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1. Introduction

Mutual funds are rapidly growing in most developed nations as a preferred investment
vehicle. In Australia this movement has been further exacerbated by the introduction of
compulsory superannuation and the plans to allow individuals to manage their
superannuation funds. Figure 1 illustrates this growth in funds under management, and
as of June 2002 over $645 billion was invested in mutual funds, representing an annual
growth rate of 11.2% since June 1988 when $145 billion was invested.

o Figure 1 about here 4%

A major area of international research in finance has been the evaluation of the financial
performance of mutual funds. For example, do actively managed funds outperform a
relevant benchmark market index by an amount sufficient to warrant their higher
expenses? (See zuter alia Brown and Goetzmann (1995), Carhart (1997), Grinblatt and
Titman (1992), Lehmann and Modest (1987) and Malkiel (1995)). Several recent studies
have criticized eatlier studies for restricting attention to funds in existence for a long
period of time, say ten years, and failing to take into account funds that are closed in a
shorter period of time. In particular, the performance of mutual funds is overstated if
only well-performing funds survive for a long period of time, while poorly performing
finds are likely to be closed. This problem is called one of survivorship bias (see inter alia
Brown, Goetzmann, Ibbotson and Ross (1992), Elton, Gruber and Blake (1996) and
Malkiel (1995)).

In this paper we model the causes of fund closure using statistical techniques for survival
data. Investigating the factors affecting managed fund attrition 1s important for several
reasons. It provides a methodology to explore the magnitude of “survivorship bias”, as
the average life of a fund and the relationship between a fund’s abnormal performance
and its probability of closure affects the size of the “survivorship bias”. The estimated
persistence of fund performance is affected by fund attrition to the extent that those that
close are the ones with relatively poor track records. Measuring the attrition profile of
funds may be important for understanding incentives under which fund managers with a
range of products operate. And if funds are most likely to close as a result of lack of
mvestor interest due to poor performance, the termination process itself may be
mformative about both the mvestment strategies pursued by mndividuals and the process
by which they inform themselves about the relative quality of investment vehicles.

There has been relatively little attention paid to the reasons for the closure of mutual
funds. Brown and Goetzmann (1995) estimate a probit model for a sample of U.S.
mutual funds. Lunde, Timmermann and Blake (1999) estimate hazard rates for a sample
of UK. funds. Both investigations conclude that past relative performance is a
significant determinant of fund attrition. There is little published academic research into
the Australian managed investment fund sector and none that address the issue of
persistence in performance, survivorship bias or the determinants of fund attrition.
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2. Models for Fund Survivorship

Interest lies in the reasons for fund death, such as the sector in which the fund focuses,
fund returns and the size of the fund. The pattern of survival times is also of interest.
Specifically, after controlling for fund characteristics, does success feed on itself in the
sense that the longer the fund has been in existence the lower is the conditional
probability that the fund will cease to exist.

These questions are answered using regression models with dependent variable defined
to be the duration of time until the fund is closed. Possible explanatory regressors
mclude fund size, fund sector, measures of fund performance, measures of fund
performance relative to other comparable funds, and the volatility of fund performance.

Standard regression models cannot be applied, because of the special nature of the
dependent variable and the method of sampling. The dependent variable cannot be
negative and from stochastic process theory is likely to be distributed as exponential (or a
generalization of exponential). More substantively, regression analysis 1s greatly
complicated because the data is censored. That is, data on the complete length of time
that the fund exists is unavailable for funds that have not yet closed.

One approach for censored survival data is to use the proportional hazard model,
estimated by the partial likelihood method. This approach, due to Cox (1972, 1975) has
the attraction of controlling for censoring under relatively weak distributional
assumptions. Standard references include Kalbfleisch and Prentice (1980, 2002), Lawless
(1982) and Fleming and Harrington (1991). The method is extensively used in
biostatistics but is rarely used in economics, aside from applications in labor economics
to data on the length of unemployment spells, and even more rarely used m finance. We
therefore provide a brief presentation of the method.

Let 7 denote the period of time that the mutual fund is in operation, with density function
f#), cumulative distribution function F(7), and survivor or survival function S(7) = 1- F(2).
The starting point is the instantaneous probability of the fund closing, given that to date
it has not yet closed. Formally this is called the hazard function

_f®)_

AW St 1-F(t)

Regressors X are mtroduced by assuming that the hazard function has the proportional
hazards functional form

A(t, X) = A, () * exp(X’ ),

where for £ regressors, the X and [Bare £X7 vectors. Note that the roles of 7 and X have
been separated. The function A,(t) does not depend on X and is called the baseline
hazard rate. This is multiplied by an amount that does vary with the regressors X and the
unknown parameters . The regressors are not deterministic functions of time, though
the regressor values may vary over time. The term “proportional” is used as the hazard
for any X is proportional to the baseline hazard A, (t).
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The goal of estimation is obtain estimates of and of the baseline hazard rate A, (t). To

interpret the patameter [, note that

O] = 1o (X B)* = PAC.X),

Thus the effect of a one unit change in X is to multiply the hazard by B For example, let
one of the regressors be the excess rate of return on a fund (measured in decimals).
Then a coefficient of —2.0 means that an increase of 0.01 (that is 1 percentage point) in
the excess rate of return of the fund leads to a 0.02 decrease in the instantaneous
probability of fund closure, given survival to date. Note that the impact on the hazard
rate, rather than on the mean duration time, is being directly measured. A decrease in the
hazard corresponds to an increase in the mean duration time.

The baseline hazard rate A, (t) is also interpretable. In particular, the conditional
probability of death of a mutual fund increases or decreases or does not vary with time

according to whether A, (t) is an increasing, decreasing or constant function of 7

We now consider estimation based on a sample of size #, (i, X,),...,(t,, X,). Cox
(1972) proposed an ingenious method to estimate [ without having to specify a
functional form for the baseline hazard function A,(t). Suppose we have a sample of #
funds, with durations t,,...,t,. Define the risk set R(t;) ={] |tj >1t,}, which is the set of
all funds that have lasted at least t; and are therefore at risk of failing at time t;. The
probability that spell 71s the spell during which a fund fails is

Pr(T, =t |T; 2t;) - Ai(t) _ exp(X;'£)

ZJDR(t,)Pr(TJ :tj |TJ Zti) ZjDR(t,)AJ(tJ) ZjDR(t,)eXp(xj’ﬁ)

where the proportional hazards functional form permits the final simplification whereby
the baseline hazard drops out. The so-called partial likelithood is obtained by combining
such probabilities over the distinct failure times. Cox showed that the estimator of
which maximizes the partial likelihood 1s consistent and asymptotically normal, regardless
of the form of the baseline hazard. Methods to then estimate A, (1), given estimates of

B, ate given in, for example, Kalbfleisch and Prentice (1980, 2002) and Fleming and
Harrington (1991). This estimate of A,(t) becomes increasingly imprecise at longer

durations as then relatively few spells are at risk of failure.

An alternative approach is a fully parametric one that permits more precise estimation
particularly of the baseline hazard. One class of parametric models is of the proportional

hazards form given above, with different parametric functional forms for A, (t) yielding

different models. Popular choices are those that correspond to the exponential, Weibull
and Gompertz distributions.

A second class of parametric models is that of accelerated time models. These specify a
regression model for the natural logarithm of spell duration time
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Int;) = XiB+¢;,

where € is an etror with density f(€). A positive regression parameter means that an

increase in the regressor leads to an increase in the duration time. This cotresponds to a
decrease in the hazard rate. Different distributions of the error term lead to different
parametric models. If f(€)is the normal density we obtain the lognormal duration

model; if f(€) is the logistic density we obtain the log-logistic duration model; if f(€) is
the extreme-value density, we obtain the Weibull duration model; and if f(€) is a three

parameter gamma density, the generalised gamma duration model results. The Weibull
and exponential are unique in being both proportional hazard models and accelerated
failure time models. For both classes of parametric models estimation is by maximum
likelihood, controlling for censoring due to some spells being incomplete. These
parametric and non-parametric models can be estimated using either of the readily
available commercial statistical packages STATA and S-PLUS, leading survival analysis
packages for, respectively, the social sciences and biostatistics.

The different parametric models place different restrictions on the shape of the hazard
function. The exponential distribution has hazard function that is constant, whereas the
Weibull and Gompertz models, both of which nest the exponential model, can have
hazards that are constant, monotonic increasing or monotonic decreasing. By contrast,
the lognormal and log-logistic exhibit non-monotonic hazard rates, mitially mncreasing
and then decreasing. The hazard function of the generalised gamma distribution is
extremely flexible, allowing for a large number of possible shapes. This provides some
advantages in modelling, as it nests the exponential, Weibull and lognormal duration
models.

3. Data

A key element of this study is the availability of a data set that is unusually rich by
international standards. The data set, sourced from FPG Research, tracks all unlisted
managed investment funds in Australia from 1968 to March 1999. This is one of three
commercially available products used by Australian investment advisers, and includes
mformation on variables such as the fund return (income and growth), size of the fund,
management expense ratios, entry and exit fees, as well as the investment strategy of the
fund manager. The focus of this study is the retail sector of Australian Equity Trusts, on
which monthly data was available from November 1974 to March 1999. This
encompasses 251 Funds of which 89 closed (failed) during that period. The FPG
Research database does not provide information on whether a closed fund actually failed,
or whether it was absorbed into another investment fund.

Table 1 summarizes the birth and death rate of these funds. Steady growth in the
number of funds to 1982 was followed by high growth rates up to 1989. The first
closures of funds occurred in 1989. In each of the calendar years 1989 to 1993 there
were mote closures of funds than new funds created. The years from 1994 to 1998 all
experienced a net growth in the number of managed funds.

okl Table 1 about here ¥k
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From the FPG Research database we were able to extract monthly values for the
dependent variable, Age of Fund (measured in months), and the following time-varying
covariates:

1. Fund Return (based on an accumulation index computed by FPG Research)
Cumulated Fund Return (a rolling 12 month accumulation of Fund Return)

3. Excess Return (defined as the excess of the Fund Return over the return on the
All Ordinaries Accumulation Index)

4. Cumulated Excess Return (a rolling 12 month accumulation of Excess Return)

5. Fund Volatility (the absolute value of Fund Return), and

6. Cumulated Fund Volatility (the absolute value of Cumulated Fund Return).

The returns are monthly returns, with the sample average of fund return equal to 0.0077.
Although some data was available on Fund Size and Management Expense Ratios, there
was not sufficient coverage to utilise these covariates.

The data on the age of the funds is both left censored (that is funds could have failed
before observations on their covariates were available) and right censored (by March
1999 there were 162 Funds still operating). Both of these types of censoring are propetly
accounted for in the subsequent analysis, which was obtained using the STATA (2003)
statistical package. After cleaning the data set, the analysis reported in this paper is based
on 247 Funds, of which there were 88 obsetrved failures, with a total number of 21,677
months at risk of failure.

Figure 2 reports the age distribution of the 88 closed funds. The median age of closed
funds 1s 66 months, the shortest life 8 months and the longest life 326 months. At first
glance 1t seems that funds are most likely to close at a young age, but this interpretation
could be wrong as the sample includes many recent entrants that, should they close, can
necessarily only close at a young age. The next section controls for this complication.

*# Figure 2 about here ***
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4. Nonparametric and Semiparametric Survival Models

Before mtroducing regressors we present an estimate of the distribution of fund
duration. The standard procedure in duration analysis is to estimate the survivor
function, S(?) = 1- F(?), controlling for censoring by using the nonparametric Kaplan-
Meler estimate

~ - —d.
S(t) =T1 j|tistél%g

i

whete 7;1s the number of funds in the risk set R(7) at time 7 and 4, is the number of funds
to fail at time 7. This indicates that 75 percent of funds survive for at least 74 months
(six years), 50 percent survive for 182 months (fifteen years) and 25 percent survive for at

least twenty-five years. In particular, the median time to fund closure 1s fifteen years.

The estimated survivor function, along with the 95% confidence bands, is presented in
Figure 3. The estimates become imprecise after about fifteen years, a consequence of the
sample including many recent entrants and relatively few funds with long durations of
either incomplete or complete spells.

% Figure 3 about here **

*kk Table 2 about here ***

The first column of Table 2 reports parameter estimates of the semiparametric Cox
Proportional Hazard Model. The null hypothesis that all of the coefficients are zero can
be rejected at a high level of significance. The estimated coefficients of the variables
Excess Return (-7.56) and Cumulative Excess Return (-2.52) are statistically significant at
5 percent and negative, indicating that returns in excess of the All Ordinaries Index
benchmark lead to a decrease in the hazard rate. The estimated coefficients of Fund
Return (0.84) and Cumulative Fund Return (-0.62) are close to zero and statistically very
msignificant, indicating that it is not returns per se but returns relative to the benchmark
that matter. The estimated coefficients of Absolute Fund Return (-5.35) and Absolute
Cumulative Fund Return (-3.92) are both negative. If these are mterpreted as proxies for
short term and long-term volatility, then increases in the volatility of fund returns reduce
the hazard rate. On the other hand, if they are interpreted as allowing asymmetric
responses the estimated coefficients imply that positive shocks to Fund Return and
Cumulative Fund Return have much larger impacts on the hazard function than negative
shocks.

¥ Figure 4a about here ***

The explanatory variables in the Cox model ate all mean corrected, so the resulting
baseline survivor function reported in Figure 4a is evaluated at the mean of each of the
explanatory variables. The estimated baseline sutvivor function is similar to the Kaplan-

Meter estimate in Figure 3 that did not control for regressors.

% Figure 4b about here ***
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The baseline hazard can also be estimated and is given in Figure 4b. The hazard peaks at
around 75 months and then falls. It then rises again, but the estimate is extremely
mmprecise at longer durations due to very few observations at long durations. More
precise estimation of the hazard at durations beyond ten or so years requires fully
parametric models, and even then we choose to plot only the first twenty years.

ik Table 3 about here ***

Tests of the proportional hazard assumption, as implemented by STATA, are reported in
Table 3, and on the basis of the individual tests and the global test thete is no reason to
reject the proportional hazard model.

5. Parametric Survival Models

The remaining columns of Table 2 give the estimated parameters of the various
parametric survival models. All parameterisations are presented in Accelerated Failure
Time (AFT) model form, except the Gompertz model, which is necessarily reported in
Proportional Hazard (PH) form. As already explained the sign of beta is reversed in
going from the PH to the AFT parameterisation. The coefficient estimates are quite
similar to those from the Cox model, suggesting that the regression parameter estimates
are relatively robust to the additional parametric assumptions. The estimates ate
generally more precise, as 1s expected in going to a more parametric model, though the
gain is not great. An increase in the Excess Return and in Cumulative Excess Return
reduces the hazard rate. Similarly increases in both absolute return regressors reduce the
hazard rate, with interpretation similar to that discussed for the Cox model, though
Absolute Fund Return is marginally insignificant. Controlling for excess returns and
absolute fund returns both level of Fund Return regressors are statistically insignificant
and close to zero.

% Figures 5a and 5b about here ***

The associated baseline hazard and survivor functions for the six parametric models,
evaluated at the means of the explanatory variables are presented in Figures 5a and 5b.
The estimated survivor functions are very similar for each of the six models, but there is
clear distinction between the estimated hazard functions. As expected the estimated
hazard for the exponential model i1s constant, with the Weibull and Gompertz models
displaying monotonic increasing hazards. However the generalized gamma, log-logistic
and lognormal all exhibit humped-shape estimated baseline hazard functions. On the
basis of hypothesis testing and the maximum Akaike Information Criterion, the
lognormal model is the preferred model. The estimated baseline hazard function for this
model increases up to a maximum of just over 0.004 after a period of five to six years,
and then declines to a value of 0.002 after twenty years.

* Figures 6a and 6b about here ***

To obtain some insight into the comparative statics of the estimated lognormal model,
with coefficient estimates given in the final column of Table 2, the hazard function and
survivor functions are evaluated at the quartile values for each regressor variable. Figures
6a and Ob present the results. For each of the six explanatory variables mn turn, the
hazard function and survivor function are evaluated at the quartile values of the variable,
while keeping the remaining five variables at their mean values. Since all regression
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coefficients are positive, being in the upper quartile produces the lowest hazard function
and highest survivor function for all the regressors. For the first two regressors there is
essentially no change in the hazard or survival functions, due to the relatively low
estimated coefficients once the other regressors are included in the model. The
functions are most sensitive to the Cumulated Fund Return and Absolute Cumulated
Fund Return variables, with the highest relative impact being around the lifetime at
which the hazard function peaks.

6. Conclusions

In considering the failure of retail investment funds in Australia from 1980 to 1999, we
have identified a hump shaped hazard function that reaches its maximum after about five
or six years, a pattern similar to the UK findings of Lunde, Timmerman and Blake
(1999). As these authors point out this is consistent with a learning process in which
mvestors gradually extract information on fund performance, and when it is recognised
that a fund 1s under-performing, withdrawals lead to fund closure. From the estimated
survivor functions 25% of funds terminated after about six years and 50% after about
twelve years.

We have quantified the impact of short-term fund performance and annual fund
performance (gross and relative to the market) on both the fund’s hazard function and
the fund’s survivor function. Relative returns are much more important than gross
returns, with higher relative returns associated with lower conditional probability of fund
closure. There appears to be an asymmetric response to performance, with positive
shocks having a larger impact on the hazard rate than negative shocks.
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Figure 1: Total of all Australian Managed Funds (Consolidated, $millions)
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Frequency

Figure 2: Histogram of the age distribution of Funds that closed.
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Figure 3: Estimated Survival Function with no regressors: Nonparametric
Kaplan-Meier Estimate
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Figure 4a: Estimated Baseline Survival Function after Cox Semiparametric
Regression
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Figure 4b: Estimated Baseline Hazard Function (kernel smoothed) after Cox
Semiparametric Regression
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Figure 5a: Estimated Baseline Hazard Functions after Parametric Regression for
the Exponential, Weibull, Gompertz, Generalized Gamma, Lognormal and Log-
logistic Distributions
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Figure 5b: Estimated Baseline Survival Functions after Parametric Regression for
the Exponetial, Weibull, Gompertz, Lognormal, Generalised Gamma and Log-
logistic Distributions
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Figure 6a: Impact on the Lognormal Parametric Hazard Function of Changes in
each of the Regressors.

Note: The hazard is evaluated at the lower quartile (topmost hazard), median (middle
hazard) and upper quartile (lowest hazard) for each regressor, with all other regressors
evaluated at sample means. For the first two regressors there is essentially no impact on

the hazard.
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Figure 6b: Impact on the Lognormal Parametric Survival Function of Changes in
each of the Regressors.

Note: The survival function is evaluated at the lower quartile (lowest survival function),
median (middle survival function) and upper quartile (topmost survival function) for
each regressor, with all other regressors evaluated at sample means. For the first two
regressors there is essentially no impact on the survival function.
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Table 1: Fund births and deaths from 1980 to 1999.

Year Funds born | Birth rate Funds Death rate | Funds alive
during year (%) dying (%) at the end
during year of year

1980 0 0.0% 0 0.0% 16
1981 3 18.8% 0 0.0% 19
1982 2 10.5% 0 0.0% 21
1983 9 42.9% 0 0.0% 30
1984 9 30.0% 0 0.0% 39
1985 14 35.9% 0 0.0% 53
1986 26 49.1% 0 0.0% 79
1987 29 36.7% 0 0.0% 108
1988 26 24.1% 0 0.0% 134
1989 12 9.0% 9 6.7% 137
1990 7 5.1% 13 9.5% 131
1991 3 2.3% 6 4.6% 128
1992 4 3.1% 8 6.3% 124
1993 6 4.8% 9 7.3% 121
1994 17 14.0% 8 6.6% 130
1995 18 13.8% 3 2.3% 145
1996 16 11.0% 4 2.8% 157
1997 17 10.8% 6 3.8% 168
1998 16 9.5% 8 4.8% 176
19997 1 0.6% 15 8.5% 162

# Data January to March 1999

Source: FPG Research.
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Table 2: Estimated Coefficients from Regression of Duration to Fund Closure (in
months) for Cox Semiparametric Model and for six Parametric Models.

Cox |Exponen- General Log- Log-
Model tial Weibull |Gompertz| Gamma | Logistic | normal
Specification PH AFT AFT PH AFT AFT AFT
Fund 0.84 -0.05 -0.33 0.09 -0.09 0.05 0.09
Return (2.80) (2.80) (2.40) (2.82) (2.32) (2.27) (2.26)
Cumulative Fund -0.62 0.06 0.18 -0.07 0.05 -0.02 0.00
Return (0.66) (0.67) (0.593) 0.67) (0.60) 0.62) (0.59)
Excess -7.56 6.67 6.07 -6.75 5.72 6.09 5.32
Return (3.66) (3.49) (3.06) (3.53) (2.92) (3.16) (2.73)
Cumulative Excess -2.52 2.74 2.19 -2.73 2.57 2.82 2.59
Return (0.84) (0.78) (0.70) (0.78) (0.86) (0.95) (0.88)
Absolute Fund -5.35 5.13 4.45 -5.17 4.11 3.70 3.81
Return (3.18) (3.39) (2.91) (3.39) (2.88) (3.58) (2.88)
Absolute Cumulative] -3.92 3.37 3.02 -3.40 3.05 3.08 3.01
Fund Return (1.22) (1.12) (0.92) (0.04) (0.81) (0.79) (0.78)
Constant na 5.77 5.63 na 5.38 5.28 5.26
(0.13) (0.12) (0.19) (0.12) (0.13)
Ancillary na na 1.19 0.0007 0.10 0.68 1.20
(0.08) (0.0014) (0.15) (0.05) (0.08)
Kappa na na na na 0.29 na na
(0.35)
Log Likelihood -392.29 | -201.23 | -199.24 | -201.13 | -197.18 | -197.98 | -197.48
AIC 412.46 410.49 414.26 412.36 411.96 410.97
Chi2(6) p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes:

1. Estimates based on 247 subjects, 88 failures and 21,677 months at risk.

2. Robust standard errors adjusted for clustering on funds in parentheses.

3. Specification: PH = proportional hazard, AFT = accelerated failure time. The AFT
parameters can be compared to the PH parameters upon changing the sign. See text.

4. Chi2(6) p-val = Probability value for test of the null hypothesis that all covariate
parametets are zeto.

5. All results obtained using STATA; na = not applicable.
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Table 3: Test of the Proportional Hazard Assumption in the Cox Semiparametric

Model
tho X2 df Prob > X2
Fund Return 0.150 2.60 1 0.107
Cumulative Fund Return 0.007 0.01 1 0.929
Excess Fund Return -0.071 0.81 1 0.367
Cumulative Excess Return 0.048 0.45 1 0.504
Absolute Fund Return 0.083 0.67 1 0.412
Absolute Cumulative Excess Return -0.098 5.70 1 0.017
Global Test 7.42 6 0.284

Note: Based on the estimates in column one of Table 2. The test reported is the generalised
Grambsch and Thernau test of non-zero slopes in a generalised linear regression of the scaled
Schoenfeld residuals on the rank of time, and is equivalent to testing that the log hazard ratio
function is constant over time. See the STATA manual for details of the procedure: STPHTEST.
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