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ABSTRACT. This paper considers a stochastic volatility version of the Heath, Jarrow
and Morton (1992) term structure model. Market completeness is obtained by adapting
the Hobson and Rogers (1998) complete stochastic volatility stock market model to the
interest rate setting. Numerical simulation for a special case is used to compare the
stochastic volatility model against the traditional Vasicek (1977) model.

1. INTRODUCTION

The Heath, Jarrow and Morton (HJM) term structure model provides a consistent frame-
work for the pricing of interest rate derivatives. The model is automatically calibrated to
the currently observed yield curve, and is complete in the sense that it does not involve
the market price of interest rate risk, something which was a feature of the early genera-
tion of interest rate models, such as Vasicek (1977) and Cox, Ingersoll and Ross (1985).
The fundamental quantity driving the dynamics of the HJM model is the forward rate
volatility process, which, together with the initial yield curve, is the main input to the
model.

A great deal of research in this area focused on the different classes of interest rate mod-
els that arise from different assumptions about the form of the forward rate volatility
process. Originally the focus was on forward rate volatility processes that depended on
some function of time to maturity and the instantaneous spot rate of interest rate, as
in Cheyette (1992), Carverhill (1994), Ritchken and Sankarasubramanian (1995), Bhar
and Chiarella (1997) and Inui and Kijima (1998). Subsequently Chiarella and Kwon
(1998c) and de Jong and Santa-Clara (1999) considered forward rate volatility processes
dependent on time to maturity and a vector of fixed tenor forward rates. The essential

Date: February 10, 2000. Current revision April 11, 2000. Printed July 11, 2000.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6599085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 CARL CHIARELLA AND OH KANG KWON

characteristic of all of these models is that the form of the forward rate volatility pro-
cesses allows them to be transformed to Markovian form, at the expense, however, of
increasing the dimension of the underlying state space.

Chiarella and Kwon (1998b) have considered forms of the forward rate volatility process
that yield some of the popular interest rate models, such as the Hull and White one and
two factor models. All of the forward rate volatility processes referred to above could
be described as level dependent volatility processes. It is also of interest to consider
volatility processes that are themselves diffusion processes. Chiarella and Kwon (1998a)
have investigated such a class of models where the Wiener processes driving the diffusion
process for the volatility process are independent of the Wiener processes driving the
forward rate process. This class of models also turns out to be Markovian, and so it is
possible to generate, in the HJM framework, a class of stochastic volatility models that
are in some sense the counterpart of the Hull and White (1987), Heston (1993) and Scott
(1997) stochastic volatility models. In common with these models, they are incomplete
as they involve the market price of risk that arises from the independent Wiener processes
that drive the stochastic volatility process.

Hobson and Rogers (1998) introduced a special class of complete stochastic volatility
models in the standard Black and Scholes stock option framework. They obtained market
completeness by setting up a class of diffusion processes which, ultimately, are driven
by the same Wiener process that drives the underlying asset price.

The aim in this paper is to obtain the counterpart to the Hobson and Rogers (1998)
complete stochastic volatility model in the HJM framework. This is achieved by suitably
adapting the offset processes, which ultimately depend on the Wiener processes driving
the forward rate process, and feed into the forward rate volatility process.

The plan of the paper is as follows. Section 2 outlines the model and obtains a formula
for the bond price in terms of the state variables of the model. Section 3 considers a
special case, analogous to the special case considered by Hobson and Rogers, which is
the basis of the numerical calculations undertaken in Section 4, and Section 5 concludes.

2. THE MODEL

The stochastic volatility term structure model introduced in this paper is based on Chiarella
and Kwon (1998a), but with the volatility process modeled along the lines of the Hobson
and Rogers (1998) stochastic volatility stock price model.

LetM(n) be ann-dimensional risk-neutral HJM model on a complete filtered probabil-
ity space(
;F ; fFtg;P), whereFt is generated by ann-dimensional standardP-Wiener
process(W i

t )1�i�n. Let Pt;T be the price of aT -maturityzero coupon bondat timet.
Then the instantaneousforward rateft;T is defined as

ft;T = �@ lnPt;T

@T
;(2.1)
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and the instantaneousspot rateis defined asrt = ft;t. The money market account
representing the value of initial unit investment at timet is defined byBt = e

R t
0
rs ds,

and it was shown in Heath, Jarrow and Morton (1992) that thediscounted bond price,
Pt;T=Bt, is aP-martingale. It was shown in Brace, Gatarek and Musiela (1997) that
if a different parametrisation,T = t + � , is used for maturity, then the corresponding
P-martingale ise�

R t
0
(rs�fs;s+� ) dsPt;t+� .

Although most of the ideas in this paper remain valid for the generalM(n), for simplic-
ity of notation, computations will be carried out only for the special caseM = M(1),
and the1-dimensional Wiener processW 1

t will be writtenWt.

For0 < � 2 R andi 2 N , define theoffset1 processS(i)
t;� by

S
(i)
t;� =

Z 1

0

�e��u (Zt;t+� � Zt�u;t�u+� )
i du;(2.2)

whereZt;t+� is the logarithm of theP-martingale processe�
R t
0
(rs�fs;s+� ) dsPt;t+� , so that

Zt;t+� = ln
�
e�

R t
0
(rs�fs;s+� ) dsPt;t+�

�
:(2.3)

For eachi, the offset processS(i)
t;� is best regarded as an exponentially weighted historical

moment of returns on a� -maturity bond.

Fix n1; n2 2 N and0 � �1 < �2 < � � � < �n2 2 R, and define

St = fS(i)
t;�j

: 1 � i � n1; 1 � j � n2g:(2.4)

Assume now that the forward rate volatility,�t;T , becomes stochastic through its depen-
dence on the offset processes. Thus, inM, �t;T has the form

�t;T = &(St) e�
R T
t

�(u) du;(2.5)

where& and� are deterministic functions. Models similar toM, but with�t;T dependent
at most ont, T andr(t), were considered by Ritchken and Sankarasubramanian (1995),
Inui and Kijima (1998) and Chiarella and Kwon (1998d), who showed that the respective
HJM models transform to Markovian systems, and derived formulae for bond prices in
terms of the Markovian state variables. It is possible to show that a similar reduction to
a Markovian form is possible for�t;T having the form (2.5).

1This terminology is borrowed from Hobson and Rogers (1998).
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The reduction to a Markovian form requires the introduction of a number of subsidiary
quantities. For0 � � 2 R, define

�t;� = e�
R t+�
t

�(u) du;

�̂t;� =

Z t+�

t

�t;u�t du;

�t;� = �t;�

Z t+�

t

�t;u�t du

�̂t;� =

Z t+�

t

�t;u�t du;

(2.6)

�t;� =

Z t

0

�2s;t+� ds;

�t;� =

Z t

0

�s;t+�

Z t+�

s

�s;u du ds+

Z t

0

�s;t+� dWs:

(2.7)

The Lemmas 2.1 and 2.2 show that the dynamics of the stochastic quantities�t;� and�t;�
can be expressed just in terms of�t;0 � �t and�t;0 � �t.

Lemma 2.1. Define�t = �t;0 and�t = �t;0. Then for any0 � � 2 R,

�t;� = �2
t;� �t;(2.8)

�t;� = �t;� �t + �t;� �t:(2.9)

Proof. Note that�s;t+� = �t;��s;t. So

�t;� =

Z t

0

�2s;t+� ds =

Z t

0

�2
t;��

2
s;t ds = �2

t;�

Z t

0

�2s;t ds = �2
t;� �t;

which is (2.8). Similarly,

�t;� =

Z t

0

�s;t+�

Z t+�

s

�s;u du ds+

Z t

0

�s;t+� dWs

=

Z t

0

�t;� �s;t

�Z t

s

�s;u du ds+

Z t+�

t

�s;u du ds

�
+

Z t

0

�t;� �s;t dWs

= �t;��t + �t;�

Z t

0

�s;t

Z t+�

t

�t;u�t �s;t du ds

= �t;� �t + �t;� �t;

which is (2.9). �

Lemma 2.2. The variables�t and�t satisfy the sde

d�t =
�
&2(St)� 2�(t)�t

�
dt;(2.10)

d�t = [�t � �(t)�t] dt+ &(St) dWt:(2.11)

Proof. First consider (2.10). Since�s;t = &(Ss) e�
R t
s
�(u) du,

d�t = d

Z t

0

�2s;t ds =

�
�2t;t +

Z t

0

@�2s;t
@t

ds

�
dt =

�
&2(St)� 2�(t)�t

�
dt;
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which is (2.10). Similarly,

d�t = d

�Z t

0

�s;t

Z t

s

�s;u du ds+

Z t

0

�s;t dWs

�

=

�Z t

0

@

@t

�
�s;t

Z t

s

�s;u du

�
+

Z t

0

@�s;t
@t

dWs

�
dt+ �t;t dWt

= [�t � �(t)�t] dt+ &(St) dWt;

which is (2.11). �

The following two propositions show that, under the stated assumptions, the forward rate
curve and the bond price can be completely characterised in terms of�t and�t.

Proposition 2.3. The forward rate curve satisfies the equation

ft;t+� = f0;t+� + �t;��t + �t;� �t:(2.12)

In particular, since�t;� and�t;� are deterministic, the entire forward rate curve is Mar-
kovian with respect to the state variables�t and�t.

Proof. From definitions offt;t+� and�t;t+� ,

ft;t+� = f0;t+� + �t;t+� = f0;t+� + �t;��t + �t;��t;

where the last equality follows from (2.9). �

Proposition 2.4. The bond pricePt;t+� is given by the formula

Pt;t+� =
P0;t+�

P0;t
e��̂t;� �t�

1

2
�̂2t;� �t:(2.13)

Proof. Only a sketch proof is given. For the details, see Ritchken and Sankarasubrama-
nian (1995) p60, Inui and Kijima (1998) p48, or Chiarella and Kwon (1998c) Theorem
4.5. Now, sincePt;t+� = e�

R t+�
t

ft;u du, the integral
R t+�

t
ft;u du must be computed. But

from (2.12),ft;u = f0;t+u + �t;u�t�t + �t;u�t�t, and so the integral reduces to integrating
deterministic functions�t;u�t and�t;u�t with respect to the variableu. The result of
performing these integrals is (2.13). �

The dynamics of the bond price follows as an immediate corollary of the above results.

Corollary 2.5. The bond pricePt;t+� satisfies the sde

dPt;t+� = ��(t; �t; �t;St) dt� �� (t; �t; �t;St) dWt;(2.14)

where�� and�� are given by

�� (t; �t; �t;St) = Pt;t+� [(f0;t � f0;t+� ) + (1� �t;� )�t � �t;� �t](2.15)

�� (t; �t; �t;St) = Pt;t+� �̂t;� &(St):(2.16)

Proof. Consequence of Lemma 2.2, Proposition 2.4, Proposition 2.3 and Itˆo’s Lemma.
�
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Corollary 2.6. The state variableZt;t+� satisfies the sde

dZt;t+� = �1

2
�̂2
t;� &

2(St) dt� �̂t;� &(St) dWt;(2.17)

where�̂t;� is given by (2.6), and&(St) is as defined in (2.5).

Proof. From (2.3),Zt;t+� = � R t

0
(rs � fs;s+�) ds+ lnPt;t+� , and so

dZt;t+� = �rt + ft;t+� + d lnPt;t+� :(2.18)

Application of Itô’s Lemma tolnPt;t+� , together with Corollary 2.5, yields the desired
result. �

The dependence of the volatility function,�t and�t on the offset process means that a
stochastic differential equation for the offset process is required for the overall dynamics
to be specified. The next lemma provides the required result.

Lemma 2.7. The offset processS(i)
t;�j

satisfies the sde2

dS
(i)
t;�j

= iS
(i�1)
t;�j

dZt;t+�j +
i(i� 1)

2
S
(i�2)
t;�j

dhZit;t+�j � �S
(i)
t;�j

dt:(2.19)

Proof. The details of the proof are given in Lemma 3.1 of Hobson and Rogers (1998),
and only a sketch is given here. Following Hobson and Rogers (1998), consider

e�tS(i)
t;�j

=

Z t

�1

�e�u
�
Zt;t+�j � Zt�u;t�u+�j

�i
du

=
iX

k=0

�
i

k

�
Zk
t;t+�j

Z t

�1

�e�u
��Zt�u;t�t+�j

�i�k
du;

and take the ‘differential’ of both sides. This results in the equation

�e�t S
(i)
t;�j

+ e�t dS
(i)
t;�j

= e�t
�
i S

(i�1)
t;�j

dZt;t+�j +
i(i� 1)

2
S
(i�2)
t;�j

dhZit;t+�j

�
;

which essentially is (2.19). �

Proposition 2.8. The setf�t; �t; Zt;t+�j ; S
(i)
t;�j

: 1 � i � n1; 1 � j � n2g forms a Mar-
kovian system.

Proof. Follows from Lemma 2.2, Corollary 2.5, Corollary 2.6, and Lemma 2.7. �

2The reader may need to recall that the quadratic variation of the process forZt;t+�j , in the current
context, is given by

hZit;t+�j =

Z t

0

�2� (s; �s; �s;Ss) ds:
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3. A SPECIAL CASE

In this section, considerM corresponding to the case in whichn1 = n2 = 1. This is
the direct analogue of the special case considered by Hobson and Rogers (1998) for the
stock price model.

For notational convenience, write� = �1 andSt = S
(1)
t;� . Then (2.19) simplifies to

dSt = dZt;t+� � �St dt:(3.1)

Substituting fordZt;t+� from (2.17) yields

dSt = �
�
1

2
�̂2
t;� &

2(St) + �St

�
dt� �̂t;� &(St) dWt;(3.2)

where�̂t;� is given by (2.6), and&(St) is as defined in (2.5). Note that, as in Hobson and
Rogers (1998),St is adapted to the filtrationFt of Wt.
Lemma 3.1. The setf�t; �t; Stg forms a Markovian system.

Proof. Follows from Proposition 2.8, and equations (2.10), (2.11) and (3.2), since the
dynamics of the systemf�t; �t; Stg do not depend onZt;t+� . �

Since the discounted bond price processPt;T=Bt is a P-martingale, the bond price is
given by the expectation

Pt;T = E
P

h
e�

R T
t

r(u) duPT;T

���Ft

i
= E

P

h
e�

R T
t

r(u) du
���Ft

i
;(3.3)

and, using the Feynman-Kac Theorem, the bond price must satisfy the pde

KPt;T � (f0;t + �t)Pt;T +
@Pt;T

@t
= 0;(3.4)

subject to the terminal conditionPT;T = 1, where

K =
1

2
&2(St)

@2

@�2t
+

1

2
�̂2
t;� &

2(St)
@2

@S2
t

� �̂t;� &
2(St)

@2

@�t@St

+
�
&2(St)� 2�(t)�t

� @

@�t
+ [�t � �(t)�t]

@

@�t
�
�
1

2
�̂2
t;� &

2(St) + �St

�
@

@St

:

The system of sdes underlying the pde are (2.10), (2.11) and (3.2). More generally, if
Ct;TC is aTC-maturity European option onPt;T with payoffh(TC), whereTC < T , then

Ct;TC = E
P

h
e�

R TC
t r(u) duh(TC)

���Ft

i
;(3.5)

andCt;TC must satisfy the pde

KCt;TC � (f0;t + �t)Ct;TC +
@Ct;TC

@t
= 0;(3.6)

subject to the terminal conditionCTC ;TC = h(TC).

The pdes (3.4) and (3.6) have three spatial variables, as well as the time variable, and
are further complicated by the absence of the second order term in�t. These pdes are
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rather difficult to tackle using the standard pde solution techniques, and so Monte Carlo
simulation is used in the numerical results that follow.

4. NUMERICAL EXAMPLE

LetM be the special case considered in Section 3, and for this section, assume further
that� is constant and

&(s) = �
p
1 + �s2 ^N(4.1)

where�, � andN are constants. This form of the volatility& was introduced in Hobson
and Rogers (1998) for the stock price model.

Now, constant� implies

�t;� = e��� ; �̂t;� =
1

�

�
1� e���

�
; �t;� =

1

�
e���

�
1� e���

�
;(4.2)

and the state variables�t, �t, andSt satisfy the sdes

d�t =
�
�2(1 + �S2

t ) ^N2 � 2��t
�
dt;(4.3)

d�t = [�t � ��t] dt+
h
�
p

1 + �S2
t ^N

i
dWt;(4.4)

dSt = �
�

1

2�2
(1� e��� )2

�
�2(1 + �S2

t ) ^N2
�
+ �St

�
dt(4.5)

� 1

�

�
1� e���

� h
�
p

1 + �S2
t ^N

i
dWt:(4.6)

This system of sdes was solved numerically using Monte Carlo simulation with anti-
thetic variables. A flat initial term structure of5% was assumed for the simulation, with
parameter values

� = 0:025; N = 0:2; � = 2; � = 5; � = 3:

From the definition of�t and�t in (2.7), it is clear that the initial values for these state
variables are�0 = 0 and�0 = 0. The initial value ofSt was varied within the range -1
and 1.

The effect of varying the value of� on the distribution of the bond price is shown in
Figure 4.1. The figure shows an increasing variance in the bond price with increasing�,
which is expected. The figure also shows that as� increases, one is less likely to observe
bond prices about the mean value. Since� = 0 corresponds to the Vasicek model, this
implies that the Vasicek model overvalues the deep in-the-money calls while undervalu-
ing the deep out-of-the-money calls when compared with the stochastic volatility model
of this paper.

For the remaining simulations,� was set equal to2. The price of a3-year bond was
computed using (2.13), and the price of a3-month call option on the bond was computed.
To compare the price against the traditional Vasicek model, the Vasicek volatility implied
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FIGURE 4.1. Distribution of Bond Price with Varying�

by the call price was computed for various values ofS0 and the strikeK. Under the
Vasicek model, the forward rate volatility has the form

�(s; t) = �0e
��(t�s);(4.7)

and the priceCt;TC of aTC-maturity call option on aTP maturity bond is

Ct;TC = Pt;TPN [h1(Pt;TP ; t; TC)]�KPt;TCN [h2(Pt;TP ; t; TC)] ;(4.8)

where

h1(Pt;TP ; t; TC) =
logPt;TP � logPt;TC � logK +

1

2
v2(t; TC)

v(t; TC)
(4.9)

h2(Pt;TP ; t; TC) = h1(Pt;TP ; t; TC)� v(t; TC);(4.10)

v2(t; TC) =
�20
2�3

�
e2�(TC�t) � 1

� �
e��TP � e��TC

�2
:(4.11)

The implied volatility surface is shown in Figure 4.2. The figure shows that for each fixed
S0 there is a skew in the implied volatility curve, as was the case in the stock option case
of Hobson and Rogers (1998).

In Figure 4.3, two implied volatility curves, forS0 = 0:2 andS0 = �0:2 are plotted to
better illustrate their shape, and to illustrate the change in the direction of the skew with
the change in the sign ofS0.
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0.87
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0.885 -1

-0.5
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0.5
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FIGURE 4.2. Implied Vasicek Volatility Surface. The strike increases
from 0:855 to 0:8875 from left to right, andS0 increases from�1 to 1
from front to back. The implied volatility ranges from0:025 to 0:032.

5. CONCLUSION

This paper has considered the Hobson and Rogers (1998) technique for obtaining com-
plete stochastic volatility models. In particular, the technique is used to obtain a complete
stochastic model within the Heath, Jarrow and Morton (1992) interest rate framework.
One of the main contributions of the paper has been to show how the stochastic dynam-
ics can be reduced to a Markovian form. This allows the bond price to be expressed
in terms of the underlying state variables, thus considerably reducing the computational
burden required for the calculation of interest rate derivative prices. The model has been
simulated in the simplest case, and an implied volatility surface based on the Vasicek
(1977) model has been generated. These results indicate that the model is able to cap-
ture important features, such as skewness, of the implied volatility surfaces.

Future research should take further the numerical simulations reported here, perhaps
experimenting with a wider specification of the volatility function. Empirical research
on an appropriate form for the volatility functions also needs to be undertaken.
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