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Abstract

Motivated by the price-setting process of water utilities in Chile, I study a final-offer

arbitration game in which two parties simultaneously submits offers for each of the two

or more units in which the item in dispute has been divided. The arbitrator is limited to

choose one party’s offer or the other for each unit. While the introduction of multiple offers

allows the arbitrator to get closer to her ideal settlement it may prompt an arbitrarily large

divergence between the parties’ offers. The latter, however, does not affect the arbitrator’s

ability to learn from the offers.
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1 Introduction

Departing from the more traditional rate-of return and price-cap regulations, prices of public

utilities in Chile are set using a particular form of yardstick regulation in which the bench-

marking is based on a hypothetical efficient firm.1 Under this price setting process–introduced

first in the electricity sector in the early 1980s–both the regulator and the regulated firm

have a very explicit interaction. Based on their own estimation for the long term costs of this

hypothetical efficient firm, both parties propose the price to be charged by the regulated firm

for the duration of the review period (4-5 years).2 If parties cannot agree on the price, the

disagreement is settled through an arbitration process.

Since 1999 this arbitration process takes a distinct form in the water sector. In order to

prevent parties’ offers to significantly diverge, as has occurred in the other regulated sectors, the

legislation that norms the water sector considers a final-offer arbitration mechanism in which

the arbitrator is constrained to choose one of the parties’ offers as a settlement.3 But because

parties do no submit a single offer for the entire firm but rather an offer for each of the cost

units in which the firm is divided,4 the actual arbitration mechanism looks more like a hybrid

between final-offer arbitration and conventional arbitration.5

While the division of the regulated firm in various units was aimed at introducing greater

transparency into the regulatory process and avoiding subsidization across cost units, evidence

on the first round of applying this price setting process for the different water utilities in the

country has not been uncontroversial. As shown in Table 1, we observe in most cases an

important divergence between the regulator’s overall offer, pr, and the firm’s overall offer, pf

(to facilitate the exposition pr has been normalize to 100).6 And in five cases parties failed to

negotiate the final price, ps, and had instead resorted to final-offer arbitration (FOA).

INSERT TABLE 1 HERE OR BELOW

1See Vogelsang (2002) for an overview of the different regulatory approaches practiced over the last 20 years.
2 In reality, each party constructs an efficient firm and announces the long term total cost that such firm would

incur in providing the service during the review period. In this construction, parties may differ not only about
unit costs but also about projections of future demand.

3The use final-offer arbitration is commonly seen in the settlement of labor disputes (with baseball as a classic
example) but I am not aware of its explicit use elsewhere in a regulatory context.

4There are approximately 200 units including, for example, cost of raw water, cost of capital, cost of replacing
pavement, etc. For more see Sánchez and Coria (2003).

5 In conventional arbitration, the arbitrator is not constrained to any particular settlement. So, as the number
of units goes large, final-offer arbitration would seem to approach conventional arbitration since the arbitrator
is able to chose almost any settlement by using some combination of parties’ offers.

6The numbers shown are based on parties’ announcements of long term total costs.
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The numbers in Table 1 naturally raise the empirical question about what are the factors that

characterize the contract zone of Farber and Bazerman (1989), i.e., the range of settlements

that both parties prefer to disagreement. The great divergence in parties’ offers, however,

have raised more fundamental questions. Some observers have challenged the advantages of

the current regulatory mechanism over more conventional mechanisms, particularly price-caps

as practiced in the UK, while others have questioned the privatization process itself arguing

that the increase in information asymmetries have more than offset any productivity gains.7

Rather than introducing radical changes in both the privatization program and the regulatory

scheme, the authority is exploring ways in which the actual divergence in parties’ offers could

be diminished. In particular, it is proposing to substantially reduce the multiplicity of offers,

i.e., the numbers of units in which the regulated firm is divided. Reducing the number of offers

seems reasonable since it would make the arbitration process look less like the cheap-talk game

associated to conventional arbitration.

With the purpose of better understanding agents’ behavior in this price-setting process, in

this paper I extend the (single-offer) final-offer arbitration models of Farber (1980) and Gibbons

(1988) to the case in which parties simultaneously submit offers for each of the units that are

part of the item in dispute and the arbitrator is limited to choose one party’s offer or the other

for each unit, so in principle, she is free to fashion a compromise by awarding some offers to

one party and the rest to the second party. Despite this multi-dimensional variant of final-

offer arbitration was already recognized by Farber in his article as “issue by issue” final-offer

arbitration, there is no formal analysis of such problem in the literature. There is a seemingly

related problem in the literature that is the analysis of split award auctions where it is possible

for a buyer to split a production award between two or more suppliers (Anton and Yao, 1989

and 1992). Besides the multi-dimensional structure, these problems have little in common,

however. While in split award auctions bidding parties seek to coordinate in high prices that

would report positive profits for both, in final-offer arbitration parties have no incentives to

coordinate in any particular outcome since they have opposing preferences (otherwise, there

would be no reason to resort to arbitration).

Understanding the equilibrium properties of this arbitration game is not only relevant for

the price-setting process that motivated this paper,8 but more generally, for any final-offer

7See Gomez-Lobo and Vargas (2002) for a further discussion on the shortcomings of the current regulatory
scheme.

8This arbitration scheme has also been proposed in place of the current mechanisms used to settle disputes
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arbitration in which more than one issue is in dispute (e.g., a government and a contractor

renegotiating a multi-part contract). The model of the paper is standard in that it is based

on a one-period game that considers two parties (i.e., the firm and the regulator) with op-

posing preferences that simultaneously submit offers to an arbitrator whose ideal settlement is

imperfectly known by both parties (recall that parties’ uncertainty regarding the arbitrator’s

preferences is what leads to offers divergence).9 Attending the spirit of the legislation, the ar-

bitrator wants to choose efficient prices, i.e., prices that are closest to the long-term cost of the

hypothetical efficient firm. But since the parties are much better informed about the true cost

of this efficient firm than the arbitrator is (in part because they conduct detail studies before

the price-setting process), I follow Gibbons (1988) in that the arbitrator may eventually learn

a great deal from the parties’ (equilibrium) offers about the true cost of this efficient firm.10

The results of the paper can be presented as the answers to three basic questions that I

tackle in different sections of the paper. The first question is to what extent the introduction

of multiple offers (whether two or more) affects the divergence between parties’ overall offers

(Section 3). I show that when parties have perfect knowledge about the arbitrator’s ideal

settlement, parties’ offers exhibit, as in the single-offer game, perfect convergence. When parties

are uncertain about the arbitrator’s preferences, as it is usually the case, the division of the

firm in just two cost units results in multiple equilibria implying that the divergence between

parties’ equilibrium offers is not unique but can be anything between that of the single-offer

game and above.

Contrary to the single-offer game, in which parties’ equilibrium offers are unique (Farber,

1980), the multiplicity of equilibria raises a second question that is to what extent the arbitra-

tor’s ability to learn from the parties’ offers is hampered by the introduction of multiple offers

(Section 4). As in the single-offer game, in which the arbitrator perfectly recovers parties’ cost

information from the average of parties’ offers (Gibbons, 1988), I find that the introduction

of multiple offers does not necessarily affect the arbitrator’s ability to learn from the parties’

offers. This is because in (separating Bayesian) equilibrium the arbitrator does not learn from

the absolute value of the individual or overall offers submitted by the parties but from the

over regulated prices in the electricity and telecommunication sectors in Chile.
9As in Farber (1980) and the literature that has followed, I do not include a previous stage in which parties

bargain over the final price before going to arbitration, so I do not intent to explain what makes parties more
likely to reach an agreement rather than end in arbitration. For more see Farber and Bazerman (1989).
10More generally, empirical studies of arbitrator behavior indicate that arbitrators do use parties’ offers to

compute their ideal settlement (e.g., Farber and Bazerman, 1986; Ashenfelter and Bloom, 1984).
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relationship that these offers exhibit in equilibrium; a relationship that remains regardless of

the divergence between parties’ equilibrium offers.

If the introduction of multiple offers does not affect learning, despite parties’ offers can

exhibit substantial divergence, the remaining question deals with welfare gains or losses from

introducing multiple offers (Section 5). Intuitively, one would argue that multiple offers provide

the arbitrator with more flexibility to put together a settlement closer to her ideal settlement

(i.e., the true cost of the efficient firm) by combining offers from both parties. Although one

can construct examples where the arbitrator is further away from her ideal choice, I show that

in equilibrium, the parties’ offers are structured in such a way that it is always possible for the

arbitrator to choose a final price (which combines offers from both parties) that is expected to

be closer to her ideal settlement than in the single-offer case.

The model developed in this paper provides us with results that have important implica-

tions for the design of final-offer arbitration mechanisms. In particular, they indicate that the

introduction of multiple offers is likely to enhance welfare, despite the increase in the divergence

between parties’ offers. Before proceeding, however, I should emphasize that this paper is by no

means an attempt to discuss the merits of the regulatory approach under study over alternative

approaches such as price caps but rather understand the effect of regulatory design on parties

behavior. With that objective in mind, the rest of the paper is organized as follows. In Section

2, I introduce the model using the single-offer game. In Sections 3, 4 and 5, I extend the model

to two offers and use it to address, respectively, the three questions raised above. Concluding

remarks are in Section 6.

2 The single-offer arbitration model

Let start with the single-offer arbitration game. In this case parties are asked to submit a single

offer for the entire firm and the arbitrator is constrained to choose one of the parties’ offers as

a settlement. The parties’ offers are denoted by pf and pr.

2.1 Preferences and information

The arbitrator is characterized by the parameter z, which describes the arbitrator’s most pre-

ferred settlement. If the actual settlement is p, the arbitrator’s utility is va(p, z) = −(p− z)2.

Since the spirit of the legislation is to charge (efficient) prices to consumers that just cover the
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long term costs of an hypothetical efficient firm, we assume that the arbitrator’s ideal price set-

tlement is directly related to the cost of this efficient firm, which we denote by c. In particular,

I assume that z(c) = c. This assumption is also consistent with the idea the arbitrator would

like to be rehired.11

Unlike the arbitrator, the firm and the regulator are assumed to be risk-neutral.12 As in

Farber (1980) and Gibbons (1988), both parties are assumed to have strictly opposed prefer-

ences: the firm seeks to maximize the arbitrator’s expected settlement, while the regulator seeks

to minimize it. It may seem odd that preferences are totally disconnected from the cost of the

hypothetical efficient firm. While little problematic for a firm that faces an inelastic demand,13

it is unlikely that the regulator would only care about consumer surplus and put no weight on

firm’s profits. As shown in Montero (2003), however, the results do not qualitatively change

if the regulator puts some weight on firm’s profits because parties incentives work basically

the same as long as their preferences are not perfectly aligned. Accordingly, I maintain the

assumption that parties have strictly opposed preferences in order to keep the analysis simple.

Neither the arbitrator nor the parties have perfect information about the true cost of the

hypothetical efficient firm (which is not necessarily the same as the actual firm) but they do not

necessarily share the same perceptions about this cost. Following Gibbons’ (1988) information

structure (I also follow Gibbons’ notation very closely), let the arbitrator’s perception about

the true cost c be summarized by the noisy signal

ca = c+ εa (1)

where c is normally distributed with mean m and precision h, and εa is normally distributed

with zero mean and precision ha. The parameters m and h are common knowledge and can be

interpreted as the publicly observable facts relevant for the regulation of the firm. Note that

as ha grows infinitely large (i.e., variance of εa goes to zero), the arbitrator can perfectly infer

the cost c.

11For more on arbitrator behavior see Ashenfelter and Bloom (1984).
12The introduction of risk-aversion complicates the algebra without producing a qualitative change in the

results. See Montero (2003).
13A sufficiently low price elasticity ensures that, in equilibrium, the firm will never submitt a price offer above

its monopoly price.
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Similarly, let the parties’ knowledge about the true cost c be summarized by the noisy signal

cp = c+ εp (2)

where εp is normally distributed with zero mean and precision hp. It is important to emphasize

that this information structure assumes that the parties —the firm and the regulator— share

the same perception about the true cost c. While letting hp > ha this information structure

captures the idea that both parties are considerably better informed than the arbitrator, it is

not so clear that both parties should share the exact same perception about c. Since c is not the

cost of the firm that is currently providing the service (although it is related), the firm is likely

to be better informed about site specificities while the regulator, making use of information

collected from all the other regulated water firms, may be better informed about some of the

parameters that are common across firms (e.g., labor productivity).14 It would certainly add

more realism to the analysis the introduction of asymmetric information via different random

shocks with different levels of precision, but that has not been done for the single-offer case,

much less so for the case of multiple offers. I return to this point in the last section of the

paper.

The information structure can be summarized as follows: the arbitrator observes ca, the

parties both observe cp, no one observes c, and m, h, hp, and ha are common knowledge.

In addition, the three random variables c, εa, and εp are assumed to be independent of each

other, which facilitates the computation of the Bayesian updating following the arrival of new

information (e.g., signals, parties’ offers). For example, the conditional distribution of c given

cj , where j = a, p, is normal with mean M j(cj) and precision Hj , where

M j(cj) =
hm+ hjcj

h+ hj
(3)

and

Hj = h+ hj (4)

Similarly, the conditional distribution of c given ca and cp is normal with meanMap(ca, cp) and

precision Hap, where

Map(ca, cp) =
hm+ haca + hpcp

h+ ha + hp
(5)

14See Teeples and Glyer (1987) for a discussion on differences in production efficiency across water utilities.
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and

Hap = h+ ha + hp (6)

I will make use of these definitions of beliefs updating in the models that follow.

2.2 Arbitration without learning

Let consider first the case in which the arbitrator only pays attention to its noisy signal ca in

constructing her ideal settlement. Ignoring parties’ offers may not be sequentially rational, as

we discussed later, but it is a useful starting point to understand the implications of learning

and the multiplicity of offers on the equilibrium of this arbitration game.

Acknowledging that the arbitrator ignores their offers, the parties will form the common

belief that the arbitrator’s ideal settlement z is randomly distributed according to some cu-

mulative distribution (to be determined below) function F (z), with density f(z). Since the

arbitrator is constrained to choose one of the parties’ offers as the settlement, she will choose

the offer that is closer to her ideal settlement z. Assuming for the moment that in equilibrium

the regulator’s offer, pr, will be smaller than the firm’s offer, pf , the arbitrator will choose the

regulator’s offer if and only if z < p, where p = (pr + pf )/2; hence, the probability that pr is

picked by the arbitrator is F (p).

The timing of the final-offer arbitration game is as follows. First, the regulator and the firm

simultaneously submit their offers to the arbitrator.15 Second, the arbitrator chooses the offer

that maximizes his utility function va(p, z) as the settlement. The parties’ Nash equilibrium

offers (pf and pr) maximize their expected payoffs, so they are found by simultaneously solving

max
pf

prF (p) + pf [1− F (p)] (7)

and

min
pr

prF (p) + pf [1− F (p)] (8)

The first-order conditions for this optimization problem are16

1− F (p) = (pf − pr)f(p)/2 (9)

15As in Farber (1980) and subsequent papers I do not explicitly model a first stage where parties can bargain
before going to arbitration. We can think of pr and pf as the last offers during the bargaining period.
16Note that the convexity of the arbitrator’s utility function assures the existence of equilibrium.
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and

F (p) = (pf − pr)f(p)/2 (10)

that rearranged yields

F (p) = 1/2 (11)

and

pf − pr = 1/f(p) (12)

Eqs. (11) and (12) summarize Farber’s (1980) Nash equilibrium: parties’ offers are centered

around the mean of the parties’ belief about the arbitrator’s ideal settlement (i.e., Ep[z], where

E[·] is the expected value operator) and the distance between the equilibrium offers decreases

as this belief becomes more precise (i.e., higher f(·)). Notice that in equilibrium pf > pr, as

previously assumed. In deciding about their offers, each party must balance a trade-off between

making a more aggressive offer and reducing the probability that the offer will be chosen by

the arbitrator. In the limit, when there is no uncertainty about the arbitrator’s preferences (h

infinitely large), both parties submit the arbitrator’s ideal settlement, that is pr = pf = z.

The equilibrium values of pr and pf depend on F (z). Parties know from (3) that the

arbitrator’s ideal settlement (in the absence of learning) would be

z(ca) =Ma(ca) =
hm+ haca

h+ ha
(13)

Given cp, parties know that F (z(ca)) is a normal distribution with mean m0 (Ep[z] = m0) and

precision h0, where

m0 =
hm+ haMp(cp)

h+ ha
(14)

and

h0 =
(h+ hp)(h+ ha)

ha(h+ ha + hp)
(15)

which imply that the equilibrium offers reduce to

pf = m0 +
r

π

2h0
(16)

and

pr = m0 −
r

π

2h0
(17)
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Note that cp has an effect on the parties’ equilibrium offers not because it improves their

knowledge about c but because it affects parties’ belief about the arbitrator’s ideal settlement.

2.3 Learning

As explained by Gibbons (1988), it is not sequentially rational for the arbitrator to ignore

parties’ offers because she can learn from them. In fact, the average of the offers ism0, so from (3)

and (14), the arbitrator can obtain a point estimate of cp, that is cp(m0). Sequential rationality

then requires that the arbitrator’s ideal settlement be not Ma(ca) but Map(ca, cp(m0)), which,

from (5), is given by

z(ca, pf , pr) =
hm+ haca + hpcp(m0)

h+ ha + hp
(18)

In this way, the parties’ offers help the arbitrator to have a more precise estimate, in statistical

terms, of c. Knowing that the arbitrator may learn from their offers, each party now takes

also into account the effect that his/her offer can have on the arbitrator’s inference about the

ideal settlement. Gibbons (1988) demonstrates that there exists a separating perfect Bayesian

equilibrium in which the arbitrator perfectly infers cp from the average of the parties’ offers.

Despite parties consider the gain from misleading the arbitrator when choosing their offers, in

equilibrium parties find it optimal not to do so. To save on space, I leave the development of

the learning equilibrium for the multiple-offers case (Section 4).

3 Multiple offers without learning

An important difference between Farber’s and Gibbon’s models and the regulatory scheme

studied in this paper is that parties do not submit a single offer but multiple offers. Consider

then the case in which the regulated firm is divided in two units or production centers: 1 and

2 (e.g., water production and water distribution).17 Note that the possibility of submitting

multiple offers only affect parties’ strategy space but not the actual operation of the water

utility (the firm will minimize costs regardless the price chosen for each unit), so both parties

and the arbitrator only care about the overall offer p = p1+ p2 (i.e., about the final price to be

paid by consumers) and not about the price of each individual unit.

I retain the information structure from the single-offer case in that c = c1+c2, εa = εa1+εa2,

and εp = εp1+ εp2 are independent random variables with mean and precision as before. I do not

17The case with three or more offers yields same results (Montero, 2003).
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impose, however, any particular correlation between c1 and c2 and between εj1 and εj2, where

j = a, p.

In this multiple-offer game, the regulator and the regulated firm submit simultaneously price

offers for each of the two units. The regulator’s individual offers are denoted by pr1 and pr2 and

the firm’s individual offers are denoted by pf1 and pf2 . The arbitrator’s task is to choose a price

offer for each unit following a final-offer arbitration procedure. The arbitrator will choose prices

p1 and p2 that maximize its utility va(p1, p2, z) = −(p1 + p2 − z)2. Then, there will be four

possible offer combinations for the arbitrator to choose from: {pr1, pr2}, {pf1 , pr2}, {pr1, pf2} and
{pf1 , pf2}. In this section I study the case of no learning and leave for the next section the case
in which the arbitrator uses the parties’ offers to obtain a better estimate of c.

3.1 Certainty about the arbitrator’s preferences

I start by studying the game in which both parties know the arbitrator’s ideal settlement (i.e.,

εak = εpk = 0, where k = 1, 2) because it helps to illustrate equilibrium properties that carry over

to the case in which parties are uncertain about the arbitrator’s ideal settlement. Parties’ action

space and arbitrator’s ideal settlement z are depicted in Figure 1. More specifically, parties’

offers for units 1 and 2 are in the horizontal and vertical axis, respectively. For example, point

A represents a regulator’s offer consisting of Apr1 for the first unit and
Apr2 for the second unit.

The line z, on the other hand, contains those combinations of p1 and p2 that add up to z. The

arbitrator is indifferent between any two combinations that lie on this line.

As in the one-offer case, an obvious equilibrium of the game is for each party i to submit

a pair {pi1, pi2} where pi ≡ pi1 + pi2 = z. We know that if party i submits an overall offer of

pi = z, party −i’s best response is not constrained to any offer because the arbitrator would
pick pi regardless his offer. But for pi = z to be a best response to party −i’s offer, we must
necessarily have p−i ≡ p−i1 + p−i2 = z.

Let us explore now whether a pair of offers equally distant from the line z, such as A and

B in Figure 1 (OA = OB), could also constitute an equilibrium of the game . If this were the

case, we could observe offers divergence in equilibrium but with the same settlement outcome as

above. In fact, the arbitrator would be indifferent between the pairs {Apr1,B pf2} and {Bpf1 ,A pr2}
because both yield z; her ideal settlement. However, this is not a suitable equilibrium candidate.

If the regulator is playing A, the firm’s best response is not playing B but playing C, where

O0C 0 = O00C 00 = OA− and is a very small positive number. This play leaves the arbitrator

11
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Figure 1: Two-offers game under certainty

indifferent between C 0 = {Apr1,C pf2} and C 00 = {Cpf1 ,A pr2} with a price settlement of z + AO

− > z).18 And following the same logic, we know that A cannot be the best response to C

but something further apart (more precisely, three times larger than OC). As this illustration

shows, there is no best-response correspondence off the z-line. To summarize

Proposition 1 If both parties know the arbitrator’s preference z, the Nash equilibria of the

two-offers game are pi ≡ pi1 + pi2 = z for i = r, f .

This proposition indicates that the introduction of multiple offers (as many as the number

of units in which the firm has been divided) does not affect the perfect convergence of parties’

offers when there is certainty about the arbitrator’s preferences. Although it has only been

formally shown for the two-offers case, it should be clear that Proposition 2 extends to the case

18 If for any reason the regulator’s offer is to the north-east of the line z, the firm’s best response is to play any
pair equally or further distant from z in the north-east direction.
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of three or more offers.19 This is an interesting result because one would think that as the

number of offers increase the arbitration process would converge to conventional arbitration in

the sense that the arbitrator can impose almost any settlement she wishes by choosing the right

combination of parties’ offers. But in conventional arbitration we know that in equilibrium we

can observe either any offers (as in any cheap-talk game) or maximum differentiation if the

arbitrator is believed to split differences.

3.2 Uncertainty about the arbitrator’s preferences

Let us now turn to the more realistic case in which the parties are uncertain about the arbitra-

tor’s preferences but let maintain the assumption, for now, that the arbitrator ignores parties’

offers in constructing her ideal settlement. To estimate the probability that the arbitrator

choose a particular offer combination we need first to understand some regularities that prevail

in equilibrium. From the certainty case we know that if the regulator plays something like A,

the firm’s best response will lie somewhere along the line ABC depending on the value of z (if

by any chance the z-line falls to the south-west of A, the firm will pick A). This implies that

in equilibrium we must have pfk > prk for k = 1, 2,20 which, in turn, assures that pf > pr in

equilibrium.

Since p1 and p2 are perfect substitutes, we can adopt the convention that in equilibrium

pi2 ≥ pi1 for i = r, f , which leads to pf2− pf1 ≥ pr2− pr1. The probabilities can then be found by

dividing the z space in four different regions, each supporting the election of one particular offer

combination. Depending on the parties’ offers there will be values z1 < z2 < z3 such that if z

falls in the region (−∞, z1), the arbitrator will choose {pr1, pr2}, if z falls in the region [z1, z2) the
arbitrator will choose {pf1 , pr2}, if z falls in the region [z2, z3) the arbitrator will choose {pr1, pf2},
and if z falls in the region [z3,+∞) the arbitrator will choose {pf1 , pf2}.

As before, the parties’ Nash equilibrium offers maximize their expected payoffs so are found

19A simple example should be enough here. Consider a three-offers game in which the arbitrator’s ideal
settlement is z = $10. If the regulator submits the offer pr = {1, 2, 3}, which is $4 off the z-plane, the firm’s best
response is not to play a symmetrically distant offer such as pfa = {3, 5, 6} but to play pfb = {8.99, 9.99, 10.99},
where 0.01 is the smallest possible number, say, a penny. By submitting the latter the firm assures itself a
settlement of 13.99. Since pr is, by the same arguments, not the regulator’s best response to pfb , we cannot have
an equilibrium with parties’ offers located off the z-plane.
20 It is a strict inequality because in this uncertainty environment there will be at least one z-line to the

north-east of A.
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by simultaneously solving

max
pf1 ,p

f
2

(pr1 + pr2)F (z1) + (p
f
1 + pr2)[F (z2)− F (z1)]

+ (pr1 + pf2)[F (z3)− F (z2)] + (p
f
1 + pf2)[1− F (z3)] (19)

min
pr1,p

r
2

(pr1 + pr2)F (z1) + (p
f
1 + pr2)[F (z2)− F (z1)]

+ (pr1 + pf2)[F (z3)− F (z2)] + (p
f
1 + pf2)[1− F (z3)] (20)

where

z1 = (p
r
1 + 2p

r
2 + pf1)/2 (21)

z2 = (p
r
1 + pr2 + pf1 + pf2)/2 (22)

z3 = (p
r
1 + pf1 + 2p

f
2)/2 (23)

and F (z) is a cumulative normal distribution with mean and precision given, respectively, by

(14) and (15).21

The first-order conditions for this optimization problem are22

[pf1 ] : 1−F (z1)+F (z2)−F (z3)+(pr1−pf1)[f(z1)−f(z2)+f(z3)]/2+(p
r
2−pf2)f(z2)/2 = 0 (24)

[pf2 ] : 1− F (z2) + (p
r
1 − pf1)[−f(z2)/2 + f(z3)] + (p

r
2 − pf2)f(z2)/2 = 0 (25)

[pr1] : F (z1)− F (z2) + F (z3) + (p
r
1 − pf1)[f(z1)− f(z2) + f(z3)]/2 + (p

r
2 − pf2)f(z2)/2 = 0 (26)

[pr2] : F (z2) + (p
r
1 − pf1)[f(z1)− f(z2)/2] + (p

r
2 − pf2)f(z2)/2 = 0 (27)

Although the solution involves multiple equilibria as in the certainty case (any of the four

equations is a linear combination of the other three; in particular [pf1 ] + [p
r
1] = [p

f
2 ] + [p

r
2] where

[pik] denotes the first-order condition for p
i
k), they all must satisfy the conditions above that

rearranged leads to

21Note also that z3 − z2 = z2 − z1 = pf2 − pr2 > 0 and that z2 = p.
22 Identical FOCs will be obtained if we adopt the alternative convention that in equilibrium pi1 ≥ pi2 for

i = r, f .
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Proposition 2 The parties’ overall offers pr = pr1 + pr2 and pf = pf1 + pf2 are centered around

Ep[z] and the distance between them can be anywhere between the distance in the single-offer

case and above.

Proof. Let first prove that the parties’ offers are centered around Ep[z], i.e., F (z2 = p) =

1/2. Combine (24) with (26) and (25) with (27) to obtain, respectively

F (z2) = F (z1) + F (z3)− 1/2 (28)

F (z2) = 1/2 + (p
f
1 − pr1)[f(z1)− f(z3)]/2 (29)

In addition, we know that

z3 − z2 = z2 − z1 (30)

Given the perfect colinearity between first-order conditions (which implies that we have 3

equations for 4 unknowns), we can make an unrestricted selection for one of the 4 offers,

or alternatively, for ∆ ≡ pf1 − pr1 ≥ 0. Furthermore, any particular value of ∆ leads to a

unique equilibrium given the parties’ objective functions (including the arbitrator’s) that we

are considering here.23 And since f(z1) = f(z3) and F (z2) = 1/2 is an equilibrium candidate

in that solves the system (28)—(30) for any ∆ ≥ 0 and a symmetric density function such as
the normal distribution, uniqueness implies that z2 = Ep[z]. On the other hand, to find an

expression for the distance between parties’ offers add (24) and (26) and rearrange to obtain

pf − pr =
1

f(z2)
− (pf1 − pr1)

·
f(z3) + f(z1)− 2f(z2)

f(z2)

¸
(31)

where pf = pf1 + pf2 and pr = pr1 + pr2. Replacing f(z3) = f(z1) and z2 = p = Ep[z], eq. (31)

can be re-written as

pf − pr =
1

f(p)
− 2(pf1 − pr1)

·
f(z1)− f(p)

f(p)

¸
(32)

Since ∆ ≡ pf1 − pr1 ≥ 0 and f(z1) ≤ f(p), the distance between offers cannot be smaller than in

the single-offer case.

23Uniqueness can be easily proved using the results from the certainty case. If the regulator’s offer is, say, the
pair A of Figure 1, the firm’s best response for a given value of z is unique and equal to the pair C of Figure 1 (if
for some value of z the pair A falls to the north-east of the z-line, the firm’s best response is A). And since the
firm’s best response is a non-decreasing function of z (strictly increasing if A is to the south-west of the z-line),
the firm’s best response to A is unique when z distributes according to F (z).
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Provided that in the absence of learning F (·) is a normal distribution with mean m0 and

precision h0, the parties’ (overall) equilibrium strategies satisfy

pf = m0 +
r

π

2h0
+ γ (33)

and

pr = m0 −
r

π

2h0
− γ (34)

where pf = pf1 + pf2 , p
r = pr1 + pr2, and γ is an arbitrary non-negative value that corresponds to

the last term of (32).

Unlike in the single-offer game, these equilibrium offers show that the introduction of un-

certainty regarding parties’ perception about the arbitrator’s preferences has significant im-

plications in the multiple-offers game. If parties are fully certain about the arbitrator’s ideal

settlement, the equilibrium of the game shows perfect convergence but if parties are just a bit

uncertain, divergence between parties’ offers can be arbitrarily large.

This likely increase in offers divergence raises the key question that to what extent the use

of multiple offers prevents the arbitrator to improve her knowledge about the cost c. One may

find hard to believe that the arbitrator can learn the same about c regardless whether parties’

offers are close to each other or very far apart. I turn to this issue in the following section.

4 Multiple offers with learning

We now turn to the central model of the paper. Since we have already seen that is not sequen-

tially rational for the arbitrator to ignore parties’ offers, the objective of this section is to show,

as in Gibbons’ single-offer game, that there exists a separating perfect Bayesian equilibrium in

this multiple-offer final-offer arbitration game. Suppose that the arbitrator believes that p, the

average of the parties’ overall offers, perfectly reveals cp, both on and off the equilibrium path.

This means that for any pair of multiple-offers, pf = {pf1 , pf2} and pr = {pr1, pr2}, the arbitrator
computes the point estimate cp = cp(p = (pf1 + pf2 + pr1 + pr2)/2).

24 From (5), the arbitrator’s

24Gibbons mentions that other separating equilibria may exist in which a different function of pf and pr reveals
cp to the arbitrator. I see this as a reasonably possibility in the multiple-offers case with random variables that
are not normally distributed because in such a case the parties’ equilibrium offers are no longer center around
Ep[z] but they can be above or below Ep[z] (Montero, 2003).
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ideal settlement is then

z(ca,pf ,pr) =
hm+ haca + hpcp(p)

h+ ha + hp
(35)

As in the no-learning case, depending on the parties’ offers there will be cut-off values

z1 < z2 < z3 such that if z(ca,pf ,pr) falls in the region (−∞, z1), the arbitrator will choose

{pr1, pr2} as the settlement, if z(ca,pf ,pr) falls in the region [z1, z2), she will choose {pf1 , pr2}, if
z(ca,pf ,pr) falls in the region [z2, z3) she will choose {pr1, pf2}, and if z(ca,pf ,pr) falls in the
region [z3,+∞), she will choose {pf1 , pf2}, where z1, z2 and z3 are given by (21), (22) and (23),

respectively.

Using (35), we can then express the event that the arbitrator chooses {pr1, pr2} as ca <

C1(z1, z2), that she chooses {pf1 , pr2} as C1(z1, z2) ≤ ca < C2(z2), that she chooses {pr1, pf2} as
C2(z2) ≤ ca < C3(z2, z3), and that she chooses {pf1 , pf2} as C3(z2, z3) < ca, where (recall that

z2 = p)

C1(z1, z2) =
haz1 + h(z1 −m) + hp(z1 − cp(z2))

ha
(36)

C2(z2) =
haz2 + h(z2 −m) + hp(z2 − cp(z2))

ha
(37)

C3(z2, z3) =
haz3 + h(z3 −m) + hp(z3 − cp(z2))

ha
(38)

Given the probability that the parties assign to each of these four events occurring, a deriva-

tion analogous to that leading to the first order conditions (24)—(27) results in the following

equilibrium conditions

[pf1 ] : 1− F (C1(z1, z2)|cp) + F (C2(z2)|cp)− F (C3(z2, z3)|cp) + (pr2 − pf2)f(C2|cp)
∂C2

∂pf1

+ (pr1 − pf1)

"
f(C1|cp)∂C1

∂pf1
− f(C2|cp)∂C2

∂pf1
+ f(C3|cp)∂C3

∂pf1

#
= 0 (39)

[pf2 ] : 1−F (C2|cp)+(pr2−pf2)f(C2|cp)
∂C2

∂pf2
+(pr1−pf1)

"
f(C1|cp)∂C1

∂pf2
− f(C2|cp)∂C2

∂pf2
+ f(C3|cp)∂C3

∂pf2

#
= 0

(40)

[pr1] : F (C1|cp)− F (C2|cp) + F (C3|cp) + (pr2 − pf2)f(C2|cp)
∂C2
∂pr1

+ (pr1 − pf1)

·
f(C1|cp)∂C1

∂pr1
− f(C2|cp)∂C2

∂pr1
+ f(C3|cp)∂C3

∂pr1

¸
= 0 (41)
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[pr2] : F (C2|cp)+(pr2−pf2)f(C2|cp)
∂C2
∂pr2

+(pr1−pf1)
·
f(C1|cp)∂C1

∂pr2
− f(C2|cp)∂C2

∂pr2
+ f(C3|cp)∂C3

∂pr2

¸
= 0

(42)

where F (·) is now the distribution of ca conditional on cp, which is normal with mean Mp(cp)

given by (3) and precision

H 0 =
(h+ hp)ha

h+ ha + hp
(43)

As in the no-learning case, the first-order conditions (39)–(42) do not lead to a unique

equilibrium because any of the four conditions is a linear combination of the other three. A

derivation analogous to that leading to (28) and (29) then yields the equilibrium conditions

F (C2(z2)|cp) = F (C1(z1, z2)|cp) + F (C3(z2, z3)|cp)− 1/2 (44)

F (C2(z2)|cp) = 1

2
+
(pf1 − pr1)(f(C1(z1, z2)|cp)− f(C3(z2, z3)|cp))

2
·
Ã
∂C3

∂pf2
− ∂C1

∂pf2

!
(45)

Since ∂C3/∂p
f
2 > ∂C1/∂p

f
2 , from the arguments leading to Proposition 2 we know that these

two conditions imply that C2(z2) =Mp(cp).

To compute C2(z2) (and also C1(z1, z3) and C3(z2, z3)) we make use of the properties that

cp(z2), the rule the arbitrator uses to infer the value of cp from the parties’ offers, must satisfy

in equilibrium. If the equilibrium value of p (= z2) is to reveal cp, it must hold that cp(z2) = cp

in equilibrium, so substituting cp(z2) for cp in Mp(cp) and using C2(z2) =Mp(cp) yields

cp(p = z2) =
(h+ hp)p− hm

hp
(46)

Replacing (46) into (36)–(38) yields C1(z1, z2) = z1 − (z2 − z1)(h + hp)/ha, C2(z2) = z2 and

C3(z2, z3) = z3 + (z3 − z2)(h + hp)/ha. The results imply both that parties’ offers are center

around the mean of the parties’ belief about the arbitrator’s ideal settlement (p = Ep[z] =

Mp(cp)) and that, by arguments analogous to those leading to (32), the distance between the

parties’ offers is given by

pf − pr =
1

f(p)
− 2(pf1 − pr1)

·
f(C1(z1, p)− f(p)

f(p)

¸
(47)

where pf1 − pr1 ≥ 0.
Provided that F (·) is a normal distribution with mean Mp(cp) and precision H 0 given by
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(43), the parties’ (overall) equilibrium strategies satisfy

pf =Mp(cp) +

r
π

2H 0 + Γ (48)

and

pr =Mp(cp)−
r

π

2H 0 − Γ (49)

where pf = pf1 + pf2 , p
r = pr1+ pr2, and Γ is an arbitrary non-negative value that corresponds to

the last term of (47). These results can be summarized in the following proposition

Proposition 3 The parties’ offers strategies in (48) and (49) and the arbitrator’s decision

strategy based on her ideal settlement (35) and inference rule (46) constitute a separating perfect

Bayesian equilibria of the multiple-offers final-offer arbitration game. As in Gibbons (1988), in

this equilibrium the arbitrator’s ideal settlement can be written as z = αp + (1 − α)ca, where

α = (h+ hp)/(h+ ha + hp).

In this separating equilibrium, the arbitrator infers cp from the average of the parties’ overall

offers (not from the absolute value of the offers submitted to each cost unit) according to (46),

then uses this value in (35) to compute her "Bayesian-updated" ideal settlement, and finally

chooses the combination of individual offers that is closer to this ideal settlement.25 Anticipating

this, parties find it optimal not to mislead the arbitrator and submit offers satisfying (48) and

(49). As the precision of the parties’ signal about the true cost c increases relative to that of the

arbitrator’ signal, the arbitrator puts more weight on the information coming from the parties’

offers than on her own signal in constructing her ideal settlement.

One of the main implications of Proposition 3 is that the multiplicity of offers does not

affect the arbitrator’s ability to learn from the parties’ offers despite they may exhibit great

divergence. The reason for this is that the regulator does not learn from the absolute value of

individual offers but rather from the way offers are related. Since the multiplicity of offers does

not remove the regularities that the parties’ offers must exhibit in equilibrium, the arbitrator

uses these regularities (eqs. (44) and (45)) to correctly infer parties’ private information from

their offers.

25Note that the arbitrator uses the same inference rule (46) regardless whether parties’ offers are on or off the
equilibrium path.
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5 Flexibility from multiple offers

If the introduction of multiple offers does not affect learning, despite parties’ offers can exhibit

substantial divergence, one could argue that the use of multiple offers is socially desirable as

long as it provides the arbitrator with more flexibility to put together a settlement closer to her

ideal settlement (i.e., the true cost of the efficient firm) by combining offers from both parties.

To explore such possibility, consider the following example in which parties’ expectation

about the arbitrator’s ideal settlement in the single-offer arbitration game is 20 and that the

equilibrium offers of such game are pr = 10 and pf = 30. Since the multiplicity of offers does

not impaired arbitrator’s learning possibilities, parties’ expectation about the arbitrator’s ideal

settlement is also 20 in the two-offers game. Consider now two equilibrium candidates of the

two-offers game: (i) pr1 = 1, pr2 = 2, pf1 = 18, and pf2 = 19; and (ii) pr1 = 1, pr2 = 2, pf1 = 3,

and pf2 = 34. Both equilibrium candidates and the single-offer equilibrium satisfy the condition

that the average of parties’ overall offers is 20. But clearly, candidate (i) is, in expected terms,

the most attractive to the arbitrator since it allows her to impose 20 as the final price by either

choosing {pf1 , pr2} or {pr1, pf2}. Candidate (ii), on the other hand, is the least attractive to the
arbitrator because she is expected to be off by 15 from her ideal choice.

The example seems to suggest that the welfare effects from introducing multiple offers

depend to a large extent on the way parties’ offers are structured in equilibrium. As it turns

out, candidate (ii) is not a suitable equilibrium because it fails to satisfy equilibrium condition

(47). It is then possible to establish

Proposition 4 By combining offers from both parties, the two-offers game provides the arbi-

trator with flexibility to construct a settlement that is expected to be closer to her ideal settlement

than the single-offer game does.

Proof. Since overall offers pr = pr1+ pr2 and p
f = pf1 + pf2 are as least as close to each other

than the offers in the single-offer game are, we need to demonstrate that either pfr = pf1 + pr2,

prf = pr1 + pf2 or both (where p
rf > pfr) are expected to be closer to the arbitrator’s ideal

settlement than the offers in the single-offer game are. From Proposition 3, we know that

(pfr + prf )/2 = p = Ep[z]. In addition, rearranging (47) yields

prf − pfr =
1

f(p)
− 2(pf1 − pr1)

f(C1(z1, p)

f(p)
<

1

f(p)

20



which finishes the proof.

6 Concluding remarks

Motivated by the price-setting process in the water sector in Chile, I have developed a multiple-

offers final-offer arbitration model. The main result of the paper is that despite the increase in

divergence between parties’ offers, the use of multiple offer helps the arbitrator to establish a

final price closer to her ideal settlement (i.e., the long-run cost of a hypothetical efficient firm)

without affecting her ability to learn from the parties’ offers about the true cost of the efficient

firm.

Since moving from a single-offer scheme to a multiple-offers scheme, whether with two or

more offers, can increase the divergence between the parties’ overall offers by an arbitrarily

large amount in equilibrium, one of the practical implications of the paper is that authority’s

proposal that call for a reduction in the number of cost units from something around 200 to 50

offers (or down to two offers for that matter) would make little difference, if any, in its effort to

lower the divergence between parties’ offers. I found, however, that failing to reduce divergence

is less of a concern because divergence does not affect the arbitrator’s ability to learn from the

parties’ offers.

Part of our results depend on the information assumption that parties have symmetric

information about the cost of the efficient firm. It is likely, instead, that each of the parties will

be better informed about some aspects of the efficient firm than the other party. As mentioned

by Gibbons (1988), it is possible that such information asymmetry may influence both the

means and the substance of the parties’ communication with the arbitrator. The effect can be

even larger in multiple-offer arbitration if the arbitrator has a good idea that such party is better

informed about that aspect of the efficient firm than the other party. This is an interesting,

although difficult, direction for further research.

Another question that deserves future work is why parties came to be in arbitration in the

first place. The data summarized in Table 1 provide some insights. Ownership status seems

to explain, at least in part, why some parties are more likely to reach agreement than others.

In fact, for 3 of the 6 privately-owned companies,26 prices were determined through arbitration

while for only 2 of the 9 state-owned companies, prices were determined in such a way. Firm

26With the exception of Aguas Cordillera, these companies have gone private only recently: 1-2 years before
the price reviews.
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size, which may serve as a proxy for firm’s complexity and uncertainty about the arbitrator’

preferences, also seems relevant (although the largest two firms also happens to be in private

hands). Given the small sample size, however, there is no much else that can be said.

If we believe that negotiated settlements are valuable from a policy standpoint because it

allows parties more discretion in negotiating their own settlement (Farber, 1980), it is also

relevant to understand whether and how a reduction (or increase) in the number of offers affect

the likelihood of parties ending up in arbitration. Empirical and experimental work comparing

conventional and single-offer final-offer arbitration shows that it is not clear whether dispute

rates (i.e., number of negotiations that end in arbitration) and distance between parties’ offers

are greater in conventional arbitration than in final-offer arbitration (Farber and Bazerman,

1986 and 1989; and Ashenfelter et al., 1992).

Finally, there is the question about the overall optimality of the regulatory approach studied

in this paper relative to alternative approaches such as cost-of-return and price-cap schemes.

Perhaps more realistic within the existing regulatory scheme, it is to ask for ways in which

the construction of the hypothetical efficient firm could be improved. Following the yardstick

regulatory scheme practiced in the water sector in the UK, one possibility it is to require,

at least partially, the use of actual costs from previous review periods and from other water

utilities.
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Table 1. Firms’ characteristics, parties’ offers and settlements

Firm Location Size Ownership pr pf ps FOA

ESSAT I 3.3 state 100 148 118 yes

ESSAN II 3.3 state 100 110 106 no

EMSSAT III 1.9 state 100 112 102 no

ESSCO IV 4.1 state 100 128 108 no

ESVAL V 12.9 private 100 184 141 yes

SMAPA MR 4.7 state 100 125 107 no

Aguas Cordillera MR 2.7 private 100 156 113 no

Aguas Andinas MR 37.2 private 100 256 139 yes

ESSEL VI 4.3 private 100 137 109 no

ESSAM VII 4.7 state 100 131 113 yes

ESSBIO VIII 10.8 private 100 115 104 no

ESSAR IX 4.4 state 100 127 112 no

ESSAL X 3.9 private 100 146 117 yes

EMSSA XI 0.6 state 100 137 108 no

ESMAG XII 1.2 state 100 119 109 no
source: Superintendencia de Servicios Sanitarios (Agency of Water Services).

Size is the fraction of consumers served from the total number of consumers
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