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1 Introduction

Empirical econometric models are often written in the forms of conditional moment restrictions.
While researchers derive and estimate their conditional moment restriction models, those models
are typically non-nested and to be evaluated by some formal tests. This paper proposes non-
nested tests for competing conditional moment restriction models using a method of empirical
likelihood. Our tests are based on the method of conditional empirical likelihood (CEL) de-
veloped by Kitamura, Tripathi and Ahn (2004) and Zhang and Gijbels (2003).! By using the
conditional implied probabilities from CEL, we develop three CEL-based non-nested tests: the
moment encompassing, Cox-type, and efficient score encompassing tests. Compared to the exist-
ing non-nested tests which mainly focus on testing parametric models or unconditional moment
restrictions, our approach directly tests conditional moment restrictions which imply the infinite
number of unconditional moment restrictions.

Since Cox (1961, 1962), non-nested testing for competitive statistical models has become a
standard technique to evaluate specification of a statistical model against specific alternative
models.? Singleton (1985), Ghysels and Hall (1990), and Smith (1992) proposed non-nested
testing procedures for unconditional moment restriction models. Recently, those procedures are
extended by Ramalho and Smith (2002) to the generalized empirical likelihood (GEL) context
by Smith (1997) and Newey and Smith (2004). Ramalho and Smith (2002) focused on the im-
plied unconditional probabilities from the null unconditional moment restrictions, and derived
GEL analogues of the moment encompassing, Cox-type, and parametric encompassing tests.
We extend the approach of Ramalho and Smith (2002) to deal with conditional moment re-
striction models, where the infinite number of unconditional moment restrictions are implied.
In particular, we employ the method of CEL to obtain the conditional implied probabilities
from conditional moment restrictions and derive non-nested test statistics. Since the CEL-based
conditional implied probabilities contain all information from the null conditional moment re-
strictions, we can directly evaluate the specification of the null model against some specific
alternatives.

Since Owen (1988) and Qin and Lawless (1994), the method of empirical likelihood has be-

!Kitamura, Tripathi, and Ahn’s (2004) “smoothed” empirical likelihood and Zhang and Gijbels’ (2003) “sieve”
empirical likelihood are quite similar concepts. To avoid confusion, we introduce a new terminology, conditional

empirical likelihood.
?Examples include Davidson and MacKinnon (1981), Fisher and McAleer (1981), White (1982), Gourieroux,

Monfort and Trognon (1983), Loh (1985), Mizon and Richard (1986), Wooldridge (1990), Godfrey (1998), and
Chen and Kuan (2002), to mention only a few. See also Gourieroux and Monfort (1994), Pesaran and Weeks

(2001) and Dhaene (1997) for a review of non-nested and encompassing tests.



come an attractive alternative against the conventional generalized method of moments (GMM)
approach.® Kitamura (2001) and Newey and Smith (2004) showed desirable properties of empir-
ical likelihood for testing and estimating unconditional moment restriction models, respectively.
To deal with conditional moment restriction models, Kitamura, Tripathi and Ahn (2004) and
Zhang and Gijbels (2003) developed the method of CEL and showed that the CEL estimator
is asymptotically efficient. Tripathi and Kitamura (2003) proposed CEL-based consistent spec-
ification tests for conditional moment restrictions. This paper extends the CEL approach to
non-nested testing problems. Compared to Tripathi and Kitamura’s (2003) specification tests,
our tests check the validity of the null model against some specific alternatives, and our test
statistics converge at the parametric rate, i.e., y/n-rate. Kitamura (2003) employed CEL as a
model selection criterion and proposed a Vuong (1989) type discrimination test for conditional
moment restriction models, which tests whether some two competing models have the same
distance (in terms of the Kullback-Leibler information criterion) from the true model. Our non-
nested testing approach sets one of the competing models as the null hypothesis and checks the
validity of the null model.

This paper is organized as follows. Section 2 introduces our basic setup and test statistics.
In Section 3, we derive the asymptotic properties of the proposed non-nested tests. Section 4
reports simulation results. Section 5 concludes.

We use the following notation. The abbreviations “a.s.” and “w.p.a.1” mean “almost surely”

Y

and “with probability approaching one,” respectively. ||-|| is the Frobenius norm. A~, Apnin (A),

and Apax (A) are a g-inverse, the minimum eigenvalue, and the maximum eigenvalue of a matrix
A, respectively. I {A} is the indicator function for an event A. int (A) is the interior of a set A.

a'”) means the i-th component of a vector a.

2 Setup and Test Statistics

2.1 Non-nested Hypotheses

Suppose that we observe a random sample {x;, z;};_,, where z € X C R® and z € R%. Consider

the two competing conditional moment restrictions:

Hy, : Elg(zB)z] = 0, (1)
Hy, = E[h(z,70)]x] =0,

3See Owen (2001) for a comprehensive review of the empirical likelihood approach.



a.s. T, where g : R%* x B — R% and h : R% x I — R are known functions, and 3, € B C R%
and 7, € I' C R are unknown parameters. These conditional moment restrictions imply the

following unconditional moment restrictions:

Hy BV (2)g(z8)] =
H : E[Vi(2)h(z,7)] =

0, (2)
0,

for any vector of measurable functions V, and Vj,. Several papers such as Singleton (1985), Smith
(1992), and Ramalho and Smith (2002) proposed non-nested tests between the unconditional
moment restrictions HgU and HY for some specific choices of V, and V. However, if we are
interested in the validity of the original conditional moment restrictions H, and H;, the con-
ventional non-nested tests for HU and HY may not be appropriate. For example, suppose that
the true joint law satisfies E [V, () g(z, B,)] = 0 but E[V, (x) g(z, 8,)] # 0 for some function V.
Then although H, is violated, the conventional non-nested tests for HgU tend to accept the null
hypothesis Hg. In this paper, we proposes three CEL-based non-nested tests for the conditional

moment restrictions H, and Hj,.

2.2 Conditional Empirical Likelihood

This subsection introduces the CEL approach. CEL is nonparametric likelihood constructed by

the conditional moment restrictions in (1). Let p}, = Pr{z = zj[r = 2;} for 4,j = 1,...,n be
S K (Ft
Nadaraya-Watson kernel weights, where K : R® — R is a kernel function and b,, is a bandwidth

multinomial conditional probabilities under the null hypothesis Hy, and w;; = be

parameter. We consider the following likelihood maximization problem using pjz-:

max znz 2"2 wj; log pY; (3)

i}, 1i=1 j=1

s.t. pgz Z 07 Zp;]z = ]-7 Zpgzg (2]75) - 07 for Z7] - ]-7 sy I

The conditional moment restrictions (1) are incorporated in the constraints > 7, p%,g (z;, 8) = 0.
This problem can be solved by the Lagrange multiplier method. Let {x};_, and {\?}!" | be the

Lagrange multipliers. The Lagrangian is written as:

L= ZZ% log p!; — Zm (Zpﬂ — 1) - Z}Af’ (Z;p?ig (%B)) -

=1 j=1



The solution (i.e., the implied conditional probability) is:

U)ji

P () =17 M (8) g (2, 8)

fori,j =1,...,n, where \Y (3) satisfies:

o Wi g (Zja ) _
LT e " )

=1

for i = 1,...,n. If we do not impose the conditional moment restriction Z?Zl P9 (25, 6) =0
in (3), the solution of the unrestricted likelihood maximization problem is p% = wj; for i, j =

1,...,n. Using the implied conditional probabilities {p7; (3) the profile CEL function

n
1.j=17

under H, is defined as:

n n A B n n w]Z
Eg (5) - ;Im;w]z 1ng?i (6) - ;Im;wﬂ log (1 + )\f (5)’9(%5)) ) (6)

where [;,, = [ {z; € &} with X, C X is a trimming term to deal with the boundary or denom-
inator problem in the kernel estimators (see Kitamura, Tripathi and Ahn (2004, p. 1673)).
The CEL estimator is defined as Sy, = argmaxgeg £, (3). Kitamura, Tripathi and Ahn
(2004) showed that BCEL is an asymptotically normal and efficient estimator for 3, under H,.
In the same manner, we can define CEL ¢}, (7) under H;, and the CEL estimator 7 g for .
Kitamura (2003) showed that if H, is misspecified, Bc pr, converges to the pseudo-true value

B¢ gL, that is

Biopy, = argmin B | max E flog (1+Xg (2. 9))|a]| . (7)
N eR

The pseudo-true value Y5, for 45 is defined in the same manner.

To construct our non-nested test statistics, we employ some consistent estimators B and 7 for
B, and 7, respectively. B and 4 may be the CEL estimators or other consistent estimators such
as the GMM estimators based on the unconditional moment restrictions in (2). Let 5, and ~,
be the pseudo-true values for B and 7, respectively. Given B, the implied conditional probability
under Hy is obtained as {ﬁgl(ﬁ) 7j=1in (4). By comparing {ﬁfl(ﬁ) ii=1 and {pR}7,_;, we derive
three non-nested tests: the moment encompassing, Cox-type, and efficient score encompassing
tests.

To compute ﬁfz(B) in (4), we need to solve n root-finding optimizations in (5) to obtain
/\f(B) for i = 1,...,n. However, by using an asymptotic approximation for A/ (3), we can avoid

the optimizations to compute \/(3). Since Lemma A.4 implies that \/(3) is approximated by

~ A

~g A -1 ~
N(B) = (Z?:1 wjig(zj,ﬁ)g(zj,ﬁ)’> (Z?:1 wﬂg(zj,ﬁ)), the one-step version of the implied



conditional probability is obtained as*

~g /7 Wi
pji(B) = > (8)
! L+ X (BYg(z5,5)
The non-nested test statistics based on pﬁ(B) and ﬁfZ(B) are asymptotically equivalent.

2.3 Test Statistics
2.3.1 Moment Encompassing Test Statistic

We first define the CEL-based moment encompassing test statistic, which focuses on the mul-
tiplicative moment indicator, m (x4, 2, 3,7) = M (i, 8,7) m (2, 8,7), where M (z;, 3,7) is a
dpm, X dpy matrix of functions of x; and m (z;, 3,7) is a d,,, x 1 vector of functions of z;. A typical
choice of m (z;, z;, 8,7) is M (x4, 8,7) = 14, and m (z;,5,7v) = h(z,7), which is based on the
alternative conditional moment restrictions Hy, in (1). We allow M (x;, 3,7) to be the form of
weighted sums: M (z;, 5,7) = Z;LZI w;j; M, (z;, z;, B,7). By using the implied conditional proba-
bility ]5272(3) and the unrestricted conditional probability ﬁj-\if , we consider the following contrast

of estimators for F [m (x;, zi, Bo, V.)]:

Z] Zpﬂ l’“ZJ,B ’7 —_ZI ijz xhzjﬂﬁ 7) (9)

=1 7j=1

where I; = [ {z; € X.} is a trimming term on a fixed subset X, C X'. This trimming term allows
us focus to specification testing on regions in X which are empirically more relevant. It also
let us avoid the boundary problem associated with the kernel estimators, see also Tripathi and
Kitamura (2003, p.2062)°. If the null hypothesis H, is correct, Ty converges to zero. If H, is
incorrect, Ty diverges in general. The moment indicator m (z;, ;, 8, ) determines the direction

of misspecification. Let

)lzzwﬂm(2]7677)9(2:]75)/’ ﬁ(ﬁ)zzw]zg(zj75)g(2]7 ; Zw]zag Z]7
J=1 j=1
The CEL-based moment encompassing test statistic for Hy is defined as
M, = nT},®5, T, (10)

n

4>From Lemma A.l and Assumption 3.2 (ii), > i1 Wiig (%, B)g(zj, B) is invertible w.p.a.1.
®We may also allow the trimming set to be data-dependent as in Kitamura, Tripathi, and Ahn (2004) at the

cost of a substantially more complicated arguments.

) /95"



where

A

(I)M - Z B 121 B :)/)/7

SI*—‘

?%w (5,7) = —ILiM (Iuﬁﬁ) Ji (5;7),%@)_19(%5) +1£IM (5,7) A¢($z,2i75),

A 1 < . N
Hy (8,7) =~ LM (w0, B,9)' i (8,7) Vi (B) ™ G (8)
i=1
A and (x4, z;, B) are defined in Assumption 3.1 (ii), which assumes the asymptotic linear form
for B:
nl/Q(B_ﬁO) = _n_1/2AZ¢(xi7zi750) +OP(]') (1]‘)

i=1
The CEL-based moment encompassing test statistic for Hj, is defined in the same manner.
2.3.2 Cox-type Test Statistic

We next define the CEL-based Cox-type test statistic, which focuses on the probability limit of
the GMM-type (or Euclidean) nonparametric likelihood. Let

n
= Zwﬂh (ZJ'/}/) z Zpﬂ Z_]; s Zwﬂ ZJ, ZJ,’)/) .
j=1

By using ]5?1(3) and ]5% = wj;, we consider the following contrast of Euclidean likelihood:®
I~ -
==Y L)V H)” A—— Lhi (3 V(3 hi (5) . 12
- ; )Y /(9) Z (%) b (7) (12)

Let J! (3, 7)'22;‘:1 wj;h (z5,7) g(zj, B). The CEL-based Cox-type test statistic for H, is defined

as

0, = Yo (13)
Voe

6 Although we may focus on the contrast of CEL for estimating v:

ZI Zp.ﬂ logp]l Z ijz ]"ngjz

i=1 j=1

the asymptotic representation of the Lagrange multiplier )\ (%) in p 5 () is less tractable under Hy (see Kitamura

(2003)). Therefore, for its simplicity, we analyze the contrast of Euclidean likelihood.



where

bo = =S U (A

by (B,y) = —2ffz»< >’Vh< >‘1 T (B,7) Vi (B) " gz, B) + He (B,7) A (i, 2, B),
He (B.7) = —Zlh ()8, Vi (B) 1 G (8).

A and 9(x;, z;, 5) are defined in (11). The CEL-based Cox-type test statistic for Hj, is defined
in the same manner.
2.3.3 Efficient Score Encompassing Test Statistic

We finally introduce the CEL-based efficient score encompassing test statistic, which focuses on
the probability limit of the asymptotic linear form of asymptotically efficient estimators for ~,

in H), (i.e., the efficient score for estimating ,):

n'/? (¥ =) = —n 2" (’Yo)il Z G? (7o) Vih (’Yo)il h (zi:70) + 0p (1),

=1

where

V() = E [h(z,7) h(z,7) |:]; GI (v) = E[0h(z,7)/0V|xi]; I" (v) = E [G} (%) VI () G ()] -

Let GI () = > i1 wjiOh (25,7) /0. By using ﬁfz(ﬁ) and pi = wj;, we consider the following

contrast of the efficient score:
Zth YV R () ——Zth ) V() e (). (14)
The CEL-based efficient score encompassing test statistic is defined as

Sy = nTsd3Ts, (15)

T Although it requires a lengthy mathematical argument, we can consider the CEL-based parametric encom-

passing test statistic, which focuses on the probability limit of the CEL estimator 4,5, for v,. Let

’YCEL - argma’XZI’bn Zp]z BCEL)IngJz (’Y) :
j=1

Since we can expect that . is a consistent estimator for the pseudo-true value ,, the CEL-based parametric

encompassing test statistic can be constructed by a quadratic form of (Yogr — YorL)-



where

b = =S E GG,
=1
D (By) = —LGE () V() I (8,7) Vi (8) 7 glzi, B) + H (B,7) A, 21, B),

A

- 1 — A - 13 ~ _
Hs(By) = = LGV ()7 I BA)Vi(B) ™ Gi(8).
i=1
The CEL-based efficient score encompassing test statistic for Hy, is defined in the same manner.

2.3.4 Special Case: Test Statistics with the CEL Estimator

Suppose that we use the CEL estimator 3, for 8,. Then from Kitamura, Tripathi and Ahn
(2004, p. 1690), we can show that under certain regularity conditions, the asymptotic linear

form for B,y is written as

n1/2<BCEL —Bo) = —n 121 (50)_1 Z G (50), Vi (50)_1 9 (i, Bo) + 0, (1),
where
Gi(8) = E[0g(z,8)/08'|z:]; Vi (B) = E [9(2,8) g (2,8) ] ; 1(8) = E[Gi (8) Vi ()" G: (B)] .

By setting A = ](50)71 and ¢ (zi, 2, By) = Gi (By)' Vi (50)719(%50) in (10), (13), and (15),
the CEL-based non-nested test statistics are defined by the following simpler forms,

(i) the moment encompassing test statistic:
My opr = 0T3Py o Tu, (16)
@MEEL = RSS for regression of ‘z([i)_l/?ji(ﬁ,&)M(xi,Bﬂ) on V;(B)‘UQG@(B),

(ii) the Cox-type test statistic:

Vilc

CycrL = —F ; (17)
\/ ®oceL
Oc,crr, = RSS for regression of 2V;(3)/2J1 (3, 9)V!' () hu(3) om Vi(B)~*Gi(B),
(iii) the efficient score encompassing test:
Sycpr = nT§®5 cp T, (18)

A

bgomr, = RSS for regression of Vi(53)™/2JB3,4)V" ()" GI(7) on Vi(B) V*Gi(P),

7

where RSS denotes the residual sum of squares.

9



The asymptotic properties obtained in the next section hold for the above test statistics as
well. The above formulae are also applicable to other semiparametric efficient estimators by
Newey (1990) and Donald, Imbens and Newey (2003) for example.

3 Asymptotic Properties

3.1 Null Distributions

In this subsection, we derive the asymptotic distributions of the CEL-based non-nested test

statistics under the null hypothesis H,. We impose the following assumptions.
Assumption 3.1

(1) {xi, 2}, is an ii.d. sample on X x R%, x is continuously distributed with density f, X.

is compact and contained in int (X), and inf,cx, f () > 0.

(i) B, € int (B), and § satisfies n'/?(B — By) = —n " YPA S ) (24, 21, By) + 0,(1), where A is
a dg x dg mon-stochastic matriz, E [{(z,z,,)] = 0, and E|||¢(x, 2, Bo)||*] < oo for some
§>2.

(iii) |5 — 7./l = Op(n~1/2).

(iv) K (z) = II5_;k(2®), where k is a continuously differentiable pdf with support [—1,1], sym-

metric around the origin, and inf,c_g 5 & () > 0 for some ke (0,1).

(v) by =n"“ for
0<a< min{

|—
/N
—_
|
Y '
N——
» =
N
—
|
oY
e
N————
» =
/N
[E—
|
[
|
3 I
N——
®» =
/N
—_
|
O
|
3 I
N———
@ =
/N
[E—
|
[ ]
|
S
N———
—

1
3s’ s
Assumption 3.2

(i) Elsupses llg (2. B)|°] < oo for some ¢ > 6.

(ii) f(z) and Elg (2, ,) 9 (2, 8,)" |x] are twice continuously differentiable on X, E [0g (2, 3,) /08| x]

is continuous on X, f(x) and E[||g (2, Bo)|° |2]f (z) are uniformly bounded on X, and
infrex, Amin(E[g (2, 89) 9 (2, ﬁo)l |2]) > 0.

(iii) g (z,0) is twice continuously differentiable a.s. on a neighborhood By around f3,, for i =
1,....dy and j = 1,...,ds, supseg, |097 (z, ) JOBYV| < dy (2) holds a.s. for a real-
valued function dy (z) with E[dy (z)"] < oo for some n > 6, and for i = 1,...,d, and
gk = 1,...,dg, supgeg, |0297 (2,B) /0BV0BW| < dy(2) holds a.s. for a real-valued
function dy (z) with E [dy (2)™] < oo for some 1y > 2.

10



M<I7B7:Y) - M(%ﬁm%)“ = 0, M(‘IaBOa’Y*) is umformly bounded on X*;
’Cm,

(iv) sup,cu,
E[SUPBGB,WEF |lm (2,5, '7>|
entiable a.s. on a neighborhood By x U, around (By,7,), and for i = 1,...,d,, and
j=1,....dg +dy, supgepxr, [0mD (2,8,7) /0 (B, )| < d (2) holds a.s. for a
real-valued function d, (z) with E [d,, (2)"™] < oo for some n,, > 6.

| < oo for some (,, > 6, m(z,[,7) is continuously differ-

In Assumption 3.1 (i), although = should be continuous, z can be continuous, discrete, or
mixed. Assumption 3.1 (ii) assumes the asymptotic linear form for B and implies the asymp-
totic normality of B . This assumptions holds for a number of parametric and semiparametric
estimators. Assumption 3.1 (iii) imposes the y/n-consistency of 4 to the pseudo-true value ~,.
Depending on the estimation method, 7, may be different. Assumption 3.1 (iv) and (v) are
conditions for the kernel function K and the bandwidth b,,. Assumption 3.1 (iv) rules out ker-
nel functions whose orders are higher than two. Assumption 3.2 (i)-(iii) are conditions for the
moment function ¢ (z,3), which are mainly used to derive the convergence of nonparametric
components such as V;(3) and G;(53). Assumption 3.2 (iv) is a set of conditions for the moment
indicator m (z, z, 3,7). For the Cox-type and efficient score encompassing test statistics, we take
m (2, B,7) = h(z,7).

Let J!(8,7)'=E [h(2,7) g (z,8) |2;]. The null distributions of the CEL-based non-nested

test statistics are obtained as follows.
Theorem 3.1 (Null Distributions)

(i) Suppose that Assumptions 3.1 and 3.2 hold. Then under the null hypothesis H,,
d
Mg - Xfank(<1>M)7
where ®y; (defined below (41)) is the probability limit of ® ;.

(ii) Suppose that Assumptions 3.1 and 3.2 (i)-(iii) hold, and Assumption 3.2 (iv) holds for

m (2, 8,7) = b (2i,7), Mz, 8,7) = {2hi(3) = T3, )Vi(B) (B} V(1) ", and
Mi(z5,8,7) = 2E [h(2,7) |z:]) Vi (). Then under the null hypothesis H,,

(2

c, % N(0,1).

(iii) Suppose that Assumptions 3.1 and 3.2 (i)-(iii) hold, and Assumption 3.2 (iv) holds for
m (Zia 67 7) =h (Z’i> 7)7 Mz(xla 67 7)/ = ézh (’Y>/ ‘A/;h (7)71; and Mz(xzv 67 7)/ = G?(’Y)/V;h (7)71'
Then under the null hypothesis Hg,

d
Sg - X?ank(@s) )

where ®g (defined below (43)) is the probability limit of ®s.

11



Therefore, all the non-nested test statistics follow the standard limiting distributions. Com-
pared to the CEL-based specification test statistics by Tripathi and Kitamura (2003), our non-
nested test statistics show the parametric convergence rate. For (ii) and (iii) of this theorem,
the assumptions on m (z;, 3,7) and M(x;, 3,7) can be replaced with more primitive conditions,
such as the conditions obtained by replacing ¢(z, ), 5y, B, and By in Assumption 3.2 (i)-(iii)
with h(z,7), v,, I, and T, respectively.

3.2 Power Properties

This subsection studies the power properties of the CEL-based non-nested test statistics under
some local alternative hypothesis. We assume that the joint distribution of (z, z) is fixed, and

that there exists a nonstochastic sequence 3, € B such that
Hy, : Elg (2, Bo,) ] = nV25 (2) (19)

holds a.s. for some § : X — R%. The null hypothesis H, is satisfied if § (z) = 0%. We impose

the following assumptions.
Assumption 3.3

(i) 6 (z) is continuous on X , E[||6 (z)|] < 00, ||Bo, — Boll = 0 as n — oo, B, € int (B), and
n'2(B = Bon) = —n V2N W (1, 21, Bon) + 0p(1), where A is a dg x dg non-stochastic
matriz, E 1) (x, 2, Bo,) |2] = n~V26, (), 8y (x) is continuous on X, and E[||6, (z)||] < co.

(ii) f(z) and E[g(z,B) g (z,B) |7] are twice continuously differentiable on X for each 3 € By,
Elg(z,8) g (2 B8) |z] and E[0g (2, B) /OB |x] are continuous on X x By, f (x) and
supges, £[llg (2, A |x)f (z) are uniformly bounded on X,

inf(x,B)GX*XBO )‘min(E[g (27 ﬁ) g (Z, ﬁ)/ |l‘]) > 07 and inf(mﬂ)GX*XBo )‘maX(E[g (27 6) g (27 6), |1‘]) <
Q.

M(z,3,4) — M (2, Bop, v.) || 2 0, supgeg, M (2, 8,7,) is uniformly bounded on

(ii) sup e,
X, E[supscp er |m (2, 8,7)||°"] < oo for some C,, > 6, m(z,5,7) is continuously dif-

ferentiable a.s. on a meighborhood By x Ty around (5y,7,), and for i = 1,...,d,, and

8 Another way to formulate the local alternatives in the spirit of Singleton (1985, p.402) would be

(1oL z 2] + —L z,7)|z] =
H(l ﬁ)E[gmonHﬁE[h(,m 0

where 7 € R is a constant. This case can be treated similarly because H7, now corresponds to Hgy, with
6(x) = n{Eg(z,Bo)lz] — E'[h(z,7)|z]} and By, = B
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j=1,....dg +dy, supgepxr, [0mD (2,8,7) /0 (B, )| < d (2) holds a.s. for a
real-valued function d, (z) with E [d,, (2)"™] < oo for some n,, > 6.

Assumption 3.3 (i), (ii), and (iii) are extensions of Assumptions 3.1 (ii) and 3.2 (ii) and (iv),
respectively. Let J; (8,7)'=E[m (z,8,7) g (z,8) |z, and x2(v) be the noncentral chi-squared
distribution with the degree of freedom d and the noncentrality parameter v. The local power

properties of the CEL-based non-nested test statistics are obtained as follows.
Theorem 3.2 (Local Power)

(i) Suppose that Assumptions 3.1 (i) and (iii)-(v), 3.2 (i) and (iii), and 3.3 hold. Then under
the local alternative hypothesis Hy,,

My 5 Xoons) (1 ®Partin)
where
par = =B [LM (i, B0, 7.)" Ji (B0, 7.)" Vi (Bo) ™ 6 ()] + Har (Bo, 7.) AE [8y ()]
Hy (8,7) =E [LM (i, 8,9) i (8,7) Vi (8)™ G (8)] -

(ii) Suppose that Assumptions 3.1 (i) and (iii)-(v), 3.2 (i) and (i), and 3.3 (i)-(ii) hold, and
Assumption 8.3 (iii) holds for m (z;, 5,7v) = h(zi,7), M(x;, 5,7) =
i) = TGO G (BYVA) ", and Milw, 6,9 = 2B [h (5,7) 2] VP (1)
Then under the local alternative hypothesis Hy,,

o, 45N (¢51/2u0, 1) ,
where
po = —2E [LEh(z,7,) la) V" (1) T2 (Bo.7.) Vi (Bo) ™6 (2:)]+He (B, v.) AE[6y ()],
Ho (8,7) =2E [LE [h (z,7) [&:] V' (7)1 (8,9) Vi (B) 7 Gi (8)] -

(iii) Suppose that Assumptions 3.1 (i) and (iii)-(v), 3.2 (i) and (iii), and 3.8 (i)-(ii) hold, and
Assumption 3.3 (Z”) holds fO’F m (Zi7 ﬁ7 ’Y) =h (Ziv ’7)7 Mz<x27 ﬁ7 ’Y)I - G? (7), ‘A/ih (7)_17 and
M;(z;, 8,7) = Gt()Vi (7). Then under the local alternative hypothesis H,,,

Sg i) X?ank(@s) (/“L,,S'@E:U’S) )
where
s = =B (LG (1) V(1) T (B 7Y Vi (B0) ™6 (22)] + Hs (B9, 7.) AE [6, ()],

Hg (B,7) =E [LGY (v) V" ()7 I (8,9) Vi (B) 7 G4 (B)] -
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Therefore, similar to the conventional non-nested tests, the local power functions are obtained
from the standard noncentral distributions. While the CEL-based specification test by Tripathi
and Kitamura (2003) has non-trivial power against the local alternatives with a nonparametric
rate (i.e., n=Y/ 2p, %46 (x)), our CEL-based non-nested tests have non-trivial power against the
local alternatives with the parametric rate (i.e., n=/25(x)). For (i) and (iii) of this theorem, we
can also replace the assumptions on m (z;, 8,v) and M(z;, 3,7) with more primitive conditions,
such as the conditions obtained by replacing ¢(z, ), 5,, B, and B, in Assumptions 3.2 (i) and
(ili) and 3.3 (ii) with h(z,7), v,, [, and I',, respectively.

We finally derive the consistency of the CEL-based non-nested tests under the alternative
hypothesis H;,. We assume that under H;, the estimators B and % converge to the pseudo-true
values 3, and 7, respectively. Let B, and I'y be neighborhoods around 3, and v, respectively,
and

N (z,B) = arg max F [log (14 Ng(z,8)) |z].

AER%

N(B) = N(x, 8,)]] 2 0 under Hy,. Let

‘ h r h(z7)g(z B)

>From Kitamura (2003), we have max;cy,

Jix " — R m(z,5,7) 9(z,B8)
(B,7) l1+)\§ (z:, 8) 9(z, B)

hoa s h(z7)9:8)
BN = L T Gy

The consistency results are obtained as follows.

xl] 9

Theorem 3.3 (Consistency)

(1) Suppose that for B,, vy, B«, and Ty instead of 5y, 7., Bo, and I, respectively, Assump-
tions 3.1 and 3.2 hold. Then under the alternative hypothesis Hy,, the CEL-based moment

encompassing test by M, is consistent if 11, Py tinar > 0, where

Hppr = —F [[lMZ(xlaﬁ*a/VO),Jl* (6*770)1/\£ (:Ezaﬁ*ﬂ )

and Py is the probability limit of <i>M under Hj,.

(i) Suppose that for 5., v, Bx, and Ty instead of By, V., Bo, and Ty, respectively, Assump-
tions 3.1 and 3.2 (i)-(iii) hold, and Assumption 3.2 (iv) holds for m (z;, 8,7) = h(z;,7),
n 2h(z;, 7 s - v

M@, 8,7) = { iy wiimrapaid + JEBANB) | V()7 and Mz, 8,7) =
/
{E [IHQ(Z?(;”)?;(M ) xl} + JP (B, v0) N (mi,ﬁ*)} V" (o). Then under the alternative
hypothesis Hy,, the CEL-based Coa-type test by C, is consistent if uiq/dne > 0, where
2h (27 70)
— [,
e | { L + M (2:1,8.) 9(=,8.)
x‘/z'h (70)71 Jz}i (5*7 ’70), Ai (Ih 6*)]7
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and ¢y, 1s the probability limit of éﬁhc under Hy,.

(iii) Suppose that for B, Vo, B«, and Ty, instead of By, 7., Bo, and Ty, respectively, Assump-
tions 8.1 and 3.2 (i)-(iii) hold, and Assumption 3.2 (iv) holds for m (z;, B,7v) = h(zi,7),
M;(zi, 8,7) = Gt (y)' VP (7)™, and M;(z;, 3,7) = GIMy)YV] (v)"". Then under the alter-
native hypothesis Hy,, the CEL-based efficient score test by Sy is consistent if 1, ¢ @ stbns >

0, where
Hps = —E [IlG’? (/YOY ‘/ih (70)_1 Jz}; (6*7 70), A‘Z ('Iia 6*)} )

and Pys is the probability limit of dg under Hy,.

4 Simulations

This section examines the finite sample properties of our tests against some of the existing

non-nested tests using Monte-Carlo methods.

4.1 Experimental Design

We consider two simulation designs. In Design I, we consider two competing linear regression

models: fori=1,...,n,

H, : yi =By + Boa1i + ugi (20)
Hy, @ yi =701+ Y02%2i + Uni,

where x1; = core; +€; for g € {1,2}, {z2;} and {e;} are i.i.d. N(0,1), {ug} and {up;} are ii.d.
N(0,4), and the true parameters are given by 3, = (801, 8¢2) = (1,1) and vy = (o1, Yo2)' =
(1,1)". Note that the hypotheses (20) correspond to the conditional moment restrictions in (1)
with g(z,8y) = ¥ — Bor — Boe®1 and h(z,7y) = ¥ — Vo1 — Vo222, Where z = (y,x1,22)" and
x = (21,22)".

On the other hand, in Design II, we consider the following regression models: for: =1, ..., n,

Hg DY = ﬁoxi + ’ngi (21)
Hy, : yi= Y2 + uni,
where {z;}, {ug;} and {up;} are iid. N(0,1) and 8, = 7, = 1. The hypotheses (21) correspond
to (1) with g('ZvBO) =Y—- 601‘ and h’(zuf}/O) =Yy—- 701‘37 where z = (yv CU),-

As benchmarks for our simulation experiments, we consider the non-nested tests of Singleton
(1985, eqn. (33), p.404), labelled S, and Ramalho and Smith (2002, Simplified Cox test in Eqn.
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(4.4), p.108), labelled SC| respectively. We compute S and SC' from the following unconditional
moment restrictions implied by (20) and (21): for Design I,

HgU D B 2, 22) (i — Bor — Boarii)] = 0 (22)
Hy : E(La,22) (Y — Yo = Voa2:)] = 0
and, for Design 1I,
HgU c E(L2) (yi — Boxi)] =0 (23)

Hy @ E[(La}) (v —0])] =0.

As another benchmark, we also consider the over-identifying test of Hansen (1982), labelled J,
that tests the validity of H in (22) and (23) against general alternatives.

We consider two sample sizes n € {100,200} and fix the number R of Monte Carlo repetitions
to be 1000. Because of very long computing time required for nonlinear optimizations, we do not
consider larger n and R. We use the Gaussian kernel for our CEL-based tests M, C,, and S,.

For the bandwidth b,,, we consider b, € [0.1,0.2, ..., 1.0] in our simulations.

4.2 Simulation Results

Tables 1-3 present the rejection probabilities for the tests with nominal size of 5%. The simulation
standard errors are approximately 0.007. Tables 1 and 2 give the results for Design I with
co = 1 and ¢y = 2, respectively. In both cases, our tests have reasonable size performance if
the bandwidth is in a suitable range. The performance improves generally as n increases. The
competitors J and SC' also have little size distortions, though the Singleton’s test S under-rejects
in many cases we consider. In terms of size-corrected powers, the efficient score encompassing
test S; dominates M, and Cy in Design I. When ¢y = 1, the test S which is known to have
an optimality property against some local alternatives, has relatively very good (size-corrected)
power performance. However, when ¢y = 2, the power performance of S deteriorates and is
significantly dominated by that of S,;. To explain the latter phenomenon, notice that if the
alternative hypothesis Hy, in (20) is true, then the GMM estimator § = (31,52)’ converges
(in probability) to the pseudo-true value 3, = (1,¢y/(1 + ¢2))’ . This implies that the sample

analogue of the unconditional expectation in (22) converges

%éz [(Ll’li,xm‘), (yi — By — Blei)} 5 (0, 0, %c%)l' (24)

Therefore, since the limit in (24) degenerates to zero as ¢q increases, we can see that a test based

on the sample average in (24) will have low power if ¢, is large.
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Table 3 reports the simulation results for Design II. In this design, we expect that the tests
based on the unconditional moments in (23) will be inconsistent. It is because, under Hj, the
estimator 5 converges in probability to the pseudo-true value 5, = 3 and hence the sample

average converges to
1 & - ) , /
n Z [(1,%’)’ <yz' - 5%)} — By [(1,2;)" (y; — B.2:)] = (0,0)", (25)

where Ey is the expectation taken under Hj,. This is precisely what happens to the powers of
the tests J, S, and SC in Design II. On the other hand, our tests have non-trivial powers even
in this case. Among the latter tests, M, and C, appear to have better (size-corrected) power

performance than S, in this design.

5 Conclusion

We propose three non-nested tests for competing conditional moment restriction models. Our
test statistics are based on the implied conditional probabilities by conditional empirical like-
lihood. The proposed tests (the moment encompassing, Cox-type, and efficient score encom-
passing tests) follow the standard limiting distributions. Simulation results illustrate that our
non-nested tests have reasonable finite sample properties and, in some cases, dominate some of

the existing tests based on unconditional moment restrictions.

A Mathematical Appendix

Notation. Denote

1
I* = {ZI’ZGX*,:[SZS?]},C“: %’
\ b,

9;(B) = 9(25,8), hi(v)=h(z5,7), m; (B,7)=m (%ﬁ 7)),

T; — -
Mi (677) = M(l’i,ﬁ,"}/), Kji - K( b ) fl s Z Jis gz ngzg] ;
e Z 519; (B Ixz] :

b ZKjimj (677) g]<5)/’$l] )

Vi(B) = Elg;(B)g;(B)|x], Vi(B

Ji(B) = Elm;(8,7)g;(B) |z, Ji (8) =E

Gi(8) = E[0g;(B )/85 7], Gi(

ZKﬂ@g] )/08 |x,] )
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A.1 Proof of Theorem 3.1

Proof of (i)
An expansion of ﬁfz(ﬁ) around () = 0 yields

@%(3)::’ubi( N(B)g (3)%—rﬁ>, (26)

A (B)'9;(B)g; (B (B)
(1+A9’gj (B))3

Pl = wj; (—)\f(B)’gj (B) + 7’ﬁ>, the definition of T in (9) implies

,and X! is a point on the line joining AY(3) and 0. Since ﬁ;’l(ﬁ) -

where 7;; =

Ty = —— Z LM;(B,3) Ji(3,7) N(B Z LM;(3 <Z wjiriim; (B ) (27)

7" + RW
RW satisfies
2 n n > >
. . . 1 9i(8)g; ()
RW|| < max ||M;(3,%)|| max ||m;(5,7) (max N(B) D =N LYy wj—
(28)
Assumption 3.2 (iv) implies
max || Mi(3,4)|| = Op (1). (29)
>From Assumption 3.2 (i) and (iv) and Tripathi and Kitamura (2004, Lemma C.4),
max ||g,(3)|| =0 ("), max |[m,(3.9)]| = o (n'/ér). (30)
>From Lemmas A.1 and A 4,
max | M(8)| = Oy (en) + 0, (n737) (31)
1€ 1%
Since (30) and (31) imply that max;er, 1<j<n \S\f/gj (B)| = 0, (1), we have
n n N B N B)
DD [P wjz-%“ < O, (1) by Lemma A.1. Thus, from (28)-(31),
2
[BY] < 0y )0 () {Open) 0y (17H5) F Op (1) =0, (%), (32)
where the equality follows from o < 2 (1 — Ci) and CL + % < 3. >From (27) and Lemma A.4,
1 & TP . .
Ty = == LM(BA) I3 A VB 9:(B) = = > LMi(B,AY Ji(B,3) ! + 0, (n™1%)
i=1 =1
= T3 + R® 1o, (n_l/2) ‘ (33)
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>From (29) and Lemmas A.2 and A.4, R® satisfies

@ < H , g Yo
IRO] < max|(Mi(5, dl leaw,v)
= 0,(1) 0, (nl/C) {Op (c3) +op <n_1+%> } O, (1) =0, (n_l/g) , (34)
where the last equality follows from a < 2 (1 — %) and % + % < £. Thus, from (33),
1 B T -
Ty = - Z LM (5, 7)’%(57 'Y),Vz(ﬁ) 191‘(5) + 0, (n 1/2)
i=1
1  / 7 > - ~ > —
= ZIiMi (Bo:7.)" Ji (Bos7.) Vi (Bo) ™' di(B) + R + 0, (n7172) . (35)
i=1

R®) is implicitly defined and satisfies

IRV <

+ Ezmwo,w Ti(Bor 1) {Vi(B) ™ = Vi(Bo) " }ai(B)

3
IR+ IRV + || RY).

~From Assumption 3.2 (iv) and a similar argument to derive (40) shown below, we have || RS H =
op (n™1/2). Assumption 3.2 (iv) and Lemmas A.1, A.2, and A.4 yield

1RO < max |37 (B, 7.) | masx 13, 3) — Js (Bo,) [ maps [Vi3) 1|

Sl
= 0, (1) {Op (n’%JrﬁJr%) + 0, (n*%+%+ﬁ) } O, (1) {Op () + 0p (nfétl])} — 0, (n,l/g) 7

where the last equality follows from CL + % < %, % + ni + % < %, and Assumption 3.1 (v).
Similarly, Assumption 3.2 (iv) and Lemmas A.1, A.2, and A.4 imply that ||R”|| = o, (n=172).
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Thus, from (35),

Ty = —%Zw@wmm’zwo,w'wo)1gz~<8>+op (n™"%)
= —%ZLMi<50,%>’Ji<50,%>’v< Bo) " {3i (Bo) + Gi(B)(B = Bo)} + 0, (nV/?)

- —% > LG (Bo, 1) i (Bos 1) Vi (Bo) ™ 4 (Bo) + Har (8o, 7.) A% > ¥l 7 o)
=1 =1

+RW + 0, (n™1/?)
= Twa+ Tars + RY + 0, (n717?), (36)

where the second equality follows from an expansion of gl(B) around B = [, and B is a point

on the line joining B and 3,. R™ is implicitly defined and satisfies

I <

I, , - )~ A .
=X LM (B, 7.) i (Bo, 7. Vi (Bo) ™ {Gi(B) — G (ﬁo)}H 16 = Boll
i=1

* % Z 1M, (Bo; 7*), j% (B0, ’Y*), Vz (50)_1 Gz (Bo) Op (”71/2)
i=1

IN

ma’XHM (607’7*) ||ma’X||J (607’7*) ||ma’X||V 60 1||

ZI{G — G %)}H 13 = Boll
+max [N (B, 7.) [ max [|.J; (o, 7.) || max || Vi(80) ] r;g}HGi (B0) lop (n~?)

= o, (n_H%) +o0, (n7?) =0, (n1?),

where the equality follows from Assumption 3.2 (iv) and Lemmas A.1, A.2, and A.3. Thus, from
(36), we have Ty = Tara + T + 0p (n’1/2). T is written as

1 n n . 3 , - 1
T = —E Z Z[iE[fim]flMi (Bo:s ") i (5077*) (50) nbs K5ig;(Bo) + R

=1 j=1 n

= Tuya+ RY, (37)

where RY is implicitly defined and satisfies

I~ - (- A g = ' .
RO < EZ]iMi (Bor7s) {Ji (Bo»v.) — Elfila] 71, (50,%)} Vi (Bo) ™" i (Bo)
=1

+| > LBl 0 (1) B {1 0™ = EL ]V (o) F a5

S ST BRI} B (B (o) Vi (B Ky (B)

=1 j=1 n

= [|RD|| +||RY|| + ||RD

ac ||
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>From Assumption 3.2 (iv), Lemmas A.1 and A.2, and Tripathi and Kitamura (2004, Lemma
C.1), we have ||R¢(LEZL)|| < 0, (%) = 0p(n™/?) from o < 5-. Similarly, we have ||R((1‘Z)|| <0, (A) =
0,(n"1/%). Moreover, Assumption 3.2 (iv), Lemmas A.1 and A.2, and Tripathi and Kitamura
(2004, eqn. (C.1)) imply ||[R2|| < O, (2) = o0,(n"*/2). Thus, from (37), we have Ty;, =
Thra + 0p (n™1/%). By applying the U-statistic arguments of Kitamura, Tripathi and Ahn (2004,
pp-1696-1698) and Powell, Stock and Stoker (1989, Lemma 3.1), we have the asymptotic linear

forms for Thy,:
nl/ZTMa = _n71/2 Z IlMZ (607 7*), Jz (507 ’Y*)/ ‘/jb (60)_1 g’b(ﬁO) + Op (1) . (38)
i=1

>From Lemmas A.1, A.2, and A.3, and a weak law of large numbers, we can show that

Har (Bo,v.) 2 EILM; (B, 7.)' J; (8o, 7.) Vi (Bo) ™' G (Bo)] = Har (8o, 7.)- Therefore, Ty satis-
fies

2Ty =072 S Hyy (By, 1) (s, 20 B5) + 0p(1). (39)

i=1
From (36), (38), and (39), a central limit theorem yields

nl/QTM = nl/QTMa + nl/QTMb + Op (1) = n_1/2 Z 77Z}£\/[ (607 ’7*) + Op (1)
i=1
2 N (0, ®y), (40)
where

O (B,7) = —LM; (B,7) Ji (B,7) Vi (B) " g(21, B) + Har (B,7) Ab(wi, 2, 8),  (41)

and &y = F [@/}fw (Bo» V) WM (B6,7.)']. >From Lemmas A.1, A.2, and A.3, we can show that

Oy D@y T herefore, we have

2 d
MQ = nT],W(I)MTM - X?ank(CDM)'

Proof of (ii)
>From (26) and Lemma A.4, Ti in (12) is written as

ZI {Z PP +ﬁ%)h<zj’ } {Z ACIES (ZJ7§/)}
= ——ZI {Z 2wy — N (B) 9,(B)h(z.% >} W@)_l{z(w (B)a:(B)h(z, 5 )}+Rm
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where R is implicitly defined. From a similar argument to derive (32), R satisfies

[Ro < {230 {Z<2wﬁ — wd(B) 0;(9)h(z, 3 } V()" {Zwﬂrﬂ }H
<=3 {Zwﬂ-rﬂh (zm} V) {Z{%M?(B)/QJ(B)}h(zg,v)}H
+ % Z I; {Z wjiTjih (Zj,ﬁ)} Vih (ﬁ/)_l {ijirﬁh (Zj, ’Ay)}||
< of e ) {Op (cn) + 0p (n é+%> }2 +o (nl/Cm) {Op (cn) + 0p <n7%+%> }3
+o (n*m) {Op (cn) + 0p (n_%ﬁ) }4
= 0p (n_l/Q) .
Thus, from Lemma A.4, we have
To = — ZI {Z 2uyi = wiX{ (B) 9;(B)h(z: >} V) { . <wjm§<8>'gj<3>>h<zj,a>}

+o, (n_l/Q)
= S R {2 — TE A )} V) B A ) )
=1
+R®) 40, (n7?)

where R(?9 is implicitly defined. A similar argument to show (34) yields that HR@C)” =
op (n™1/2). By setting

Mi(zi, 8,7) = {2h(y) = JHB,) V(B g:(BY V! (1)
M;(z:,8,7) = 2E[h(z,7) |z V()™
m(2j7577) = h(Zj,’y),

we can apply the same argument as the proof of Theorem 3.1 (i). Thus,

n'PTo = 72N g (By,7.) + o, (1)

=1
S N(0.6c).
where
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bc = B (By,7.)%], and He (8,7) = E[LM; (8,7) J! (8,7) Vi (8)™" G (8)]. From Lemmas
A.1, A2, and A.3, we can show that (ESC 2 ¢o. Therefore, we have

C, = VnTo 4, <4 N(0,1).

Vée

Proof of (iii)
>From (26) and Lemma A.4, we have

Ts = —ZlGh ) B2 (B) — N Hhi(7)
= __th Y V) {wsiXd(3)'95(B) by (7) + RO
= __th YV I BAYVB) " ai(B)} + RO + RE,
where R(**) and R(®) are implicitly defined. Similar arguments to derive (32) and (34) yield
|RI|| = 0, (n7/?) and ||[R*)|| = 0, (n""/?), respectively. By setting

Mi(z;, 8,7) = Gr)' V()™
Mi(z:,8,7) = GHy)VI ()™,
m(%’?ﬁ/ﬂ = h(2j77)7

we can apply the same argument as the proof of Theorem 3.1 (i). Thus,

TLI/QTS = n_1/2 Z¢? (6077*) + Op (1)
i=1
i) N (07 q)S) )
where

U (B,7) = —LM(x, B,7) T (B,7) Vi (B) " gz, B) + Hs (B,7) Avo(ws, 2, 8),  (43)
g = E[WF (By,7.) ¥7 (B, 7.)'], and Hs (8,7) = E[LM; (8,7) J' (8,7)' Vi (8) "' G; (8)]. From

Lemmas A.1, A.2, and A.3, we can show that &g = ®g. Therefore, we have

o d
S!J = nTig'(I)STS - X?ank(fbs)‘
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A.2 Proof of Theorem 3.2

Proof of (i)
Assume that n is large enough so that B e By and Bon € Bo. Note that Lemmas A.1-A.3

remain valid when [, is replaced by f3,,,. Thus, from the proof of Tripathi and Kitamura (2003,
Lemma B.1),

LN(B) = LVi(B)'9:(8) + L,

2 A
where ||77|| = 0p<”1/c) {(maxiel* Z?:l w;ig;(Bon) ) + 18 = Bo,lI? Z?:l wyidy (Zj)z}a and the
0,(n/¢) term does not depend on i € I,. From the continuity of § (¥) and f(z), and the

compactness of X,, an adapted version of Tripathi and Kitamura (2003, Lemma C.1) yields
> i1 Wiigi (Bon)

by B, Since the adapted versions of Lemmas A.1-A.4 are valid, we can proceed as in the proof

max;ey, = O, (¢,). Thus, Lemma A.4 also remains valid when f,, is replaced

of Theorem 3.1 (i) by replacing 5, with 3,. Therefore, under Hy,,
n'?Ty = n'/? waw (Bon: 74) + 05 (1)
i=1

= n_l/QZ{wi\/[ (ﬁﬂm/y*)_iji\J(ﬁOn?’y*)]}

+H-F [L‘Mi (Bon» 7*)/ Ji (507”7*)/ Vi (ﬁon)_l Eg(2, 60n)|xi]:|
+E [Hy (Bons 7.) AE [Y(xi, 25, Bon) ]|} 4 0p (1)

= n71/2 Z {1?5\4 (60717 7*) - E[wiw (ﬁOn/}/*)]} + :U’M + OP (1)
=1
5N (uar, @)

>From adapted versions of Lemmas A.1-A.3, we can show that ;2 &, under H,,. Therefore,

the conclusion is obtained. [ |
Proof of (ii)
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A similar argument to the proof of Theorem 3.2 (i) yields that under Hy,,,
n'PTo = 072 0 (Bons i) + 0p (1)
i=1

= n_1/2 Z {%C (ﬁﬂm /7*) - E[Q/JZC (60717 ’7*)]}

H{2E[LE[h (2,7.) il Vi (0.) 7" TF (Bons 1) Vi (Bon) ™ B lg(2is Bon )]
+E [He (Bon, 7v2) AE [Y(2i; 21, Bon)2i]]} + 0p (1)

= n71/2 Z {%C (507@7 7*) - E[wzc (60717 7*)]} + :U’C + Op (1)

4 N (pe, bc) -

>From adapted versions of Lemmas A.1-A.3, we can show that &SC 2 ¢ under H,,. Therefore,

the conclusion is obtained. ]
Proof of (iii)
A similar argument to the proof of Theorem 3.2 (i) yields that under Hy,,,

n'Tg = n72Y 97 By, 7.) + 0p (1)
=1

= n_1/2 Z {¢f (ﬁﬂm/y*) - EW? (6071,77*)]}

{_E[IlG? (’7*)1 V;h (7*)71 ‘]ih (6071,7 ’7*), Vi (ﬁOn)il E [g(zz, 60n)|$l]]
+E [Hs (Bon, v.) AE [(@i, 2, Boy ) |i] ]} + 0p (1)

= S (B ) — BT (B, )1} st + 0 (1)
i) N (:LLSa (I)S) :

>From adapted versions of Lemmas A.1-A.3, we can show that dg L &g under H,,,. Therefore,

the conclusion is obtained. |

A.3 Proof of Theorem 3.3

Proof of (i)
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Let Ji(8,7) = S0, wj% By the definition of §% () in (4) and Ty in (9),

Ty = ——ZIM A)'Ji(B,A)Y N (B)

~ A

IS G AP St

~ A

= o SR (B 0) B AN (50,8 + 0y (1)
=1

1 & - ' /
= = ST L (B v0) Tin(Bs o) N (5, B.) + 0 (1)
i=1
= py T 0p(1),

under Hj,, where the second equality follows from Assumption 3.2 (iv), the third equality follows

from max;e;, [|N(B8)—A (2, 8,)|| = 0, and fourth equality follows by applying similar arguments

as Lemma A.2 and Newey (1994, Lemma B.3). Therefore, we have M,/n 2> i}, ;@ 5, under
H;,, and the conclusion is obtained. |
Proof of (ii)
By the definition of 57, (8) in (4) and T¢ in (12),

-+ Qh(zw) Th (7 Z 1 7h 2NN (
To = §j {}j ST @)+J<5 AV U%} () THR(B, A A (B)

1

B 2h (2 'yo

N __Z { [1—}—)\9 (x;, 8
><V" (%) LR (B AN (B )+0p(1)

_ = 2h (z ’Yo)

- E: {E{ 5N (22,5.) 9(2. 5
><Vh(%) LI (B *77))\g(% )+ op(1)

vk

5,
:| +Jh 6*7’70 )\g xl’ }

4+Mm%v%

= th+0p( )

under Hj,, where the second equality follows from Assumption 3.2 (iv), and the third equality

N (B) = M (x;, 8,)|| 2 0 and similar arguments as Lemma A.2 and Newey

(1994, Lemma B.3). Therefore, we have C,/v/n 2 p,c/ v/¢pc under Hy,, and the conclusion is

obtained. |
Proof of (iii)

follows from max;¢y,
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By the definition of pf; (8) in (4) and T in (14),

1N A S aNITIh  AN—1 Fh D AN/ o
Ts = —— Y LGH)VG) T ILBAYNP)

=1
1 T

= TG () V(o) LB A NB) + 0y (1)
i=1
1 — , B ,

= ST EGY (o) W () T B0 AL (1, B.) 4 0y (1)
=1

= fus+o,(1),

under Hy, where the second equality follows from Assumption 3.2 (iv), and the third equality

N (B) = M (x;, 8,)|| 2 0 and similar arguments to Lemma A.2 and Newey

follows from max;¢y,

1994, Lemma B.3). Therefore, we have S,/n % 1, ¢®; o, ¢ under Hy, and the conclusion is
9 hS®nsHns

obtained. [

A.4 Auxiliary Lemmas

Lemma A.1 Suppose that Assumptions 3.1 (i), (ii), and (iv) and 3.2 (i)-(iii) hold. Iflogn/n'=*/bs —

0, then
sup Vi(B) = Vi(Bo) | = 0y (n 37877, sup VB = Vi (Bo) || = 0p (7284,
sup [V (80) = Blflnd Vi (B)]| = Oplen), s ||V (50) ™" = BLALVi (50) || = Oy ()
Proof. See the proof of Tripathi and Kitamura (2003, Lemma C.2). ]

Lemma A.2 Suppose that Assumptions 3.1 (i)-(iv) and 3.2 hold. If logn/n*=4 ™mM{¢Cnlps — 0,

then
A a A 1,141 1l 1
sup || Ji(B,%) — Ji(Bo,7:)|| = 0 (n 2o ”) +0p (” 2 "m>a
ZCiEX*
SU-)I? jz (6077*) _E[ﬁlxl]_ljl(ﬁmfy*) :OP (Cn)'
Z‘ie *

Proof. (First part) An expansion of J;(3,4) around (3,4) = (8,,7,) and Assumption 3.2
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(iii) and (iv) yield

A

jl<ﬁ7 fAy)/ - ji(ﬁm 7*)/

sup
. o L OB (5=50\\ () (5 4 20:0) '
= %65* z; Z< i (Bos i) + 33,7 (’?—%)) <9J(50) BYs —L (B - 50))

- Z wjim; (Bo, V. 95(Bo)’

=1

B~ B

— Vs

IA

E wjidy (z4)

Zwﬂdl 2j) dim (25)

+

E w]zm

max llg;(Bo)ll sup

15 = Boll max [lm; (5, 7.)|| sup

1<j<n T, EX,

+[15 - 5o||

sup

* Ty EX*

= Rg+R,,+Rg,

where (3,7) is a point on the line joining (3,4) and (83,,7,). From (30), Assumption 3.1 (ii)
and (iii), and Tripathi and Kitamura (2003, Lemma C.6), we have

1 1 1 1

_1y1 1 _ly1,1 B
Rg =0, (n 2+cm+n) ’ ij = o, (n 2+<+nm> . R = 0p (n 1+max{2/n,2/?7m}> )

c

Since 1,7,, > 6, R is negligible. Therefore, the first part is obtained.
(Second part) The second part is obtained from the proof of Newey (1994, Lemma B.3). W

Lemma A.3 Suppose that Assumptions 3.1 (i), (ii), and (iv) and 3.2 (i)-(iii) hold. Iflogn/n'=2/7b5 —
0, then

s |6:0) - Gutso] = (n7H7%).
sup |G (50) = Elfiled G (80)]| = Oy (en)

Proof. (First part) An expansion of 89}’“) (8)/08Y around 3 = 3, and Assumption 3.2 (iii)
yield

" gl "L 99" (Bo)
ZJ ZHO

j=1 j=1

= 0 ()0, (a7,

sup
ZTg eXx

< sup
T, EXx

E wj;ds (z5)

o=

where the equality follows from Assumption 3.1 (ii) and Tripathi and Kitamura (2003, Lemma
C.6). Therefore, the first part is obtained.
(Second part) The second part is obtained from the proof of Newey (1994, Lemma B.3). W
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Lemma A.4 Suppose that Assumptions 3.1 (i), (i), and (iv) and 3.2 (i)-(iii) hold. If b, = n~*
for0<a< % (1 — %), then under Hy,

and

Nl . _%+%
nax| |5 (8)|| = Oy (ea) + 0, (n*77)

2 *

LN(B) = LVi(B) " 4:(B) + Lr?,

where

max [|r{|| = o, (n'/°) {Op (¢2) + o, (n*H%)} :

1€l

Proof. See the proof of Tripathi and Kitamura (2003, Lemma A.1). Note that Assumptions
3.1 (i), (ii), and (iv) and 3.2 (i)-(iii) imply Tripathi and Kitamura (2003, Assumptions 3.1-3.7).H
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Table 1. Estimated Sizes and Powers of the tests with nominal size of 5%°
(Design I, ¢g = 1)
n = 100 n = 200
Test b, Size A-P S-P Size A-P S-P
0.7 A70 778 528 135 936 .878
M, 038 100 777 678 .090 .947 .923
0.9 064 775 749 .060 .966 .961
1.0 046 .781 .796 .029 .960 .969

0.7 .070 .500 .399 .038 .600 .703
C, 038 .030 .389 .581 023 462 .848
0.9 010 .281 .684 007 .343 .889
1.0 005 .202 .726 .001 .211 .899

0.7 329 970 .823 174989 .978
Sy 0.8 244 968 .905 110 996 .992
0.9 164 982 945 070 .997  .995
1.0 123989 971 045 999 .999

J 041 926 .934 052 999 .998
S 008 911 .972 007 .997 1.00
SC 055 935 .934 054 999 .999

9Tests M, C,, and S, refer to the moment encompassing, Cox-type, and efficient score encompassing tests,
repectively. Also, tests J, S, and SC refer to Hansen’s (1982) overidentifying test, Singleton’s (1985) test, and
Ramalho and Smith’s (2002) simplified Cox test, respectively. A-P and S-P denote Actual Power and Size-

Corrected Power, respectively.
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Table 2. Estimated Sizes and Powers of the tests with nominal size of 5%
(Design I, ¢g = 2)
n = 100 n = 200
Test b, Size A-P S-P Size A-P S-P
0.7 176 537 .262 138 752 517
M, 038 104 500 .357 084 745 .644
0.9 071 460 .415 057 732 711
1.0 039 442 473 038 716 .748

0.7 064 272 221 036 .244 327
C, 038 029 165 .309 021 .147 467
0.9 013 .095 .390 008 .076 .584
1.0 003 .046 .403 .001 .036 .601

0.7 325 953 .807 A75 0 .986 971
Sy 0.8 230 957 .876 A17 987 981
0.9 164 .965 .908 071 988 .985
1.0 126958 931 039 992 994

J .044 563 .572 .056 .868 .865
S 021 .554 .666 023 .863 .906
SC .055 .589 .582 053 878 .876

0 Tests M, Cy, and S, refer to the moment encompassing, Cox-type, and efficient score encompassing tests,
repectively. Also, tests J, S, and SC refer to Hansen’s (1982) overidentifying test, Singleton’s (1985) test, and
Ramalho and Smith’s (2002) simplified Cox test, respectively. A-P and S-P denote Actual Power and Size-

Corrected Power, respectively.
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Table 3. Estimated Sizes and Powers of the tests with nominal size of 5%
(Design 1I)
n = 100 n = 200
Test b, Size A-P S-P Size A-P S-P
0.1 062 .624 .502 .043  .635 .696
M, 02 018 .604 .913 .015 .608 .959
0.3 .009 .538 .967 .008 .568 .984
0.4 007 452 984 004 471 .981

0.1 164 .685 .428 112 .670 454
C, 0.2 .061 .660 .639 .040 .675 .675
0.3 029 .664 .803 027 .680 .883
0.4 018 .644 .897 017 .707 .948

0.1 095 .292 140 078 334 234
Sy 0.2 053 .356 .339 040 414 486
0.3 034 412 .589 027 427 729
0.4 020 433 .791 017 489 .837

J 048 .027 .027 053 .040 .034
S 011 .021 .158 009 .031 .172
SC 008 .075 .174 .004 .070 .165

"Tests M, Cy, and S, refer to the moment encompassing, Cox-type, and efficient score encompassing tests,
repectively. Also, tests J, S, and SC refer to Hansen’s (1982) overidentifying test, Singleton’s (1985) test, and
Ramalho and Smith’s (2002) simplified Cox test, respectively. A-P and S-P denote Actual Power and Size-

Corrected Power, respectively.
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