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ABSTRACT

The autoregressive conditional heteroskedasticity (ARCH)
estimation procedure provides a spccification of the error terms
as well as estimates of the coefficicnts. A simple interest ratc
equation is estimated using least squares and also using ARCH.
Then the stochastic simulation methodology is extended to the
ARCH process and Treasury Bond call options are evaluated.
Interestingly +hien ARCH is comparcd to least squares jl is
found that the difference in coefficients estimates has a small
effect, while thc different simulation procedures have a large
effect on the value of Treasury Bond call options .
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Sterbenz  also  wish to acknowledge (inancial support [rom
NSF/EPSCOR, grant No. R11-8610680.






Simulation Using ARCH b}

1. Introduction

The autoregressive conditional heteroskedasticity estimator
(ARCH) is particularly useful for the estimation of financial
equations. This is a natural specification since asset prices are
often assumed to come from a martingale, with changing
variance. The simplest ARCH specification is from Engle (1982)
and assumes that the error terms in an equation are unserially
correlated, but that the variance of u, is ay + o,u?, . Thus the
variance is assumed to be a function of the previous period error
tcrm. For a survey of more complicated models of this form see
Pagan and Schwert (1990).

In this paper we will consider the simple form of Engle (1982),
where the conditional variance of u, is given as ap + ayu?, . This
model can be estimated using thc asymptotically efficient
estimator proposed by Engle (1982) as afternative to maximum
likelihood (a description can be found, for example, in Judge et
al., 1985, p.441). The resuit of estimating a single equation is a
set of coefficients and a spccification of the stochastic process
generating the errors. In this paper we explore an example where
this second feature is much more important than the first.

A relatively new asset is the intcrest rate option. For a full
discussion of interest rate options sce Hull (1989) . Several
different theoretical methods exist for pricing interesl rate options
such as Jamshidian (1989) and Hull and White ,(1990). These
methods specify a relation between short and long term interest
rates. They specify a stochastic process for intesest rates and find
an analytical interest rate formula based on this stochastic
process. In this paper we will work directly from an estimated
long term interest rate equation.

(2) The basic mechanics of an interest rate call option are that a
striking price is sct and a maturity date is set. At maturity of the
option the holder of the option has the right to buy a specified bond
at the striking price. We assume that the option can only be exercised
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The price of the bond is found by taking the present discounted
value of the future payments. This means that the value of the
bond is a nonlinear function of the interest rate. Since the data
we use for long term interest rates are derived from long term
bond prices this is in fact an identity. The payoff of the call
option is 2 nonlinear function of the value of the bond. The
result is that the expected payoff of the call option is a function
not only of the expected value of interest rates, but also of higher
order moments of interest rates as well. Even if the interest rate
is modelled as a simple linear equation with exogenous regressors,
the expected payofT of the call option will depend upon the higher
order moments of the interest rate, not just its expected value,
thus 1t will depend upon the higher order moments of the
stochastic error terms. In Ross (1978) and in Dybvig and Ross
(1989) it is shown that in the abscnce of arbitrage possibilities a
positive linear pricing rule exists and that {for appropriately
chosen probabilities the expected payoff is the price.

When an equation is estimated using ARCH, this not only
changes the coefficients, but also provides a new specification for
the stochastic error terms. In this paper we wish to explore the
effects of the components of the ARCH process on the expected
payoff to a call option.

on the final date. The holder of the option is not required to buy the
bond, he simply has the option of doing so. The payofl to the option
then is simply the amount by which the bond price exceeds the striking
price if the bond price is above the striking price. 1 the bond price is
below the striking price the payofT 1s zero. Bond options can be set
up privately or publicly. The Chicago Board of Trade has its own
interest rate options contract.
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2. The model

A simple monthly model of Jong term intcrest rates is used. In
this model the U.S. interest rate depends upon the money supply,
the inflation rate as measured by the consumer price index, and
the unemployment rate. The specification is given as

[l:l Rl,zb] +b2M,+b3],+b4U,+u(

where R, is the long term interest rate, A, is the real money
supply, 7, is the inflation rate, U, is the unemployment rate, and
u, is Lhe error term. The inflation rate is based on a moving
average of the last two months rates of inflation. The money
supply is the nonseasonally adjusted value of M2 divided by the
price level to give real money .pply. The interest rate and
money supply data are from the Federal Reserve monthly
bulletins, while the inflation rate data and unemployment rate
data are from the Bureau of Labor Statistics ®. The equation is
estimated with OLS and with ARCH, and the results are

[2] R, x 100= 10.17 - 0.992 M,+ 0.737 {,
(3.01) (0.39) (0.58)
+ 0.660 U, + 1, OLS
(0.13) §2 =221

(3) We tried speccifications of this equation using M1, bat the fit was
not as good as with M2. Durning the 1980's there was a widespread use
of now accounts and M2 seems to have been a more rchable monetary
policy instrument and naturally it works best in an interest rate
equation.
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[3] R x 100 =9.12 - 0.810 M, + 0.869 /,
(1.64) (0.21)  (0.29)
+0.673 U+ 4, ARCH
(0.07) uncnd. 6% = 1,90

where standard errors are given in parcntheses. The ARCH
estimates are done using the procedure described in Judge et al.
(1985, pp. 441-444). The conditional variance estimator is
Var(ulu.) = &o + &,42, , and &, is found to be 0.25, &, is found
to be 0.87, with asymptotic standard errors 0.08 and 0.14,
respectively. The unconditional variance in the ARCH equation
is found as Go/(1 -@,) . The estimated ARCH coefficients are
slightly different from the estimated ordinary least squares
coefficients.

In both cases the cocfficients arc significant (except the
ir;jlation coefficient in equation 2) and the signs are reasonable.
The real money supply has a negative cffect on interest rates.
Inflation has a positive effect on nominal interest rates. During
recessions the real interest rate is high; this explains the positive
cocfficient on unemployment rates. The focus of this research is
not on the specification itself, but rather how the ARCH process
differs from the OLS process.

An interest rate is used to find the present discounted value of
an 8% coupon bond. This value (price of the bond) is computed
as

60
_ 4 | 100
4] P’_’T{I'(Hn)}r(wnm

where r, is the six months interest rate computed as

[s] r,= (1 + R
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Then the payoff to a call option is found as

[6] C1=Max[(Pz'S)’ 0]

where S is the striking price. In our paper we used options with
3 months to mature. We also used two different values of the
striking price. In one case the striking price was § 97 (note that
when striking prices are listed in newspapers, they are given as
price per § 100 face value, but bonds and calls are normally
traded per $ 100 000 value). The corresponding payoff to the call
option will be indicated as Cl. In the other case we used a
striking price § 98 and the corresponding payoff to the call option
will be indicated as C2.

5. Simulating error terms with ARCH structure

In this section we apply simulation techniques to examine the
distribution -of random error terms with ARCH structure. To
begin with, we consider an ARCH structure with values of o, and
a; equal to those obtained from the estimation of our model (3):
ao = 0.25 and a, = 0.87. Since a, < 1, the error process is
variance stationary as the number of time periods increases,
converging to a distribution with unconditional variance
ao/(1 -ay) = 1.90 . The unconditional standard deviation is
J1.90 = 1.38. If we take an initial value u, = 1.38 and e is an
independent standard normal deviate, then w,., = (0o + qu?)'2e
is a zero mean normal error with the same variance as the
unconditional variance (1.90). Moving one period ahead,
u+2 = (@ + ayut)'?e still has zero mcan and the same variance
(1.90), but a different distribution, since u,., is random. If we
- again move one pcriod ahead, again mean and variance do not
change, but the distribution does. We continue up to 20 periods
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1

Fig. 1
Distributions of error terms with ARCH structure; g, = 0.25; a, = 0.87.
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ahead, then we replicate the whole process a million times and
plot the results.

A look at figure | gives a clear idea of how fast the ARCH
generated errors converge in distribution. There is a big change
from the distribution of the error terms in the first period, u,.,
(normal), to the distribution of u,., and u,., ; there are only small
changes moving to wu;,¢ ,and u,.s , u+¢ ; the changes are
practically negligible after w,., , at least in the central region of
the distribution; the tails of the distribution. cannot be
appreciated from the plot of figure 1, but a look at the numerical
tables used for the plot shows only negligible changes after 8 or
more time periods.

The converged distribution (practically the distribution of u,,4
and following) has a typical leptokurtic shape. Note however
that the value of a; = 0.87 does not satisfy the condition for the
existence of a finite 4th-order moment (3af < {, see Engle, ' 32,
p.992, or Harvey, 1990), so we cannot evaluate the kurtosis of the
converged distribution. In practice, if we try to evaluate the
kurtosis from the simulated values, we measure reliable values in
the first period (about 3, as it should be), in the second period
(about 7), in the third period (about 16), and not many more;
already from the 6th period the fluctuations in the sample
kurtosis observed over replications indicatc that a problem of
non-finite fourth moment is likely to occur.

Compared to the normal, the tails of the distribution after 3
or more periods are quite fat. For example, in a million
replications we have encountered less than 10 values of w,.; over
+ 5¢. But we found about 1500 values of u,., :bout 4000
values of u,+; and about 4300 values of w,.; over £ S5o0. We
found only one exceptional value of u,,, over £ 70, but about
1300 values of u,,; and about 2000 values of w41, 4,43, €tc. NoO
values of u,., were generated over = 10g, but about 300 values
of u,+3 and about 800 values of u,.,, as well as u,.s, etc. Therefore
we must be prepared for the presence of a non-negligible number
of exceptionally large outliers in the simulation experiments on
the model, not only when the ARCH process has come to a
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converged distribution, but already after 3 periods (starting from
normal). This is an important point for our experiments. Large
shocks are properly treated (downweighted) by the ARCH
estimation method in the estimated equation (see, for example,
the discussion in Hendry, 1986). But ARCH simulation
generates these large shocks and introduces them into the rest of
the model, where they are involved in nonlinear transformations.

We have repeated the same experiment with smaller values of
o; . For example, figure 2 is related to an initial value of
u, = 1.38 , ag = 0.95 and a; = 0.50, which give the same value
of the variance and of the unconditional variance as in the
previous experiment. The difference between the normal and the
ARCH distributions is obviously smaller than before.
Convergence to the final distribution is even faster than in the
previous case (we do not observe significant changes after about
4 periods). The tails in the distributions after 3 or more time
periods are less fat than in the previous case. The existence of a
finite moment of the fourth order clearly appears from the
simulated values of the sample kurtosis that quickly converge to
a value close to 7, without abnormal or unstable fluctuations.

4. Simulating the model

To simulate a model using the ordinary least squares approach,
we first use the estimated coefficients of equation (2). We also
use the variance estimate from equation (2). The errors in
equation (2) are assumed to be from the normal distribution. A
random error is drawn i.i.d. from the normal distribution with
mean zero and variance 62 for each of the next three periods.
Then the interest rate path is found. Based on this path
equations (4), (5) and (6) are solved, giving the present
discounted value of the bond and the final payoff of the option.
This process is repeated a large number of times and the results
are averaged to give expected payoff. As usual (e.g. Hendry,
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i3

Fig. 2
Distributions .f error terms with ARCH structure; 0o = 0.95; a; = 0.50.
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1984, Calzolari, 1979) strong computational benefits are achieved
using simulation with the antithetic variates technique.

To simulate the model using the ARCH equation (3) we must
use the ARCH coefficients and also the ARCH stochastic
process. We start with the last residual &,, Based on this we find
the conditional variance as G, + @2 . We draw a random value
of u,+, from the normal distribution with this variance. We then
solve for R+, and move to the next period. We use the random
error drawn (u,.;) to find the new conditional variance. The
conditional variance of u,4, is given by o + aq,ut, . We draw an
independent random value e from a normal N(0,1) and the
random error term is obtained as w4, = (G0 + a,u%,)'?e . Using
this value of u,,, the value of R,;,1s found and we move on to the
next period. In the third period we use R,.; to solve cquations
(4), (5) and (6) to give the payoff to the option. The process is
repeated many times and the average is again computed (also in
this case antithetic variates provide a large improvement of the
computational efficiency). This gives the expected payoff to the
call option. Although one period into the future the conditional
distribution of u., is normal, observc that when this process is
repeated to give u,.3, 4,4+, IS random, so that u,.; comes from a
more complicated distribution. The distribution of u,., is likely
to exhibit substantial leptokurtosis. This is not surprising, as
many financial time series exhibit leptokurtosis (see Ball, 1988).
The distribution of u,,, is a mixed normal distribution. As time
progresses, the distribution of the ARCH errors becomes quite
complicated.

We can work also in a different way. Assuming the ARCH
process to be stationary, we gencrate u,., , 4., and ., following
the ARCH generation process after it comes to a converged
distribution. In practice this means that we start our generating
process a few periods earlier (¢ - 10, sce scction 3), then we use
U+, U+, and w4 in the simulation period. The starting value °
of the residual is no longer important, and the distribution of
W+t , U+yand .3 1S about the same, thus it is leptokurtic already
for u,.. ‘
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The difference between these last two methods is the following.
In both cases we make use of an ARCH structure for the error
process, but with the Jlast method we directly use the converged
(unconditional) distribution.  This looks like the standard
simulation approach, with a distribution of the error terms that
does not change over the forecast pecriod, except that the
distribution is chosen to be leplokurtic rather than normal in all
periods. On the contrary, with the previous method the
distribution of the simulated error terms is allowed to change
over the forecast horizon, in the first period (¢ + 1) being
conditional upon the available information set at the forecast
origin (¢). As Engle and Bollerslev (1986, p.5) point out, this is
analogous to the use of the conditional mecan for forecasting with
a time series model, rather than the unconditional mean.

S. Simulation results a

In this section we consider several possibilities. Since the
ARCH process has two components (one is the coefficients and
the other is the stochastic process) we wish to see each of the
components. We consider the following six possibilities.

1}y Using OLS coefficients and standard simulation (with
variance 2.21). ‘

2) Using ARCH coefficients and standard simulation (with the
same variance 2.21 as in the previovs case).

3) Using OLS coefficients and ARCH simulation starting from
a normal distribution in the {irst period. ‘

4) Using ARCH coefficients and ARCH simulation starting from
a normal distribution in the first period.
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5) Using OLS coefficients and ARCH simulation with the
converged distribution of the ARCH process already lfom the
first period.

6) Using ARCH coefficients and ARCH simulation with the
converged distribution of the ARCH process already from the
first period.

In cases 3 and 4 the ARCH simulation is sensitive to the choice
of the initial residual (at time 7). The value we use jn thesc first
experiments is 1.38, which is (Go/(1 - &))" (as in section 3; it gives
a constant variance in each period, equal to the unconditional
variance of the converged stationary ARCH process). Values for
the exogenous variables are taken at thc historical values of
1989/1 - 1989/3. The simulation starts in 1989/l and the option
Is supposed to come to maturity at 1989/3. The results are
displayed in table .

Beyond the deterininistic solution values, the table displays
expected values under the six different scenarios. The results arc
based on 100 000 couples of replications with antithetic variates.
Below each expected value the Monte Carlo (experimental)
standard deviation allows to appreciate the computational
accuracy; it would be zero with infinitely many replications, if
finite moments of the first two orders exist. In cases (5) and (6)
use is done of the converged ARCH distribution of error terms
already in the first period; in these two cases the simulation does
not converge as the number of replications increases, suggesting
that a finite mean does not exist either for P or for Cl and C2®,

(4) Using the converged ARCH distribution from the first period
(cases 5 and 6), but with the values of 4, and &, adopted [(or figure 2,
the simulation converges for P, C] and C2, thus suggesting that finite
means exist. The mean values are nearly the same as those obtained
alter three periods of ARCH simulation starting [rom normal (cases 3
and 4, obviously with the same values for the ARCH parameters).
Results are not displayed here for brevity's sake.
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Increasing variance increases the expected payoff to the option,
The variance is larger for the OLS simulations than for the
ARCH simulations since Go/(1 - &;) in this case is less than the
variance of the OLS process.

In doing the ARCH simulation starting from a normal
distribution in the first period (cases 3 and 4) the initial residual
is quite important. To illustrate this point and to explore its
importance we consider several different quantiles of the sample
distribution of absolute residuals (10%, 25%, 50%, 75%, 90%);
the value of the 50% quantile residual (median absolute residual)
is 1.17, not too far from the value used for table 1. The other
four residuals used are (.15, 0.61, 1.78, and 2.49. To appreciate
the importance of the choice of the initial residual (and therefore
the conditional variance in the first period), table 2 displays the
results related to a simulation in a single period (that is with
normal error terms). The table shows the extreme sensitivity of
the results to the starting point. The use of ARCH coefficients
lowers price by about two. However the difference between an
ARCH simulation beginning with the 10% residual and one
beginning with the 90% residual is about five. This occurs
whether the OLS coefficients are used or the ARCH coefficients.
The results are even more noticeable for the payoff to the call
option. For a given starting residual the choicc of coefficients
(ARCH or OLS) changes the expected payoff by less than [.5.
However the difference between the 10% residual and 90%
residual as starting points is around 1. This is not surprising
since the expected payoff to the call option is quite sensitive to
the variance of the price of the bond. _

We now consider again the results after three periods. This
would be appropriate for finding the expected payoff of an
interest rate option expiring in three months. Some interesting
differences exist for the three periods as opposed to the one
period result. First of all note that in the long run the variance
should converge to Gof(1-@&;) . So for high initial starting
variances we would expect on average a decline in variance. For
low initial starting variance, the variance would on average rise
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toward Qo/(1-@&) . The distributions from different starting
points would appear to be converging. Therefore one might
expect less difference between methods as the number of periods
into the future increases. At the same time the degree of
leptokurtosis is higher for three periods than for one period.
Thus there are rather wide tails in the ARCH simulations for
three periods. The results are displayed in table 3. The results
for the 90% case are particularly interesting. They show that if
the variance becomes large, the results may be quite sensitive to
a few replications.

Equation (4) is just the present discounted value of a bond in
terms of r,. 1t could be rewriticn as

[7] P = : T : Tt : 57
(I + R) (I + R) (I + Rp
n 4 4 100

0 30
1+ Ry (1 +R)

Inspecting the above expression shows that 0P/JR, < O and
0*P/oR? > 0 . Thus P is a convex function of R, and therefore a
convex function of u,. Therefore thec expected value of P is
greater than the deterministic solution of P which occurs when
u, = 0. Also we can observe by looking at the equation above
that the even numbered derivatives ol P with respect to R, are all
positive. The value of R, of course depends upon u,. Define the
deterministic value R{ equal to the value of R, if w, = 0. Then a
Taylor series expansion of P may be found about the point R .
T'his may be written as

1

o (RN

[8] P =f(RD + £ (R, + o1 (R +

L ey pdy, 4
+ﬁf (RI )U’ + ...
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Note that for the ARCH process which we are considering the
odd numbered moments are zero and likewise for the normal,
The ARCH process has high fourth moments and high sixth
moments (also with a, = 0.87 finite moments exist at time ¢ + 2
and f + 3, starting from a normal distribution at time t + 1).
The even numbered moments beyond the second moment are
higher for the ARCH process than for the normal process. Since
the even numbered derivatives of price with respect to R, are

positive, the even numbered terms such as ~—1——f””(R;’)u,‘ are
larger for the ARCH process. Thus it is not SL?Y rising that the
stochastic mean of P is larger for the ARCH process (table 3)
than for the normal process (table 2).

We can now perform a group of experiments that can be
considered intermediate between the pure simulation experiments
of tables 2 and 3, and the analytical method of Black and Sche'!~s
(1973). The Black-Scholes formula gives the value of a call
option on stock assuming that the stock price follows a Brownian
motion diffusion process. Under the Brownian motion diffusion
process the stock price is from the lognormal distribution. In our
case we can simulate this as follows

[9] P=t" vy~ N(0, V)

In this case, P has a lognormal distribution with mean and
variance given by

[10] E(P) = (7 5)

C11] Var(P) = @m0 _ Om+ V)

(see, for example, Mood, Graybill, and Boes, 1974, p.117). We
now plug into equations (10) and (11) the values for E(P) and
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Var(P) displayed in tables 2 and 3, then invert the two equations
solving for m and V. We can now usc each of thcse pairs of m
and V to generate P from the appropriate lognormal distribution.
The generated value for the bond price P is then used to produce
the payoff to the call options C1 and C2. 100 000 replications
with control variates ensure a sufficient accuracy to the
calculated expected values and variances, the only exception
being the last two cases of table 5 (corresponding to the 90%
initial residual), where the contribution of the control variates in
improving the accuracy of results is negligible. Results are
displayed in table 4 (to be compared with those of table 2) and
in table 5 (to be compared with thosc of table 3). If enough
replications were performed, the mean and variance of P would
be the same in table 4 as in table 2. The main difference is that
the simulations for table 4 assume that P is lognormally
distributed.

The experiments with the lognormal distribution have
produced slightly higher values of CI and C2. The values in
tables 4 and 5 should be close to the values in tables 2 and 3.
With enough replications the mean and variance of P would be
the same in table 4 as in table 2 and in table 5 as in table 3. The
difference between these tables is the higher order moments of
P. In other macroeconomic contexts higher order moments have
smaller effects on stochastic means (scc for example Sterbenz and
Calzolari, 1990). The results in the tables show large differences
in call values.

The results for call options arc not very different between
tables 2 and 4. This is not surprising since the lognormal
distribution used in table 4 is closc to thc normal distribution in
table 2. However there are large diffecrences between tables 3 and
5. These results arc somewhat surprising. In tables 3 and 5 the
variances and means of P arc constrained to bc cqual. The
values in table 3 use an ARCH simulation and P is subject to
greater kurtosis than for the lognormal. The result interestingly
is that the expected payoff of the option is lowcr in table 3 than
in table 5.
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6. Conclusions

We have explored the effect that the autoregressive conditional
heteroskedasticity process has on the expected payoff of a call
option on a Treasury bond. For a simple long term interest rate
ecquation we have found that the ARCH coefficients produce
different payoffs than OLS coefficients, Wec have found that the
effect of using the ARCH stochastic process in simulating option
payoffs is far greater than the effect of using ARCH cocfficicnts.
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