
Documento de Trabajo
ISSN (edición impresa) 0716-7334

ISSN (edición electrónica) 0717-7593

Liquidity as an Insurance Problem.

Felipe Zurita

Nº 198
Diciembre 2001

www.economia.puc.cl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6602715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 

INDEX 
 
 
 
 
 

Abstract 1 
 
1. Introduction 2 
 
2. Liquidity and the Investor's Horizon 5 
 
3. Liquidity and the Expected Time to Sell 10 
 
4. Liquidity and the Bargaining Problem 11 
 
5. Concluding Remarks 12 
 
References  13 
 
6. Appendix 16 
 
 
 



Liquidity as an Insurance Problem∗

Felipe Zurita †

Abstract

Risk-averse individuals wish that assets concentrate their payoffs in states
of high marginal value (that is, highly likely or low endowment states).
An asset or portfolio may fail to do so, by having payoffs uncorrelated to
its owner needs or, even worse, by having them inversely related. The
latter, which we call tier 1 illiquidity, is shown to occur in non-Walrasian
markets (where a trade involves bargaining) and in incomplete Walrasian
markets where optimal trading strategies are non trivial. In both cases,
the high valuation of the trader biases the equilibrium price against him.

The former, which we call tier 2 illiquidity, is shown to arise when in-
dividual shocks are privately observed, because moral hazard prevents
contracting on them. Diamond and Dybvig (1983) and Holmström and
Tirole (1998) present prominent examples of tier 2 illiquidity. However, a
self-insurance model is offered to argue that the importance of this type of
illiquidity is limited from a welfare perspective, provided individuals are
patient enough and can trade in a perfectly competitive, complete—except
for individual-level uncertainty— set of asset markets.

This article characterizes an asset’s liquidity as the degree of insurance it
provides, thereby identifying the basic economic problem behind liquidity
as one of the familiar risk-sharing kind. It also shows, by means of
examples, that the problem arises when asset markets are imperfectly
competitive, incomplete, or both.
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1 Introduction

Although there is a large variety of meanings attributed to the word “liquidity” in

the finance and economics literatures, (almost) all of them can be understood as the

(partial) expression in particular contexts of the notion of insurability, that is, the

ability of an asset (or portfolio) of providing his owner access to consumption goods

precisely in those states in which he most needs them.

It is clarifying to decompose the insurability problem in two parts, or to think

of it as a two-level problem, the separating line between them being the benchmark

in which the asset’s payoff (price) is insensitive to his owner’s needs.

At the first or most basic level (tier 1 illiquidity), the illiquidity problem refers

to a condition in which the asset’s trading value depends adversely on his owner’s

needs, that is, a needy consumer finds that he is able to sell at a lower price the

hurrier he is. This idea is certainly present in the usual intuition of illiquidity as the

“loss due to rush selling,” and is central to more precise definitions we encounter in

the literature. Two important examples are:

• Lippman and McCall’s (1986) operational definition, “the expected time until
the asset is sold when following the optimal policy.” They show in a search

environment that the optimal selling strategy has the reservation price property,

and that the reservation price depends inversely on the seller’s discount factor.

The degree of patience is then a key determinant of the expected price the seller

gets.

• The wide-spread definition that relates price changes to the size of the trans-
action. For instance, in words of Garbade and Silver (1979): “A financial

instrument is commonly considered liquid if [...] the instrument may be traded

with a sufficient number of participants to make feasible purchases and sales

on short notice at prices near the contemporaneous equilibrium value of the

instrument. [...]” Part of the problem is then suffering from adverse price

changes as a consequence of one’s desire to sell; the sufficient number of partici-

pants is somehow viewed as a condition for avoiding that. In a similar fashion,

Economides and Siow define “[...] a market as having high liquidity when the

volume of trade is high and the corresponding variance of the price is low.” A

high number of participants, or a large trading volume, are commonly seen as

conditions for more competitive markets1; more competitive markets are then
1Although this association is usually correct, Makowski and Ostroy (1995) have shown that large

numbers are neither necessary nor sufficient conditions for perfect competition.
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more liquid.

It should be clear that an asset that trades in a perfectly competitive market

is, almost by definition, completely liquid in this first level sense: the trading price

is common to all participants, and is not affected either by the inclusion of a new

trader nor by the strength of his gains from trade. In view of this fact, it is not

surprising how difficult it has been to accommodate liquidity considerations in existing

asset pricing models, which are overwhelmingly based either on perfectly-competitive

general equilibrium theory, or in price-taking no arbitrage theory.

At a second level, a liquid asset can be thought as one whose payoffs are higher

precisely when his owner is in the highest need —an insurance contract being a promi-

nent example—. This is in fact the notion of liquidity creation in the seminal work of

Diamond and Dybvig (1983), notion which we also encounter in the recent work by

Holmström and Tirole (1998).

Diamond and Dybvig (1983) study a model of state-dependent utility in which

each individual can either be indifferent between consuming at date 1 or 2, or only

value consumption at date 1. Which state is going to prevail at date 1 is unknown

at the previous date, when the investment decision must be made. Real assets

yield consumption flows at an exogenous pace, and are completely insensitive to the

occurrence of liquidity shocks, which might make consuming earlier than planned

—before investment matures— optimal. Similarly, Holmström and Tirole (1998a, b)

characterize liquidity in the context of a firm, as a protection from unexpectedly high

reinvestment needs to continue a project, case in which a restriction to borrowing

imposed by moral hazard considerations would bind. Thus, firms would be averse to

the risk of facing high investment (consumption) needs.

In both cases, perfectly competitive asset markets are assumed. Yet, it is

the unobservability of the private shocks (to time preference in one case, and to

reinvestment needs in the other) which prevents the use of direct insurance contracts—

or contingent claims, for that matter—to transfer the risk, resulting in a tier-2 liquidity

problem.

Diamond and Dybvig use that fact to argue that deposit contracts can be made

to serve this function, whereby banks pool those individual risks and adjust the early-

withdrawal payment to the optimal intermediate consumption level. A drawback

in the argument is that this recomposition of consumption flows can not be made

without creating arbitrage opportunities in the presence of other financial assets (see

Freixas and Rochet (1997) and references therein). Hence, it would appear that

the unobservability of the private shock would preclude an efficient allocation of risk.
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Holmström and Tirole, instead of deducing an optimal financial instrument, obtain

an optimal portfolio choice for firms. The optimal choice would in general leave a

residual risk undistributed, despite of the fact that individual shocks are completely

diversifiable.

The purpose of this paper is two-fold. On the one hand, it aims to persuade the

reader that level-1 illiquidity refers to the obstacles that arise to insuring a desired

expenditure flow in imperfectly competitive or incomplete asset markets. The point

is made by a series of examples, whereby the illiquidity problem is shown to arise

because of either market incompleteness or lack of perfect competition, or both. On

the other hand, it illustrates with a particular example of the self-insurance kind, that

type-2 illiquidity may not be a serious problem from a welfare viewpoint provided that

individuals plan in long horizons.

In particular, section 2 extends Diamond and Dybvig’s shock-to-time-preference

setup to long horizons, where individuals preferences are subject to permanent, pri-

vately observed, and unanticipated shocks and have access to a complete set (except

for individual shocks) of perfectly competitive asset markets. In the particular case

of logarithmic preferences, it is shown that the utility loss derived from the unob-

servability of preference shocks is negligible if agents are infinitely lived and time

discount factors are close enough to 1. The remaining of the paper is devoted to

tier-1 liquidity.

Section 3 intends to understand the scope of Lippman and McCall’s definition.

The search world is one in which there is a unique asset, which can be sold at the

current price or kept until a better offer arrives. If besides that Walrasian market

there was a complete set of perfectly competitive asset markets —so that the first one

is in fact redundant— then the expected time to sell it is always zero, for, as it is

shown, any gains from waiting correspond to arbitrage opportunities. This fact could

be interpreted as meaning that market completeness allows for increased competition

from different date consumers.

Section 4 sketches a bargaining model as an example of a non-Walrasian trading

environment. Being commonly known that the seller could be in a rush, it is opti-

mal for the buyer to structure offers that will sort out patient and impatient sellers.

Price offers will in equilibrium increase at a pace that impatient players cannot af-

ford. Hence, a liquidity shock translates into a lower price or loss relative to patient

individuals. We refer to this as “adverse bargaining” since its origin is the adverse

conditions in which the liquidity-needed person bargains. It is well known however

that outside opportunities will alleviate this problem, for instance through increased
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access to a larger pool of potential buyers. In the extreme, when all potential buyers

are contacted and these outside opportunities are such that there is no room left for

bargaining, we are back in a perfectly competitive world. The overall conclusion is

that liquidity can only be properly studied outside the complete-market, perfectly

competitive environment.

2 Liquidity and the investor’s horizon

This section considers the decision problem of an investor with logarithmic preferences

who, in each of the (possibly infinite) periods of his like makes consumption and

investment decisions. In particular, it compares two situations. In the first one,

there are complete markets in the standard sense, that is, there are assets whose

payoffs span the whole consumption set, that is, any risk can be traded. In the

second one, this spanning condition is only met for a subset of all states, which

excludes the changes in time preference the individual experiences permanently over

his lifetime. This particular form of market incompleteness, possibly due to the

unobservability of personal shocks, is harmful from a welfare perspective because it

impedes efficient risk-sharing.

However, this form of market incompleteness forces the individual to consume

the same, regardless of whether he experienced a shock or not, only in the last period

of his life, because at any other period he could have made his portfolio holdings

sensitive to his personal shocks. This is not to say that only matters at the last

period, because the last period constraint has an effect on all previous decisions.

Nevertheless, it is intuitive that as the investor’s horizon becomes farther away, this

form of incompleteness becomes less and less important. In fact, the example that

is presented below shows that the utility loss due to the incompleteness becomes

arbitrarily small as T →∞ and the individual’s time discount factor β → 1.

The model is standard, with a unique consumption good and many periods

indexed by t ∈ {0, 1, ..., T} (where possibly T → ∞). The economy is subject to

production-related shocks. At any point in time, there is a finite number of events

ω ∈ Ω, that describe current real-asset endowments and payoffs. That is, at every

period, every individual chooses a production plan (real asset r) from a set Y i (ω)

which is affected by the state.

A production plan (or real asset r) is a sequence of contingent consumption

flows yr = {y0 (ω0) , y1 (ω0ω1) , ...yM (ω0ω1...ωM)} of size ΩM , indicating the number
of consumption goods that the real asset delivers in each event and time elapsed
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from the moment construction initiated τ +1. Each flow yr (ω0ω1...ωτ , τ) is assumed

to be bounded from above and below, could be 0, is negative if net investment is

required, and it is assumed that no asset has a life-span larger thanM << T, that is,

yr (·, τ) = 0 for τ > M , and for all r. Finally, not producing is always an alternative:
0 ∈ Y i (ω) for all i and ω.

Individuals are also subject to personal, unobservable shocks. In particular,

the value of consumption at any period is not known but until the period starts. At

the beginning of every period, one factor δi, δ ∈ ©δ, ..., δª is privately revealed to each
individual to be his valuation, chosen by nature from the distribution function π(δ).

Hence, at any point T of his life, the consumer i ∈ [0, 1] will evaluate the realized
consumption path (ci0, ..., c

i
T ) according to

U(ci0, ..., c
i
T ; δ

i
0, ..., δ

i
T ) = (1− β)

©
δi0 ln(c

i
0) + δi1β ln(c

i
1) + ...+ δiTβ

T ln(ciT )
ª

(1)

where β is a constant discount factor, common across individuals, and (δi0, δ
i
1, ..., δ

i
T )

is the actual history of personal shocks. Ex-ante evaluation corresponds to the

expectation of (1).

Hence, every person’s utility will generally depend on both, the realized value

of his personal shock δi and the production-related shock ω. Individual i’s history up

to time t is a sequence of the form si0s
i
1s
i
2 · · · sit where each si is a pair si =

¡
ω, δi

¢ ∈
S ≡ Ω×∆, that is

hit ∈ H i
t = S × S × · · · × S| {z }

t+1 times

= St+1

In the spirit of Aumann (1964), it is assumed that individuals are non atomistic

and hence personal histories have no effect on the aggregate (that is, personal risks

are perfectly diversifiable). The common part of history, in contrast, contains only

the production-related shock, for the average personal shock is constant:

ht ∈ Ht = Ω×Ω× · · · ×Ω| {z }
t+1 times

= Ωt+1

As a notational matter, we will used interchangeably the following: hit = h
i
t−1s

i
t

= si0s
i
1s
i
2 · · · sit and ht = ht−1ωt = ω0ω1ω2 · · ·ωt.

Hence, each individual has to choose a production plan from Y i (ω) every period.

If individual i chooses the real asset y∗ht in the event ht, she will receive the flow

y∗ht (ht+τ ) at event ht+τ and time τ = 0, 1, ...,M. Each individual chooses also a

consumption level, so as to

max
X
t≥0

βt
X
hit∈Hi

t

πi
¡
hit
¢
δit ln

¡
c
¡
hit
¢¢

6



Remark 1 Diamond and Dybvig’s (1983) setting corresponds to a situation where
individuals live for three periods, in the second period δ1 ∈ {0, 1}, and investment
projects pay off at the last period. Since there is a continuum of individuals, the

aggregate state is unique, characterized by a fraction (1− π) having discount factors

of 0, and a fraction π of 1.

The economy is assumed to be essentially complete in the sense that all production-

related states are insurable, that is, there is at every node ht a portfolio of real (and/or

financial) assets ba (ω |ht ) that pays off at time t+1 one unit of the consumption good
in state ω and zero otherwise. We will refer to this concept as ω−completeness, to
distinguish it from full or si−completeness. Let bq (ω |ht ) denote the time t price of
such a portfolio, and bq (htω) its time 0 price. Individuals have to make consumption,
production and portfolio decisions

maxn
cht ,yht∈Y i(ht),{baht(ω)}ω∈Ωo∞t=0

X
t≥0

βt
X
hit∈Hi

t

πi
¡
hit
¢
δit ln

¡
c
¡
hit
¢¢

(2)

s/t
X
t≥0

X
ht∈Ht

c (ht) bq (ht) =X
t≥0

X
ht∈Ht

X
τ∈{1,...,M}

yht (ht+τ) bq (ht)
This lifetime budget constraint is obtained from recursive substitution of (3) as

follows:

c
¡
hit−1ωδ

¢− MX
τ=0

yht−τ (ht−1ω) = ba ¡hit−1ω¢−X
ω0∈Ω

ba ¡hitω0¢ bq (ω0 |ht )
bq (ht−1ω) c ¡hit−1ωδ¢− MX

τ=0

bq (ht) yht−τ (ht−1ω) =
bq (ht)ba ¡hit−1ω¢−X

ω0∈Ω
ba ¡hitω0¢ bq (htω0)

X
hit∈Hi

t

bq (ht−1ω) c ¡hit−1ωδ¢− X
hit∈Hi

t

MX
τ=0

bq (ht) yht−τ (ht−1ω) =X
hit∈Hi

t

bq (ht)ba ¡hit−1ω¢− X
hit∈Hi

t

X
ω0∈Ω

ba ¡hitω0¢ bq (htω0)
X
t≥0

X
hit∈Hi

t

bq (ht−1ω) c ¡hit−1ωδ¢−X
t≥0

X
hit∈Hi

t

MX
τ=0

bq (ht) yht−τ (ht−1ω) =X
t≥0

X
hit∈Hi

t

bq (ht)ba ¡hit−1ω¢−X
t≥0

X
hit∈Hi

t

X
ω0∈Ω

ba ¡hitω0¢ bq (htω0) = 0
⇒
X
t≥0

X
hit∈Hi

t

bq (ht) c ¡hit¢ =X
t≥0

X
hit∈Hi

t

bq (ht)Ã MX
τ=0

yht−τ (ht)

!
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From (4), it follows directly that, despite the incompleteness of markers, pro-

duction and consumption decisions are separable:

Proposition 1 Production decisions are objective: max
P

t≥0
P

hit∈Hi
t
bq (ht)³PM

τ=0 yht−τ (ht)
´

requires y∗ht ∈ argmaxyht∈Y (ht)
PM

τ=0 bq (ht+τ) yht (ht+τ) .
Hence, we can analyze the consumer’s problem separately by treating the y∗ht (ht+τ)

as endowments:

maxn
cht ,{baht(ω)}ω∈Ωo∞t=0

X
t≥0

βt
X
hit∈Hi

t

πi
¡
hit
¢
δit ln

¡
c
¡
hit
¢¢

s/t
X
t≥0

X
ht∈Ht

c (ht) bq (ht) =W
where W ≡ P

t≥0
P

ht∈Ht
P

τ∈{1,...,M} y
∗
ht
(ht+τ) bq (ht). In recursive form it corre-

sponds to

v(ba (ht) , hit) = max
{c(hit),(ba(ht+1))ω∈Ω}

(
δt ln

¡
c
¡
hit
¢¢
+ β

X
ω0∈Ω

X
δ∈4

π (ω0 |ht )π (δ) v(ba (ht+1) , hit+1)
)

s/ t c
¡
hit
¢
=

MX
τ=0

y∗ht−τ (ht−1ω) + ba ¡hit−1ω¢−X
ω0∈Ω

ba ¡hitω0¢ bq (ω0 |ht )
with first order condition:

−bq (ω0 |ht ) δt 1

c (hit)
+ β

X
δ∈4

π (ω0 |ht ) π (δ) ∂v(ba (ht+1) , hit+1)
∂ba (hitω0) = 0

∂v(ba (ht) , hit)
∂ba ¡hit−1ω¢ = δt

1

c (hit)

⇒ δt
1

c (hit)
=

βπ (ω0 |ht )bq (ω0 |ht ) X
δ∈4

π (δt+1) δt+1
1

c
¡
hit+1

¢ (3)

In contrast, with full information we would have had

v(ba ¡hit¢ , hit) = maxn
c(hit),(ba(hit+1))ω∈Ωo

(
δt ln

¡
c
¡
hit
¢¢
+ β

X
ω0∈Ω

X
δ∈4

π (ω0 |ht )π (δ) v(ba ¡hit+1¢ , hit+1)
)

s/ t c
¡
hit
¢
=

MX
τ=0

y∗ht−τ (ht−1ω) + ba ¡hit¢−X
ω0∈Ω

X
δ∈4

ba ¡hit+1¢ bq ¡hit+1¢
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with first order condition:

−bq ¡hit+1¢ δt 1

c (hit)
+ βπ (ω0 |ht )π (δ)

∂v(ba ¡hit+1¢ , hit+1)
∂ba (hitω0) = 0

∂v(ba (hit) , hit)
∂ba (ht) = δt

1

c (hit)

⇒ δt
1

c (hit)
=

βπ (ω0 |ht )π (δt+1)bq ¡hit+1¢ δt+1
1

c
¡
hit+1

¢ (4)

Let us denote by c∗ the solution to (4) (the optimal plan with fully complete markets)

and by c the solution to (3) (the corresponding plan with ω−complete markets).
Hence,

c
¡
hit+1

¢
=

βπ (ω0 |ht )bq (ω0 |ht )
P

δ∈4 π (δt+1) δt+1

δt
c
¡
hit
¢

c∗
¡
hit+1

¢
=

βπ (ω0 |ht ) π (δt+1)bq ¡hit+1¢ δt+1
δt
c∗
¡
hit
¢

In this particular case of logarithmic utility, we can actually solve for the optimal

plan: The problem with T periods and complete markets has the solution

c∗t (δt) =
βtδt

δ0 +E [δ]
¡
β + ...+ βT

¢ρtW0 ∀t = 0, ..., T

that is, each period consumption will be a fraction of wealth, in proportion to the

current shock, while with incomplete markets the solution is

ct(δt) =
(1− β)βtδt

δ0 (1− β) +E [δ]β
¡
1− βT

¢ρtW0(
Πtj=1

Ã
E [δ]

¡
1− βT−j+2

¢
δj (1− β) + βE [δ]

¡
1− βT−j

¢!) t = 1, ..., T

= c∗t (δt)

(
Πtj=1

Ã
E [δ]

¡
1− βT−j+2

¢
δj (1− β) +E [δ]β

¡
1− βT−j

¢!)
In the infinite horizon problem, the difference in utility levels attained under

both situations becomes arbitrarily small:

Proposition 2

lim
β→1

(1− β)
∞X
t=0

βt
X
hit∈Hi

t

πi
¡
hit
¢
δit ln c

∗ ¡hit¢

− (1− β)
∞X
t=0

βt
X
hit∈Hi

t

πi
¡
hit
¢
δit ln c

¡
hit
¢ = 0
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Proof. In the appendix.

The reason for this result is that, even though it is not possible to buy a state-

contingent consumption flow for the next period (and hence the marginal utility of

consumption at t can only be made proportional to the expected marginal utility

next period), once the shock is known consumption can be accommodated by trad-

ing in assets. The consumption path —and hence the resource allocation— becomes

arbitrarily close to the one with fully complete markets when individuals are patient

enough.

Hence, level-2 liquidity becomes unimportant —the ability of the asset to accom-

modate consumption needs can be substituted entirely by a carefully chosen portfolio

management strategy—.

The following sections analyze two scenarios in which level-1 liquidity problems

arise; in the former, it is because asset markets are incomplete, while in the latter

because they are imperfectly competitive.

3 Liquidity and the expected time to sell

Lippman and McCall (1986) define liquidity as the expected selling time provided

the optimal selling strategy is used. The more impatient the seller, the lower his

reservation price and, equivalently, his expected selling price.

By its nature, this search-theoretic environment excludes the existence of other

assets. In contrast, this section imagines that this particular asset is traded as in

Lippman and McCall’s environment, but that the individual has also access to an

ω−complete (in the sense of the previous section) set of perfectly competitive asset
markets. In this new context it is shown that the expected time to sell is zero, that

is, personal impatience does not lead to a lower reservation price.

Before the result can be stated, some notation needs to be introduced. So far

we have dealt with pure securities. An ordinary security is a bundle of f (ht (ω))

state claims in state ht (ω), ∀ω ∈ Ω, t = 0, 1, ... Let qf(ht (ω)) be the time t price

of security f in state ht (ω) . Proposition 1 shows that under ω−complete markets,
production decisions are independent of preferences. Hence, the optimal policy for

selling an asset is the solution to

v(ht (ω)) = max

(
qf(ht (ω)), f (ht (ω)) +

X
ω0∈Ω

bq(ω0 |ht (ω))v(ω0 |ht (ω))) (5)
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The following proposition says that the optimality of waiting is equivalent to

the existence of an arbitrage opportunity.

Proposition 3 v(ht (ω)) = qf(ht (ω)) ∀ht ∈ Ht, f ∈ F .

Proof. Suppose not, that is, qf(ht (ω)) < f (ht (ω))+
P

ω0∈Ω bq(ω0 |ht (ω))v(ω0 |ht (ω)).
If v(ht+1 (ω)) = qf(ht+1 (ω)), a portfolio of 1 unit of f and−qf(ω0 |ht (ω)) units of state
security in ω0, ∀ω0 ∈ Ω, costs today qf(ht (ω))−f (ht (ω))+

P
ω0∈Ω bq(ω0 |ht (ω)) [−qf(ω0 |ht (ω))] <

0 and pays off qf(ht+1 (ω)) − qf(ht+1 (ω)) = 0 in states ω ∈ Ω. If v(ht+1 (ω)) 6=
qf(ht+1 (ω)), the same argument can be reproduced with regard to the first time t∗ in

a history such that v(ht∗ (ω)) = qf(ht∗ (ω)).

The key issue is that with ω−complete markets, if waiting produces an expected
gain, it must be so for all individuals, not just for patient persons. If a liquidity

shocked person faces these misaligned prices, she can proceed as the proof suggests,

buying a portfolio that not only doesn’t force her to postpone consumption, but even

gives her the possibility of consuming more immediately.

The role of ω−completeness in the argument must be stressed. If the pure

securities (or their equivalent) were not available, there would not be a way of trans-

forming the future gain in present consumption; hence, a liquidity-shocked person

may choose to pass it, depending on her time-preference. This is essentially the

break-down of the separation theorem. Our point is that Lippmann and McCall’s

definition is meaningful only under ω−incompleteness.

4 Liquidity and the bargaining problem

In contrast to the Walrasian environment discussed previously, this section addresses

the problem of selling an asset to only one potential buyer. Bargaining games are

very diverse and more so equilibrium outcomes. Yet, we develop a particularly simple

example with the aim of illustrating the general point that one source of illiquidity is

precisely the lack of competition among buyers at a particular moment in time, and

more importantly, that in such situation the seller will face a loss if he is liquidity

shocked at the time.

The model considers two players, a buyer whose valuation of 1 is common

knowledge, and a seller with private valuation vs ∈ {v1, ..., vS} , where 0 ≤ v1 < ... <
vS ≤ 1. Let πs be the commonly known probability that the seller’s valuation is

vs. There are I > S periods i = 1, 2, ..., I, and in each of them the buyer makes an

11



offer which the potential seller accepts or reject. Rejection leads to another offer,

acceptance to a transaction in the proposed terms.

In order to stress the time pressure of the liquidity shocked person, we assume

that if the transaction is made at time i, the utility of the seller isµ
1− i

I

¶
(q − vs)

while the buyer’s utility is (1− q), independent of the date of the transaction.
This formulation can be made partially compatible with the model used in the

previous two sections in the following way: imagine that between consumption dates t

and t+1 there are many opportunities to bargain —made offers or respond to received

offers—. Then, the impatience rate for the whole interval corresponds to the realized

δt; the value of obtaining one unit of consumption in the logarithmic case would be
δ
ct
, which can be normalized to δ. Hence, the highest possible value of selling the

asset would correspond to the highest δ, δ = δ = v1 while the lowest to δ = vS.

Proposition 4 The perfect bayesian equilibrium of this game is characterized by:

The buyer making ascending offers that satisfy qi+1 = I−i
I−i−1qi − vi

I−i−1 ,

The seller of valuation i accepting the price i at round i, i = 1, 2, ..., S,

where either q1 = v1 or qS = vS, depending on which leaves the buyer higher profit.

The reason for this is that an impatient seller has higher gains from trade; that

allows the buyer to screen the different types of sellers out, extracting their surplus

up to the point that is allowed by the incentive compatibility constraints.

Admittedly, the illustration is very special in many respects. The property of

separating ascending prices, however, arises in many bargaining models studied in

the literature (see, for instance, Sobel and Takahishi (1983) and Fudenberg, Tirole

and Levine (1985)).

The main point is that bargaining theory does support the idea that impatience

(demand for immediacy) creates “losses,” in the sense usually attributed to the notion

of tier-1 liquidity: had the player been more patient, he would have gotten a better

price. In a perfectly competitive economy, however, there is nothing to bargain over

(Makowski and Ostroy (1995)).

5 Concluding remarks

The term liquidity was coined originally because it is evocative of the property of

liquid elements to accommodate its shape to the recipient that contain them. Like-

wise, this article has characterized an asset’s liquidity as its ability to accommodate
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its payoffs to its owner needs. Two levels of illiquidity were distinguished: tier-1,

related to the property that the asset value does not depend adversely on its owner’s

needs, and tier-2, related to the property that the asset value does accommodate its

value to its owner’s needs.

It was argued that the general problem of liquidity could be modeled as a

problem of protecting investors from personal shocks to time preference. If investors

wish to accommodate consumption in states which they cannot foresee, and which

they cannot credibly communicate, the unrestricted consumption plan cannot be

implemented—that is, level 2 illiquidity arises—. It was shown, by means of an example,

that the utility loss due to the referred unobservability of time-preference shocks is

arbitrarily small if individuals are patient enough (this is to say, their horizon is long

and their discount factor close to one) and have access to ω−complete markets.
Market incompleteness and non-Walrasian markets worsen the problem in the

same way: the investor is not only deprived of the possibility of receiving a higher

payoff than if he was not shocked, but also his higher discount factor makes him

willing to accept even lower prices than if unshocked.

The distinction of the two levels of liquidity seems to be useful because it facil-

itates the comparison of alternative definitions, which as we have seen, can usually

be put into one of these categories. But the differences go beyond that. Coping

with level-2 illiquidity is undoubtedly a portfolio problem, and hence it does not make

complete sense to discuss the protection against personal shocks that particular assets

may offer. In contrast, level-1 liquidity is a characteristic of the asset (although also

affected by environmental characteristics). Perhaps this is why most definitions, and

analysis of liquidity —especially in finance— only refer to this level.

This research suggests that the study of liquidity requires an understanding

of the causes of market incompleteness and imperfect competition. In particular,

whether there are trading environments and institutions that facilitate that the same

assets be traded more competitively. The economic value of such structures goes

beyond the static allocative efficiency usually attributed to perfectly competitive

environments, because, as the ideas presented suggest, they also facilitate efficient

risk-sharing.
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6 Appendix

Proof. [of Proposition 2.] We have that

ct(δt) =
(1− β)βtδt

δ0 (1− β) +E [δ]β
¡
1− βT

¢ρtW0(
Πtj=1

Ã
E [δ]

¡
1− βT−j+2

¢
δj (1− β) + βE [δ]

¡
1− βT−j

¢!) t = 1, ..., T

⇒ lim
T→∞

ct(δt) = c
∗
t (δt)

½
Πtj=1

µ
E [δ]

δj (1− β) +E [δ]β

¶¾
The expected lifetime utility differential is

(1− β)


∞X
t=0

βt
X
hit∈Hi

t

πi
¡
hit
¢
δit ln c

∗ ¡hit¢

−
∞X
t=0

βt
X
hit∈Hi

t

πi
¡
hit
¢
δit ln c

∗
t (δt)

½
Πtj=1

µ
E [δ]

δj (1− β) +E [δ] β

¶¾
= (1− β)


∞X
t=0

βt
X
hit∈Hi

t

πi
¡
hit
¢
δit

·
ln c∗

¡
hit
¢− ln c∗t (hit)½Πtj=1µ E [δ]

δj (1− β) +E [δ]β

¶¾¸
= (1− β)


∞X
t=0

βt
X
hit∈Hi

t

πi
¡
hit
¢
δit ln

c∗ (hit)

c∗t (hit)
n
Πtj=1

³
E[δ]

δj(1−β)+E[δ]β
´o


= − (1− β)


∞X
t=0

βt
X
hit∈Hi

t

πi
¡
hit
¢
δit lnΠ

t
j=1

µ
E [δ]

δj (1− β) +E [δ] β

¶
A history of personal shocks can be described by the number of times each obtained.

If the possible shocks are N (δ1, ..., δN), then let (x1, ..., xN) represent the history up to

t, with xn ∈ {0, 1, ..., t} and
P

n xn = t. There are
¡
t
x1

¢¡
t−x1
x2

¢
...
¡
t−x1−...−xN−1

xN

¢
different

histories with the same consequence, and the chances of observing it are px11 ∗ ...∗pxNN .
Hence,

πi (ht = x1, ..., xN) =

µ
t

x1

¶µ
t− x1
x2

¶
...

µ
t− x1 − ...− xN−1

xN

¶
px11 ...p

xN
N
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and the utility differential can be written as

= − (1− β)

( ∞X
t=0

βt
tX

x1=0

...

t−x1−...−xN−1X
xN=0

µ
t

x1

¶
...

µ
t− x1 − ...− xN−1

xN

¶
px11 ...p

xN
N δit

ln

½µ
E [δ]

δ1 (1− β) +E [δ]β

¶x1
...

µ
E [δ]

δN (1− β) +E [δ]β

¶xN¾¾
= − (1− β)

( ∞X
t=0

βt
tX

x1=0

...

t−x1−...−xN−1X
xN=0

µ
t

x1

¶
...

µ
t− x1 − ...− xN−1

xN

¶
px11 ...p

xN
N δit½

x1 ln

µ
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¶
+ ...+ xN ln

µ
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δN (1− β) +E [δ] β

¶¾¾
lim
β→1
(·) = − (1− β)
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(
tX
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µ
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¶
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µ
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¶
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xN
N δit

lim
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½
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µ
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¶
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µ
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