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Abstract 

This paper develops a simple model in which individuals rationally 
determine their body-mass by choosing food ingestion and time spent 
exercising. We show that multiple equilibria in body-mass might exist due 
to two forces with opposite effects. Firstly, an increase in body-mass has a 
negative impact on current utility and therefore, slows down body-mass 
accumulation. Secondly, an increase in body-mass has negative impact on 
the mortality rate, and thus on the individual’s discount factor. This effect 
is associated with an individual’s “myopic” behavior as more weight is 
given to current utility flow compared with future utility flows. As a 
result, the impact on the mortality rate accelerates the accumulation of 
body-mass throughout an increase in food ingestion and less time 
allocated to exercise. Thus, some individuals might be willing to ingest 
less food and spent more time exercising if they place more value on the 
negative impact of body-mass on their current utility, while others 
individuals might decide to accelerate body-mass if they face lower 
discounted future utility flows. A second conclusion relies on the stability 
of the different equilibria, which assures persistence in body-mass and 
explains why radical treatments might be required to modify an 
individual’s weight. 
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INTRODUCTION1 

The prevalence of eating and weight disorders is considerably high. At least a third 

of all Americans are now considered to be obese and sixty-percent are overweight. Also in 

the United States, five to ten million girls and women and one million boys and men are 

struggling with eating disorders including anorexia, bulimia or binge eating disorder 

(Crowther et al., 1992; Fairburn et al., 1993; Gordon, 1990; Hoek, 1995; Shisslak et al., 

1995). In The UK, a study by the Royal College of Psychiatrists found about 60,000 people 

receiving some form of treatment for an eating disorder. Studies in the mid 1990s indicate 

the total number of people affected by an eating disorder in the UK to be in the region of 

1.1 million.  

The cost of treatment of eating disorders might be quite considerable. If the disease 

becomes acute and the person needs expensive medical monitoring and treatment, the cost 

of in-patient treatment can be $30,000 or more per month2. Further, many people will need 

repeated hospitalizations.  

These episodes are very persistent. Seventy-seven percent of individuals with eating 

disorders report that the illness can last anywhere from one to fifteen years or even longer 

in some cases. Only fifty percent all people with this devastating disease report being 

cured3.  

Dieting, which might be thought as another but less severe type of eating disorder,  

is a common phenomena among “normal weight” individuals.  Ninety-one percent of 

                                                 
1 This paper benefited from comments from Julio Elias, Gert Wagner and Felipe Zurita. Any remaining error 
is my own responsibility 
2 Source: Eating Disorders Recovery Online. 
3 Source: National Association of Anorexia Nervosa and Associated Disorders – ANAD 
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women surveyed on a college campus had attempted to control their weight through dieting 

while twenty-two percent  dieted "often" or "always" (Kurth et al., 1995). Similarly a study 

by Smolak (1996) indicated that twenty-five percent of American men and forty-five 

percent of American women are on a diet on any given day. The same study shows that 

Americans spend over forty billion dollars on dieting and diet-related products each year. 

These  diets are generally not effective. In fact, ninety-five percent of all dieters will regain 

their lost weight in one to five  years (Grodstein, 1996).  

Eating and weight disorders are complex conditions that arise from a combination 

of long-standing behavioral, emotional, psychological, interpersonal, and social factors. 

Nevertheless, they may also be rationalized in an economic content: individuals choose, by 

comparing costs and benefits, food ingestion and the amount of time they spend in 

exercising. Thus economic rationale may play a role in determining optimal body-mass 

(weight) of individuals. This paper will rely in a mathematical framework, based in 

economic rationale, which reproduce some of the observations concerning eating and 

weight disorders. 

There is a growing academic debate concerning obesity and weight disorders in the 

health economic literature -see Lakdawalla and Philipson (2002) Philipson and Posner 

(1999), Levy (2002). The paper by Levy is mathematical appealing and provides interesting 

insights concerning the individual’s rationality in determining her body-mass. It is fair to 

characterize the main conclusion of this study as follows: rational behavior is associated 

with overweightness on the individual’s long run body-mass and small deviations from this 

condition lead to explosive oscillations in body-mass, which converge to states of severe 

underweightness. However, the result concerning the long run equilibrium of 
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overweightness seems to contradict the observation of individuals with severe  low weight 

(anorexic) or normal weight. Further, the more striking result relies on the conclusion that 

overweight individual may converge to severe underweightness throughout explosive 

oscillations. In the dynamics, the variance of body-mass rises through time until 

convergence is acquired at severe low weight, e.g. an overweight individual might become 

fatter, then thinner, then even fatter, and so on until converging to severe underweightness. 

This result is striking because even though there might exist oscillations in body-mass, the 

evidence suggests large persistence on body-mass, e.g. deviations from the equilibrium 

weight  -such as dieting- are not sustainable, converging back to the initial body-mass. 

Thus, while cycles in food ingestions and weight might exist, they are generally not 

explosive. 

This paper will propose a framework of optimal control with lack of overall 

concavity in body-mass. The solution to the model have various characteristics. Firstly, 

there are multiple equilibria  -rather than in a unique equilibrium related to overweightness 

and explosive oscillations as in Levy (2002)- in which rational decisions may lead to states 

of obesity, anorexia or normal weight. Secondly, equilibria with larger body-mass are 

associated  with higher food ingestion and less time spent in exercising. Thirdly, those 

states coexist for the same individual and the transition to them occur through a saddle-path 

or through converging oscillations. Convergence to any of the equilibria depends on initial 

body-mass. As initial body-mass is exogenous to the individual’s problem, this variable 

might resume the influence of non-economic factors such as genetics, psychological or 

social factors.  Thus, those variables determine the individual’s long run body-mass while 

the path to the equilibrium depends on rational decisions. Fourthly, those equilibria are 

stable, which assures persistence in body-mass and discards explosive oscillations. 
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The paper is developed as follows. Section I describe the economic environment, 

while section II characterizes the equilibria of the model. Finally, section III discusses the 

results. 

 
 

I. THE ECONOMIC ENVIRONMENT 

 
We will focus in a continuous time problem in which individuals have perfect 

foresight. We describe next each individual´ s problem. 

 

Endowment: The individual is endowed with (1) some initial body-mass, Wo >0. 

and (2) a unit of time that can be used to exercise or can be supplied to the labor market. 

We will denote time used to exercise as 1, ≤ℜ∈ + tt ss . Thus labor income is )1( tt sy −  

where yt  is the wage rate per unit of time. To simplify the problem, we will assume the 

wage rate being constant through time, e.g. yt = y.   

 

Preferences: Labor income is used to purchase food, +ℜ∈tF , which provides 

utility. The individual’s instantaneous utility function will be assumed to be a separable 

function between food ingestion and body-mass as in ),( tt WFu , with properties 

0,0,0,0 <<<> WWFFWF uuuu . Those assumptions assures concavity of the current 

utility flow on food ingestion and body-mass. We also assume that 2Cu∈ and satisfies the 

following conditions, −∞===∞=
∞→→∞→→ WWWWFFFF

uuuu lim,0lim,0lim,lim
00

. Individual´ s 

survival rate is ))(exp( ελ ε dW
t

o
∫− , where the instantaneous death rate, )( tWλ , is increasing 
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in body-mass, e.g.¸ 0>Wλ . Hence, expected utility is defined as 

∫
=

−−
t

o

dWt

tttt eWFuWFJ
ελρ ε )(

),(),( , where ρ > 0 is a constant discount factor. 

  

Constraints: The evolution of body-mass will depend positively on food ingestion 

and negatively in exercise. Indeed, exercise will affect body-mass by raising metabolism 

and thus increasing the body mass’ depreciation rate, )( tsδ , where 0,0 <> sss δδ . Also, 

food ingestion will be mapped to body-mass by a function )( tFg , where 0,0 <> FFF gg . 

These functions satisfy Inada conditions, namely 0lim,lim
0

=∞=
∞→→ ssss
δδ , 

0lim,lim
0

=∞=
∞→→ FFFF

gg . Hence the constraints of the problem are: 

)()( tt FgWsW +=
•

δ        (1) 

)1( tt syF −=         (2) 

 

Individual´s optimization problem: Given the initial body-mass stock, W0, the 

individual maximizes the discounted sum of instantaneous utility, 

dteWFu
o

dWt

tt

t

o∫
∞ −− ∫ ελρ ε )(

),( , by choosing the set of paths  { }∞=0,, tttt WFs  subject to (1)-(2), and 

the constraints [ ]1,0,0 ∈≥ tt sF , where ρ>0 is a constant discount factor. Under the 

assumption on the utility and depreciation functions, no corner solutions will occur.  
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Necessary condition for optimality: We define the current value Hamiltonian, 

ℜ→ℜ3:(.)H ,  as in 







+








−+

∫
=

−−

)(1),(),,(
)(

tt
t

t

dWt

ttttt FgW
y

F
eWFuWFH

t

o δµµ
ελρ ε

, 

where µt is the shadow price (costate variable) of food ingestion and (1)-(2) have been 

combined in a unique constraint. Maximizing H with respect to Ft yields the usual equality 

between marginal utility and marginal cost of food ingestion: 









−−=

∫−−

F
t

st

dWt

F g
y

W
eu

t

o δµ
ελρ ε )(

   (3) 

Since 0, >Fs gδ , µt<0. Let the present value shadow price be 









−−

=

∫
t

o

t
t

dWt ελρ

µ
ψ

ε )(exp

, then equation (3) yields an implicit demand function for food 

ingestion, ( )., tt WF ψ  Moreover, simply differentiation indicates .0,0 <> WFFψ  An 

exogenous increase in the shadow price of body-mass, which measures its marginal 

contribution,   will promote food ingestion and body-mass accumulation while an 

exogenous increase in body-mass will decrease food ingestion to offset the negative impact 

of the exogenous increase of body-mass.  Using these results we define the present value 

maximized Hamiltonian, H0 (where the time index was suppressed to simplify the notation) 

 

Definition. The maximized present value Hamiltonian, ℜ→ℜ 20 :(.)H , is given 

by: 

( ) ( )







+








−−+=≡ ),(),(1),,(),,(max),(0 ψ

ψ
δψψµψ WFgW

y
WFWWFuWFHWH

F
 (4) 
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This is a useful property because it allows us to describe the evolution of the 

variables of interest (F,s,W) in the space (W,ψ) by the following set of stationary 

differential equations: 

( )),(),(10 ψ
ψ

δψ WFgW
y

WFWH +







−−==

•
       (5) 

[ ] [ ]ψλρψψδψλρψ )(),(1)(0 W
y

WFuWH WW ++















−+−=++−=

•

  (6) 

and W0>0.   

Equation (6) can be interpreted as an arbitrage condition between current and future 

body-mass. To do so, note that equation (6) is an asset-pricing formula: ψ is the shadow 

price of body-mass in terms of current utility, 0
WH  is the return received by the individual 

(marginal contribution of body-mass to current utility), 
•

ψ  is the capital gain (change in the 

price of body-mass) and  [ ])(Wλρ +  is the return of increasing body-mass in the future, 

rather than today.  The variable [ ])(Wλρ +  will be denoted as “modified” discount factor, 

as it consider the impact of mortality rate on the discounting of future flow of utility. Note 

that 0
WH  is composed by two elements: the direct impact on current utility of an additional 

unit of body mass and the impact on body-mass depreciation. As a matter of notation, let 

define  [ ]ψλρψψδ )(),(1~ 0
tWW W

y
WFuH +−
















−+= . Thus, the variable 0~

WH  represents 

the net rate of return of body-mass, composed by the impact on current utility and  the 

effect on the discount rate of future utility flows.  
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II. CHARACTERIZATION OF THE EQUILIBRIA 

 

 
To describe the equilibrium, we focus on the phase diagram determined by the loci 

(5) and (6).  The slopes of the loci 0,0 ==
••

Wψ  are: 

0

0

0

0

0

0

~
~

ψψ

ψψ

ψ

ψ

ψ

W

WW

W

W

H
H

W

H
H

W

−=
∂
∂

−=
∂
∂

=

=

•

•

 

Simply differentiation shows that 0~,,0 000 <> ψψψψ WW HHH . Thus 0
0

>
∂
∂

=
•

WW
ψ . 

The sign of 0~
WWH  depends on: 

ψδψλ
y

F
uH W

sWWWWW +−=0~       (7) 

Note that 0~
WWH  is the impact of a marginal increase of body-mass on its net rate of 

return. Since 0,,0,, >< WsWWW Fu λδψ , the sign of 0~
WWH  is ambiguous.  

Thus, the result indicates that the net rate of return on body-mass is not 

monotonically decreasing. The intuition on this result relies on the following factors. 

Firstly, the direct impact on current utility, WWu , decreases the net rental rate from current 

body-mass, because individuals face larger negative effects on their marginal utility as 

body-mass raises. Secondly, there are other factors which affects the rental rate in the 

opposite direction. The modified discount factor raise through the impact on the mortality 

rate, providing less incentives to switch body-mass accumulation to the future. This is some 

type of “myopic” reaction as individuals care “less” about their future when body-mass 
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raises. In addition, the net rental rate might also be positively affected because at least part 

of the increase in body-mass can be depreciated.  To proceed with the analysis, we will 

distinguish two cases: (1) the net rental rate being globally decreasing, e.g. WHWW ∀≤ ,0~ 0  

and (2) the net rental rate not being globally decreasing, e.g. ranges of body-mass with  

0~ 0 ≤WWH  while others with the opposite condition.  

When WHWW ∀≤ ,0~ 0 , both loci cross once in the space   (W,ψ) and there exists a 

unique equilibrium. We may study the local stability of the system (5)-(6) by the use of a 

local approximation around the unique steady-state, (Wss,ψss) as in: 










−
−













−−
=












•

•

SS

SS

SS
W

SS
WW

SSSS
W WW

HH
HHW

ψψψ ψ

ψψψ
,0,0

,0,0

~~     (8) 

Where SS indicates evaluation at the steady state. Note that the determinant of (8) is 

negative with two real-valued eigenvalues. In fact, the eigenvalues are: 

2
42 cbb −±−

=γ  

Where ,0)(~ 00 >







++++=−= F

s
tWW g

y
W

FWHHb
δ

λδρ ψψψ
0000 ~~
WWWW HHHHc ψψψψ −= . 

and c is the determinant of (8). Since c<0, the eigenvalues are real-valued with opposite 

signs, thus there is saddle-path stability. To completely characterize the phase diagram note 

that to the right of the locus 0=
•

ψ , the shadow price raises since  0~ 0 >−=
∂
∂

•

WWH
W
ψ  while 

above the locus 0=
•

W , body-mass increases since 0>







+=

∂
∂

•

ψ
δ

ψ
Fg

y
W

F
s  . Figure 1 

illustrates this case. As shown in the figure, there is a unique equilibrium. This equilibrium 
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is stable with no oscillations. Thus, any deviation from the long run equilibrium is 

smoothly eliminated.  

 

Figure 1: Phase diagram, 0~
WWH  globally decreasing 

 

Next consider the case when 0~
WH  is not globally decreasing, e.g. there might exists 

ranges of values of body-mass in which 0~ 0 >WWH  while there are other ranges of values of 

W in which 0~ 0 <WWH . It follows that on the former case 0
0

>
∂
∂

=
•
ψ

ψ
W

 while the opposite 

holds on the later case.  This, in turn, implies that both loci might cross more than once and, 
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hence, there might be multiple stationary points. Some of them associated with 0~ 0 <WWH  

while others with 0~ 0 >WWH . 

 From above we know that in any stationary point in which 0~ 0 <WWH , there is saddle 

path stability, as the eigenvalues have opposite signs. Conversely, consider the case of an 

equilibrium associated with 0~ 0 >WWH . There are two cases to consider. Firstly,  suppose  

0~ 0 >≥ WWHθ  where θ>0 is chosen such that c<0 and thus 042 ≥− cb . Secondly, suppose 

θ>0~
WWH  such that c>0 and 042 <− cb . The first case has similar implications to an 

equilibrium in which 0~ 0 <WWH . However, the existence of an equilibrium in which 

0~ 0 >WWH  requires the locus 0=
•

ψ  to cross from below the locus 0=
•

W , and thus 

0
00

>
∂
∂

>
∂
∂

==
••

WWW
ψψ

ψ

. This condition is satisfied only when c>0. Therefore the first case 

might be discarded in an equilibrium in which 0~ 0 >WWH . We may conclude that in of these 

type of equilibria, the associated eigenvalues are complex with  negative real parts which 

implies the stationary point being stable and oscillating. Figure 2 illustrates the result with 

three equilibria. There are three equilibria because there is a unique range of value in which 

0~ 0 >WWH . All of the stationary points are stable and only one is oscillating.  

 Finally, note that in a stationary equilibrium, it holds:  

( )FgW
y
FW SS +







−−==

•

10 δ  

( )









−

=⇒

y
F

FgW SS

1δ
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Since 0, >sFg δ an increase in the stationary body-mass requires larger food 

ingestion. Also from (2), larger food ingestion implies less time spent exercising. Thus, we 

may conclude that an equilibrium with larger body-mass is associated with  larger food 

ingestion and less exercise. 

Figure 2: Phase diagram, 0~
WWH not globally decreasing, complex eigenvalues 

 

 

  



 14

III. Discussion 

 
Figure 2 illustrates the existence of three equilibria. Those equilibria can be ranked 

as a function of their associated body-mass. If point B is associated with a “normal” weight 

individual, point A would represent an equilibrium state of underweightness while point C 

would represent an equilibrium state of overweightness. 

The persistence of these equilibria is assured by their property of stability. This 

pattern might explain why individuals gain weight loss occurred through dieting. It seems 

interesting that the equilibrium associated with point B presents oscillations until 

convergence is acquired. In that case dieters should, after finishing their diet, gain initially 

more weight than the weight they lost and later, should converge to their initial weight. 

Similarly, obese (point C) or anorexic (point A) individuals would require large shocks in 

their body-mass to converge to an equilibrium such B. Small deviations would bring them 

back to the saddle-path corresponding to their initial equilibrium and therefore, they would 

converge back to their initial body-mass. This pattern would explain the necessity of acute 

treatment to individuals with eating disorders. 

Point A is characterized by negative rate of return on body-mass, e.g. 0~ 0 <WWH . 

This means that, even though the individual values food ingestion, she perceives that 

increasing marginally body-mass has a large negative impact on their current marginal 

utility throughout the effect of WWu . Hence, the individual is willing to eat less and exercise 

more to obtain larger current utility. Individuals at B are characterized by 0~ 0 >WWH . This 

result means that they choose the equilibrium by providing more relevance to the impact on 

the modified discount factor, and thus to the future flow of utility, rather tan to current flow 
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of utility.  In fact, those individuals obtain larger utility flow from food ingestion compared 

to individuals in A, and thus accept larger body-mass. However, they stop accumulating 

body-mass as they perceive the negative effect on the survival  rate, which is much more 

important to them than the negative impact on their current utility. Finally, individuals in 

point C are individuals that obtains larger utility flows from food ingestion, compared with 

individuals at A and B, and thus accumulate intensively body-mass. As individuals in A, 

they decide to stop accumulating body-mass when they perceive a large negative impact on 

their current utility due to body-mass (those individuals, given the property of  the utility 

function, face a really large negative marginal utility of weight).   

It is clear that individuals in state of anorexia (point A) or obesity (point C) are 

individuals who behave as “myopic” agents. In fact, the way they choose body-mass is by 

weighting more intensively their current utility compared to their future utility. Conversely, 

individuals at B do not have the “myopic” behavior and consider the impact of larger body-

mass on their future utility.  

Finally, note that in figure 2, even when there are three possible equilibria, only one 

is chosen. How is the equilibrium chosen? The equilibrium will depend on W0, the initial 

body-mass. In fact, when W0 is on the neighbor of point A, the long run equilibrium is A 

and the transition occurs through its saddle-path. Similarly to C and B, while in B the 

transition occurs through oscillations. Hence in this study the influence of genetics, 

psychological and social factors can be rationalized by their influence on W0. Once the 

initial body-mass is set, due to the influence of those factors, individuals’ rational behavior 

-highlighted in the model above developed- is reflected in the equilibrium body-mass  

which, in some cases, might be associated with eating disorders.   
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