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Abstract

Two approaches for model-based clustering of categorical time series based on time-

homogeneous first-order Markov chains are discussed. For Markov chain clustering the in-

dividual transition probabilities are fixed to a group-specific transition matrix. In a new

approach called Dirichlet multinomial clustering the rows of the individual transition matri-

ces deviate from the group mean and follow a Dirichlet distribution with unknown group-

specific hyperparameters. Estimation is carried out through Markov chain Monte Carlo.

Various well-known clustering criteria are applied to select the number of groups. An appli-

cation to a panel of Austrian wage mobility data leads to an interesting segmentation of the

Austrian labor market.
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1 Introduction

In many areas of applied statistics like economics, finance or public health it is often desirable to

find groups of similar time series in a set or panel of time series that are unlabeled a priori. To

this aim, clustering techniques are required which determine subsets of similar time series within

the panel. However, distance-based clustering methods cannot be easily extended to time series

data, where an appropriate distance-measure is rather difficult to define, see e.g. the review by

Liao (2005).

As opposed to that, Frühwirth-Schnatter and Kaufmann (2008) demonstrated recently that

model-based clustering based on finite mixture models (Banfield and Raftery, 1993; Fraley and

Raftery, 2002) extends to time series data in quite a natural way. The crucial point in model-

based clustering is to select an appropriate clustering kernel in terms of a sampling density

which captures salient features of the observed time series. Various such clustering kernels

were suggested for panels with real-valued time series observations by Frühwirth-Schnatter and

Kaufmann (2008). Recently, Juárez and Steel (2009) suggested to use skew-t distributions to

capture skewness in the cluster-specific sampling density.

In the present paper we are interested in clustering discrete-valued time series which are con-

sidered as outcomes of a categorical variable with several states. In our econometric application

in Section 5, we will study individual wage mobility in the Austrian labor market. Wage mobil-

ity describes chances but also risks of an individual to move between wage categories over time.

The analysis is based on a panel reporting for young men entering the labor market between

1975 and 1980 their wage category in May of successive years. To give a more detailed picture of

this panel several individual time series showing wage careers for a few employees are presented

in Figure 1. The wage career is similar for some of them and quite different for others. The

panel contains almost ten thousand of such wage careers and we are interested in searching for

clusters of individuals with similar wage mobility behavior.

For such discrete-valued time series it is particularly difficult to define distance measures

and model-based clustering appears to be a promising alternative. To capture the dynamics

inherit in such data we consider two clustering kernels both of which are based on first-order

time-homogeneous Markov chain models.
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The first approach, called Markov chain clustering, assumes that for all time series within

a cluster the transition behavior could be sufficiently described by the same cluster-specific

transition matrix. Several papers found such an approach useful for clustering discrete-valued

time series, see for instance Cadez et al. (2003) who clustered users according to their behavior

on a web site and Ramoni et al. (2002) who clustered sensor data from mobile robots. Fougère

and Kamionka (2003) considered a mover-stayer model in continuous time which is a constrained

mixture of two Markov chains to incorporate a simple form of heterogeneity across individual

labor market transition data. Mixtures of time-homogeneous Markov chains both in continuous

and discrete time are also considered in Frydman (2005) including an application to bond ratings

migration.

Markov chain clustering could be viewed as fitting a dynamic multinomial model with cluster-

specific parameters to each time series in the panel. While such a model allows the transition

behavior to be different across clusters, it does not account for differences between individuals

within a cluster. One way to capture unobserved heterogeneity within a cluster is to consider

finite mixtures of random-effects models. Such models turned out to be useful in economic

growth analysis, see e.g. Canova (2004) and Frühwirth-Schnatter and Kaufmann (2008), and

in marketing research, see e.g. Lenk and DeSarbo (2000), Frühwirth-Schnatter et al. (2004),

and Rossi et al. (2005). Our second clustering approach, called Dirichlet multinomial clustering,

could be viewed as such a finite mixture of random-effects models, designed specifically to capture

unobserved heterogeneity in the transition behavior across time series within a cluster. Such

a model may be regarded as a mixture of Markov chain models where within each cluster the

individual transition matrix of each time series deviates from an average group-specific transition

matrix according to a Dirichlet distribution.

For estimation, we pursue a Bayesian approach which offers several advantages compared to

EM estimation considered in Cadez et al. (2003) and Frydman (2005). In particular, Bayesian

inference easily copes with problems that occur with ML estimation if for any cluster no transi-

tions are observed in the data for any cell of the cluster-specific transition matrix. A Bayesian

approach to Markov chain clustering has been used earlier by Ramoni et al. (2002) who applied

a heuristic search method to find a good partition of the data. In the present paper we follow

Frühwirth-Schnatter and Kaufmann (2008) and use a two-block Markov chain Monte Carlo sam-
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pler for both clustering methods. A similar sampler has been used by Fougère and Kamionka

(2003) for the special case of a mover-stayer model.

The remaining paper is organized as follows. Section 2 discusses Markov chain clustering

as well as Dirichlet multinomial clustering. Bayesian estimation is considered in Section 3. In

Section 4 we give a short review of some well-known criteria for selecting the number of groups.

Model-based clustering is applied in Section 5 to a large panel of Austrian wage mobility data

extending earlier work by Fougère and Kamionka (2003) for the French labor market. Section 6

concludes.

2 Clustering through Finite Mixtures of Markov Chain Models

2.1 Model-Based Clustering of Categorical Time Series

Let {yit} , t = 0, . . . , Ti be a panel of categorical time series observed for N units i = 1, . . . , N

where the number Ti of individual observations can vary from individual to individual. The

observation yit of individual i at time t arises from a categorical variable with K potential states

labelled by k ∈ {1, . . . ,K}.
Model-based clustering as introduced by Frühwirth-Schnatter and Kaufmann (2008) is based

on formulating a clustering kernel for an individual time series yi = {yi0, . . . , yi,Ti} in terms of

a sampling density p(yi|ϑ), where ϑ is an unknown model parameter. It is assumed that the N

time series arise from H hidden groups, whereby within each group, say h, the clustering kernel

p(yi|ϑh) could be used for describing all time series in this group.

A latent group indicator Si taking a value in the set {1, . . . , H} is introduced for each time

series yi to indicate which cluster the time series belongs to:

p(yi|Si,ϑ1, . . . ,ϑH) = p(yi|ϑSi) =





p(yi|ϑ1), if Si = 1,

...
...

p(yi|ϑH), if Si = H.

(1)

It is assumed that S1, . . . , SN are a priori independent and Pr(Si = h) = ηh, where ηh is equal

to the relative size of cluster h, i.e.
∑H

h=1 ηh = 1.

An important aspect of model-based clustering is that we do not assume to know a priori
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which time series belong to which group and the group indicators S = (S1, . . . , SN ) are estimated

along with the group-specific parameters (ϑ1, . . . ,ϑH) and the group sizes η = (η1, . . . , ηH) from

the data, see Section 3 for more details.

2.2 Markov Chain Clustering

An important building block for clustering discrete-valued time series is the first-order time-

homogeneous Markov chain model characterized by the transition matrix ξ, where

ξjk = Pr(yit = k|yi,t−1 = j), j, k = 1, . . . , K and
K∑

k=1

ξjk = 1. (2)

ξjk represents the probability of the event that yit takes the value k at time t given it took

the value j at time t− 1. Evidently, each row ξj· = (ξj1, . . . , ξjK) of ξ represents a probability

distribution over the discrete set {1, . . . , K}. An individual time series yi is said to be generated

by a Markov chain model with transition matrix ξ, if the sampling distribution p(yi|ξ) of yi

given ξ reads:

p(yi|ξ) =
Ti∏

t=1

p(yit|yi,t−1, ξ) =
Ti∏

t=1

ξyi,t−1,yit =
K∏

j=1

K∏

k=1

ξ
Ni,jk

jk , (3)

where

Ni,jk = #{yit = k, yi,t−1 = j} (4)

is the number of transitions from state j to state k observed in time series i. Note that in (3)

we condition on the first observation yi0.

Markov chain clustering is based on the assumption that within each cluster such a Markov

chain model with group-specific transition matrix ξh could be used as clustering kernel. In the

notation of Subsection 2.1 the group-specific parameter ϑh is equal to ξh and the time series

model p(yi|ϑh) used for clustering in (1) is equal to the sampling distribution defined in (3):

p(yi|Si = h, ξ1, . . . , ξH) = p(yi|ξh) =
K∏

j=1

K∏

k=1

ξ
Ni,jk

h,jk . (5)
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A special version of this clustering method has been applied in Fougère and Kamionka (2003) who

considered a mover-stayer model where H = 2 and ξ1 is equal to the identity matrix while only

ξ2 is unconstrained. Frydman (2005) considered another constrained mixture of Markov chain

models where the transition matrices ξh, h ≥ 2, are related to the transition matrix ξ1 of the first

group through ξh = I−Λh(I−ξ1) where I is the identity matrix and Λh = Diag (λh,1, . . . , λh,K)

with 0 ≤ λh,j ≤ 1/(1− ξ1,jj) for j = 1, . . . , K.

In contrast to these approaches we assume that the transition matrices ξ1, . . . , ξH are entirely

unconstrained which leads to more flexibility in capturing differences in the transition behavior

between the groups.

2.3 Finite Mixtures of Dynamic Random Coefficient Multinomial Logit Mod-

els

To extend Markov chain clustering, we rewrite the first-order time-homogeneous Markov chain

model defined in (2) as a dynamic multinomial logit model:

ξjk = Pr(yit = k|yi,t−1 = j) =
exp(γjk)∑K
l=1 exp(γjl)

, (6)

where the (K ×K)-dimensional transition matrix ξ is parameterized in terms of the (K ×K)-

dimensional coefficient matrix γ with elements γjk. For each row of γ, some normalization is

required to achieve identifiability. It could be assumed, for instance, that γj,k0 = 0 for some

baseline category k0.

Next, we consider the random utility model (McFadden, 1974) corresponding to model (6):

ukit =
K∑

j=1

γjkI{yi,t−1=j} + εkit, k = 1, . . . , K, (7)

yit = k ⇔ ukit = max
l∈{1,...,K}

ulit,

where ε1it, . . . , εKit are independent random utility shocks each following a type-I extreme value

distribution.

Thus the first-order time-homogeneous Markov chain model implies that any two individuals

i and i′ being in the same state j at time t− 1 have exactly the same expected utility of moving
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to category k. However, such a model appears to be too restrictive, because the expected utility

of moving to category k is likely to depend on more factors than just the immediate past.

To account for unobserved heterogeneity in the individual transition behavior a dynamic

random coefficient multinomial logit model may be considered where for each individual i the

coefficient matrix γs
i is a random coefficient drawn from some distribution p(γs

i ):

ukit =
K∑

j=1

γs
i,jkI{yi,t−1=j} + εkit, k = 1, . . . ,K, (8)

where γs
i,jk is the (j, k)th element of γs

i .

A crucial point in this model is the choice of the distribution of heterogeneity p(γs
i ). Markov

chain clustering as discussed in Subsection 2.2 corresponds to the assumption that p(γs
i ) is a

discrete distribution with H support points. To obtain more flexibility, one could follow Rossi

et al. (2005) and assume that p(γs
i ) may be described by a multivariate finite mixture of normal

distributions, i.e.:

p(γs
i ) =

H∑

h=1

ηhp(γs
i |ϑh), (9)

where p(γs
i |ϑh) is the density of a multivariate normal distribution and the group-specific pa-

rameter ϑh contains the unknown mean vector and all distinct parameters of the unknown

variance-covariance matrix.

It is, in principle, possible to cluster panels of categorical time-series using such a multinomial

model with random-effects as clustering kernel. However, in this general form the model involves

the estimation of the covariance matrix of the distribution of random effects for each cluster and

for this reason might be intractable for the purpose of clustering short individual time series

with possibly many categories. To obtain a more parsimonious clustering kernel one could use

constrained covariance matrices in the random effects distribution (9), like diagonal matrices.

However, a general drawback of choosing a normal distribution as clustering kernel, either with

an arbitrary or a constrained covariance matrix, is that the marginal distribution p(yi|ϑh) is not

available in closed form, because the integral
∫

p(yi|γs
i )p(γs

i )d γs
i cannot be solved analytically.

Subsequently, we consider a distribution of heterogeneity p(γs
i ) which is a finite mixture
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distribution as in (9), however, the group-specific distribution p(γs
i |ϑh) is different from Rossi

et al. (2005) and is defined as follows. We assume that within each cluster h all elements γs
i,jk of

γs
i are independent random coefficients each following a log-Gamma distribution with a cluster

and element-specific shape parameter eh,jk and common scaling parameter equal to 1:

γs
i,jk|Si = h ∼ log G (eh,jk, 1) , j, k = 1, . . . , K. (10)

The mean and the variance of γs
i,jk are given by

E(γs
i,jk|Si = h) = −ψ(eh,jk), Var(γs

i,jk|Si = h) = ψ′(eh,jk), (11)

where ψ(s) = Γ′(s)/Γ(s) and Γ(s) is the Gamma distribution, see e.g. Balakrishnan (1992,

Appendix 18.2.A) or Frühwirth-Schnatter et al. (2009, Appendix A.1).

Note that we do not force identifiability, but leave all elements γs
i,jk of the (K × K) ma-

trix γs
i unconstrained. This distribution is, to a certain extent, related to a finite mixture of

spherical normal distributions, however, the distribution of heterogeneity is skewed rather than

symmetric. Choosing this group-specific distribution of heterogeneity has two distinct advan-

tages compared to choosing a normal distribution as in Rossi et al. (2005). As will be discussed

subsequently in Subsection 2.4, it leads to a closed form for the heterogeneity distribution of the

individual transition matrices ξs
i corresponding to the coefficient matrix γs

i and allows a closed

form expression for the clustering kernel, i.e. the distribution p(yi|ϑh) of the individual times

yi given the group-specific parameter ϑh.

2.4 Dirichlet Multinomial Clustering

It is possible to rewrite the finite mixture of random coefficient multinomial logit models intro-

duced in (8), (9) and (10) in the following way. Each individual time series yi is generated by a

Markov chain model with individual transition matrix ξs
i where the element ξs

i,jk is determined

by the jth row of the random coefficient matrix γs
i :

ξs
i,jk =

exp(γs
i,jk)∑K

l=1 exp(γs
i,jl)

. (12)
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The sampling distribution of yi given ξs
i is obtained from (3):

p(yi|ξs
i ) =

K∏

j=1

K∏

k=1

(ξs
i,jk)

Ni,jk . (13)

Furthermore, within each cluster h the heterogeneity distribution of the individual transition

matrix ξs
i is available in closed form. The independence assumption for the elements of γs

i implies

that in each cluster the rows ξs
i,j· are independent apriori. From (10) we obtain for all elements

in row ξs
i,j· that exp(γs

i,jk)|Si = h ∼ G (eh,jk, 1). Hence it follows immediately from (12) that each

row ξs
i,j· follows a Dirichlet distribution with cluster-specific parameter eh,j· = (eh,j1, . . . , eh,jK):

ξs
i,j·|(Si = h) ∼ D (eh,j1, . . . , eh,jK) , j = 1, . . . , K. (14)

For H = 1, this model is closely related to the Dirichlet multinomial model as for each row

ξs
i,j· of ξs

i the multinomial distribution for the number of transitions starting from state j is

combined with a Dirichlet prior on the cell probabilities. For H > 1, such a Dirichlet multinomial

model is used as clustering kernel, hence the method is called Dirichlet multinomial clustering.

The group-specific parameter ϑh is identical with the (K ×K)-dimensional parameter matrix

eh = {eh,j·, j = 1, . . . , K} appearing in (14).

A distinctive advantage of modeling the distribution of heterogeneity in this way is that the

clustering kernel p(yi|Si = h, e1, . . . , eH) = p(yi|eh) where ξs
i is integrated out is available in

closed form. Hence, the clustering kernel may be entirely characterized by the group-specific

parameter eh. This is easily verified by combining (13) and (14):

p(yi|eh) =
∫

p(yi|ξs
i )p(ξs

i |eh)dξs
i =

=

∏K
j=1 Γ(

∑K
k=1 eh,jk)∏K

j=1

∏K
k=1 Γ(eh,jk)

∫ K∏

k=1

K∏

j=1

(ξs
i,jk)

Ni,jk+eh,jk−1dξs
i,jk =

=

∏K
j=1 Γ(

∑K
k=1 eh,jk)∏K

j=1

∏K
k=1 Γ(eh,jk)

∏K
j=1

∏K
k=1 Γ(Ni,jk + eh,jk)∏K

j=1 Γ(
∑K

k=1(Ni,jk + eh,jk))
. (15)

It is evident from (15) that this clustering kernel no longer is a first-order Markov process but

allows for higher order dependence.

8



Next, we study the group-specific transition behavior implied by the parameter eh in more

detail. Each group may be characterized by the average group-specific transition matrix ξh

given by the expected value of the individual transition matrix ξs
i in group h:

ξh,jk = E(ξs
i,jk|Si = h, eh) =

eh,jk∑K
l=1 eh,jl

. (16)

From this formula it follows that each row of eh determines the corresponding row in the group-

specific transition matrix ξh. The matrices ξ1, . . . , ξH may be compared to the corresponding

matrices in the Markov chain clustering approach studied in Subsection 2.2.

While for Markov chain clustering the individual transition matrix ξs
i is equal to the group-

specific transition matrix ξh for all individuals in group h, ξs
i is allowed to be different from

ξh for Dirichlet multinomial clustering. The variability of ξs
i within each group is given by the

variance of the individual transition probabilities ξs
i,jk:

Var(ξs
i,jk|Si = h, eh) =

eh,jk
∑

l 6=k eh,jl(∑K
l=1 eh,jl

)2 (
1 +

∑K
l=1 eh,jl

) . (17)

It can easily be shown that

Var(ξs
i,jk|Si = h, eh)

E(ξs
i,jk|Si = h, eh) (1− E(ξs

i,jk|Si = h, eh))
=

1

1 +
∑K

l=1 eh,jl

. (18)

As the right hand side of (18) is the same for all elements of row ξs
i,j·, a single parameter

depending only on the row sum Σhj =
∑K

l=1 eh,jl controls variability for all elements in the jth

row of group h. Thus the row sums of eh are a measure of heterogeneity in the corresponding rows

of ξs
i in group h. The smaller Σhj , the more variable are the individual transition probabilities

and the larger deviations of ξs
i,j· from the group mean ξh,j· are to be expected. On the other

hand, if Σhj is very large, then variability in row j is very small meaning that the individual

transition probabilities are nearly equal to the group mean ξh,j·. If this is the case for all rows

in all groups, Dirichlet multinomial clustering reduces to Markov chain clustering.

Note that Dirichlet multinomial clustering provides a very parsimonious way of introducing

group-specific unobserved heterogeneity in individual transition matrices. While the dimension

of the group-specific parameter ϑh = ξh is equal to K(K − 1) for Markov chain clustering,
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the dimension of ϑh = eh is equal to K2 for Dirichlet multinomial clustering, introducing only

K additional parameters for each group. Each of these K parameters controls group-specific

unobserved heterogeneity in exactly one row of ξs
i .

3 Bayesian Inference for a Fixed Number of Clusters

In this paper we pursue a Bayesian approach toward estimation for fixed H. We assume prior

independence between ϑ1, . . . , ϑH and η. We apply the Dirichlet prior η ∼ D (α0, . . . , α0) which

is commonly used in mixture modeling, see e.g. Frühwirth-Schnatter (2006), and choose specific

priors p(ϑh) for ϑh, depending on the clustering kernel. For practical Bayesian estimation we

use a Markov chain Monte Carlo (MCMC) sampler based on data augmentation as in Frühwirth-

Schnatter and Kaufmann (2008) which is described in Algorithm 1.

Algorithm 1.

1. Bayes’ classification for each individual i: draw Si, i = 1, . . . , N from the discrete proba-

bility distribution

Pr(Si = h|yi, η, ϑ1, . . . ,ϑH) ∝ p(yi|ϑh)ηh, h = 1, . . . ,H. (19)

2. Sample mixing proportions η = (η1, . . . , ηH): draw η from the Dirichlet distribution

D (α1, . . . , αH) where αh = #{Si = h}+ α0.

3. Sample component parameters ϑ1, . . . , ϑH : draw ϑh from p(ϑh|S,y), h = 1, . . . ,H.

This algorithm has been applied by Fougère and Kamionka (2003) for the special case of a

mover-stayer model and has been mentioned in a short note by Ridgeway and Altschuler (1998).

An alternative Bayesian approach has been used by Ramoni et al. (2002) who apply a heuristic

search method for finding a good partition S of the data based on the marginal likelihood

function p(y|S) where ϑ1, . . . , ϑH are integrated out.

3.1 Bayesian Inference for Markov Chain Clustering

As the likelihood function of the Markov chain model given in (5) factors into K independent

terms each depending only on the j-th row of the transition matrix we assume that the rows of
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ξh are a priori independent each following a Dirichlet distribution, i.e. ξh,j · ∼ D (e0,j1, . . . , e0,jK)

with prior parameters e0,j· = (e0,j1, . . . , e0,jK) for j = 1, . . . , K. This prior is conjugate to the

complete data likelihood and allows straightforward implementation of Markov chain Monte

Carlo estimation as in Algorithm 1 with ϑh = ξh, h = 1, . . . , H.

Classification in step 1 is based on the Markov chain model p(yi|ϑh) = p(yi|ξh) defined

in (5). The complete data posterior distribution p(ξ1, . . . , ξH |S,y) appearing in the third step

where classifications S are considered to be known is of closed form due to conjugacy:

p(ξ1, . . . , ξH |S,y) ∝
N∏

i=1

p(yi|ξSi
)

H∏

h=1

p(ξh) =
N∏

i=1

K∏

j=1

K∏

k=1

(ξSi,jk)
Ni,jk

H∏

h=1

p(ξh)

∝
H∏

h=1

K∏

j=1

(
K∏

k=1

(ξh,jk)
Nh

jk+e0,jk−1

)
,

where Nh
jk =

∑
i:Si=h Ni,jk is the total number of transitions from j to k observed in group h

and is determined from the transitions Ni,jk for all individuals falling into that particular group.

The various rows ξh,j · of the transition matrices ξ1, . . . , ξH are conditionally independent

and may be sampled line-by-line from a total of KH Dirichlet distributions:

ξh,j ·|S,y ∼ D
(
e0,j1 + Nh

j1, . . . , e0,jK + Nh
jK

)
j = 1, . . . , K, h = 1, . . . , H.

The Bayesian approach offers several advantages in the context of Markov chain clustering

compared to EM estimation as in Cadez et al. (2003) or Frydman (2005). First, in many

applications the diagonal elements in the transition matrices are expected to be rather high

whereas the off-diagonal probabilities are comparatively low and the Bayesian approach allows

to incorporate this information by setting the prior parameters adequately.

Second, the Bayesian approach based on a Dirichlet prior D (e0,j1, . . . , e0,jK) where e0,jk > 0

is able to handle problems that occur under zero transitions when applying the EM algorithm to

Markov chain clustering. The EM algorithm breaks down, if no transitions starting from j are

observed in group h, i.e.
∑K

k=1 Nh
jk = 0 for some j. Then the complete data likelihood function

11



p(y|ξ1, . . . , ξH ,S) is independent of the jth row of ξh, ξh,j·:

p(y|ξ1, . . . , ξH ,S) =
H∏

h=1

K∏

l=1

K∏

k=1

(ξh,lk)Nh
lk =

H∏

h=1

K∏

l=1,l 6=j

K∏

k=1

(ξh,lk)Nh
lk ,

and no estimator for ξh,j· exists in the M-step. Additionally, the EM algorithm fails if not

a single transition from j to k is observed for the whole panel. In this case Nh
jk = 0 for all

h = 1, . . . , H and the M-step leads to an estimator of ξh,jk that lies on the boundary of the

parameter space, i.e. ξ̂h,jk = 0 for h = 1, . . . , H. This causes difficulties with the computation

of Pr(Si = h|yi, η̂, ξ̂1, . . . , ξ̂H) for all observations in all groups in the subsequent E-step.

To avoid these problems one could follow the rule of thumbs discussed e.g. in Agresti (1990)

and add a small constant e0,jk, e.g. e0,jk = 0.5 to the number of observed transitions. It is easy

to verify that this is equivalent to combining the complete data likelihood p(y|ξ1, . . . , ξH ,S)

with a Dirichlet prior D (e0,j1, . . . , e0,jK) for each row ξh,j· within our Bayesian approach.

3.2 Bayesian Inference for Dirichlet Multinomial Clustering

3.2.1 Prior Distributions

For Bayesian estimation a prior has to be chosen for each group-specific parameter eh, h =

1, . . . , H which is a matrix of size (K × K). In contrast to Subsection 3.1 no conjugate prior

allowing straightforward MCMC estimation is available, however, the structure of the complete

data likelihood to be discussed in Subsection 3.2.2 still suggests to assume that all rows eh,j· are

independent within and across each group.

To avoid all problems with empty transitions that have been discussed in Subsection 3.1 we

assume that eh,j· ≥ 1 for all rows in all groups. To take dependencies between the elements

of eh,j· into account we assume that eh,j· − 1 is a discrete-valued multivariate random variable

following a negative multinomial distribution, eh,j· − 1 ∼ NegMulNom (pj1, . . . , pjK , β), where

pjk =
N0 · ξ̂jk

α + N0
.

This prior depends on the hyperparameters N0, β, α and ξ̂jk, the choice of which is discussed
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below. The density of this prior reads:

p(eh,j·) =
Γ(β −K +

∑K
k=1 eh,jk)

Γ(β)
∏K

k=1(eh,jk − 1)!
pβ

j0

K∏

k=1

p
eh,jk−1
jk ,

where pj0 = 1−∑K
k=1 pjk, while expectation and variance are given by:

E(eh,jk) = 1 +
β pjk

pj0
=

β

α
N0ξ̂jk,

Var(eh,jk) =
β pjk(pjk + pj0)

p2
j0

=
β ·N0ξ̂jk(N0ξ̂jk + α)

α2

= E(eh,jk − 1)
(

E(eh,jk − 1)
β

+ 1
)

.

The negative multinomial distribution arises as a mixture distribution, if the K elements of

eh,j· are independent random variables from the following Poisson distribution: eh,jk − 1 ∼
P (γλjk) with γ ∼ G (α, β). After integrating over γ, the marginal distribution reads eh,j·− 1 ∼
NegMulNom (pj1, . . . , pjK , β)-distribution with pjk = λjk/(α +

∑K
l=1 λjl).

This representation suggests choosing following hyperparameters: λjk = N0ξ̂jk, where N0

is the size of an imaginary experiment, e.g. N0 = 10, and ξ̂ is a prior guess of the transition

matrix, while α and β are small integers, e.g. α = β = 1.

Alternatively, it is possible to assume that each element of eh,j· − 1 is a continuous random

variable following independently some prior distribution, for instance, the Gamma distribution

eh,jk − 1 ∼ G (bjk, 1) where bjk = N0ξ̂jk. However, we do not pursue this form of a prior

distribution in the present paper.

3.2.2 MCMC Estimation

The parameters e1, . . . , eH , η and the hidden indicators S are jointly estimated by MCMC

sampling using Algorithm 1 where ϑh = eh. Classification in the first step of Algorithm 1 is

based on the marginal time series model p(yi|ϑh) = p(yi|eh) defined in (15).

The third step of Algorithm 1 is the only step which is essentially different from the corre-

sponding step for Markov chain clustering. To implement this step the complete data posterior

distribution p(e1, . . . , eH |S,y) where the classifications S are considered to be known for each
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individual is derived:

p(e1, . . . , eH |S,y) ∝
N∏

i=1

p(yi|eSi)
H∏

h=1

p(eh) =
H∏

h=1

p(eh)
∏

i:Si=h

K∏

j=1

p(yi|eh,j·)

∝
H∏

h=1

K∏

j=1

p(eh,j·)
Γ(

∑K
k=1 eh,jk)Nh

(∏K
k=1 Γ(eh,jk)

)Nh


 ∏

i:Si=h

∏K
k=1 Γ(Ni,jk + eh,jk)

Γ(
∑K

k=1(Ni,jk + eh,jk))


 , (20)

where Nh is the number of time series in group h. Note that the KH rows eh,j· of e1, . . . , eH

are independent, however, the conditional posterior p(eh,j·|y,S) given by

p(eh,j·|y,S) ∝ p(eh,j·)
Γ(

∑K
k=1 eh,jk)Nh

(∏K
k=1 Γ(eh,jk)

)Nh


 ∏

i:Si=h

∏K
k=1 Γ(Ni,jk + eh,jk)

Γ(
∑K

k=1(Ni,jk + eh,jk))




is no longer of closed form. Thus the group-specific parameters e1, . . . , eH are sampled line-by-

line by drawing each row eh,j· from p(eh,j·|y,S) by means of a Metropolis-Hastings algorithm.

As the computation of p(eh,j·|y,S) is rather time-consuming we decided to update only

l ≤ K elements per row simultaneously while the other elements remained unchanged. As these

elements are randomly chosen, this is a valid updating strategy to reduce computation time

which comes at the cost of possibly higher autocorrelations than updating all elements.

We propose each element eh,jk to be updated independently from a discrete random walk

proposal density q(eh,jk|e(m−1)
h,jk ) since the support of eh,jk are the natural numbers according to

our prior assumption. If e
(m−1)
h,jk ≥ 2 we add with equal probability−1, 0 or 1, if e

(m−1)
h,jk = 1 we add

0 or 1. This proposal is equivalent to a uniform distribution on [max(1, e(m−1)
h,jk − 1), e(m−1)

h,jk + 1].

We accept the proposed value enew
h,j· with probability min(1, r) where

r =
p(enew

h,j· |y,S) q(e(m−1)
h,j· |enew

h,j· )

p(e(m−1)
h,j· |y,S) q(enew

h,j· |e(m−1)
h,j· )

.

Note that our MCMC implementation avoids the expensive generation of the individual

transition matrices ξs
1, . . . , ξ

s
N during each iteration. Such a step would require drawing all K

rows ξs
i,j· of ξs

i for each i = 1, . . . , N from

ξs
i,j·|(Si = h, eh,y) ∼ D (eh,j1 + Ni,j1, . . . , eh,jK + Ni,jK) ,
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where Ni,jk is the number of transitions from state j to k of individual i, see (4).

In our labor market application in Section 5, for instance, where we are dealing with nearly

10 000 time series and K = 6 categories, this would require sampling from about 60 000 Dirich-

let distributions which in turn means sampling about 360 000 random variables from a Gamma

distribution for each MCMC sweep. This expensive step can be avoided under the special struc-

ture of the distribution of heterogeneity underlying Dirichlet multinomial clustering, because

the density p(yi|eSi) is available in closed form.

4 Selecting the Number of Clusters

If a finite mixture model is applied to model the distribution of the data in a flexible way, selecting

the number of components H reduces to a model selection problem which could be solved by

computing marginal likelihoods or running some model space methods, see e.g. Frühwirth-

Schnatter (2006, Chapter 4 and 5).

In a clustering context, however, it is not so clear how to select an optimal number of

components. Most clustering criteria are based on measuring model fit through some kind of

likelihood function which is then penalized in an appropriate way to avoid overfitting. For any

of these criteria the optimal number H of clusters is defined as that value of H which minimizes

the criterion. Subsequently, θH denotes the model parameter in a finite mixture model with H

components, i.e. θH = (ϑ1, . . . , ϑH , η1, . . . , ηH).

The most popular model selection criteria are AIC (Akaike, 1974) and BIC (Schwarz, 1978)

which penalize the log mixture likelihood by model complexity defined as the total number dH

of independent parameters to be estimated in a mixture model with H components:

AIC(H) = −2 log p(y|θ̂H) + 2 dH , (21)

BIC(H) = −2 log p(y|θ̂H) + dH log N, (22)

where θ̂H is the ML estimator maximizing the log mixture likelihood log p(y|θH) given by:

log p(y|θH) =
N∑

i=1

log

(
H∑

h=1

ηh p(yi|ϑh)

)
. (23)
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Because the ML estimator is not available within the framework of MCMC estimation, θ̂H is

chosen as that posterior draw which maximizes the log mixture likelihood log p(y|θH).

AIC is generally known to be overfitting and tends to select too many components also when

fitting a finite mixture model with unknown number of components to the data. This happens

even if the clustering kernel is correctly specified.

BIC is an asymptotic approximation to minus twice the marginal likelihood −2 log p(y|H),

see e.g. Kass and Raftery (1995). Because the posterior probability of a model is the higher

the smaller BIC, this criterion could be used to compare various clustering kernels for the

same number H of components. However, one should be cautious when using BIC to select

the number of clusters in the data. Only if the data form H well-separated clusters and the

clustering kernels appearing in the finite mixture model are chosen from the true cluster-specific

distribution, then the number of components in the mixture selected by BIC is asymptotically

equal to the number of clusters due to a consistency result proven by Keribin (2000).

However, the number of components in the mixture selected by BIC need not be identical

with the number of clusters in the data, if at least one of these assumptions is violated. First of

all, BIC is not good a estimator for the number of distinct clusters, if the component densities

are strongly overlapping. Furthermore, simulation studies reported in Biernacki et al. (2000)

show that BIC typically overrates the number of clusters if the distribution underlying the

clustering kernel is not identical with the true cluster-specific distribution.

Approximate weight of evidence (AWE) which is derived in Banfield and Raftery (1993)

as another approximation to minus twice the log Bayes factor is expressed in Biernacki and

Govaert (1997) as a criterion which penalizes the complete data log-likelihood function with

model complexity:

AWE(H) = −2 log p(y, Ŝ|θ̂C

H) + 2 dH(
3
2

+ log N), (24)

where θ̂
C

H and Ŝ are determined jointly as that combination of parameters and allocations that

maximize the complete data log-likelihood log p(y,S|θH) given by

log p(y,S|θH) =
N∑

i=1

log (ηSip(yi|ϑSi)) . (25)
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Again, approximate estimators θ̂
C

H and Ŝ are obtained by choosing the posterior draw maximiz-

ing the complete data log-likelihood function.

None of these criteria directly takes into account that in a clustering context a finite mixture

model is fitted with the hope of finding a good partition of the data. For this reason various

criteria were developed which involve the quality of the resulting partition measured through

the entropy EN(H, θH) which is given by

EN(H, θH) = −
H∑

h=1

N∑

i=1

tih(θH) log tih(θH) ≥ 0, (26)

where tih(θH) = Pr(Si = h|yi, θH) is the posterior classification probability defined in (19).

The entropy is a measure of how well the data are classified given the finite mixture distribution

defined by θH . It is close to 0 if the resulting clusters are well-separated and increases with

increasing overlap of the mixture components.

The CLC criterion (Biernacki and Govaert, 1997) penalizes the log mixture likelihood by

the entropy rather than by model complexity as in AIC or BIC:

CLC(H) = −2 log p(y|θ̂H) + 2EN(H, θ̂H), (27)

where θ̂H is again the (approximate) ML estimator.

Since CLC works well only for well-separated clusters with a fixed weight distribution Bier-

nacki et al. (2000) proposed the integrated classification likelihood (ICL) criterion. A special

approximation to this criterion is the ICL-BIC criterion (McLachlan and Peel, 2000) which

penalizes not only model complexity, but also the failure of the mixture model to provide a

classification of the data into well-separated clusters:

ICL-BIC(H) = BIC(H) + 2EN(H, θ̂H). (28)

Simulation studies reported by McLachlan and Peel (2000, Section 6.11) showed that ICL-BIC

is able to identify the correct number of clusters in the context of multivariate mixtures of

normals even when the component densities are misspecified.
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5 Application to Austrian Wage Mobility Data

In this section we consider wage mobility in the Austrian labor market. Wage mobility describes

chances but also risks of an individual to move between wage categories over time, see also

Raferzeder and Winter-Ebmer (2007). In the present paper, the moves and transitions between

the categories are expressed in terms of transition matrices which determine the income career

and career progressions for an individual. It is sensible to assume that the income careers and

career progressions are different between the employees. Our goal is to find meaningful groups

of employees with similar wage mobility behavior using both Markov chain clustering as well as

Dirichlet multinomial clustering.

5.1 Data Description

The data set has been provided by the Austrian social security authority who collects detailed

data for all workers in Austria and has been taken from the ASSD (Austrian Social Security

Data Base), see Zweimüller et al. (2009).

The panel consists of time series observations for N = 9 809 men entering the labor market

in the years 1975 to 1980 at an age of at most 25 years. The time series represent gross monthly

wages in May of successive years and exhibit individual lengths ranging from 2 to 27 years

with the median length being equal to 23. Following Weber (2001), the gross monthly wage is

divided into six categories labeled with 0 up to 5. Category zero corresponds to zero-income

or non-employment which is not equivalent to be out of labor force. The categories one to five

correspond to the quintiles of the income distribution which are determined for each year from

all non-zero wages observed in that year for the population of all male employees in Austria.

The use of wage categories has the advantage that no inflation adjustment has to be made and

circumvents the problem that in Austria recorded wages are right-censored because wages that

exceed a social security payroll tax cap which is an upper limit of the assessment base for the

contribution fee are recorded with exactly that limit.
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5.2 Running Model-Based Clustering

To identify groups of individuals with similar wage mobility behavior, we apply both Markov

chain clustering as well as Dirichlet multinomial clustering for 2 up to 6 groups.

For the Dirichlet prior of the weight distribution η = (η1, . . . , ηH) we choose α0 = 4 as

recommended by Frühwirth-Schnatter (2006). For Markov chain clustering the prior for each

row for each matrix ξh is based on a Dirichlet prior where e0,jj = 2 and e0,jk = 1, if j 6= k.

For Dirichlet multinomial clustering, the prior for each row for each matrix eh is based on the

negative multinomial distribution with α = β = 1, N0 = 70 and ξ̂h = ξ̂, where ξ̂jj = 0.7

and ξ̂jk = 0.06, if j 6= k. Alternative hyperparameters were considered but showed negligible

differences in the results.

We start MCMC estimation by choosing initial values for the group-specific parameters. Ini-

tial values for the weights are η
(0)
h = 1/H, h = 1, . . . ,H, both for Markov chain clustering as well

as for Dirichlet multinomial clustering. To choose initial values for the remaining parameters,

we define a transition matrix ξ̂ with diagonal elements ξ̂jj = 0.7 and ξ̂jk = 0.06, if j 6= k. For

Markov chain clustering we choose ξ
(0)
h = ξ̂, while for Dirichlet multinomial clustering we set

e(0)
h = N0ξ̂ with N0 being the hyperparameter appearing in the prior.

For each number H of groups we simulated 10 000 MCMC draws after a burn-in of 10 000

draws for Markov chain clustering and a burn-in of 15 000 draws for Dirichlet multinomial clus-

tering. To update the elements of eh in Dirichlet multinomial clustering we choose l = 2 elements

per row randomly and apply the Metropolis-Hastings algorithm described in Subsection 3.2.2,

leading to an average acceptance rate of 0.245.

5.3 Selecting the Number of Clusters

The model selection criteria described in Section 4 are applied to select the number H of clusters

both under Dirichlet multinomial as well as under Markov chain clustering, see Figure 2.

For both clustering kernels, AIC and BIC decrease with increasing H and suggests at least

6 components. However, as outlined in Section 4, we cannot expect that the Markov chain model

or even the more flexible Dirichlet multinomial model is a perfect description of the component-

specific distribution for time series in a real data panel. Thus it is likely that BIC is overfitting
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and that two or even more components in the mixture model correspond to a single cluster with

rather similar transition behavior.

This hypothesis is supported by the other criteria all of which suggest a smaller number

of clusters. For Dirichlet multinomial clustering AWE takes a minimum at H = 4, while,

somewhat surprisingly, CLC and ICL-BIC show a non-monotonic behavior with two local

minima at H = 2 and H = 4. For Markov chain clustering all criteria suggest the presence of

5 clusters. As described in Section 4, the evaluation of these criteria is based on approximate

estimators θ̂H and (θ̂
C

H , Ŝ) derived from all available MCMC draws. To check the stability of

model choice we repeated several independent MCMC runs. While model choice was stable

for Dirichlet multinomial clustering, CLC and ICL-BIC sometimes indicated only 4 clusters

under Markov chain clustering for different MCMC runs. To sum up, these criteria provide

evidence for 4 clusters under Dirichlet multinomial clustering and 4 or 5 clusters for Markov

chain clustering.

When we compare Dirichlet multinomial clustering with Markov chain clustering for a fixed

number H of clusters using BIC, we find that Dirichlet multinomial clustering has in general

a higher posterior probability than Markov chain clustering. First, this indicates that some

unobserved heterogeneity is present in the cluster even after accounting for differences in the

cluster-specific transition behavior. Second, Dirichlet multinomial clustering is expected to ex-

hibit a higher robustness to untypical group members. It should be noted that this difference gets

smaller with increasing H, because adding components reduces the within-cluster unobserved

heterogeneity and allows to introduce small components containing untypical wage careers.

When ICL-BIC which penalizes BIC by entropy is used to compare the clustering methods

we find that Dirichlet multinomial clustering dominates Markov chain clustering up to 4 clusters.

For 5 and 6 clusters Dirichlet multinomial clustering is outperformed by Markov chain clustering

although giving a higher posterior probability for the observed data, mainly because the entropy

of the resulting classification of the time series is larger than for Markov chain clustering.

To provide a more profound comparison of Dirichlet multinomial clustering versus Markov

chain clustering we decided to discuss the four-cluster solution for both clustering methods in

more details. These solutions also led to sensible interpretations from an economic point of view.
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5.4 Empirical Results

For reasons discussed in Subsection 5.3, we discuss in more detail Bayesian inference for the

four-group solution both for Dirichlet multinomial as well as for Markov chain clustering.

As common for modern Bayesian inference, we approximate the posterior density p(θ|y) of

any quantity θ of interest by MCMC draws from the posterior distribution. We use the posterior

mean E(θ|y) which is approximated by the average of the corresponding MCMC draws as a

point estimator for θ. To evaluate the uncertainty associated with estimating θ, we consider

for each component θj of θ the posterior standard deviation SD (θj |y) =
√

Var(θj |y) which is

approximated by the standard deviation of the corresponding MCMC draws. Confidence regions

are derived from the corresponding percentiles of the MCMC draws. For more details on MCMC

inference we refer to standard monographs like Geweke (2005) and Gamerman and Lopes (2006).

For finite mixture models parameter estimation based on MCMC draws is possible only, if no

label switching is present meaning that the labeling of the clusters did not change during MCMC

sampling, see e.g. Frühwirth-Schnatter (2006, Section 3.5) for an exhaustive review of the label

switching problem. Label switching typically occurs if the finite mixture model is overfitting the

number of components. However, as indicated by BIC reported in Figure 2 it is very unlikely

that a mixture with 4 components overfits the data under investigation. This is supported by

the visual inspection of the MCMC draws (not reported to save space) of the cluster sizes η

and the cluster-specific parameter (ξ1, . . . , ξ4) and (e1, . . . , e4) which did not reveal any signs of

label switching.

5.4.1 Analyzing Wage Mobility

To analyze wage mobility in the different clusters we investigate for each h = 1, . . . , 4 the

posterior distribution of the group-specific transition matrix ξh. For Markov chain clustering,

MCMC draws for ξh are directly available. For Dirichlet multinomial clustering, posterior draws

for ξh are obtained by applying the nonlinear transformation (16) to each MCMC draw of eh.

MCMC based posterior inference for Dirichlet multinomial clustering is summarized in

Table 1 by reporting the posterior expectation E(ξh,jk|y) as well as the standard deviation

SD (ξh,jk|y) for each cell of the group-specific transition matrices ξ1, . . . , ξ4. In addition, the
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posterior expectations are visualized in Figure 3 using “balloon plots” generated by means of

function balloonplot() from the R package gplots (Jain and Warnes, 2006). These plots also

show the relative size of each group.

Based on the transition matrices reported in Table 1 and in Figure 3, we assign a labeling to

each cluster, namely “low wage”, “flexible”, “unemployed”, and “climbers” which will be further

corroborated by the long-run wage distribution to be discussed later in this subsection as well

as by the wage careers of typical group members to be discussed in Subsection 5.4.3.

A remarkable difference in the transition behavior of individuals belonging to different clus-

ters is evident from Figure 3. Consider, for instance, the first column of each matrix containing

the risk for an individual in income category j to drop into the no-income category in the next

year. This risk is much higher for the “unemployed” and the “flexible” cluster than for the other

clusters.

The probability to remain in the no-income category is located in the top left cell and is

much higher in the “unemployed” cluster than in the other clusters. The remaining probabilities

in the first row correspond to the chance to move out of the no-income category. These chances

are much smaller for the “unemployed” and the “flexible” cluster than for the other clusters. In

the “climbers” cluster chances are high to move into any wage category while in the “low wage”

cluster only the chance to move in wage category one is comparatively high.

For all matrices, the main diagonal refers to the probabilities to remain in the various wage

categories. Persistence is pretty high except for the “flexible” cluster. Members of this cluster

move quickly between the various wage categories. The upper secondary diagonal represents

the chance to move forward into the next higher wage category, which is much higher in the

“climbers” cluster than in the other clusters.

These obvious differences in the one-step ahead transition matrix between the clusters have

a strong impact on the wage mobility and the long-run wage career of the group members, as

shown by Figure 4. This figure shows for each cluster h the initial wage distribution πh,0 at t = 0

which is estimated from the initial wage category yi0 observed for all individuals i being classified

to group h. Additionally, Figure 4 shows the posterior expectation E(πh,t|y,πh,0) of the cluster-

specific wage distribution πh,t after a period of t years, which is defined by πh,t = πh,0ξ
t
h. The

posterior expectation is estimated by averaging MCMC draws of πh,t obtained by computing
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πh,t for t = 1, . . . , 100 for the last 100 MCMC draws of ξh.

For t = 100, the wage distribution is practically equal to the equilibrium distribution πh,∞

of the transition matrix ξh, i.e. πh,∞ = πh,∞ ξh. In the “unemployed” and the “flexible” cluster

the equilibrium distribution is reached after only a few years, whereas in the other two clusters

this distribution is reached after about two decades.

The wage distributions shown in Figure 4 provide further evidence for the labeling of the

clusters we introduced earlier. Young men belonging to the “unemployed” cluster have a much

higher risk to start in the no-income category then young men belonging to the other clusters.

Furthermore, about 60% of the members of this group have no income in the long-run.

For young men belonging either to the “low wage”, the “flexible”, or the “climbers” cluster

there is little difference between the initial wage distribution when they enter the labor market.

However, in the long run considerable differences in the wage distribution become evident due to

the observed differences in wage mobility. Members of the “flexible” cluster have a much higher

risk to end up in the no-income category than members of the “low wage” or the “climbers”

cluster. In the long-run, however, members of the “low wage” cluster are disadvantaged and

end up in lower wage categories while members of the “climbers” cluster move into the highest

wage categories.

5.4.2 Analyzing Unobserved Heterogeneity

To analyze how much unobserved heterogeneity is present in the various clusters, we report in

Table 2 the posterior expectation of the variance of the individual transition probabilities ξs
i,jk

within each cluster which has been defined in (17). These variances are multiplied by 104 to

obtain the variance of the individual transition probabilities in percent. In addition, we show

the posterior expectation and the posterior standard deviation of the group-specific unobserved

heterogeneity in row j as defined in (18). All expectations are estimated as the average of

MCMC draws obtained by applying, respectively, transformation (17) and (18) to each MCMC

draw of eh.

The variances of the individual transition probabilities as well as the unobserved heterogene-

ity measure varies considerably between the clusters as well as between the rows within each

cluster. Unobserved heterogeneity is highest in the “flexible” cluster and lowest in the “unem-
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ployment” cluster. Consequently, several high variances for individual transition matrices are

observed in the “flexible” cluster, while the “unemployment” cluster typically has smaller vari-

ances. In general, persistence probabilities have higher variances than the off-diagonal elements.

Apart from a few cells with high individual variance, the amount of unobserved heterogeneity

is rather moderate for most of the cells. Thus it is to be expected that the cluster-specific

transition matrices obtained by Dirichlet multinomial clustering are similar to the ones obtained

by Markov chain clustering. Indeed, when we studied the transition matrices and the long-run

wage distributions of the four-group solution obtained through Markov chain clustering we

were able to identify clusters with a similar meaning, namely a “low wage”, a “flexible”, an

“unemployed”, and a “climbers” cluster.

For further comparison, Figure 5 shows the difference between the posterior expectation

of the cluster-specific transition matrices ξh obtained, respectively, by Dirichlet multinomial

clustering (DMC) and Markov chain clustering (MCC), i.e. E(ξh,jk|y, DMC)−E(ξh,jk|y, MCC)

for each cell (j, k) in each cluster. We observe the biggest differences in the last row of the

transition matrix in the “low wage” cluster. This row concerns those (rare) members in that

cluster who manage to move to the highest wage category. Under DMC, the expected chance

to remain in the highest wage category is 76.4%. For MCC, this chance decreases to 47.3%,

while the risk to drop back to wage category one, which is the lowest non-zero wage, increases

by 17.1% and is 26.8% instead of 9.7%.

Less pronounced differences are present in the last row of the transition matrix in the “flex-

ible” cluster, where the persistence chance is by 9.6% smaller for DMC than for MCC (61.6%),

while the risk to move back to wage category four is by 4.2% larger than for MCC (15.8%). For

the remaining cells differences occur mainly for the persistence probabilities with MCC over-

rating persistence in relation to DMC by up to about 5%. This phenomenon is well-known in

the analysis of dynamic panels, see e.g. Hsiao (2003), where it is often observed that ignor-

ing unobserved heterogeneity leads to overrating persistence, see also Frühwirth-Schnatter and

Frühwirth (2007) for a related panel data analysis for the Austrian labor market.
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5.4.3 Posterior Classification

Next we study for both clustering methods how individuals are assigned to the four wage mobility

groups using the posterior classification probabilities tih(θH) = Pr(Si = h|yi,θH) for H = 4,

see e.g. Frühwirth-Schnatter (2006, pp.221) for various ways of clustering observations based

on finite mixture models. The posterior expectation t̂ih = E(tih(θ4)|y) of these probabilities

is estimated by evaluating and averaging tih(θ4) over the last 5000 MCMC draws of θ4 with a

thinning parameter equal to 20. Each employee is then allocated to that cluster which exhibits

the maximum posterior probability, i.e. Ŝi is defined in such a way that t̂i,Ŝi
= maxh t̂i,h. The

closer t̂i,Ŝi
is to 1, the higher is the segmentation power for individual i.

Table 3 analyzes the segmentation power for both clustering methods by reporting the quar-

tiles and the median of t̂i,Ŝi
within the various groups as well as for all individuals. We find

that the overall segmentation power is rather high. 3 out of 4 individuals are assigned with at

least 74.7% (MCC) and 72.3% (DMC) to their respective groups. For 1 out of 4 individuals as-

signment probability amounts to at least 99.2% (MCC) and 97.6% (DMC). Segmentation power

varies between the clusters and is the highest for the “unemployed” cluster and the lowest for

the “flexible” cluster. We find that Markov chain clustering has a slightly higher segmentation

power than Dirichlet multinomial clustering in particular for the “low wage” cluster where we

found the largest differences in the estimated transition matrices.

To get an even better understanding of the various wage mobility groups typical group

members are selected for each cluster and their individual time series are plotted in Figure 6 and

7. Figure 6 shows for both clustering methods the five members having the highest classification

probability to belong to a particular cluster, while Figure 7 shows five individuals selected from

ranks between 10 and 200.

These figures further emphasize the interpretation of the wage mobility groups given above

and is surprisingly robust to the clustering method. The “flexible” cluster obviously represents

the more flexible and fluctuating employees. Typical members of the “low wage” cluster stay

mainly in the lowest wage category. The “unemployment” cluster contains the employees who fall

into the no-income category more often and remain there much longer than members of the other

clusters. Finally, the “climbers” cluster comprises of employees who get out of the no-income
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category more easily and make rather straight career advancements. Such huge differences in

the wage mobility in the Austrian labor market have never been documented before.

5.4.4 Analyzing Group Membership

To learn more about the factors that effect the probability of an individual to belong to a

certain cluster we use the classifications Ŝi obtained for each person i = 1, . . . , 9 809 under

Dirichlet multinomial clustering as input for a multinomial logit regression model. We select the

“unemployed” cluster as baseline and use several covariates to model the odds of belonging to

any of the other clusters.

To capture the general economic situation at time of entry into the labor market we in-

troduce time dummies for each year 1976 to 1980 with 1975 serving as baseline and add the

unemployment rate in the district to capture the regional economic situation.

Unfortunately, little individual information about the employees is available. We only know

whether a person started as blue or white collar worker, the age at entry as well as the days a

person served as an apprentice. We use the last two variables to define a proxy for the education

of a person which is not observed directly. We take young men who finished apprenticeship,

meaning that they served more than 2.5 years as apprentice, as baseline. We consider young

men entering the labor market before their 18th birthday without having finished apprenticeship

as “unskilled”. Furthermore, we consider young men starting after their 18th birthday without

finishing apprenticeship as “skilled”, because they are likely to have finished some kind of higher

education such as high school or university. Finally, we add dummies for the wage category at

entry with zero income serving as baseline.

We perform Bayesian inference for the resulting multinomial regression model based on a

standard normal prior for all regression parameters. The posterior expectations and the posterior

standard deviations of all regression parameters are reported in Table 4. These results are based

on 20 000 MCMC draws (after discarding 5000 draws as burn-in) obtained by auxiliary mixture

sampling (Frühwirth-Schnatter and Frühwirth, 2007).

From Table 4 we find that having a non-zero income in the initial year increases the odds

significantly to belong to any cluster but the “unemployment” cluster. For young men starting

with relatively high wages the odds of belonging to the “climbers” rather than to any other
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cluster are high. The same is true for young men starting in 1976 to 1978 which was a period

of high real GDP growth rate while the real GDP growth rate was negative in 1975, see also

Table 5. An increasing unemployment rate in the district increases the odds of belonging to

the “low wage” cluster. For “unskilled” young men the odds of belonging to any but the

“unemployment” cluster are negative.

6 Concluding Remarks

In this paper we discussed two approaches to model-based clustering of categorical time series

based on time-homogeneous first-order Markov chains with unknown transition matrices. In the

Markov chain clustering approach the individual transition probabilities are fixed to a group-

specific transition matrix. In a new approach called Dirichlet multinomial clustering it is assumed

that within each group unobserved heterogeneity is still existent and is captured by allowing the

individual transition matrices to deviate from the group means by describing this variation for

each row through a Dirichlet distribution with unknown hyperparameters.

We discussed in detail an application of these two approaches to modeling and clustering a

panel of Austrian wage mobility data describing the wage career of nearly 10 000 young men en-

tering the labor market during the second half of the 1970s. Model choice indicated that Dirich-

let multinomial clustering outperforms Markov chain clustering in terms of posterior probability

(approximated by BIC) and that for this cohort the labor market should be segmented into four

groups. The group-specific transition behavior turned out to be very different across the clus-

ters and led to a meaningful interpretation from an economic point of view showing four types

of wage careers, namely “unemployed”, “low wage”, “flexible” and “climbers”. When further

analyzing the results obtained by Dirichlet multinomial clustering, we found that unobserved

heterogeneity is present in the various clusters and, as expected from previous investigations,

ignoring it would lead to overrating the persistence probability.

However, the amount of unobserved heterogeneity within each cluster is small compared to

the differences between the clusters. Thus it is not surprising that the types discovered under

Dirichlet multinomial clustering turned out to be robust to the choice of clustering kernel and

were more less the same the types as obtained by Markov chain clustering under a four-group
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solution.

We investigated the segmentation power of the four-group solution for both clustering meth-

ods and found that it is rather high. 3 out of 4 individuals are assigned with at least 74.7%

(Markov chain clustering) and 72.3% (Dirichlet multinomial clustering) probability to their re-

spective cluster.

We conclude from our investigation that both clustering kernels are a sensible tool for model-

based clustering of discrete-valued panel data. For our case study, Dirichlet multinomial cluster-

ing indicated the presence of unobserved heterogeneity and, consequently, outperformed Markov

chain clustering in terms of BIC. However, the clusters we discovered had a similar meaning for

both methods and Markov chain clustering showed a slightly higher segmentation power.

For other panels of discrete-valued time series other clustering kernels might be sensible.

More complex clustering kernels could involve the use of kth order Markov chains in order to

extend the memory of the clustering kernel to the past k observations, see e.g. Saul and Jordan

(1999). MCMC estimation as discussed in this paper is easily extended to this case. Another

promising alternative is to use inhomogeneous Markov chains as clustering kernels. This method

could be based on modeling each row of the transition matrix through a dynamic multinomial

logit model with random effects. As discussed in detail in Subsection 2.4, Dirichlet multinomial

clustering is a restricted variant of this model with a different parameterization.

Using a dynamic multinomial logit model with random effects as clustering kernel has the

advantage that it allows to include subject-specific as well as aggregate economic covariates

and, at the same time, is able to capture first or even higher order dependence by including past

observations of the time series as covariates. Furthermore, such a model is able to capture more

general correlation patterns in the distribution of unobserved heterogeneity than the restricted

version corresponding to Dirichlet multinomial clustering.

Under Dirichlet multinomial clustering, individual transition probabilities ξs
i,jk and ξs

i,j′l ap-

pearing in different rows of ξs
i are independent, while for transition probabilities ξs

i,jk and ξs
i,jl

appearing in the same row of ξs
i the following holds:

Cov(ξs
i,jk ξs

i,jl|Si = h, eh)
E(ξs

i,jk|Si = h, eh)E(ξs
i,jl|Si = h, eh)

= − 1

1 +
∑K

k′=1 eh,jk′
.
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Thus the dependence structure within each row is rather restricted and, apart from the sign, is

controlled by the same expression which controls the total amount of unobserved heterogeneity

in that row, see also (18).

However, MCMC estimation of a model where the clustering kernel is a dynamic multinomial

logit model with random effects is much more involved, because no explicit expression for the

marginal distribution is available, and we leave this for future research.
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“unemployed”
0 1 2 3 4 5

0 0.914(0.238) 0.047(0.130) 0.016(0.043) 0.008(0.022) 0.008(0.022) 0.008(0.022)
1 0.217(0.637) 0.604(0.830) 0.135(0.508) 0.022(0.131) 0.011(0.065) 0.011(0.065)
2 0.189(0.748) 0.097(0.560) 0.545(0.936) 0.133(0.679) 0.024(0.230) 0.012(0.109)
3 0.177(0.909) 0.037(0.323) 0.115(1.038) 0.457(1.511) 0.178(0.963) 0.037(0.323)
4 0.118(0.913) 0.022(0.277) 0.022(0.277) 0.087(0.942) 0.577(1.571) 0.174(1.212)
5 0.048(0.476) 0.008(0.047) 0.008(0.043) 0.008(0.043) 0.020(0.375) 0.910(0.623)

“climbers”
0 1 2 3 4 5

0 0.136(0.000) 0.227(0.000) 0.227(0.000) 0.182(0.000) 0.136(0.000) 0.091(0.000)
1 0.152(0.491) 0.510(0.863) 0.243(0.589) 0.063(0.358) 0.022(0.129) 0.011(0.065)
2 0.058(0.288) 0.061(0.299) 0.582(0.721) 0.261(0.562) 0.030(0.210) 0.008(0.065)
3 0.037(0.164) 0.012(0.055) 0.091(0.414) 0.644(0.569) 0.205(0.459) 0.012(0.055)
4 0.026(0.085) 0.009(0.028) 0.009(0.028) 0.077(0.288) 0.781(0.352) 0.010(0.252)
5 0.027(0.144) 0.004(0.016) 0.004(0.016) 0.004(0.016) 0.063(0.250) 0.897(0.307)

“flexible”
0 1 2 3 4 5

0 0.560(0.808) 0.240(0.548) 0.088(0.377) 0.048(0.601) 0.043(0.294) 0.021(0.147)
1 0.255(0.578) 0.517(0.852) 0.121(0.533) 0.054(0.216) 0.036(0.144) 0.018(0.072)
2 0.200(0.697) 0.198(0.614) 0.348(1.166) 0.168(0.638) 0.057(0.437) 0.029(0.219)
3 0.139(0.620) 0.095(0.636) 0.136(0.527) 0.408(1.187) 0.180(0.635) 0.043(0.480)
4 0.132(0.431) 0.066(0.216) 0.066(0.216) 0.135(1.031) 0.470(1.079) 0.132(0.431)
5 0.120(0.634) 0.080(0.430) 0.040(0.211) 0.040(0.211) 0.200(1.084) 0.520(1.946)

“low wage”
0 1 2 3 4 5

0 0.247(1.474) 0.478(1.268) 0.180(1.037) 0.054(0.828) 0.021(0.204) 0.021(0.204)
1 0.069(0.237) 0.822(0.411) 0.092(0.338) 0.006(0.023) 0.006(0.023) 0.006(0.023)
2 0.043(0.240) 0.086(0.360) 0.774(0.540) 0.088(0.454) 0.005(0.035) 0.005(0.035)
3 0.025(0.232) 0.025(0.147) 0.105(1.016) 0.763(0.971) 0.070(0.782) 0.012(0.072)
4 0.055(0.823) 0.057(1.062) 0.055(0.822) 0.344(3.322) 0.434(4.752) 0.055(0.823)
5 0.040(1.341) 0.097(2.191) 0.021(0.460) 0.023(0.595) 0.056(2.346) 0.764(4.541)

Table 1: Posterior expectation E(ξh|y) and, in parenthesis, posterior standard deviations
SD (ξh|y) (multiplied by 100) of the average transition matrix ξh in the various clusters
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“unemployed”
row j 0 1 2 3 4 5 100/(1 + Σhj)

0 6.610 3.767 1.299 0.655 0.655 0.655 0.809(0.012)
1 18.880 26.245 12.900 2.350 1.188 1.188 1.090(0.012)
2 15.736 9.332 25.330 11.695 2.067 1.044 1.022(0.010)
3 44.603 8.833 31.974 73.562 43.562 8.833 2.972(0.111)
4 23.925 5.047 5.047 18.209 55.211 33.104 2.247(0.054)
5 3.706 0.554 0.554 0.554 1.981 6.843 0.745(0.013)

“climbers”
row j 0 1 2 3 4 5 100/(1 + Σhj)

0 51.204 76.356 76.356 64.678 51.204 35.932 4.348(0.000)
1 13.173 25.325 18.752 5.848 2.042 1.027 1.013(0.011)
2 3.670 3.979 16.628 13.219 1.839 0.470 0.685(0.003)
3 4.007 1.368 9.782 26.717 18.836 1.368 1.170(0.016)
4 1.982 0.672 0.672 5.725 13.882 7.322 0.820(0.009)
5 1.072 0.171 0.171 0.171 2.372 3.729 0.414(0.003)

“flexible”
row j 0 1 2 3 4 5 100/(1 + Σhj)

0 56.775 41.845 19.506 10.259 10.259 5.256 2.293(0.042)
1 32.809 43.730 19.133 8.868 6.023 3.067 1.752(0.009)
2 48.777 48.777 71.540 42.274 18.861 9.755 3.125(0.000)
3 51.738 36.321 51.738 105.353 65.328 19.075 4.372(0.065)
4 69.147 37.164 37.164 69.147 152.242 69.147 6.107(0.180)
5 39.610 27.589 14.386 14.386 60.103 94.577 3.795(0.075)

“low wage”
row j 0 1 2 3 4 5 100/(1 + Σhj)

0 36.556 49.657 30.005 10.540 3.971 3.971 1.992(0.066)
1 3.442 7.721 4.383 0.283 0.283 0.283 0.532(0.002)
2 1.899 3.579 8.017 3.681 0.210 0.210 0.458(0.006)
3 2.940 2.281 8.735 17.859 6.702 1.000 1.000(0.009)
4 25.384 25.384 25.384 117.125 122.506 25.384 5.041(0.209)
5 5.118 10.858 2.395 2.458 4.052 21.698 1.548(0.034)

Table 2: Posterior expectation of the variance of the individual transition probabilities 100ξs
i,jk

(in percent) in the various clusters as defined in (17); last column: posterior expectation and,
in parenthesis, posterior standard deviation of the amount of unobserved heterogeneity in row
j defined in (18) as 1/(1 + Σhj) and multiplied by a factor 100
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Markov chain clustering Dirichlet multinomial clustering
1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu.

“unemployed” 0.8480 0.9915 0.9994 0.8494 0.9850 0.9981
“climbers” 0.7452 0.9279 0.9854 0.7456 0.9216 0.9801
“low wage” 0.7432 0.9134 0.9861 0.6546 0.8680 0.9728
“flexible” 0.6749 0.8795 0.9812 0.6540 0.8525 0.9650
overall 0.7465 0.9368 0.9921 0.7226 0.9213 0.9863

Table 3: Segmentation power of Markov chain clustering (left hand side) and Dirichlet multi-
nomial clustering (right hand side); reported are the lower quartile, the median and the upper
quartile of the individual posterior classification probabilities t̂i,Ŝi

for all individuals within a
certain cluster as well as for all individuals.

“low wage” “flexible” “climbers”
Intercept -0.963(0.137) -0.975(0.129) -0.875(0.120)
Unemployment rate in district 0.057(0.017) 0.026(0.016) -0.017(0.017)
Unskilled -0.129(0.100) -0.262(0.098) -0.713(0.091)
Skilled -0.382(0.070) -0.523(0.076) -0.591(0.061)
White collar -0.983(0.081) -1.305(0.083) -0.293(0.063)
Start in wage category 1 1.389(0.095) 1.880(0.096) 2.103(0.089)
Start in wage category 2 1.510(0.125) 1.433(0.129) 2.537(0.117)
Start in wage category 3 1.208(0.156) 0.841(0.167) 2.347(0.138)
Start in wage category 4 1.210(0.185) 0.717(0.191) 2.077(0.149)
Start in wage category 5 0.730(0.318) 0.568(0.433) 2.205(0.220)
Start in year 1976 -0.024(0.130) 0.054(0.135) 0.184(0.114)
Start in year 1977 -0.146(0.132) 0.072(0.124) 0.217(0.104)
Start in year 1978 0.097(0.128) 0.009(0.122) 0.222(0.104)
Start in year 1979 0.031(0.124) 0.062(0.126) 0.129(0.103)
Start in year 1980 -0.175(0.120) -0.059(0.123) -0.020(0.104)

Table 4: Multinomial logit model to explain group membership in a particular cluster (baseline:
“unemployment” cluster); the numbers are the posterior expectation and, in parenthesis, the
posterior standard deviation of the various regression coefficients.

year real GDP-growth
1975 −0.4%
1976 4.6%
1977 5.0%
1978 −0.1%
1979 5.5%
1980 1.8%

Table 5: Real GDP-growth in Austria in the years 1975 – 1980 (Source: Statistik Austria)
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Figure 1: Individual wage mobility time series of nine randomly selected employees; x-axis:
time t (in years); y-axis: income class k (k ranging from 0 to 5).
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Figure 2: Model selection criteria for various numbers H of clusters for Markov chain clustering
(MCC) and Dirichlet multinomial clustering (DMC)
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Figure 3: Visualization of posterior expectation of the transition matrices ξ1, ξ2, ξ3, and ξ4

obtained by Dirichlet multinomial clustering. The circular areas are proportional to the size of
the corresponding entry in the transition matrix. Posterior expectations of the corresponding
group sizes η1, η2, η3 and η4 are indicated in the parenthesis.

37



t=0 t=1 t=2 t=3 t=4 t=5 10 15 20 25 30 50 100

un
em

pl
oy

ed

0.0

0.2

0.4

0.6

0.8

1.0

t=0 t=1 t=2 t=3 t=4 t=5 10 15 20 25 30 50 100

cl
im

be
rs

0.0

0.2

0.4

0.6

0.8

1.0

t=0 t=1 t=2 t=3 t=4 t=5 10 15 20 25 30 50 100

fle
xi

bl
e

0.0

0.2

0.4

0.6

0.8

1.0

t=0 t=1 t=2 t=3 t=4 t=5 10 15 20 25 30 50 100

lo
w

 w
ag

e

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Posterior expectation of the wage distribution πh,t over the wage categories 0 to 5
after a period of t years in the various clusters.
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Figure 5: Difference between the posterior expectation of the cluster-specific transition matrices
ξh obtained by Dirichlet multinomial clustering (DMC) and Markov chain clustering (MCC);
each cell shows the difference E(ξh,jk|y,DMC)−E(ξh,jk|y, MCC); dark gray: difference negative,
i.e. E(ξh,jk|y,MCC) > E(ξh,jk|y, DMC), light gray: difference positive, i.e. E(ξh,jk|y, DMC) >
E(ξh,jk|y, MCC); minimal difference equals -0.1712, maximal difference equals 0.2904.
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Figure 6: Typical group members within each cluster: wage careers of the five individuals with
the highest posterior classification probability; left hand side: Markov chain clustering; right
hand side: Dirichlet multinomial clustering
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Figure 7: Typical group members within each cluster: wage careers of the individuals no. 10,
25, 50, 100 and 200 in the posterior classification probability ranking; left hand side: Markov
chain clustering; right hand side: Dirichlet multinomial clustering
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