap. This is particularly evident as αi tends to zero
since in this case, eg, a positive change in inflation expectations Êt−1πt leads
to large increase in it, which in turn leads to large negative changes in xt and
πt via equations (2.3) and (2.4). The severity of this problem depends on the
value of γ̂ in Proposition 3.1. Ideally, stability would hold for all 0 < γ ≤ 1,
but if γ̂ is high the problem might not be a major concern.
We investigate the magnitude of γ̂ numerically by computing the

eigenvalues of γT + (1 − γ)I. As an example, for the Woodford calibration
β = 0.99, ϕ = 1/0.157, λ = 0.024, we find that with αx = 0.048 and αi = 0.077,
the critical value γ̂ ≈ 0.04. Since estimates in the macro literature suggest
gains in the range 0.02 to 0.06, this indicates that optimal Taylor-type rules
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may not be stable under learning.9 The source of the problem is that with low
αi the implied weights on Êt−1πt and especially Êt−1xt are very high. Under
constant-gain learning this can lead to instability unless the gain parameter is
very low. We will demonstrate later that this problem is avoided by using a
suitable expectations-based optimal rule.
We next consider the case in which the exogenous shocks are AR(1)

processes. In this setting various information assumptions have been used in
the literature. Perhaps the most common assumption is that agents see current
and lagged exogenous variables and lagged, but not current, endogenous
variables. Expectations under this assumption are denoted as Êtπt, Êtxt,
Êtπt+1 and Êtxt+1. An alternative would replace these by Êt−1πt, Êt−1xt,
Êt−1πt+1 and Êt−1xt+1, indicating that agents only see lagged information.10

Whether agents see current or only lagged exogenous shocks is not particularly
crucial and does not affect our main results. Consequently, we follow the most
common assumption that expectations are specified as Êtπt, Êtxt, Êtπt+1
and Êtxt+1.11 In contrast, as we have already seen, whether agents and
policy-makers are able to see current endogenous variables is an important
issue for stability under learning. This is why we use the term operationality
to indicate an interest rate rule that does not depend on current endogenous
variables.
We now assume that the exogenous shocks gt and ut followAR(1) processes,

ie

gt = μgt−1 + g̃t and ut = ρut−1 + ũt

where 0 < |μ| , |ρ| < 1 and g̃t ∼ iid(0, σ2g), ũt ∼ iid(0, σ2u) are independent
white noise processes. We write this in vector form as

vt = Fvt−1 + ṽt

Under the current assumptions, the PLM of the agents is

yt = a+ cvt

and the forecasts are now Êtyt = a + cvt and Êtyt+1 = a + cFvt. Using the
general model (2.8), the ALM is

yt = (M0 +M1)a+ (M0c+M1cF + P )vt

and the E-stability conditions are that all eigenvalues of the matricesM0+M1

and I ⊗ M0 + F 0 ⊗ M1 have real parts less than one. Here ⊗ denotes the
Kronecker product of two matrices.12

9Milani (2007b) considers a setting in which agents switch between decreasing gain
and constant gain estimators, depending on recent average mean-square errors. In the
constant-gain regime the estimated gains are even higher, around 0.07 to 0.08.
10A third alternative, which is occasionally used in the literature, allows agents to see the

contemporaneous values of endogenous variables. However, this assumption runs against
the requirement of operationality that we want to emphasize here.
11The standard assumption under RE is that agents have contemporaneous information.

Our information assumption takes account of the operationality critique, but nonetheless
allows for the possibility of convergence under learning to the REE.
12In the case of lagged information the PLM is specified as yt = a + cvt−1 + ηt and the

ALM is then yt = (M0 +M1)a+ (M0c+M1cF + PF )vt−1 + Pṽt.
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To examine stability under constant-gain learning, we simulate the model
under constant-gain recursive least squares (RLS) estimation of the PLM
parameters a and c.13 Under constant-gain least squares agents discount old
data geometrically at the rate 1 − γ. Let at, ct denote the estimates based
on data through t − 1. For the recursive formulation of (constant-gain) least
squares see the Appendix. Given these estimates, expectations are formed as
yet = Êtyt = at + ctvt and yet+1 = Êtyt+1 = at + ctFvt and the temporary
equilibrium is then given by (2.8) with these expectations.
We use the previous values for the structural parameters and also set μ =

ρ = 0.8. Simulations of the system indicate instability under constant-gain
RLS learning for gain parameters at or in excess of 0.024. Thus, with regressors
that include exogenous AR(1) observables instability arises at even lower gain
values than in the case of steady state learning. Figures 3.1 and 3.2 illustrate
the evolution of parameters over time under constant-gain RLS learning with
the Taylor-type rule (3.3) in stable and unstable cases.
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Figure 3.1 Stability of optimal Taylor-type rule with γ = 0.02.
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Figure 3.2 Instability of optimal Taylor-type rule with γ = 0.04.

13The RLS formulae are given in the Appendix.
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3.2 Expectations-based optimal rules

Assume now that at time t the exogenous shocks gt, ut and private-sector
expectations Êtπt+1 and Êtxt+1 are observed by the Central Bank. The
expectations-based (EB) rule is constructed so that it exactly implements (3.2),
the FOC under discretion, even outside an REE for given expectations, as
suggested by Evans and Honkapohja (2003b). To obtain the rule, we combine
(2.3), (2.4) and (3.2), and solve for it in terms of the exogenous shocks and
the expectations.
The resulting EB-rule is

it =
(αx + λ2)ϕ

αi + (αx + λ2)ϕ2
Êtxt+1 +

βλϕ+ (αx + λ2)ϕ2

αi + (αx + λ2)ϕ2
Êtπt+1

+
(αx + λ2)ϕ

αi + (αx + λ2)ϕ2
gt +

λϕ

αi + (αx + λ2)ϕ2
ut

This leads to a reduced form

yt =MÊtyt+1 + Pvt (3.5)

Determinacy of the REE corresponding to optimal discretionary monetary
policy requires that M has both eigenvalues inside the unit circle.14 We again
have the condition αi < ᾱi, where ᾱi is given by (3.4).
For stability under learning, first consider the case where the exogenous

shocks vt are iid and agents use steady state learning under constant gain. For
this reduced form the PLM yt = a + et gives the ALM yt = Ma + et (where
et = Pvt), as discussed in Section 2.1. Thus T = M and there is a very close
connection between determinacy and stability under learning. We have:

Proposition 3.2 Assume αi < ᾱi and the shocks are iid. Then the
EB-rule, which implements the FOC, yields a reduced form that is stable under
steady-state learning for all constant-gain rules 0 < γ ≤ 1.

Provided αi < ᾱi, so that determinate optimal policy is possible, the
EB-optimal rule will successfully implement the optimal REE: under
decreasing gain learning there will be convergence to the REE, and under
small constant gain it will converge to a stochastic process near the optimal
REE. Furthermore, for all constant gains 0 < γ ≤ 1 there will be convergence
to a stationary process centered at the optimal REE.
Second, we examine numerically the case of AR(1) shocks with

(constant-gain) RLS learning. For the Woodford calibration β = 0.99, ϕ =
1/0.157, λ = 0.024, αx = 0.048 and αi = 0.077 (and ρ = μ = 0.8) we find that
learning converges for gain values at or below γ = 0.925. In other words, the
expectations-based optimal discretionary rule is quite robustly stable under

14Equivalently we need |tr(M)| < 1 + det(M) and |det(M)| < 1.
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learning. We also make a technical remark that when the agents have to run
genuine regressions, as in the current case, then the IE-stability condition does
not imply convergence of constant-gain learning for all 0 < γ ≤ 1. However,
we see that stability does hold even for γ quite close to one.

4 Optimal policy with commitment

For brevity, in the remainder of the paper we assume that αi = 0, ie the
Central Bank does not have an interest rate stabilization objective.15 Given
the model (2.3)—(2.4) and the loss function (3.1) with αi = 0, it is well-known
that optimal monetary policy under commitment (in a timeless perspective)
is characterized by the condition16

λπt = −αx(xt − xt−1) (4.1)

which is often called the optimal targeting rule. It can be shown that the
optimal rational expectations equilibrium of interest has the form

xt = bxxt−1 + cxut

πt = bπxt−1 + cπut

where we choose the unique 0 < bx < 1 that solves the equation βb2x− (1+β+
λ2/αx)bx+1 = 0 and bπ = (αx/λ)(1− bx), cx = −[λ+βbπ+(1−βρ)(αx/λ)]

−1

and cπ = −(αx/λ)cx.
Different optimal reaction functions that implement the optimal targeting

rule (4.1) have been proposed in the literature. Under rational expectations
one obtains the fundamentals-based reaction function

it = ψxxt−1 + ψggt + ψuut (4.2)

where

ψx = bx[ϕ
−1(bx − 1) + bπ]

ψg = ϕ−1

ψu = [bπ + ϕ−1(bx + ρ− 1)]cx + cπρ

Evans and Honkapohja (2006) show that the reaction function (4.2) often
leads to indeterminacy and always leads to expectational instability. They
propose instead the expectations-based reaction function

it = δLxt−1 + δπÊtπt+1 + δxÊtxt+1 + δggt + δuut (4.3)

where the coefficients are17

δL =
−αx

ϕ(αx + λ2)
, δπ = 1 +

λβ

ϕ(αx + λ2)
, δx = δg = ϕ−1, δu =

λ

ϕ(αx + λ2)

15See Duffy and Xiao (2007) for the extension to the case where the Central Bank also
has an interest-rate stabilization motive.
16See eg Clarida, Gali, and Gertler (1999) and Woodford (1999). For the exposition, we

follow Evans and Honkapohja (2006).
17In the discretionary case with αi = 0 the same coefficients would obtain, except that

δL = 0.
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Under the interest-rate reaction rule (4.3) the reduced form model is of the
form

yt =M1Êtyt+1 +Nyt−1 + Pvt

with y0t = (xt, πt) and v0t = (gt, ut). The corresponding REE takes the form
yt = b̄yt−1 + c̄vt. Evans and Honkapohja (2006) show that the optimal
expectations-based reaction function (4.3) delivers a determinate and E-stable
optimal REE for all values of the parameters. It is therefore clearly preferred
to the fundamentals-based rule (4.2).
In connection with constant gain learning we have the following partial

result:18

Proposition 4.1 The EB-rule under commitment (4.3) yields a reduced form
for which the eigenvalues of the T−map are inside the unit circle for all values
of the structural parameters.

This result is partial in the sense that the eigenvalues condition is no longer
sufficient for stability of constant-gain learning for all 0 < γ ≤ 1. This is
because in the model the regressors include exogenous and lagged endogenous
variables.
We now examine numerically the performance of constant-gain RLS

learning under the expectations-based optimal rule with commitment. Using
Woodford’s parameter values (but with αi = 0), we find that constant-gain
RLS learning converges for values of the gain parameter below γ̂ ≈ 0.25. The
inclusion of a lagged variable among the regressors appears to have a significant
effect on stability of learning for large gains. However, the rule is still robust
for all plausible values of the gain parameter.
As noted above, the Duffy and Xiao (2007) formulation under commitment

breaks down when αi = 0 (as it does in the discretionary case). One
might investigate numerically the performance of the Duffy-Xiao rule under
constant-gain RLS for calibrated values of αi. Based on the results in the
discretionary case, we are not optimistic about robust learning stability of the
Duffy-Xiao rule with commitment.

5 Alternative rules for optimal policy under
commitment

5.1 Svensson-Woodford rule

Given that the fundamentals-based optimal rules (without interest rate
stabilization) lead to problems of indeterminacy and learning instability,
Svensson and Woodford (2005) suggest a modification to such a rule. In
this rule the fundamentals-based rule (4.2) is complemented with a term that
is based on the commitment optimality condition. We again assume that

18See the Appendix for a proof.
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contemporaneous data are not available to the policy-maker, so that current
values of inflation πt and the output gap xt are replaced by their nowcasts Êtπt
and Êtxt. This results in the interest rate rule

it = ψxxt−1 + ψggt + ψuut + θ[Êtπt +
αx

λ
(Êtxt − xt−1)] (5.1)

where θ > 0.
The full model is now given (2.3), (2.4) and (5.1). By substituting (5.1)

into (2.3) this model can be reduced to a bivariate model of the form

yt =M0Êtyt +M1Êtyt+1 +Nyt−1 + Pvt (5.2)

where the information set in the forecasts and nowcasts includes current values
of the exogenous shocks but not of the endogenous variables. It is also assumed
for convenience that vt = Fvt−1 + ṽt is a known, stationary process. The
coefficient matrices are

M0 =

µ −ϕαxθλ
−1 −ϕθ

−ϕαxθ −ϕθλ
¶
, M1 =

µ
1 ϕ
λ β + λϕ

¶
N =

µ −ϕψx + ϕαxθλ
−1 0

−λϕψx + ϕαxθ 0

¶
, P =

µ
0 −ϕψu

0 1− λϕψu

¶
The PLM has the form

yt = a+ byt−1 + cvt

and the T−mapping is

T (a, b, c) = ((M0+M1(I + b))a,M1b
2+M0b+N,M0c+M1(bc+ cF )+P )

The usual E-stability conditions are stated in terms of the eigenvalues of the
derivative matrices

DTa = M0 +M1(I + b̄)

DTb = b̄0 ⊗M1 + I ⊗M1b̄+ I ⊗M0

DTc = F 0 ⊗M1 + I ⊗M1b̄+ I ⊗M0

where ⊗ is the Kronecker product and b̄ is the RE value of b.
We compute numerically the E-stability eigenvalues for the Woodford

calibration with αx = 0.048 and θ = 1.19 For this case the eigenvalues of DTa
are −9.570 and 0.99, while the eigenvalues of DTb are −10.605, −9.672, 0.878
and −0.0118. However, θ = 1 is very close to the lower bound on θ needed
for E-stability (since one root of DTa is almost one), and the eigenvalues are
sensitive to the value of θ. For example, for θ = 1.5 the eigenvalues of DTa are
−15.975 and 0.949, while the eigenvalues of DTb are −17.059, −16.082, 0.842
and −0.0110. It is seen that large negative eigenvalues appear.
19We remark that the eigenvalues of the same model but with contemporaneous data

available would not deliver large negative eigenvalues in the E-stability calculation for this
parameterization.
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The calculation of the E-stability eigenvalues suggests that the interest rate
rule (5.1) can be subject to instability if learning is based on constant gain.
We now examine numerically the performance of the rule (5.1) under different
values of the constant gain using the Woodford calibrated values of the model
parameters and θ = 1.5. Numerical simulations show that under the interest
rate rule (5.1) constant-gain RLS learning becomes unstable for values of γ at
0.019 or higher.
We also examine numerically the sensitivity of the stability upper bound

on γ for different values of αx, ie the degree of flexibility of inflation targeting.
Table 5.1 gives the approximate highest value γ̂ of the gain for which stability
under constant-gain learning obtains.

αx 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.1
γ̂ 0.185 0.06 0.035 0.02 0.018 0.014 0.009 0.007

Table 5.1 Critical values of γ for stability, Svensson-Woodford rule

It is seen from Table 5.1 that robust learning stability of the
Svensson-Woodford hybrid rule is very sensitive to the degree of flexibility
in inflation targeting. Robust stability obtains only when the Central Bank is
an ‘inflation hawk’.

5.2 McCallum-Nelson rule

McCallum and Nelson (2004) propose a different rule that approximates
optimal interest-rate policy in the timeless-perspective sense. They
suggest that the interest rate be raised above inflation whenever the
timeless-perspective optimality condition is above zero.
Their rule performs well if yt is observable, but as McCallum and

Nelson (2004) themselves point out, such a rule would be subject to the
operationality problem that we have encountered several times: it presupposes
that contemporaneous data on inflation and the output gap is available. One
way to overcome this problem is to replace unknown contemporaneous data
by nowcasts of the variables. In this case the interest-rate rule becomes

it = Êtπt + θ[Êtπt +
αx

λ
(Êtxt − xt−1)] (5.3)

Under RE this rule approximates optimal policy under (timeless perspective)
commitment, provided θ > 0 is large.
The model is then given by equations (2.3), (2.4) and (5.3). The model

can be reduced to a bivariate model of the form (5.2), where the coefficient
matrices are

M0 =

µ −ϕαxλ
−1 −ϕ(1 + θ)

−ϕαx −λϕ(1 + θ)

¶
, M1 =

µ
1 ϕ
λ β + λϕ

¶
N =

µ
ϕαxλ

−1 0
ϕαx 0

¶
, P =

µ
1 0
λ 1

¶
20



Using the same parameter values as above in the case of the
Svensson-Woodford hybrid rule, with αx = 0.048, we obtain that for θ = 1
the eigenvalues of DTa are −9.719 and 0.869, while the eigenvalues of DTb are
−10.780, −9.833, 0.750 and −0.213. For θ = 1.5 the eigenvalues of DTa are
−9.997 and 0.841, while the eigenvalues of DTb are −11.087, −10.138, 0.701
and −0.213.
The results are very sensitive to αx. For αx = 0.1, we obtain that for θ = 1

the eigenvalues of DTa are −22.954 and 0.912, while the eigenvalues of DTb
are −24.042, −23.033, 0.835 and −0.143.
It can be seen that the problem of large negative eigenvalues appears with

this rule, so that the potential of instability under constant-gain learning exists.
Using the Woodford calibration (including αx = 0.048) and choosing θ = 1.5,
we find that constant-gain RLS learning becomes unstable for values of the
gain at or above 0.029.
We again examine numerically the sensitivity of the stability upper bound

on γ for different values of αx, ie the degree of flexibility of inflation targeting.
Table 5.2 gives the approximate highest value γ̂ of the gain for which stability
under constant-gain learning obtains.

αx 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.1
γ̂ 0.395 0.107 0.058 0.037 0.026 0.021 0.015 0.01

Table 5.2 Critical values of γ for stability, McCallum-Nelson rule

Comparing Tables 5.1 and 5.2, it is seen that the stability performance of
the McCallum-Nelson rule (5.3) is somewhat better than that of the hybrid
rule (5.1) for the same parameter values. However, it is still the case that
the McCallum-Nelson rule is not robust for many plausible values of the gain
parameter.
We remark that McCallum and Nelson (2004) suggest that a preferable

alternative to (5.3) is to use forward expectations in place of nowcasts, since
this delivers superior results under rational expectations. In this case, the
model has no lagged endogenous variables, ie N = 0 in (5.2). This case has
been analyzed numerically in Evans and Honkapohja (2003a) and Evans and
Honkapohja (2006). In this formulation, large negative eigenvalues no longer
arise. However, we found that determinacy and E-stability require a small
value of the parameter θ, while for small values of θ the welfare losses for
optimal policy can be significant.

6 Conclusions

A lot of recent applied research on learning and monetary policy has
emphasized discounted (constant-gain) least-squares learning by private
agents. We have examined the stability performance of various operational
interest-rate rules under constant-gain learning for different values of the gain
parameter. Since estimates of the gain parameter tend to be in the range of 0.02
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to 0.06 for quarterly macro data, ideally there should convergence of learning
for gain parameters up to 0.1. Based on this criterion, we have found that many
proposed interest-rate rules are not robustly stable under learning in this sense.
An exception to this finding is the class of expectations-based optimal rules
in which the interest rate feeds directly back on private expectations in an
appropriate way.
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Appendix A

Constant-gain RLS algorithm

Suppose the economy is described in terms of a multivariate linear model,
which includes possible dependence on lagged endogenous variables.
Under least-squares learning agents have the PLM

yt = a+ byt−1 + cvt + et (A1.1)

where a, b and c denote parameters to be estimated. Here yt is a p× 1 vector
of endogenous variables. vt is k × 1 vector of observable exogenous variables,
and et is a vector of white noise shocks. If the model does not have lagged
endogenous variables, then the term byt−1 is omitted.
At time t agents compute their forecasts using (A1.1) with the estimated

values (at, bt, ct) based on data up to period t − 1. Constant-gain RLS takes
the form

ξt = ξt−1 + γR−1t Zt−1(yt−1 − ξ0t−1Zt−1)0

Rt = Rt−1 + γ(Zt−1Z 0t−1 −Rt−1)

where ξ0t = (at, bt, ct), Z
0
t = (1, y

0
t−1, v

0
t) and 1 > γ > 0. The algorithm starts

at t = 1 with a complement of initial conditions. We remark that the only
difference from standard RLS is that the latter assumes a decreasing gain
γt = 1/t.

20

Proof of proposition 4.1

We now sketch a proof of Proposition 4.1. We examine the formulas given
in equations (A7)—(A9) on p. 36 of Evans and Honkapohja (2006). Two of
the eigenvalues of DTb are 0, while the remaining eigenvalues are those of the
matrix

Kb =

Ã −λβbπ
αx+λ

2
−λβbx
αx+λ

2

αxβbπ
αx+λ

2
αxβbx
αx+λ

2

!
The eigenvalues of Kb are 0 and −1 < αxβ(2bx−1)

αx+λ
2 < 1. Likewise, two of the

eigenvalues of DTc are 0 while the other two eigenvalues of those of the matrix

Kc =

Ã −λβbπ
αx+λ

2
−λβρ
αx+λ

2

αxβbπ
αx+λ

2
αxβρ
αx+λ

2

!
and the eigenvalues of Kc are 0 and

αxβ(bx−1+ρ)
αx+λ

2 , which is inside the unit circle
unless ρ is negative and large in magnitude. Finally,

DTa =

Ã −λβbπ
αx+λ2

−λβ
αx+λ2

αxβbπ
αx+λ2

αxβ
αx+λ2

!
and its eigenvalues are 0 and 0 < αxβbx

αx+λ
2 < 1.

20The formal analysis of recursive least squares (RLS) learning in linear multivariate
models is developed eg in Evans and Honkapohja (1998) and Chapter 10 of Evans and
Honkapohja (2001).
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