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Usage.

R Tiffi n and K Balcombe
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Abstract

We introduce and implement a reversible jump approach to Bayesian

Model Averaging for the Probit model with uncertain regressors. This ap-

proach provides a direct estimate of the probability that a variable should

be included in the model. Two applications are investigated. The first is the

adoption of organic systems in UK farming, and the second is the influence

of farm and farmer characteristics on the use of a computer on the farm.

While there is a correspondence between the conclusions we would obtain

with and without model averaging results, we find important differences,

particularly in smaller samples.
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1. Introduction
The evaluation of the importance of explanatory variables based on measures

such as statistical significance, adjusted R-square or information criteria is a com-

mon practice. The literature is replete with discussions where the importance of

regressors are evaluated ostensibly by their statistical significance or lack thereof.

Commonly, investigators also exclude variables from their models because their

associated coeffi cients are not statistically significant or the exclusion of that vari-

able leads to improvements in a given criteria, and only those that are left in the

model are deemed important.

Faced with a large number of potential explanatory variables and limited sam-

ple sizes, there is often a need to choose a subset of the available regressors. This

is a requirement when using time series or cross sectional data and needs to be

addressed whether the aim is to estimate a purely predictive model, or to estimate

a model with structural interpretations. In some cases variable selection is auto-

mated, and in others investigators choose to adopt a more ‘hands on’approach.

The pitfalls of automated model selection of the ‘stepwise’kind are well doc-

umented (Millar, 1984). The ‘hands on’approach is open to the criticism that

it is insuffi ciently objective. Problems exist regardless of whether the modelling

strategy is ‘specific to general’, ‘general to specific’or a mixture of both. While

model selection has been the subject of extensive discussion going back many

years (e.g. Pagan, 1987) adequate solutions arguably remain absent from classical

perspective. Recent classical work automating model selection from a ‘general to

specific’point of view notwithstanding (e.g. Hendry and Krolzig; 2005), sequential

reduction algorithms inevitably involve testing sequences that can pre-determine

the final selection. Though a search can sometimes be conducted over the entire

model space (e.g. Balcombe et al. 2005), investigators still face a diffi cult choice

between competing ways of evaluating one model (as defined by the set of regres-

sors included in the model) relative to many others, particularly if there are many

models that perform similarly according to a given criteria.

Even if the aim is not to conduct a specification search, investigators often

seek to establish whether a given variable belongs in the model on the basis of

statistical significance. Thus, a model is estimated and the resulting discussion is

then about which variables are significant and which are not. When conducting

2



this type of analysis, investigators often indirectly infer that a small p-value implies

a high probability of a non-zero coeffi cient. This makes sense to the extent that

a p-value of below 0.05 implies that a 95% confidence interval for the parameter

would exclude zero. Thus, in this limited sense, the investigator is at least 95%

certain that the variable should be in the model. Unfortunately, as simple as

this logic seems, it cannot be used to construct a formal argument that p-value

below 0.05 means that there is at least 95% probability that the variable should be

included the model. While investigators may know that a p-value cannot strictly

be interpreted in this way, in practice, statistical significance is used as an indicator

of the probability that regressor has an impact on the dependent variable. The

gulf between the formal meaning of a p-value and how it is used in practice is not

a mere curiosity. It may have a substantive impact on interpretation and findings.

An appealing alternative to estimating one very large model or searching for

a better performing submodel, is to take an average over many models. While

classical statistics struggles to give any formal basis for averaging over models1,

a Bayesian approach provides both a theoretical underpinning, along with clear

methodology for implementing model averaging. Final estimates can be obtained

by taking a weighted average of estimates over models, where a model that is

highly supported by the data will be given a higher weight than one which is less

supported by the data. Importantly, this approach can further deliver a measure

of the probability that a given variable enters the model.

The construction of the weights used for Bayesian model averaging (BMA) is

performed using the Bayesian ‘marginal likelihood’ (ML). Unlike the likelihood

function, the ML is not defined on parameters since these have been integrated

out of the expression.2 Thus, it is a function of the data and the model but not the

parameters. Where two models are thought equally likely, a priori, the ‘posterior

odds’for two models is equal to the ratio of their MLs (also known as the Bayes

factor or ratio). Therefore, the ML can be used to give a weight to a given model

with BMA.
1Sali-a-Martin et al. (2004) develop a hybrid approach to model averaging, but this could not

be strictly labelled Bayesian or Classical.
2The likelihood can be viewed as the probability of the data conditionally on the parameters.

The marginal likelihood can be viewed as the expected likelihood, given the model and model
priors.
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BMA can be diffi cult to implement because the ML is often hard to compute.

Under these circumstances, BMA can practically take place only over a small

number of models. For the standard linear regression model, the ML can be

expressed analytically and computed quickly. Even so, where the set of models

is defined by all the combinations of regressors that can enter the regression, the

model space can be massive.3 Therefore, it can still be impractical to estimate

every model and assign a weight to each model. Bayesian computation can solve

this problem by employing an algorithm where only a relatively small subset of

the models require estimation. The ML can provide a basis for choosing models

as part of the algorithm which ‘jumps’ between one model and another. This

class of algorithms are an extension of the Monte Carlo Markov Chain (MCMC)

algorithms that are employed to estimate many Bayesian models.

This paper uses and explains a Bayesian reversible jump (RJ) procedure for

Probit model selection in which the probability of regressors entering the model is

estimated along with the parameters that enter the Probit equation. The estimates

obtained from this procedure include the probability that a variable enters the

model along with model averaged estimates (and standard deviations) of the Probit

parameters. The RJ method is an approach to model averaging, that can be

applied to the selection of models where the number of potential models is very

large. The general RJ approach to estimation of models was developed by Green

(1995) and a general approach to the estimation of limited dependent variable data

was outlined in Holmes and Held (2005). The RJ approach was applied to a linear

time series model by Balcombe and Rapsomanikis (2010), but so far there have

been no applications of the reversible jump procedure for a Probit model within

the Agricultural Economics literature. Applications of the RJ Probit within the

Economics literature are few. An exception is Leon-Gonzalez and Scarpa (2007)

which applied this algorithm in a contingent valuation setting.

It is not our aim to compare Classical with Bayesian methods, but to compare

results with and without model averaging. In introducing the RJ approach, we are

mindful that agricultural economists will be less concerned with theoretical argu-

ments for BMA, but more concerned with its practicality, and how it may change

the inferences obtained from a given data set. BMA is certainly practical. The

3A model with k variables has 2k submodels
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models in this paper take less than half an hour to estimate on a modern computer,

even though the data sets would be regarded as relatively large. Moreover, there

is no doubt that BMA can sometimes have a substantive influence on inferences

draw from a given set of data. For example, Balcombe and Rapsomanikis (2010)

show that in the context of a time series model, the use of BMA lead to quite

different conclusions. Results from a Bayesian analysis (without model averaging)

are often very similar to a Classical analysis, albeit with some differences in the

way that the results are presented and interpreted. Non informative priors and

large sample sizes, Bayesian and Classical approaches often lead to comparable

point estimates and confidence intervals (see Mittelhammer, et al. 2000, pp. 661-

666). Therefore, we use Bayesian methods throughout this paper, since estimates

produced for a standard Probit model using a Bayesian or Classical methods do

not differ substantively.

The RJ approach to estimation model is applied to the analysis of two data

sets and the results are compared to the results obtained without model averaging.

First, the adoption of organic production in agriculture is analysed. This data set

has already been discussed and analysed by Rigby et al. (1999). Second, we apply

the Probit model to an original data set on the determinants of computer adoption

in UK agriculture. Agricultural producers have lagged behind other businesses in

computer ownership and use. Despite the rapid adoption of computer technology

by British farmers in recent years, there has been little in the way of formal

econometric analyses about why farmers purchase computers, what they use them

for, and whether computers are making a positive impact on farm profitability.

The paper proceeds by discussing the estimation of the Probit using the RJ

method in Section 2. Section 3 introduces the data and presents and discusses the

empirical results. Section 4 concludes. Mathematical details are contained in an

appendix.

2. Model and Estimation
A common Bayesian approach to estimation is to simulate the posterior distri-

bution for the parameters of a model using Monte Carlo Markov Chain (MCMC)

algorithms (e.g. Chib and Greenberg, 1995). The RJ approach is an extension of

the MCMC algorithms. The difference is in that, when using the RJ approach,
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the model is also drawn from its posterior distribution, not just the parameters.

Using the notation f (x|y) to denote the conditional distribution of x given
y, MCMC algorithms operate by drawing from f (x|y) then using the draw of x
to draw y from f (y|x) . Subject to certain conditions, this leads (provided the
sequence is repeated many times) to draws from f (x, y). Within the standard

MCMC approach, the quantities y and x can represent parameters or latent data.

With the RJ approach, they can also represent models. In this section we describe

the model and estimation procedure in more detail.

2.1. The Model
The model employed within this paper is of a standard binomial Probit form:

y = xb+ e (1)

y = (y1, .....yT )
′ ; e = (e1, .....eT )

′ ; and,

x = (x1, .....xT )
′ where xi = (1, xi,1, xi,2...xik)

′ .

It is assumed that ei
iid∼ N (0, 1) . The restriction on the variance of ei is the usual

identifying assumption for the Probit model. The data yi is not observed for the

Probit model. Instead, we observe the indicator variable d = (d1, .....dn)
′where

di = 1 where yi > 0 and di = 0 otherwise. The Bayesian approach to estimation,

requires a prior distribution for b. Where this is specified as f (b) = N
(
β0,M

−1
0

)
,

then:

f (b|y) = N
(
β2,M

−1
2

)
and yi = TN+ (xb, 1)1 (di = 1) + TN− (xb, 1)1 (di = 0)

(2)

where M1 = x′x; M2 = M0 + M1; β1 = M−1
1 x′y; β2 = M−1

2 (M0β0 +M1β1);

and, TN+(TN−) denotes a positively (negatively) truncated distributed normal

distribution and 1 (.) denotes and indicator function.

2.2. Estimation
Where the regressors are known, estimation can proceed through simulation

by drawing b from f (b|y) then y then f (y|b, d) and so on, recording the draws
of b so as to simulate the marginal posterior distribution. The reversible jump

algorithm only involves a further step by augmenting the sequence by drawing

6



from f (m|y, d) where m denotes the model (the choice of regressors). The last

step is achieved by proposing a new model m∗ in a ‘symmetric fashion’4, then

accepting this new model (rather than the old model m) with probability

p = min

 |M2(m∗)|−
1
2

|M0(m∗)|−
1
2
× e−

Jm∗
2

|M2(m)|−
1
2

|M0(m)|−
1
2
× e−Jm

2

, 1

 (3)

where

Jm =
(
y − xmβ′0,m

) (
y − xmβ0,m

)
−
(
y − xmβ0,m

)′
xmM (m)−12 x′m

(
y − xmβ0,m

)
(4)

and xm are the regressors for model m, and β0,m M (m)0 are the priors for the

parameters under model m, and M (m)2 = (M0,m + x′mxm) . Derivations of equa-

tions (3) and (4) are left for an appendix (see section A2.2). The validity of the

‘model step’above follows from the fact that the conditional distribution of the

model f (m|y, d) simplifies to f (m|y) since any admissible set of latent data (y),
is suffi cient to deduce the observed data (d). Therefore, the model step within the

RJ algorithm for the Probit model is almost identical to the model step within the

normal linear model, except that the variance is set to one.

The Priors adopted in this survey are the ‘G-Priors’with β′0,m = 0 for all

models. Using this construction, the priors are M0,m =
x′mxm
n

. For the rationale

behind the use of these priors, readers are referred to the discussion and further

references within Fernandez et al. (2001). Within our analysis the priors over all

models are uniform (each model is, a priori, equally likely as another). In principle,

informative priors could be placed over the model space if some variables were

thought more likely to determine adoption than others. However, we prefer to use

non-informative priors over the model space.

4This means that the probability of proposing move from m to m∗ is equal to the probability
of proposing a move from m∗ to m.
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3. Empirical Section
Our analysis within this section will examine two different data sets: organic

technology adoption; and, computer adoption in agriculture. As discussed above,

our analysis throughout will be Bayesian. Classical point estimates and confidence

intervals for the data sets in this paper are similar to the results we present below

without using BMA. Although it is not entirely consistent with the Bayesian liter-

ature, we denote significance at the 5% level if the coeffi cient has a 95% Bayesian

confidence interval (also known a high density region) that excludes zero. Bayesian

significance has a slightly different interpretation to that of classical significance5.

However, as already noted, the Bayesian confidence intervals presented herein are

similar to those obtained by a classical analysis, thus, the exclusion of zero from

the Bayesian confidence interval would also indicate significance in the classical

sense. Therefore, we continue to label the parameter ‘significant’if its confidence

interval excludes zero.

3.1. Organic Adoption

3.1.1. Data on Organics Adoption
The Organics data is composed of 237 horticultural producers from the UK, of

which 151 were conventional producers and 86 had adopted organic technologies.

The survey was conducted in 1996. The discussion of the sources and summary of

this data is discussed in Rigby et al (1999). The data, with descriptions can also

be found on the ESRC data archive.

3.1.2. Results for Organics Adoption
Rigby et al. (1999) run a Logit regression of the decision to adopt organics on

a set of explanatory variables. These are listed in Table 2 of Rigby et al. (1999).

Since our aim is to compare the model averaged results with those obtained by

Rigby et al. (1999), we use exactly the same variables used in their analysis. We

produce the Probit results for their model in Table 1 below, on the left hand side.

The variables that are significant at the 5% level, are superscripted by a star. In

terms of significance, these are broadly the same as those reported in Rigby et al.

5e.g. see Mittelhammer, 2000, chap 24.
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The BMA results are reported on the right hand side of Table 1. The last col-

umn gives the probabilities that the relevant variables are included in the model.

The estimates and the standard deviations are the mean of the posterior distrib-

utions for both the standard and BMA results. Apart from the intercept, we can

see that 4 variables: conin, orgff, infpss, and infbuy (conin=1 if farmer believes

that current practices will sustain farm productivity, orgff=1 if farmer believes

that farming alone can satisfy societies needs for food and fibre, infpss (infbuy)=

1 of main source of information is press (merchants)) are included with probability

0.99 or above, closely followed by infadas, which is included with probability of

0.972. Notably, all these are also significant at the 5% level. More generally, across

most of the variables, there is a correspondence between the probability of being

included in the model, and the significance of the associated coeffi cient. Generally,

the more significant a variable (the further away the interval is from zero) the

more likely that the variable is included in the model. This said, we would revise

the importance of variables in the light of the probabilities in the last column.

First, it would be inaccurate to conclude that a variable that is significant at the

5% level should be in the model with 95% probability. Several variables such as

hhsize, fem and inffmrs (hhsize=household size, fem=female ( 1 for female, 0 for

male) , inffmrs=1 if main source of information is other farmers) are significant at

the 5% level, but are included in the model less than 80% of the time. Even more

notable is the variable age which is significant at the 5% level. However, it is only

included in the model around 47% of the time. Likewise, memenv (=1 member

of environmental organisation) is significant at the 5% level, but is only included

in around 55% of the time. By contrast the variable maxcon (=1 if maximiser of

consumption of own production) was insignificant at the 5% level, but as it was

included in 61% of the time, it has a higher probability of being included than ei-

ther of the significant variables age and memenv. Finally, we note that the model

averaged results differ substantively from the standard results. For variables that

are not included with a probability close to 1, the estimates are substantially lower

in absolute value, reflecting the high probability that they are zero.

Finally, with respect to the estimates, the coeffi cients of the model averaged

results are generally smaller (in absolute value) than for the standard results, but

in nearly all cases retain their original signs. Those variables that enter the models
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a relatively small proportion of the time, have correspondingly smaller values in

absolute terms. In this sense the BMA results represent the mid ground between

a model selection strategy in which only the most general model is estimated and

one where insignificant variables are eliminated from the model. The strategy of

excluding insignificant variables from the model is an extreme one, and arguably

does not truly reflect the nature of our uncertainty about the role of the variable.

Thus, the BMA results represent a more balanced approach between two polar

approaches that are commonly employed in the literature.

3.2. Computer Adoption
The literature suggests various factors which may affect the diffusion of farm-

based computer technology in England and Wales. The likelihood of computer

adoption within a farm business depends on the characteristics of the farmer and

his/her operation. The age and education of the farmer have been found to be

significant determinants in the adoption process (Lazarus and Smith 1988; Putler

and Zilberman, 1988; Batte, 1990; Woodburn et al. 1994; Hoag et al. 1999; Lewis

1998; Ascough et al. 2002). Older farmers have been found not to use as many

sources of information as their younger colleagues and are more dependent on

their experience in farming. Moreover, older and more experienced farm decision

makers tend to maintain less complicated record types, which may reduce their

demand for computer-based management innovation. Although (Jarvis, 1990;

Baker 1992) find that the managers’age and education are insignificant in deter-

mining computer adoption among Texan rice producers and New Mexico non-farm

agri-businesses, respectively. In addition, Woodburn et al. (1994); Ortmann et

al. (1994) and Ascough (2002); find that farmers’self-rating of financial, computer

and management skills to be significant factors in the adoption process.

Results from a number of studies (Lazarus and Smith 1988; Putler and Zil-

berman, 1988; Batte, 1990; Jarvis, 1990; Baker 1992; Woodburn et al. 1994; and

Lewis 1998; ) indicate that gross farm income or farm size is a significant factor in

computer adoption. In the UK, Warren (2000) finds a clear positive relationship

between increasing use of computer technology and increasing farm size, as well

as a tendency for cattle and sheep farms to have lower levels of adoption than

other farm types. Woodburn et al. (1994); also found that the probability of
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computer adoption declines with the presence of beef enterprises in Natal, South

Africa. While Batte, (1990) found adoption rates among Ohio commercial farms

to be highest for mixed livestock and dairy producers. The reasoning for these

conflicting results may lie in the degree of livestock production intensity in the

different regions and the availability of appropriate livestock production decision

analysis and record-keeping software. Further significant positive factors in the

decision to adopt computer technology include ownership of farm sales related

businesses (Putler and Zilberman, 1988; and Baker 1992), the presence of off-farm

employment and higher proportions of rented land (Woodburn et al. 1994), and

reduced-levels of diversification (Putler and Zilberman, 1988) and off-farm invest-

ments (Ortmann et al., 1994).

3.2.1. Data on Computer Adoption
The Department for Environment, Food and Rural Affair’s (Defra) (2001) sur-

vey of computer use in England found that 35 per cent of holdings had computer

access. Moreover, 25 per cent of holdings owned a computer but do not use it for

farm business. In the 2002/03 FBS survey period, 75 per cent of 1,718 farmers

had access to a computer, and 76 per cent of these farmers used computers for

farm business purposes. Of those farm business computer users 82 per cent made

at least some use of the computer for offi ce management functions, 69 per cent for

farm management accounts, 55 per cent for livestock enterprise management, 49

per cent for statutory records, 42 per cent for tax accounts, 39 per cent for arable

enterprise management, and 23 per cent for the farm’s payroll. In this paper we

use data from Defra’s Farm Business Survey data for 1,718 farms in England and

Wales over the 2002/2003 financial year. There are 335, 531 and 424 farms in the

North, East and West of England, respectively, and 428 in Wales. There are 917

full owner-occupied farms, 251 full tenanted farms, and 550 have a mixed tenure

status. The sample includes 622 small farms, 613 medium-sized farms and 483

large farms.

The average age of the farmers in the sample is 54 years. Of the total sample

of farmers, 563 (33 per cent) have a “school only”highest education level, while

873 (51 per cent) have GCE “O”or “A”levels or the equivalent, and 211 (12 per

cent) have a degree or postgraduate qualification. Of the four regions surveyed the
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East of England has the lowest proportion of “school only”educated farmers and

the highest proportion of farmers with GCE and university qualifications, whilst

the reverse is true for Wales. The average age of farmers with a “school only”

education is 60 years, while those with a GCE/College education, and university

graduates, average 52 years, and 51 years, in age, respectively.

Table 2 gives a summary of the use of computers on the farms in the sample.

Of the total sample of farms, 432 (25 per cent) did not have access to a computer,

314 (18 per cent) used a computer for personal/family purposes only, and 972 (57

per cent) used a computer for farm or related business use. Farmers are extending

their use of computers for farm or related business use, specifically various farm,

financial and record management purposes.

3.2.2. Results for Computer Adoption
The dependent variable in our analysis is whether the farmer owns and uses

a computer on the farm. The explanatory variables are detailed in Table 3. The

structure of Table 3 is the same as in Table 2. As with organics data, there is

close correspondence between the significance of the variable, and the probability

that it will enter the model. In 9 out of the 12 significant variables the prob-

ability that the variable enters the model exceeds 0.95. In a number of cases,

the significant variables were deemed to be in the model with probability near 1.

However, East area, Cattle and Sheep Farms in the less favoured areas, and Net

Farm income, have probabilities of entering the model of 0.363, 0.696, and 0.763

respectively even though they are significant at the 5% level. Thus, as in the case

of the organics data, the BMA results differ substantively from the standard one

in some important respects. Overall, the correspondence between results with and

without BMA, are closer for the computer data than for the organics data. This

is unsurprising since, with the larger sample size, the power of tests increase, and

important variables are more likely to be significant.

With regard to farm type, there is clear evidence that farms classified under

Cereals, are more likely to use a computer than other farming types. This classifi-

cation variable enters the model 100% of the times. Other farm classifications do

not seem to be particularly important, except perhaps Cattle and Sheep Farms in

less favoured areas, which has a negative association with computer ownership. A
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number of findings differ from the preceding literature. In contrast to previous re-

sults, age is not found to be an important predictor, at least when other covariates

are taken into account. This variable enters the equation only 3.5% of the times,

and is also insignificant at the 95% level. Next, in contrast to previous results, we

do not find a positive relationship between farm size and computer use. Larger

farms are found to be less likely to use computers than the median sized farm.

Farm size is significant and is included in the model over 99% of the times, and its

coeffi cient is negative. However, net farm income (which is positively related to

farm size) is found to be a significant positive predictor of computer use, although

it is included in the models around 75% of the times. Other variables connected to

size include the number of paid workers which is positively related to the physical

size of the farm, and is included in 100% of the models and is positively related to

computer usage. Care needs to be taken in interpreting these results. Although

the results are not included here, a simple probit of computer use on farm size

(excluding other variables) indicates a positive relationship between farm size and

computer use. Therefore, it is the inclusion of other covariates in the model that

has produced this result. Our results suggests that large farms with given net

incomes, and number of paid workers are less likely to use computers. However,

these other covariates also reflect farm size. Nonetheless, we believe that the re-

sults correctly reflect the fact that what might be termed the ‘commercial size’of

the farm is positive predictor of whether a computer is used, rather than land size.

The role of education is generally in line with previous findings. The ‘school only’

variable seems to have a significant negative impact on the use of computers in the

farm, with the GCE qualification also. However, the influence of a degree, while

probably being positive, is insignificant, and enters the regression only around 25%

of the times.

Finally, comparing the magnitudes of the BMA coeffi cients and the original

ones, the impact of using BMA has been similar for the Computer data set and

Organic data set. In most cases the sign of the coeffi cients remain unchanged, but

for those variables entering the model with a small probability, the coeffi cients are

correspondingly small in absolute terms.

4. Conclusions
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This paper outlined the BMA approach to Probit regressions with uncertain

regressors and then explores its use in a comparison of two Probit regressions

with and without using BMA. We found the BMA method to be fast, and added

another useful layer of information when interpreting the results. While we found a

high correspondence between the results across estimation with and without BMA,

there were also some substantive differences. Overall, if a variable was significant

at the 95% level this could not be used as reliable indicator of whether that variable

should be in the model.

With regard to the results on organic adoption, while broadly in accord with

Rigby et al. (1999), some differences were obtained by using BMA. Most notably,

we found that using BMA produced considerably weaker evidence that age and

membership of an environmental organisation were good predictors of the use of

organic technology, once other covariates were taken into account.

With regard to the influence of farm and farmer characteristics on the uptake

and use of computers, we found that cereal farmers were much more likely to be

users of computer technology. With regard to size, contrary to previous work, the

physical size of the farm was negatively associated with computer use, once covari-

ates were taken into account. Education was found to be a useful predictor, with

those farmers having only a school education being less likely to use a computer.

The impact of higher levels of education (a degree) were less clear.

The use of BMA in this article has been limited to the Probit model with linear

effects. However, there are other contexts in which it may have utility. One further

application may be in the selection of regressors when using ‘flexible functional

forms’, which are popular in the Agricultural Economics literature. Where the

number of explanatory variables is large, flexible functional forms can suffer badly

from the ‘curse of dimensionality’.
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Technical Appendix

A1. Preliminary Definitions
Take the model as defined in the paper. Let V be the prior variance, andM0 be

the prior precision for the parameters b that have a prior normal b ∼ N
(
β0,M

−1
0

)
.

Also, let β and M be conformable vectors and matrices indexed by j (defined

further below) and define: Qj =
(
b− βj

)′
Mj

(
b− βj

)
and Pj = β′jMjβj. Using

this notation, the prior distribution for β is: π (b) = 2π−
p
2 |M0|

1
2 exp

(−Q0
2

)
. The

likelihood is f (y|b) = (2π)
−T
2 exp

(
−S(b)

2

)
. Further define M1 = x′x and M2 =

(M0 +M1) . Let β1 =M−1
1 x′y and β2 =M−1

2 (M0β0 +M1β1). Further define S (.)

S
(
βj
)
=
∑(

yt − x′tβj
)2
. Three results are of use in what follows are:

• (See Proof 1)
S (b) = S (β1) +Q1 (5)

• (See Proof 2)
Q0 +Q1 −Q2 = P0 + P1 − P2 (6)

• and (see Proof 3)

S (β1) + P0 + P1 − P2 = (y − xβ0)
′ (y − xβ0)︸ ︷︷ ︸
A

− (y − xβ0)
′ xM−1

2 x′ (y − xβ0)︸ ︷︷ ︸
B

(7)

A2. Deriving the Posterior and Marginal Likelihood
A2.1 The Posterior
Combining the prior with the likelihood we obtain:

p (β/y) =

(
1√
2π

)T+p
|M0|

1
2 exp

(
−S (b) +Q0

2

)
(8)

Using (5)

p (β/y) = (2π)−
T+p
2

∣∣M−1
0

∣∣− 1
2 exp

(
−S (β1) +Q1 +Q0

2

)
(9)
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using (6)

p (β/y) = (2π)−
T+p
2

∣∣M−1
0

∣∣− 1
2 exp

(
−S (β1) + P0 + P1 − P2

2

)
× exp

(
−Q2
2

)
(10)

therefore S (β1) , P0, P1 and P2 are functions of the data and priors only. It is

evident that this joint density is:

p (β/y) ∝ exp
(
−(b− β2)

′M2 (b− β2)
′

2

)
(11)

Therefore β/y ∼ N
(
β2,M

−1
2

)
.

A2.2 The Marginal Likelihood
The marginal likelihood is ML =

∫
β
p (β/y) dβ, therefore:

ML = (2π)−
T+p
2

∣∣M−1
0

∣∣− 1
2 exp

(
−S (β1) + P0 + P1 − P2

2

)∫
β

× exp
(
−Q2
2

)
dβ

= (2π)−
T+p
2

∣∣M−1
0

∣∣− 1
2 exp

(
−S (β1) + P0 + P1 − P2

2

)
×
∣∣M−1

2

∣∣ 12 (2π) p2 (12)
Using (6):

J = S (β1) + P0 + P1 − P2 = (y − xβ0)
′ (y − xβ0)︸ ︷︷ ︸
A

− (y − xβ0)
′ xM−1

2 x′ (y − xβ0)︸ ︷︷ ︸
B

(13)

Thus the marginal likelihood observes the following proportionality:

ML ∝ (2π)−
T
2
|M2|−

1
2

|M0|−
1
2

× e−J
2 (14)

It is this equation that provides the basis of the Metropolis Hastings acceptance

probability in the paper (equation 3).

A3. Proofs

16



Proof 1:

S (b) = S (β1) +Q1 = (y − xb)′ (y − xb) (15)

= (y − xβ1 − x (b− β1))
′ (y − xβ1 − x (b− β1))

= (y − xβ1)
′ (y − xβ1)︸ ︷︷ ︸

=S(β1)

+ (b− β1)x′x (b− β1)︸ ︷︷ ︸
=Q1

+ 2 (y − xβ1)
′ x (b− β1)

=0

Proof 2: First note that for j=1,2,3 Qj = b
′
Mjb+Pj − 2b

′
Mjβj. Using these

conditions

Q0 +Q1 −Q2 = P0 + P1 − P2 +K

where

K = b
′
M0b− 2b

′
M0β0 + b

′
M1b1 − 2b

′
M1β1 − b

′
M2b+ 2b

′
M2β2

We can show that K is zero since b′M2b = b
′
M0b+ b

′
M1b and b′M2β2 = b′M0β0 +

b′M1β1 :

K = b
′
M0b− 2b

′
M0β0 + b

′
M1b1 − 2b

′
M1β1 − b

′
M0b− b

′
M1b+ 2 (b

′M0β0 + b′M1β1)

= 0 (16)

Proof 3: We need to show that:

J = S1 + P0 + P1 − P2 = (y − xβ0)
′ (I − xM−1

2 x′
)
(y − xβ0)

= (y − xβ0)
′ (y − xβ0)︸ ︷︷ ︸
A

− (y − xβ0)
′ xM−1

2 x′ (y − xβ0)︸ ︷︷ ︸
B

(17)

Result 3.1: S (β1) = y′y − P1

• Proof of 3.1

17



S (β1) = (y − xβ1)
′ (y − xβ1) = y′y − P1

= y′y + P1 − 2β1x′y (18)

using β1x
′y = β1M1β1 ⇒ S (β1) = y′y − P1

Result 3.2: P2−P0 = β0M1β0+(y − xβ0)
′ xM−1

2 x′ (y − xβ0)+2β′0M2M
−1
2 x′ (y − xβ0)

• Proof of 3.2

β′2M2β2︸ ︷︷ ︸
P2

=
(
β0 +M−1

2 x′ (y − xβ0)
)
M2

(
β0 +M−1

2 x′ (y − xβ0)
)

(19)

= β0M2β0 + (y − xβ0)
′ xM−1

2 x′ (y − xβ0) + 2β′0M2M
−1
2 x′ (y − xβ0)

= β0M0β0︸ ︷︷ ︸
P0

+ β0M1β0 + (y − xβ0)
′ xM−1

2 x′ (y − xβ0) + 2β′0M2M
−1
2 x′ (y − xβ0)

Therefore, using R3.1

J = S1 + P0 + P1 − P2 = y′y + P0 − P2 (20)

and R3.2

J = y′y −
[
β0M1β0 + (y − xβ0)

′ xM−1
2 x′ (y − xβ0) + 2β′0M2M

−1
2 x′ (y − xβ0)

]︸ ︷︷ ︸
P2−P0

= y′y − β0M1β0 − 2β′0x′ (y − xβ0)︸ ︷︷ ︸
A=(y−x′β0)′(y−xβ0)

− (y − xβ0)
′ xM−1

2 x′ (y − xβ0) (21)
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Tables

Table 1. Organics
Standard Model Averaged

Est Stdv LB UB Est Stdv Prob
int -1.316∗ 0.240 -1.809 -0.864 -1.161 0.245 1.000
hhsize 0.255∗ 0.092 0.079 0.437 0.175 0.119 0.796
fem 1.430∗ 0.549 0.358 2.495 0.935 0.663 0.781
age -0.027∗ 0.015 -0.056 0.001 -0.012 0.015 0.469
hefe -0.182 0.329 -0.810 0.476 -0.006 0.121 0.130
yagric -0.025 0.377 -0.766 0.707 -0.036 0.164 0.160
toha -0.002 0.001 -0.005 -0.000 -0.002 0.002 0.633
enviss 0.986 0.510 -0.005 1.992 0.619 0.650 0.595
conin -2.378∗ 0.486 -3.336 -1.453 -2.231 0.482 1.000
orgff 1.195∗ 0.325 0.566 1.848 1.196 0.324 0.996
fsv 0.144 0.350 -0.542 0.828 0.052 0.184 0.183
maxcon 0.761 0.447 -0.100 1.630 0.539 0.536 0.616
memenv 0.674∗ 0.341 0.004 1.332 0.382 0.423 0.554
mempga -0.937∗ 0.371 -1.666 -0.212 -0.740 0.453 0.836
infpss -1.333∗ 0.346 -2.001 -0.650 -1.237 0.332 0.999
infbuy -1.278∗ 0.340 -1.955 -0.622 -1.142 0.344 0.991
inffmrs 0.835∗ 0.332 0.192 1.480 0.579 0.433 0.748
infadas -1.112∗ 0.359 -1.832 -0.423 -1.076 0.389 0.972

Table 2. On Farm Computer Uses
No Use Some Use Total Reliance
Farms % Farms % Farms %

Offi ce Management 918 53 491 29 309 18
Farm Management 1048 61 264 15 406 24
Tax Accounts 1305 76 186 11 227 13
Payroll 1499 87 74 4 145 8
Arable Enterprise Management 1342 78 222 13 154 9
Livestock Enterprise Management 1183 69 359 21 176 10
Statutory Records 1244 72 334 19 140 8
Other 1612 94 43 3 63 4
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Table 3: Computer Adoption
Standard Model Averaged

Area Est Stdv LB UB Est Stdv Prob
North 0.269∗ 0.033 0.205 0.332 0.264 0.032 1.000
East 0.207∗ 0.091 0.030 0.385 0.075 0.112 0.363
West 0.566∗ 0.098 0.377 0.757 0.514 0.092 1.000

Main Farm Activity
Cereals 0.538∗ 0.090 0.356 0.708 0.491 0.089 1.000

General Crop -0.044 0.124 -0.295 0.189 0.004 0.026 0.038
Horticultural -0.191 0.142 -0.466 0.089 -0.007 0.040 0.056

Spec Pig and Poultry -0.143 0.161 -0.442 0.182 -0.003 0.031 0.039
Dairy -0.042 0.172 -0.370 0.297 0.002 0.026 0.026

Cattle and Sheep LFA -0.271∗ 0.117 -0.499 -0.042 -0.157 0.122 0.696
Cattle and Sheep Lowland -0.093 0.121 -0.335 0.137 -0.006 0.034 0.057

Farm Size
Small 0.078 0.133 -0.176 0.345 0.022 0.067 0.125
Large -0.299∗ 0.072 -0.443 -0.162 -0.298 0.077 0.994

Tenancy Status
Fully Owned 0.271∗ 0.084 0.110 0.436 0.294 0.103 0.958
Fully Tenanted 0.014 0.063 -0.109 0.136 -0.000 0.010 0.027
Education
School Only -0.189∗ 0.029 -0.248 -0.134 -0.193 0.028 1.000
CGE College -0.213 0.154 -0.517 0.085 -0.250 0.151 0.782
Degree 0.096 0.151 -0.206 0.385 0.056 0.132 0.274

Ownership
Sole 0.717∗ 0.178 0.373 1.070 0.696 0.183 0.993

Partner -0.304 0.178 -0.652 0.044 -0.095 0.104 0.531
Company -0.133 0.178 -0.478 0.223 0.021 0.069 0.186

Other Attributes
No of Unpaid Workers 0.056 0.076 -0.095 0.204 0.001 0.014 0.028
No of Paid Workers 1.307∗ 0.230 0.862 1.750 1.352 0.213 1.000
Net Farm Income 0.390∗ 0.177 0.042 0.732 0.299 0.222 0.762
Organic Enterprises 0.016 0.009 -0.001 0.035 0.002 0.006 0.115
Age of Farmer 0.026 0.087 -0.141 0.199 0.001 0.016 0.035

Other Activities
Off Farm Work 0.261∗ 0.086 0.093 0.434 0.262 0.081 0.976
Off Farm Income -0.024 0.071 -0.161 0.114 -0.002 0.015 0.039
Socail Payments 0.097 0.140 -0.187 0.361 0.006 0.041 0.051
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