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Abstract

Solving some integro-differential equation we find the Laplace trans-
formation of the first passage time for Filtered Poisson Process gen-
erated by pulses with uniform or exponential distributions. Also, the
martingale technique is applied for approximations of expectations and
distributions for the first passage times. The approximations accuracy
is verifying with the help of Monte-Carlo simulations.

Keywords: first passage times, Laplace transformation, martin-
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1. Introduction
We study the distribution of first passage time over a given level by a process
{Xt, t ≥ 0} which solves the linear stochastic equation:

Xt = x− β

∫ t

0

Xsds + Yt, t ≥ 0, β > 0, (1)

governed by compound Poisson’s process

Yt =

Nt(λ)∑

k=1

ξk + mt. (2)

Here {ξk, k ≥ 1} is i.i.d. sequence of random variables (pulses) appearing
at arrival times {Tk, k ≥ 1} of the Poisson process {Nt(λ), t ≥ 0} with the
intensity parameter λ > 0.
Due to (1) and (2) (here I(·) is the indicator function),

Xt =
m

β
+ (x− m

β
)e−βt +

Nt(λ)∑

k=1

ξke
−β(t−Tk)I(Tk ≤ t). (3)
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In the literature related to engineering applications, Xt is called Filtered
Poisson Process (FPP) with the exponential shape function ([1], [2]). In
finance and physics, Xt is called Generalized Ornstein-Uhlenbeck process
([3],[4]) or the shot noise process ([5]).
The first passage time of Xt over b is defined as follows:

τb = inf{t ≥ 0 : Xt ≥ b}, x < b.

Note that
P (τb ≤ T ) = P (sup

t≤T
Xt ≥ b).

The problem of finding the distribution of τb or, equivalently, the distribution
of supt≤T Xt is of great importance in engineering applications (e.g. reliability
analysis [1]), finance applications (e.g. for pricing of exotic options [6]), dam
theory ([7]) etc.
This paper is concerned with the derivation of exact formulas for the distri-
bution of τb and also for its approximation. As a tool for this study we use
integro-differential equations for the Laplace transform of τb, the martingale
technique and Monte-Carlo simulation.

Denote the Laplace transformation of τb by

qα(x) = Ex(I{τb < ∞}e−ατb), α > 0

where Ex(·) = E(·|X0 = x).
It was shown in [8] (and in a more general form in [9]) that under the as-
sumptions

P{ξ1 > 0} > 0, E|ξ1| < ∞ (4)

the first passage time τb possesses a finite exponential moment and, therefore,
qα(x) is the analytical function in the region {α : Re(α) > −c} with some
c > 0. Throughout the paper, condition (4) is assumed to be valid.
The explicit formula of qα(x) is known for negatively distributed pulses ξk.
This case was studied in [11] and [9] with the help of the martingale tech-
nique. An analysis of nonnegative pulses is more difficult as it involves the
”overshoot” problem. In Section 2 we show that a solution of the integro-
differential equation for qα(x) (known as Dynkin’s formula) can be found in
an explicit form for the following two special cases of ξ1-distributions: 1) ex-
ponential and 2) uniform. The exponential distribution in a different setting
was studied in [7] and [10].
In this paper, we use the martingale approach to find bounds for Ex(τb) and
for qα(x). These bounds might be useful for estimating of P (τb < T ), e.g.,
via the Chebyshev inequality. The same approach is used in [21] for comput-
ing the low bounds for Ex(τb) (see Section 3.3). In Section 3.4 we propose
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asymptotic approximations for Ex(τb) and P (τb < T ) for large values of b.
In Section 4 we compare simulation results with the derived approximations
for Gaussian, exponential and uniformly distributed ξ1.

2. Integro-differential equation
Notice that the infinitesimal generator for the FPP process Xt is defined as
follows: for any continuously differentiable and bounded functions f(z)

L[f(z)] = −(βz −m)f ′(z) + λ

∫ ∞

−∞
[f(z + u)− f(z)]dP (ξ1 < u). (5)

By Dynkin’s formula, [12] (see also the martingale method in Section 3),
the Laplace transform qα(x) is defined by the integro-differential equation
subject to the boundary condition:

L[qα(x)]− αqα(x) = 0 for x < b; (6)

qα(x) = 1 for x ≥ b

Similarly, Q(x) = Ex(τb) solves

L[Q(x)] = −1 for x < b; (7)

Q(x) = 0 for x ≥ b.

We show that (6) can be transformed to a second order differential equation
(see (8) and (13) below) provided that ξ1 is exponentially or uniformly (over
interval (0, c), c > b) distributed random variable. This differential equation
is valid for x < b; for x ≥ b, qα(x) = 1.

2.1. Exponentially distributed pulses
Assume ξ1 is exponentially distributed random variable with a positive pa-
rameter ν and the parameter m = 0. With a natural hypothesis that qα(x)
is twice differentiable for x < b, (6) is equivalent to

−βxq′′α(x) + (νβx− (λ + α + β))q′α(x) + ναqα(x) = 0 (8)

(see details in Appendix 1). It is well known that any solution of (8) is
expressed in terms of the Kummer series:

Φ(a, d; x) =
∞∑

k=0

(a)k

(d)k

xk

k!
, (a)k = a(a + 1) · · · (a + k − 1), (a)0 = 1,

which is the particular solution of the degenerate hypergeometric equation
([13]).
Moreover, the general solution of (8) is a linear combination

qα(x) = C1Φ1(x) + C2Φ2(x),

3



where

Φ1(x) = Φ

(
α

β
,
λ + α

β
+ 1; νx

)
, Φ2(x) = x−

λ+α
β Φ

(
−λ

β
, 1− λ + α

β
; νx

)

are independent solutions of (8) and constants C1 and C2 are defined from
some additional conditions. The first one is concerned to the boundedness of
qα(x). The function Φ1(x) increases from Φ1(−∞) = 0 and so it is bounded
for x ∈ (−∞, b). Since Φ2(x) is unbounded at x = 0, we chose C2 = 0.
Thus, with an arbitrary parameter C1, we fix

qα(x) = C1Φ

(
α

β
,
λ + α

β
+ 1; νx

)
for x < b;

qα(x) = 1 for x ≥ b.

The use of
lim
x↑b

Ex(qα(x + ξk)) = 1,

provided by P (ξ1 > 0) = 1, and the analysis of (6) under x ↑ b, gives the
following equation for C1 determination:

−βbC1Φ
′
(

α

β
,
λ + α

β
+ 1; νb

)
−

(λ + α)C1Φ

(
α

β
,
λ + α

β
+ 1; νb

)
+ λ = 0.

Moreover, the basic properties of hypergeometric functions allows to get

qα(x) =
λ

λ + α

Φ(α
β
, λ+α

β
+ 1; νx)

Φ(α
β
, λ+α

β
; νb)

, x < b (9)

(for more details see Appendix 2).
To derive the formula for Ex(τb) with the help of (9), we apply well known
properties of Kummer’s series as α → 0:

1− qα(x)

α
∼ 1

λ
+

Φ(α
β
, λ+α

β
; νb)− 1

α
−

Φ(α
β
, λ+α

β
+ 1; νx)− 1

α
,

Φ(α
β
, λ+α

β
; νb)− 1

α
∼ νb

λ

∞∑

k=0

(νb)k

(k + 1)(λ
β

+ 1)k

,

and
Φ(α

β
, λ+α

β
+ 1; νx)− 1

α
∼ νx

λ + β

∞∑

k=0

(νx)k

(k + 1)(λ
β

+ 2)k

.
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Hence, we get

Ex(τb) = lim
α→0

1− qα(x)

α
=

1

λ
+

νb

λ
Φ̃(λ/β + 1; νb)−

− νx

β + λ
Φ̃(λ/β + 2; νx), x < b, (10)

where

Φ̃(b; x) =
∞∑

k=0

xk

(k + 1)(b)k

Notice that (10) can be derived from (7) which is reduced to a second order
differential equation too.
Equivalent forms for (9) and (10) are derived in Section 3 with the help of
martingale technique. For adaptation of these results to each other, notice
that qα(x) and Ex(τb) can be rewritten in the integral forms provided by the
integral representation of the Kummer series:

Φ(a, d; x) =
Γ(d)

Γ(a)Γ(d− a)

∫ 1

0

exuua−1(1− u)d−a−1du, d > a > 0,

where Γ(·) is the gamma function (see, e.g., [13]). It follows that

qα(x) =

∫ 1

0
eνxuu

α
β
−1(1− u)

λ
β du

∫ 1

0
eνbuu

α
β
−1(1− u)

λ
β
−1du

, (11)

and

Ex(τb) = lim
α→0

1− qα(x)

α
=

1

β

∫ 1

0

eνbu − eνxu(1− u)

u
(1− u)

λ
β
−1du. (12)

Remark 1. Tsurui and Osaki, [10], derived an integral equation for qα(x)
and found its explicit solution for β = 1/n, n = 1, 2, ...
Kella and Stadje, [7], found the Laplace transformation and expectation of
the first hitting time Tb = min{t ≥ 0 : Xt = b} by solving an integro-
differential equation similar to (8). Their results for Tb follow from ours by
applying the memoryless property of the exponentially distributed pulses and
the independence of random variables τb and Tb − τb.
Remark 2. Under β →∞ or β → 0 the limiting distributions of τb are de-
rived form (9). For β →∞, the limiting distribution of τb is exponential with
parameter λe−νb while for β → 0 the limiting distribution has the Laplace
transformation λ

λ+α
e−ν(b−x) α

λ+α for x < b. These results are completely com-
patible with Tsurui and Osaki, [10] (see also [14]). Notice that the above
asymptotic results can be derived directly from (9).
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2.2. Uniformly distributed pulses
Let ξ1 be uniformly distributed on (0, c) and the parameter m in (5) is zero.
Assuming the function qα(x) is twice differentiable for x < b we transform
(6) to

−βxq′′α(x)− (λ + α + β)q′α(x) +
λ

c
(qα(x + c)− qα(x)) = 0, 0 < x < b; (13)

qα(x) = 1 , x ≥ b.

Notice that qα(x + c) = 1, c ≥ b. Then the solution of (13) can be expressed
in terms of the Bessel functions:

qα(x) = 1 + x−
λ+α
2β

(
C1Jλ+α

β

(
2

√
λx

cβ

)
+ C2Yλ+α

β

(
2

√
λx

cβ

))
.

where Jν(x) and Yν(x) are the Bessel functions of the first and second types
respectively, [13]:

Jν(x) =
∞∑

k=0

(−1)k(x/2)ν+2k

k!Γ(ν + k + 1)
, Yν(x) =

Jν(x) cos πν − J−ν(x)

sin πν
.

The boundedness of qα(x) provides the use of the first type Bessel function
only. Therefore,

qα(x) = 1 + C1 x−
λ+α
2β Jλ+α

β

(
2

√
λx

cβ

)
.

Now, C1 is determined from (6) by substituting in it the above expression
for qα(x) and computing the limit in x ↑ b. As previously (Section 2.1)
P (ξ1 > 0) = 1 and so

lim
x↑b

Ex(qα(x + ξk)) = 1.

This and some properties of the Bessel function of the first type provide

C1 = − α b
λ+α
2β

β
√

λb
cβ

Jλ+α
β
−1

(
2
√

λb
cβ

) .

Finally, for c ≥ b (13) possesses the explicit solution:

qα(x) = 1−
α (x

b
)−

λ+α
2β Jλ+α

β
(2

√
λx
cβ

)

β
√

λb
cβ

Jλ+α
β
−1(2

√
λb
cβ

)
, 0 < x < b. (14)
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We emphasize that the right-hand side of (14) is not defined for x = 0. For
the definition of qα(0) the fact is used that (x/2)−νJν(x) → 1

Γ(ν+1)
as x ↓ 0.

It implies

qα(0) = 1− α

β Γ(λ+α
β

+ 1) Jλ+α
β
−1

(
2
√

λb
cβ

)
(

λb

cβ

)λ+α
2β

− 1
2

.

The moments of τb can be obtained from (14) in the usual manner. For
example, with the help of Bessel’s functions we get

Ex(τb) = lim
α→0

1− qα(x)

α
=

(x
b
)−

λ
2β Jλ

β
(2

√
λx
cβ

)

β
√

λb
cβ

Jλ
β
−1(2

√
λb
cβ

)
, 0 < x < b,

E0(τb) =
(λb/cβ)

λ
2β
− 1

2

β Γ(λ
β

+ 1) Jλ
β
−1

(
2
√

λb
cβ

) .

If c < b, then qα(x) is found recursively over the intervals x ∈ (b− c, b), x ∈
(b − 2c, b − c), ..., x ∈ (0, b − kc), with k = [b/c] with the rule: for new
interval the solution from the previous one is used. For the first interval
when x ∈ (b− c, b) we have qα(x + c) = 1 and so qα(x) is given by (14).

3. Martingales and first passage times
By the definition, the process {Mt, t ≥ 0} with finite expectation is called
the martingale if for any t ≥ s

E(Mt|Fs) = Ms,

where the symbol E(.|Fs) means conditioning with respect to an informa-
tion flow Fs generated (usually) by the observed process Xt (see details e.g.
in [15]). An usefulness of martingales for analyzing the first passage time
distributions is due to the fact that for any bounded stopping time τ (with
respect to given Fs) the Wald identity holds:

E(Mτ ) = E(M0). (15)

With a properly chosen martingale Mt this identity is useful, as we will see
below, for getting some properties of τ .
From the point of view of modern theory of random processes (see, e.g. [15])
equations (6) and (7) are simple results of application the Itô formula and the
identity (15). Indeed, by Itô’s formula applied to e−αtf(Xt) with a smooth
function f(x) for any t ≥ 0 we find

e−αtf(Xt) = f(x) +

∫ t

0

e−αt(L[f(Xs)]− αf(Xs))ds + Mt (16)
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where Mt is the martingale. Now, (15) and (16) provide

Exe
−α min(t,τb)f(Xmin(t,τb)) =

f(x) + Ex

∫ min(t,τb)

0

e−αt(L[f(Xs)]− αf(Xs))ds. (17)

If f solves (6), then the integral in (17) vanishes. Passing to the limit as
t →∞ we obtain

Exe
−ατbf(Xτb

) = f(x). (18)

Since the boundary condition in (6) implies f(Xτb
) = 1, we finally get

Exe
−ατb = f(x).

Similarly, if (7) holds for a smooth function Q(x) then by (15) we have

ExQ(Xmin(t,τb)) = Q(x)− Ex min(t, τb). (19)

Recall that Q(x) = 0, x ≥ b. Now, assuming that

lim
t→∞

Ex(·) = Ex lim
t→∞

(·)

in the above equation, we get Q(x) = Ex(τb).
On the other hand, if the Laplace transformation qα(x) is known, its deriva-
tive at the point α = 0 provides Q(x).

3.1. Martingale families for filtered Poisson processes. The Wald
identity
Set K = sup{u ≥ 0 : EeuY1 < ∞} and, for u < K, ψ(u) = log

(
EeuY1

)
and

define

ϕ(u) =
1

β

∫ u

0

v−1ψ(v)dv, u < K.

For α > 0, set

Hα(z) =

∫ K

0

euz−ϕ(u)uα/β−1du,

and

G(z) =
1

β

∫ K

0

(euz − eux)u−1e−ϕ(u)du.

Assume the distribution function of ξ1 has all exponential moments, that is:

K = ∞. (20)

It is shown in [16] (see, [9]) that, under assumptions (20) and (4), both
processes

eαtHα(Xt) and G(Xt)− t
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are martingales. Notice that in [16] the mentioned-above martingale property
is provided by a corresponding discrete time approximation for Xt while in
[9] a completely different technique (stochastic calculus) is exploited. In
principle, it is readily to check that Hα(z) and G(z) solve

L[Hα(z)]− αHα(z) = 0

and
L[G(z)] = −1

respectively (comp. (6) and (7)). Taking into the consideration the above
equations with the help of the Itô formula we may claim that eαtHα(Xt) and
G(Xt)− t are martingales.
This fact and (15) implies that (see details in [9])

ExG(Xτb
) = Ex(τb) < ∞ (21)

and, similarly,
Ex(e

−ατbHα(Xτb
)) = Hα(x), α > 0. (22)

Assumption (20) fails for the exponentially distributed pulses and some other
distributions with 0 ≤ K < ∞. However, for 0 < K < ∞, the truncation
technique (for large positive jumps) allows to extend the Wald identity for
(21) and (22) (see, [20]).
Denote by

∆b(β) = Xτb
− b

the overshoot of Xt over the level b. Then, it makes sense to rewrite (21)
and (22) to the form

Ex(τb) =
1

β

∫ K

0

(Ex(e
u∆b(β))− eu(x−b))u−1eub−ϕ(u)du, (23)

Ex(e
−ατb

∫ K

0

eu∆b(β)uα/β−1eub−ϕ(u)du) =

∫ K

0

uα/β−1eux−ϕ(u)du, α > 0 (24)

which are useful for the corresponding bounds (see Section 3.2).

Remark 3. Notice that (11) and (12) are provided by (23) and (24). Indeed,
if ξ1 is exponentially distributed with the parameter ν, then K = ν and

ϕ(u) = −λ

β
log(1− u/ν), u < ν.
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Moreover, the memoryless property of exponential distribution allows readily
to check that ∆b(β) and τb are independent random variables and ∆b(β)
shares the distribution with ξ1. The latter provides

Ex(e
u∆b(β)) =

1

1− u/ν
, u < ν.

Both ϕ(u) and Ex(e
u∆b(β)), being substituted in (23) and (24), give (11) and

(12) under obvious change of variables. For m 6= 0, similar to (11) formula
can be found too.

3.2. Bounds for Ex(τb) and P{τb < T}
In general, the distribution function of ∆b(β) is unknown. Owing to ∆b(β) ≥
0, from identities (22) and (21) ((23) and (24)) it follows

qα(x) ≤ Hα(x)

Hα(b)
, α > 0 (25)

and
Ex(τb) ≥ G(b). (26)

With the help of Chebyshev’s inequality we derive from (25) the following
upper bound:

P{τb < T} ≤ inf
α>0

{
eαT Hα(x)

Hα(b)

}
(27)

and, in turn, we get

P{τb < T} ≥ 1− Ex(τb)

T
. (28)

Typically, the bounds in (27) and (28) are not effective because of essentially
over-under-estimating the probability P{τb < T}.

3.3 Approximations for Ex(τb) and P{τb < T}
Notice that

∆b(β)
d→ ∆b(0) as β → 0 (29)

and
∆b(0)

d→ R∞ as b →∞, (30)

where symbol
d→ denotes convergence in distribution; (29) is obvious and

(30) is well-known from [17].
Under the exponentially boundedness of ξ1, we have the fast convergence in
(30). Moreover, under P{ξk ≥ 0} = 1 and 0 < E(ξk) < ∞, we have

E(R∞) =
E(ξ2

k)

2E(ξk)
and E(R2

∞) =
E(ξ3

k)

3E(ξk)
. (31)
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For (0, 1)-Gaussian distribution of ξ1, the first and second moments of R∞
are expressed in terms of Riemann’s zeta-function ζ(x). In particular, (see
[18] or [19])

E(R∞) = −ζ(1/2)√
2π

= 0.5826 and E(R2
∞) = 3.5366. (32)

For β → 0 and b →∞, (23), (29) and (30) imply

Ex(τb) =
1

β

∫ K

0

(E(euR∞)− eu(x−b))u−1eub−ϕ(u)du (1 + o(1)). (33)

Then, by applying the Taylor expansion we give the following approximation
for Ex(τb):

Ex(τb) ≈ 1

β

∫ K

0

(1 + uE(R∞) + u2E(R2
∞)/2− eu(x−b))u−1e−ϕ(u)du. (34)

Exponential approximation. Let pulse ξ1 be Gaussian or bounded, let

b →∞ or β → 0, b →∞, b >
λ

β
E(ξk),

then

P

(
τb

Ex(τb)
< T

)
→ 1− e−T for all T > 0.

This fact is verified by the technique from [8] adapted to the continuous time
case (see also [20]).

4. Numerical results
To speed up the Monte-Carlo simulations of τb and Xτb

we have used the
following approach. Observe from (3) that the paths of the process Xt are
determined by the jump values located at {Tk, k ≥ 1}. The jump values are
defined by the recursion:

XT0 = X0 = x, XTk
=

m

β
+ (XTk−1

− m

β
)e−β(Tk−Tk−1) + ξk, k = 1, 2, . . .

Direct Monte-Carlo method works sufficiently fast for the small and moderate
values of Ex(τb). If Ex(τb)’s are large, we use the method of control variates
for the variance reduction in our simulations. As the control variate we used
relation (21).
Figures 1 and 2 illustrate the accuracy of the approximation (34). We con-
sidered the process Xt given by (1) and (2) with the initial value x = 0,
m = 0 and the intensity of the corresponding Poisson process λ = 10. Figure
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1 shows the case of (0, 1)-Gaussian pulse, ξ1, with two small values of β,
β = 0.1 and 0.01, the level b ranges from b = 1 to 15. The approximation of
Ex(τb) is computed using (32) along with (31).
These approximations are tabulated and compared with the results of the
Monte-Carlo simulations (the number of realizations of the process was n =
105). The corresponding lower bounds from (26) are also provided for the
comparison.
Figure 2 is similar to figure 1, only it shows the case of uniform over (0, 1)
pulse ξ1 . The first two moments of R∞ are calculated as in (31).
Figures 3 and 4 illustrate that, in fact, the exponential distribution ap-

proximation for τb is valid with the high accuracy when b > λ
β

E(ξ1). The

plots represent the distribution function P (τb < T ) obtained by the Monte-
Carlo simulation (the number of realizations of the process Xt is n = 105,
Xt is given by (1) and (2) with the initial value x = 0 and m = 0) and its
approximation:

P (τb < T ) ≈ 1− e
− T

Ex(τb) .

Ex(τb) is calculated by using the Monte-Carlo method. Figure 3 corresponds
to the case of (3, 1)-Gaussian pulses, level b = 50, β = 0.1 and λ = 1. Figure
4 corresponds to the case of (0, 1)-uniform pulses, level b = 16, β = 0.5 and
λ = 10.
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Birkhäuser Boston, Boston.
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Appendix 1. Differential equation for q�(x).

Let ξ1 have the exponential distribution with parameter ν > 0. Then

dP (ξ1 < u) = νe−νudu, u > 0

and the equation (6) becomes

−(βx−m)q′α(x)+λ

(∫ ∞

0

qα(x + u)νe−νudu− qα(x)

)
−αqα(x) = 0. (A1.1)

Observe that
(∫ ∞

0

qα(x + u)νe−νudu

)′
=

∫ ∞

0

q′α(x + u)νe−νudu

(Integrating by parts) = ν

(∫ ∞

0

qα(x + u)νe−νudu− qα(x)

)

(from (A1.1)) =
ν

λ
((βx−m)q′α(x) + αqα(x)).

Differentiate (A1.1) and substitute the above expression. We get

−(βx−m)q′′α(x) + (ν(βx−m)− (λ + α + β))q′α(x) + ναqα(x) = 0, (A1.2)

which becomes the equation (8) when m = 0.

Appendix 2. Finding C1.

λ

C1

= βb Φ′
(

α

β
,
λ + α

β
+ 1; νb

)
+ (λ + α)Φ

(
α

β
,
λ + α

β
+ 1; νb

)

= νb
α

λ+α
β

+ 1
Φ

(
α

β
+ 1,

λ + α

β
+ 2; νb

)

+ (λ + α)Φ

(
α

β
,
λ + α

β
+ 1; νb

)
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(we have used differentiation formula Φ′(a, d; x) = a
d
Φ(a + 1, d + 1; x))

λ

C1(λ + α)
= νb

α
β

λ+α
β

(λ+α
β

+ 1)
Φ

(
α

β
+ 1,

λ + α

β
+ 2; νb

)

+ Φ

(
α

β
,
λ + α

β
+ 1; νb

)
= Φ

(
α

β
,
λ + α

β
; νb

)
.

(Denote x = νb, a = α
β
, d = λ+α

β
+ 1. Recall Φ(a, d; x) =

∑∞
k=0

(a)k

(d)k

xk

k!
.

Then the right hand side of the above equation becomes

x
a

(d− 1)d
Φ(a + 1, d + 1; x) + Φ(a, d; x) =

x
a

(d− 1)d

∞∑

k=0

(a + 1)k

(d + 1)k

xk

k!
+

∞∑

k=0

(a)k

(d)k

xk

k!
=

∞∑

k=1

(a)k

(d− 1)k+1

xk

(k − 1)!
+ 1 +

∞∑

k=1

(a)k

(d)k

xk

k!
=

1 +
∞∑

k=1

(a)kx
k k + b− 1

(d− 1)k+1k!
=

1 +
∞∑

k=1

(a)k

(d− 1)k

xk

k!
=

= Φ(a, d− 1; x).
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� = 0:1; � = 10 � = 0:01; � = 10

Low Error Low Error
b M-C Approx Bound Appr% b M-C Approx Bound Appr%
1 3.10 3.10 1.87 0.21 1 9.30 9.15 5.70 1.60
2 5.38 5.37 3.98 0.21 2 15.30 15.20 11.62 0.68
3 7.99 7.97 6.38 0.23 3 21.37 21.48 17.76 -0.49
4 11.00 10.97 9.12 0.31 4 28.19 28.00 24.14 0.68
5 14.41 14.46 12.30 -0.30 5 34.89 34.79 30.77 0.29
6 18.62 18.56 16.02 0.31 6 42.12 41.85 37.66 0.65
7 23.37 23.45 20.41 -0.32 7 49.54 49.20 44.85 0.68
8 29.28 29.34 25.66 -0.19 8 57.06 56.88 52.33 0.32
9 36.57 36.53 32.02 0.13 9 65.16 64.88 60.13 0.43
10 45.54 45.42 39.82 0.26 10 73.71 73.24 68.28 0.63
11 56.46 56.58 49.52 -0.21 11 82.38 81.98 76.80 0.48
12 70.63 70.80 61.76 -0.24 12 91.94 91.13 85.70 0.88
13 89.33 89.19 77.45 0.15 13 100.52 100.72 95.03 -0.19
14 113.00 113.38 97.86 -0.34 14 111.24 110.77 104.80 0.43
15 145.59 145.71 124.87 -0.08 15 122.18 121.32 115.05 0.70

Figure 1: Approximation for E0τb,
(0, 1)-Gaussian pulses.
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� = 0:1; � = 10

Low Error
b M-C Approx Bound Appr%
30 9.13 9.16 9.00 -0.34
35 11.91 11.94 11.73 -0.29
40 15.67 15.72 15.42 -0.30
45 21.37 21.47 20.98 -0.43
50 31.91 32.22 31.18 -1.00
51 35.43 35.74 34.46 -0.88
52 39.72 40.10 38.51 -0.96
53 45.28 45.66 43.60 -0.83
54 52.29 52.93 50.21 -1.22
55 61.96 62.74 59.03 -1.27
56 75.13 76.45 71.19 -1.76
57 93.89 96.31 88.58 -2.58
58 122.59 126.22 114.40 -2.96
59 167.93 173.16 154.32 -3.11
60 239.71 249.97 218.65 -4.28
61 364.27 381.18 326.84 -4.64
62 586.49 615.17 516.77 -4.89
63 993.07 1050.80 864.83 -5.81
64 1804.20 1897.05 1530.43 -5.15
65 3380.69 3611.30 2857.94 -6.82

Figure 2: Approximation for E0τb

(0, 1)-Uniform pulses.
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b = 50; � = 0:1; � = 1

Exp Err Exp Exp Err Exp
T M-C Approx Appr% T M-C Approx Appr%
50 0.081 0.137 -68.24 550 0.809 0.802 0.94
100 0.215 0.255 -18.56 600 0.837 0.829 0.94
150 0.330 0.357 -8.19 650 0.862 0.852 1.12
200 0.428 0.445 -4.03 700 0.883 0.873 1.14
250 0.509 0.521 -2.30 750 0.899 0.890 0.96
300 0.580 0.586 -1.05 800 0.914 0.905 0.93
350 0.644 0.643 0.07 850 0.928 0.918 1.02
400 0.696 0.692 0.61 900 0.937 0.929 0.83
450 0.742 0.734 1.08 950 0.946 0.939 0.71
500 0.778 0.770 0.97 1000 0.954 0.947 0.71

Figure 3: Distribution of τb, P (τb < T )
(3, 1)-Gaussian pulses.
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b = 16; � = 0:5; � = 10

Exp Err Exp
T M-C Approx Appr%
50 0.234 0.253 -7.88
100 0.432 0.442 -2.28
150 0.581 0.583 -0.37
200 0.692 0.688 0.62
250 0.773 0.767 0.80
300 0.832 0.826 0.68
350 0.875 0.87 0.58
400 0.909 0.903 0.64
450 0.933 0.927 0.57
500 0.950 0.946 0.47

Figure 4: Distribution of τb, P (τb < T )
(0, 1)-Uniform pulses
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