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ABSTRACT. This paper develops an adaptive model on asset pricing and wealth dy-
namic of a financial market with heterogeneous agents and examines the profitability
of momentum and contrarian trading strategies. In order to characterize asset price,
wealth dynamics and rational adaptiveness arising from the interaction of heteroge-
neous agents with CRRA utility, an adaptive discrete time equilibrium model in terms
of return and wealth proportions (among heterogeneous representative agents) is es-
tablished. Taking trend followers and contrarians as the main heterogeneous agents in
the model, the profitability of momentum and contrarian trading strategies is analyzed.
Our results show the capability of the model to characterize some of the existing evi-
dence on many of anomalies observed in financial markets, including the profitability
of momentum trading strategies over short time intervals and of contrarian trading
strategies over long time intervals, rational adaptiveness of agents, overconfidence
and underreaction, overreaction and herd behavior, excess volatility, and volatility
clustering.
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1. INTRODUCTION

The traditional asset-pricing models—such as the capital asset pricing model (CAPM)
of Sharpe (1964) and Lintner (1965), the arbitrage pricing theory (APT) of Ross
(1976), or the intertemporal capital asset pricing model (ICAPM) of Merton (1973)—
have as one of their important assumptions, investor homogeneity. In particular the
paradigm of the representative agent assumes that all investors are homogeneous with
regard to their preferences, their expectations and their investment strategies. However,
as already argued by Keynes in the 1930s, agents do not have sufficient knowledge of
the structure of the economy to form correct mathematical expectations that would be
held by all agents.

The other important paradigm underpinning these models, the efficient market hy-
pothesis, assumes that the current price contains all available information and past
prices cannot help in predicting future prices. However there is evidence that mar-
kets are not always efficient and there are periods when real data show significantly
higher than expected autocorrelation of returns. Over the last decade, a large vol-
ume of empirical work has documented a variety of ways in which asset returns can
be predicted based on publicly available information and many of the results can be
thought of as belonging to one of two broad categories of phenomena1. On the one
hand, returns appear to exhibit continuation, or momentum, over short to medium time
intervals, which may imply the profitability of momentum trading strategies over short
to medium time intervals. On the other hand, there is also tendency toward reversals
over long time intervals, leading to possible profitability of contrarian strategies. The
traditional models of finance theory seem to have difficulty in explaining this growing
set of stylized facts. As a result, there is a growing dissatisfaction with (i) models
of asset price dynamics based on the representative agent paradigm, as expressed for
example by Kirman (1992), and (ii) the extreme informational assumptions of rational
expectations.

As an alternative to the traditional models of finance theory, studies over the last
decade have involved some departure from the classical assumptions of strict ratio-
nality and unlimited computational capacity, and turned to heterogeneity and bounded
rationality of agents. This line of research has attempted to incorporate aspects of in-
vestor psychology into the standard asset pricing theory in finance and characterize the
interaction of heterogeneous agents, and to show that many of anomalies observed in
financial markets are due to these effects.

Analytical models of how mistaken beliefs cause momentum (over short time inter-
vals) and reversal (over long time intervals) have been considered by Barberis, Shleifer,
and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998) and Hong and Stein
(1999). All these models generate an impulse response function to a new information
signal in which there is gradual rise in the average reaction to a positive signal and a
gradual average process of correction.

Both Barberis et al (1998) and Daniel et al (1998) assume that prices are driven
by a single representative agent. They posit a small number of cognitive biases that
this representative agent might have, and then investigate the extent to which these are
sufficient to simultaneously deliver both short-horizon continuation and long-horizon
reversals.

1A detailed discussion and references on the related empirical work is provided in Section 2.
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Hong and Stein (1999) pursue the same goal as Barberis et al (1998) and Daniel
et al (1998), but adopt a fundamentally different approach, and focus on the interac-
tion between heterogeneous agents. They consider a model of two types of boundedly
rational agents—newswatchers and momentum traders. The newswatchers make fore-
casts based on signals that they privately observe about future fundamentals, not on the
current and past prices, while the momentum traders make simple forecasts based on
past prices. Under an assumption that private information diffuses gradually across the
newswatcher population, they provide a unified account of under- and overreactions. If
information diffuses gradually across the population, prices underreact in the short run.
Therefore “early” momentum buyers using simple trend-chasing strategies can profit
from the price underreaction. On the other hand, “early” momentum buyers impose a
negative externality on “late” momentum buyers, leading inevitably to overraction at
long horizons.

In financial markets, individuals are imperfectly rational. It is believed that, as they
learn from their trading outcomes, the market will progress eventually toward the fully
rational equilibrium. A number of recent models use this evolutionary approach to
characterize the interactions of heterogeneous agents in financial markets (e.g. Brock
and Hommes (1997), (1998), Bullard and Duffy (1999), Chiarella (1992), Chiarella
and He (2002a), (2002b), Day and Huang (1990), Farmer (1999), Farmer and Lo
(1999), Franke and Nesemann (1999), Frankel and Froot (1987), Hommes (2001),
LeBaron (2000), Lux (1995), and Lux and Marchesi (1999)). To avoid the constraints
of analytical tractability, many of these authors use computer simulations to explore a
wider space of economic settings. A general finding in many of these studies that long-
horizon agents frequently do not drive short-horizon agents out of financial markets,
and that populations of long- and short-horizon agents can create patterns of volatility
and volume similar to actual empirical patterns.

In their framework, Brock and Hommes (1997), (1998) propose to model economic
and financial markets as adaptive belief system (ABS), which is essentially an evo-
lutionary competition among trading strategies. A key aspect of these models is that
they exhibit expectations feedback and adaptiveness of agents. Agents adapt their be-
liefs over time by choosing from different predictors or expectations functions, based
upon their past performance as measured by realized profits. Agents are boundedly
rational, in the sense that most traders choose strategies with higher fitness. The evolu-
tional model generates endogenous price fluctuations with similar statistical properties
as those observed in financial markets. The model of Brock and Hommes has been ex-
tended in Chiarella and He (2002b) by allowing agents to have different risk attitudes
and different expectation formation schemes for both first and second moments of the
price distribution.

Levy and Levy (1996) and Levy, Levy and Solomon (1994) consider a more realistic
model where investors’ optimal decisions depend on their wealth (resulting from the
underlying CRRA utility function) and both price and wealth processes are thus grow-
ing. Using numerical simulations and comparing the stock price dynamics in models
with homogeneous and heterogeneous expectations, they conclude that the homoge-
neous expectation assumption leads to a highly inefficient market with periodic (and
therefore predictable) booms and crashes while introduction of heterogeneous expec-
tations leads to much more realistic dynamics.

Chiarella and He (2001) develop a model of interaction of portfolio decisions and
wealth dynamics with heterogeneous agents. A growth equilibrium model of both the
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asset price and wealth is first obtained. To characterize the interaction of heteroge-
neous agents in financial markets and conduct a theoretical analysis, stationary models
in terms of return and wealth proportions (among different types of agents) are then de-
veloped. As a special case of the general heterogeneous model, these authors consider
models of homogeneous agents and of two heterogeneous agents without switching
among them.

In this paper, we establish an adaptive model on asset pricing and wealth dynamics
of heterogeneous agents, which extends the model in Chiarella and He (2001) further
by adding a switching mechanism among different types of trading strategies. Based
on certain fitness measures, such as the realized wealth, the agents are allowed to
switch from one strategy to another from time to time. Consequently a model with
adaptive beliefs is established where an evolutionary dynamics across predictor choice
is coupled to the dynamics of the endogenous variable.

Empirical studies provide some evidence that momentum trading (or trend follow-
ing) strategies are more profitable over short time intervals, while contrarian trading
strategies are more profitable over long time intervals (e.g. Arshanapali et al (1998),
Asnee (1997), Capaul et al (1993), Fama and French (1998), Jegadeesh and Titman
(1993), (2001), Lee and Swaminathan (2000), Levis and Liodakis (2001), Moskowitz
and Grinblatt (1999) and Rouwenhorst (1998)). To characterize the profitability of mo-
mentum and contrarian trading strategies, quasi-homogeneous model is introduced, in
which agents use exactly the same trading strategies except for having different time
intervals. Our results in general support the empirical findings on the profitability of
the momentum and contrarian trading strategies. In addition, the model also exhibits
underlying rationale for various anomalies observed in financial markets, including,
overconfidence and underreaction, overreaction and herd behavior, excess volatility,
and volatility clustering.

This paper is organized as follows. Section 2 establishes an adaptive asset pricing
and wealth dynamic model with heterogeneous beliefs from agents. It is shown how
the distributions of the wealth and population across heterogeneous agents are mea-
sured. As a simple case, a model of two types of agents is then considered in Section
3. To characterize the profitability of momentum and contrarian trading strategies, a
quasi-homogeneous model is also introduced as a special case of the model of two
types of agent in Section 3. The profitability of momentum and contrarian trading
strategies is then analyzed in Sections 4 and 5, respectively. Section 6 concludes.

2. ADAPTIVE MODEL WITH HETEROGENEOUS AGENTS

This section is devoted to establish an adaptive asset pricing and wealth dynamic
model with heterogeneous beliefs among agents. The model can been treated as a
generalization of some recent asset pricing models on the interaction between hetero-
geneous agents, say for example, Barberis et al (1998), Brock and Hommes (1998),
Chiarella and He (2001), Daniel et al (1998), Hong and Stein (1999) and Levy and
Levy (1996). The key characteristics of this modelling framework are the adaptive-
ness, the heterogeneity and the interaction of the economic agents. The heterogeneity
is expressed in terms of different views on expectations of the distribution of future
returns on the risky asset. The modelling framework of this paper extends that of the
cited work by focusing on both asset price and wealth dynamics (Brock and Hommes
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(1998) considered only asset price dynamics) and by allowing a mechanism of adap-
tiveness of heterogeneous agents (Chiarella and He (2001) considered fixed proportion
of heterogeneous agents).

The setting of the following adaptive model is similar to the one in Chiarella and
He (2001) and Levy and Levy (1996). Our hypothetical financial market contains two
investment choices: a stock (or index of stocks) and a bond. The bond is assumed to be
a risk free asset and the stock is a risky asset. The model considered in the following
is discrete time model, in which investors are allowed to revise their portfolios at each
time interval.

Following the standard portfolio optimization approach, a growth model in terms of
price and wealth is established first in this section. Then, to reduce the growth model
to a stationary model, the return on the risky asset and the wealth proportions (among
heterogeneous investors), instead of price and wealth, are used as state variables to
form a stationary model. Based on a certain performance (or fitness) measure, an
adaptive mechanism is finally introduced, leading to a general adaptive model. This
is a model of asset price and wealth dynamics that characterizes three important and
related issues in financial markets: heterogeneity, adaptiveness, and interaction.

2.1. Notations. Denote

pt : Price (ex dividend) per share of the risky asset at time t;

yt : Dividend at time t;

R : Risk free return with risk free rate r = R − 1;

N : Total number of shares of the risky asset;
H : Total number of investors;

Ni,t : Number of shares acquired by agent i at time t;

Wi,t : Wealth of agent i at time t;

Wi,0 : Initial wealth of agent i;

πi,t : Proportion of wealth of agent i invested in the risky asset at time t;

ρt : The return on the risky asset at period t.

It is assumed that2 all the investors have the same attitude to risk with the same utility
function U(W ) = log(W ). Following the above notation, the return on the risky asset
at period t is then defined by3

ρt =
pt − pt−1 + yt

pt−1

. (2.1)

2To make the following analysis more tractable and transparent, the assumption that all investors have
the same utility function U(W ) = log(W ) is maintained in this paper. However, the analysis can be
generalized to the case of the utility functions that allow agents to have different risk coefficients, say,
Ui(W ) = (W γi −1)/γi with 0 < γi < 1. The dynamics generated by different risk aversion coefficient
γi is an interesting and important issue that is left for future work.
3The return can also be defined by the difference of logarithms of the prices. It is known that the
difference between these two definition becomes smaller and smaller as the time interval is reduced
(say, from monthly to weekly or daily).
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2.2. Portfolio Optimization Problem of Heterogeneous Agents. Following the stan-
dard portfolio optimization approach, the wealth of agent (or investor) i at time period
t + 1 is given by

Wi,t+1 =(1 − πi,t)Wi,tR + πi,tWi,t(1 + ρt+1)

=Wi,t[R + πi,t(ρt+1 − r)]. (2.2)

As in Brock and Hommes (1998) and Levy and Levy (1996), a Walrasian scenario is
used to derive the demand equation, i.e., each trader is viewed as a price taker and the
market is viewed as finding (via the Walrasian auctioneer) the price pt that equates the
sum of these demand schedules to the supply. That is, the agents treat the period t price,
pt, as parametric when solving their optimisation problem to determine πi,t. Denote
by Ft = {pt−1, · · · ; yt, yt−1, · · · } the information set4 formed at time t. Let Et, Vt be
the conditional expectation and variance, respectively, based on Ft, and Ei,t, Vi,t be the
“beliefs” of investor i about the conditional expectation and variance. Then it follows
from (2.2) that

Ei,t(Wi,t+1) = Wi,t[R + πi,t(Ei,t(ρt+1) − r)],
Vi,t(Wi,t+1) = W 2

i,tπ
2
i,tVi,t(ρt+1).

(2.3)

Consider investor i, who faces a given price pt, has wealth Wi,t and believes that the
asset return is conditionally normally distributed with mean Ei,t(ρt+1) and variance
Vi,t(ρt+1). This investor chooses a proportion πi,t of his/her wealth to be invested in
the risky asset so as to maximize the expected utility of the wealth at t+1, as given by

max
πi,t

Ei,t[U(Wi,t+1)].

It follows that5 the optimum investment proportion at time t, πi,t is given by

πi,t =
Ei,t(ρt+1) − r

Vi,t(ρt+1)
. (2.4)

Heterogeneous beliefs are introduced via the assumption that

Ei,t(ρt+1) = fi(ρt−1, · · · , ρt−Li
), Vi,t(ρt+1) = gi(ρt−1, · · · , ρt−Li

)

for i = 1, · · · , H , where Li are integers, fi, gi are some deterministic functions which
can be differ across investors. Under this assumption, both Ei,t(ρt+1) and Vi,t(ρt+1) are
functions of the past prices up to t− 1, which in turn implies the optimum wealth pro-
portion πi,t, defined by (2.4), is a function of the history of the prices (pt−1, pt−2, · · · )6.

4Because of the Walrasian scenario, the hypothetical price pt at time t is included in the information set
to determine the market clearing price. However, agents form their expectations by using the past prices
up to time t − 1.
5See Appendix A.1 in Chiarella and He (2001) for details.
6In Levy and Levy (1996), the hypothetical price pt is included in the above conditional expectations
on the return and variance. In this case, the market clearing price is solved implicitly and is much more
involved mathematically. The approach adopted here is the standard one in deriving the price via the
Walrasian scenario and also keeps the mathematical analysis tractable. A similar approach has been
adopted in Brock and Hommes (1997), (1998) and Chiarella and He (2002b).
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2.3. Market Clearing Equilibrium Price—A Growth Model. The optimum pro-
portion of investment in the risky asset, πi,t, determines the number of shares at price
pt that investor i wishes to hold:

Ni,t =
πi,tWi,t

pt

,

Summing the demands of all investors gives the aggregate demand. The total number
of shares in the market, denoted by N , is assumed to be fixed. Hence the market
clearing equilibrium price pt is determined by

H
∑

i=1

Ni,t =
H

∑

i=1

πi,tWi,t

pt

= N,

i.e.,
H

∑

i=1

πi,tWi,t = Npt. (2.5)

Thus, in this model, as in real markets, the equilibrium price pt and the wealth of
investors, Wt ≡ (W1,t, · · · ,WH,t), are determined simultaneously by (2.2) and (2.5).
The optimum demands of investors are functions of the price and their wealth. Also,
as observed in financial markets, the model implies that both the price and the wealth
are growing processes in general.

2.4. Population Distribution Measure. Now suppose all the investors can be grouped
in terms of their conditional expectations of mean and variance. That is, within a group,
all the investors follow the same expectation schemes on the conditional mean and vari-
ance of the return ρt+1, and hence the optimum wealth proportion (πi,t) invested in the
risky asset for the investors are the same. Assume all the investors can be grouped as
h types (or groups) and group j has `j,t investors at time t with j = 1, · · · , h, then
`1,t + · · ·+ `h,t = H . Denote nj,t as the proportion of the number of investors in group
j, at time t, relative to the total number of the investors, H , that is, nj,t = `j,t/H , so
that n1,t + · · · + nh,t = 1.

Some simple examples on return and wealth dynamics when proportions of different
types of agents nj,t are fixed over time are illustrated in Chiarella and He (2001). This
is a highly simplified assumption. It would be more realistic to allow agents to adjust
their beliefs from time to time, based on some performance or fitness measures (say,
for example, the realized returns or errors, as in Brock and Hommes (1998)). In this
way, one can account for investor psychology and herd behavior7. As a consequence,
the proportions of different types of agents become endogenous state variables. There-
fore (n1,t, n2,t, · · · , nh,t) measures the population distribution among different types
of heterogeneous agents. The change in the distribution over time can be used to mea-
sure herd behavior among heterogeneous agents, in particular, during highly volatile
periods in financial markets.

2.5. Heterogeneous Representative Agents and Wealth Distribution Measure. For
investors within the group j, the optimum demands on wealth proportions to be in-
vested in the risky asset are the same, and are denoted by π̄j,t. Let W̄j,t be the average
wealth of each investor within group j (so that `j,tW̄j,t gives the total wealth of group
j).
7See more discussion on this aspect in the next section.
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To measure the average wealth distribution among heterogeneous representative
agents, introduce w̄j,t to be the average wealth proportion of group j relative to the
total average wealth W̄t at time t, that is,

w̄i,t =
W̄i,t

W̄t

, with W̄t =
h

∑

j=1

W̄j,t. (2.6)

One can see that the average wealth proportion vector (w̄1,t, w̄2,t, · · · , w̄h,t) corre-
sponds to the wealth distribution among representatives of heterogeneous agents of
different types, it measure the average wealth levels used in the different trading strate-
gies.

2.6. Performance Measure, Population Evolution and Adaptiveness. Following
Brock and Hommes (1997), (1998), a performance measure or fitness function, say
(Φ1,t, · · · , Φh,t), is publicly available to all agents. Based on the performance measure
agents make a (boundedly) rational choice among the predictors. This results in the
Adaptive Rational Equilibrium Dynamics, introduced by Brock and Hommes (1997),
an evolutionary dynamics across predictor choice which is coupled to the dynamics
of the endogenous variables. In the limit as the number of agents goes to infinity,
the probability that an agent j chooses trading strategy j is given by the well known
discrete choice model or ‘Gibbs’ probabilities8

nj,t = exp[β(Φj,t−1 − Cj)]/Zt Zt =
h

∑

j=1

exp[β(Φj,t−1 − Cj)], (2.7)

where Cj ≥ 0 measures the cost of the strategy j for j = 1, 2, · · · , h.
The crucial feature of (2.7) is that the higher the fitness of trading strategy j, the

more traders will select strategy j. The parameter β, called intensity of choice or
switching intensity, plays an important role and can be used to characterize various
psychological effects, as discussed by Hirshleifer (2001).

• Overconfidence and Underreaction.
Edwards, (1968) identified the phenomenon of “conservatism”, that under ap-
propriate circumstances individuals are overconfident. They do not change
their beliefs as much as would a rational Bayesian in the face of new evidence.
One explanation for conservatism is that processing new information and up-
dating beliefs is costly. Another is that, in a stable environment, self-deception
can cause conservatism because an individual who has explicitly adopted a be-
lief may be reluctant to admit to having made a mistake. Conservatism implies
under-weighting of new evidence. Both overconfidence and underreaction can
be partially measured when the switching intensity parameter β is small. In an
extreme case when β = 0, there is no switching among strategies and agents
populations are evenly distributed across all trading strategies9.

• Overreaction and Herd Behavior.
If the environment is volatile, or agents are less conservative and less confi-
dent about their beliefs, there may be no dishonor in recognizing that different

8See Manski and McFadden (1981) and Anderson, de Palma and Thisse (1993)) for extensive discussion
of discrete choice models and their applications in economics.
9See Chiarella and He (2001) for models with fixed, but not evenly distributed, population proportion
among different types of trading strategies.
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beliefs are called for and investors are more willing to switch to beliefs which
generate better outcomes. This can be measured when the switching intensity
parameter β is high. An increase in the switching intensity β represents an
increase in the degree of rationality with respect to evolutionary selection of
trading strategies. In an extreme case when β is very large (close to infinity),
a large proportion of traders are willing to switch more quickly to successful
trading strategies. Consequently, market overreaction and herd behavior may
be observed.

A natural performance measure or fitness function can be taken as a weighted av-
erage of the realized wealth return on the proportion invested in the risky asset, given
by

Φj,t = φj,t + γΦj,t−1;

for j = 1, · · · , h, where 0 ≤ γ ≤ 1 and

φj,t = π̄j,t−1

W̄j,t − W̄j,t−1

W̄j,t−1

= π̄j,t−1[r + (ρt − r)π̄j,t−1]

is the realized wealth return invested in the risky asset in period t. Here γ is a memory
parameter measuring how fast past realized fitness is discounted for strategy selection.

2.7. An Adaptive Model. The above growth model is rendered stationary by formu-
lating it in terms of the stock return and the relative proportions of the wealth among
the investors, instead of the wealth Wt and the stock price pt.

Proposition 2.1. The average wealth proportions evolve according to

w̄i,t =
w̄i,t−1[R + (ρt − r)π̄i,t−1]

∑h

j=1
w̄j,t−1[R + (ρt − r)π̄j,t−1]

(i = 1, · · · , h) (2.8)

with return ρt given by10

ρt = r +

∑h

i=1
w̄i,t−1[(1 + r)(ni,t−1π̄i,t−1 − ni,tπ̄i,t) − αtni,t−1π̄i,t−1]

∑h

i=1
π̄i,t−1w̄i,t−1(ni,tπ̄i,t − ni,t−1)

, (2.9)

where αt corresponds to dividend yield defined by αt = yt/pt−1. The population
proportions nj,t evolve according to

ni,t = exp[β(Φi,t−1 − Cj)]/Zt, (2.10)

where the fitness functions are defined by

Φi,t = φi,t + γΦi,t−1; 0 ≤ γ ≤ 1,

φi,t = π̄i,t−1

W̄i,t − W̄i,t−1

W̄i,t−1

= π̄i,t−1[r + (ρt − r)π̄i,t−1],

Zt =
h

∑

i=1

exp[β(Φi,t−1 − Ci)],

and Ci ≥ 0 measure the cost of the strategy for i = 1, 2, · · · , h.

Proof. See Appendix A.1. �

10It is easy to check that ρt ≡ r is a trivial solution. As a necessary condition for investing in risky
asset, we assume that E(ρt) > r.
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It is easy to see that, when h ≤ H , `j ≥ 1 and β = 0 for j = 1, · · · , h, Proposition
2.1 leads to the model in Chiarella and He (2001) with fixed proportion nj,t = nj (j =
1, · · · , h) among heterogeneous types of agents.

2.8. Trading Strategies. The adaptive model established in Proposition 2.1 is incom-
plete unless the conditional expectations of agents on the mean and variance of returns
are specified. Different trading strategies can be incorporated into this general adaptive
model. To illustrate various features of the model, this paper considers only three sim-
ple, but well-documented, types of agents, termed fundamentalist, momentum traders
and contrarians. Neither type is fully rational in the usual sense. The information on
the dividends and realized prices is publicly available to all trader types.

2.8.1. Fundamental traders. The fundamentalists make forecasts on the risk premium
level based on both public and their private information about future fundamentals. It
is assumed that

EF,t(ρt+1) = r + δF , (2.11)
where EF,t denotes the fundamentalists’ expected return on ρt+1 for the next period
t + 1 and δF is the risk premium estimated11 of the fundamental traders. That is, the
fundamentalists believe that the excess conditional mean for the risky asset (from the
risk-free rate) is given by the risk premium δF .

2.8.2. Momentum Traders. Momentum traders, in contrast to the fundamental traders,
do condition on the past prices. Momentum, or positive feedback, trading has several
possible motivations, one being that investors form expectations of future prices by
extrapolating trends. They buy into price trends and exaggerate trends, leading to
overshooting. As a result there may be excess volatility.

In an efficient market, a stock having good growth prospects does not necessarily
have good prospects for future risk-adjusted returns (which are on average zero). If
people mistakenly extend their favorable evaluation of a stock’s earnings prospects to
its return prospects, growth stocks will be overpriced (see Lakonishok et al (1994) and
Shefrin and Statman (1995)).

Empirical studies have subscribed to the view that momentum trading strategies
yield significant profits over short time intervals (e.g. Asnee (1997), Jegadeesh and
Titman (1993), (2001), Lee and Swaminathan (2000), Moskowitz and Grinblatt (1999)
and Rouwenhorst (1998)). Although these results have been well accepted, the source
of the profits and the interpretation of the evidence are widely debated. In addition,
there does not exist in the literature a quantified model to clarify and justify such
evidence. As a first step, this issue is discussed in the next section within the framework
of the adaptive heterogeneous model outlined in Proposition 2.1.

For momentum traders, it is assumed in this paper that their forecasts are “simple”
functions of the history of past returns. More precisely, it is assumed that

EM,t(ρt+1) = r + δM + dM ρ̄M,t, ρ̄M,t =
1

LM

LM
∑

k=1

ρt−k, (2.12)

where EM,t(ρt+1) denotes the expected return of momentum agents on ρt+1 for the next
period t + 1 and δM is their risk premium estimated and dM > 0 corresponds to the

11A constant risk premium is a simplified assumption. In practice, the risk premium is not necessarily
constant but could also be a function of the variance, for example.
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extrapolation rate of the momentum trading strategy. The integer LM ≥ 1 corresponds
to the memory length of momentum traders. In other words, the expected excess return
(from risk-free rate) of momentum agents has two components: their estimated risk
premium δM and trend extrapolation dM ρ̄M,t, which is positively proportional to the
moving average of the returns over the last LM time periods.

2.8.3. Contrarian Traders. The profitability of contrarian investment strategies is now
a well-established empirical facts in the finance literature (see, for example, Levis and
Liodakis (2001)). Empirical evidence suggests that over long time intervals, contrar-
ian strategies generate significant abnormal returns (see, for example, Arshanapali et
al (1998), Fama and French (1998), and Capaul et al (1993)). Some evidence has
shown that overreaction can use aggregate stock market value measures such as divi-
dend yield to predict future market returns, so that contrarian investment strategies are
on average profitable. In spite of the apparent robustness of such strategies, the under-
lying rationale for their success remains a matter of lively debate in both academic and
practitioner communities.

In the following section, the role of expectational errors in explaining the profitabil-
ity of contrarian strategies is examined. For contrarian strategy, it is assumed that

EC,t(ρt+1) = r + δC − dC ρ̄C,t, ρ̄C,t =
1

LC

LC
∑

k=1

ρt−k, (2.13)

where EC,t(ρt+1) denotes the expected return of contrarian agents on ρt+1 for the next
period t + 1 and δC is their estimated risk premium and dC > 0 corresponds to their
extrapolation rate. The integer LC ≥ 1 corresponds to the memory length of contrarian
agents. In other words, contrarian agents believe that the difference of excess condi-
tional mean and the risk premium [EC,t(ρt+1) − r] − δC is negatively proportional to
the moving average of the returns over the last LC time periods.

3. AN ADAPTIVE MODEL OF TWO TYPES OF AGENTS

In the rest of this paper, the focus will be on a simple model of just two types of
agents—momentum traders and contrarian traders. In this case, the adaptive model
developed in Section 2 can be reduced to a simple form, as indicated below. To ex-
amine profitability of momentum and contrarian trading strategies over different time
intervals, a special case of the model, termed quasi-homogeneous model, is then con-
sidered. Detailed discussion on the dynamics of such quasi-homogeneous models, in-
cluding profitability, herd behavior, price overshooting, statistical patterns of returns,
is then undertaken in the following sections.

3.1. Notation. Assume that there are only two different types trading strategies. Let
w̄t, n̄t be the difference of the average wealth proportions and population proportions
of type 1 and type 2 agents; that is

w̄t = w̄1,t − w̄2,t, nt = n1,t − n2,t. (3.1)

Then it follows from w̄1,t + w̄2,t = 1 and n1,t + n2,t = 1 that

w̄1,t =
1 + w̄t

2
, w̄2,t =

1 − w̄t

2
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and

n1,t =
1 + nt

2
, n2,t =

1 − nt

2
.

Correspondingly, the adaptive model in Proposition 2.1 can be reduced to a simple
form.

3.2. The Model for Two Types of Agents. Given the above notations, the adaptive
model for two types of agents following different trading strategies assumes the form
give by Proposition 3.1.

Proposition 3.1. The difference of the average wealth proportions w̄t evolves accord-
ing to

w̄t+1 =
f1 − f2

f1 + f2

(3.2)

with return ρt given by

ρt+1 = r +
g11 + g12

g21 + g22

, (3.3)

where

f1 = (1 + w̄t)[1 + r + (ρt+1 − r)π̄1,t],

f2 = (1 − w̄t)[1 + r + (ρt+1 − r)π̄2,t],

g11 = (1 + w̄t)[(1 + r − αt+1)(1 + n̄t)π̄1,t − (1 + r)(1 + n̄t+1)π̄1,t+1],

g12 = (1 − w̄t)[(1 + r − αt+1)(1 − n̄t)π̄1,t − (1 + r)(1 − n̄t+1)π̄2,t+1],

g21 = (1 + w̄t)π̄1,t[(1 + n̄t+1)π̄1,t+1 − (1 + n̄t)],

g22 = (1 − w̄t)π̄2,t[(1 − n̄t+1)π̄2,t+1 − (1 − n̄t)]

and π̄j,t (j = 1, 2) are defined by (2.4). The difference of population proportions nt

evolves according to

nt+1 = tanh[
β

2
((Φ1,t − Φ2,t) − (C1 − C2))], (3.4)

where the fitness functions are defined as

Φj,t+1 = π̄j,t[r + (ρt+1 − r)π̄j,t] + γΦj,t, (3.5)

and Cj ≥ 0 measure the cost of the strategy for j = 1, 2.

3.3. Wealth distribution and profitability of trading strategies. The average wealth
distribution among two types of agents (following different trading strategies) is now
characterized by w̄t, the difference of the average wealth proportions. Over a certain
time period, if w̄t stays above (below) the initial value w̄o and increases (decreases) sig-
nificantly as t increases, then, on average, type 1 agents accumulate more (less) wealth
than type 2 agents, and one may say type 1 trading strategy is more (less) profitable
than type 2 trading strategy. Otherwise, if the difference is not significantly different
from w̄o, then there is no evidence that on average either trading strategies is more
profitable than the other.
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3.4. Population distribution and herd behavior. The distribution on populations us-
ing different types trading strategies is now characterized by the difference of the pop-
ulation proportions nt. At time period t, if nt is positive (negative), then this indicates
that there are more (less) agents using type 1 trading strategy than type 2 trading strat-
egy. Moreover, if nt is significantly different from zero, then this could be taken as an
indication of herd behavior. This is, in particular, frequently observed to be the case
when the switching intensity β > 0 is high.

When there is evidence on the profitability of type 1 (type 2) trading strategy and a
clear indication on herd behavior using type 1 (type 2) trading strategy over the time
period, we say type 1 (type 2) trading strategy dominates the market.

3.5. A Quasi-Homogeneous Model. As a special case of the adaptive model with
two types of agents, consider the case, termed quasi-homogeneous model, where both
types of agents use exactly the same trading strategies except that they use different
memory lengths.

The trading strategies for all three types of agents can be unified in the following
form:

Ei,t(ρt+1) = r + δi + diρ̄i,t, ρ̄i,t =
1

Li

Li
∑

k=1

ρt−k, (3.6)

for i = 1, 2, where Li ≥ 1 is integer, r(> 0), δi(> 0) and di ∈ R are constants. For
quasi-homogeneous model, δ1 = δ2 = δ, d1 = d2 = d but 1 ≤ L1 ≤ L2.

In the following discussion, assume that the conditional variances of agents are
given by a constant σ2. One can standardize both the risk premium δ and extrapo-
lation rate d as follows:

δ̄ =
δ

σ2
, d̄ =

d

σ2
.

Correspondingly, the optimal demand of type j agents in terms of the wealth propor-
tion invested in the risky asset is given by

πj,t = δ̄j + d̄j ρ̄j,t.

We also assume that the dividend yield process has the form

αt = αo + qN (0, 1), (3.7)

where N (0, 1) is the standard normal distribution.
Because of the highly nonlinear nature of the adaptive model theoretical analysis

(even of the steady states) seems intractable and thus the model is analyzed numeri-
cally.

3.5.1. Existence of steady-state returns. If αt = αo is a constant, the system (3.2)-
(3.6) becomes a deterministic system. How distributions of noise processes, such as
the dividend yield process in our model, can be affected by the underlying dynamics of
nonlinear deterministic systems is an important and interesting issue, but one for which
there is little theory to serve as a guide. Understanding the underlying dynamics of the
deterministic systems, such as existence of steady-states, their stability and bifurcation,
is naturally a first step towards the goal of understanding the noise perturbed system.

When αt = αo is a constant, in terms of steady-state of return and wealth propor-
tions, it is easy to see that the quasi-homogeneous model has the same steady-state as
the homogeneous model (with L1 = L2) does. The existence of such steady-state is
studied in Chiarella and He (2001) and the results are summarized in the following.
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• The steady-state of the wealth proportions stays at their initial level, while the
steady-state of the return depends on the extrapolation rate d̄.

• There is a unique steady-state return when d̄ = 0. In other words, when agents
are fundamentalists, there is a unique steady-state return and, for convenience
of discussion, it is called the fundamental steady-state return. Moreover, high
risk premia δ correspond to high levels of the steady-state return.

• There exist two steady-state returns when d̄ < 0, that is when agents are con-
trarians. One of the steady-state returns is negative while the other is posi-
tive, the positive steady-state return is called the contrarian steady-state return.
More importantly, with the same risk premium, when agents act as contrarians,
the contrarian steady-state return is pushed below the fundamental steady-state
return.

• There exist two steady-state returns when d̄ > 0 small. That is, when agents
are momentum traders and they extrapolate weakly, the return has two positive
fixed steady-states. However, when d̄ is close zero, only one of the steady-state
is bounded and this steady-state return is called the momentum steady-state re-
turn. Furthermore, given the same risk premium, compared to the fundamental
equilibrium, a weakly homogeneous momentum trading strategy (i.e. d̄ > 0
small) leads to a higher level of steady-state return.

An aim of the following analysis is to determine to what extent the adaptive model
for two types of agents reflects these characteristics.

3.5.2. Parameters and initial values selection. Using data for the United States during
the 1926-94 period, as reported by Ibbotson Associates, the annual risk-free interest
rate, r = 3.7%, corresponds to the average rate during that period. The initial history
of rates of return on the stock consists of a distribution with a mean of 12.2% and a
standard derivation of 20.4%. A mean dividend yield of αo = 4.7% corresponds to the
historical average yield on the S&P500. The initial share price is po = $10.00.

The analysis in the following sections, selects the annual risk-free rate r, standard
derivation σ and the mean dividend yield αo as indicated above. For the simulations,
the time period between each trade is one day and simulations are conducted over 20
years. Parameters and initial values are selected as follows, unless state otherwise,

δ̄ = 0.6, β = 0.5, γ = 0.5, C1 = C2 = 0 (3.8)

and
w̄o = 0, no = 0, Φ1,o = Φ2,0 = 0.5, po = $10. (3.9)

Furthermore, annual rates of risk-free rate and returns of the risky asset are used in the
fitness functions Φj,t for j = 1, 2.

4. WEALTH DYNAMICS OF MOMENTUM TRADING STRATEGIES

This section considers the quasi-homogeneous model with d1 = d2 = d > 0 and
1 ≤ L1 < L2, that is both types of agents follow the same momentum trading strategy
except for having different memory lengths. An interesting question is which type of
agent dominates the market over the time.

As discussed in section 2, some empirical studies seem to support a view that mo-
mentum traders are profitable over short time intervals, but not over long time intervals.
The following discussion examines different combination of (L1, L2) and analyzes the
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effect of lag length on the wealth dynamics12. The results indicate in general that, the
strategy with short memory length will dominate the market by accumulating more
wealth and attracting more population. Thus the adaptive model outlined in this paper
is capable of characterizing some broad features found in empirical studies.

4.1. Case: (L1, L2) = (3, 5). The following subsection considers first the dynamics
of the underlying deterministic system, that is, when q = 0. The impact of the noise
processes on the dynamics is then considered in the subsequent subsection.

4.1.1. No-noise Case. Taken q = 0. For d̄ = 0.5, initial population proportion no = 0
and any initial wealth proportion w̄o, numerical simulations show that

ρt → ρ∗ = 15.45% (annual), w̄t → w̄o, nt → 0.

By changing various parameters and initial values, we obtain the following results
on the momentum trading strategies from the quasi-homogeneous model presented in
section 3.

(i) Risk premium and over-pricing.
It is found that, ceteris paribus, for δ̄ = δ/σ2 = 0.35, ρt → ρ∗ = 10.94%,
while for δ̄ = 0.53, ρ∗ = 15.45%. In general, a high level of risk-adjusted
premium leads to a high return, and a high price as well. In fact, for the given
parameters, there exists δo ∈ (0.69, 0.7), so called bifurcation value13, such
that the returns converge to fixed values for δ̄ < δo and diverge for δ̄ > δo,
leading to price explosion.

(ii) Over-extrapolation and overshooting.
Momentum traders form expectations of future prices by extrapolating trends.
However, when the prices or returns are over-extrapolated, stocks are over-
priced, and as a result, overshooting takes place. Based on the parameters
selected, there exists do ∈ (0.573, 0.574) such that, ceteris paribus, returns
converge to fixed values for d̄ < do and diverge for d̄ > do, leading prices to
exhibit overshooting.

(iii) No noise, no effects on population and wealth distribution and no herd behav-
ior.
For either fixed no 6= 0 and a range of w̄o (say no = −0.3 and w̄o ∈ (−0.5, 0.3)),
or fixed w̄o 6= 0 and a range of no (say, w̄o = −0.3 and no ∈ (−1, 0.3)),

ρt → ρ∗ = 15.45% (annual), w̄t → w̄o + ε, nt → 0

with ε ≈ 10−6. Also, the switching intensity parameter β has almost no effect
on the results (as long as the returns series converge to constants). This implies
that, without the noise from the dividend yield process, in terms of profitability,
type 1 trading strategy is slightly better than type 2, but not significantly. In ad-
dition, the populations of agents using different strategies become evenly dis-
tributed. In other words, no one of the momentum trading strategies dominates
the market, even though both wealth and population are not evenly distributed
initially. Therefore, when there is no noise from the dividend yield process and

12The selection of various combinations of lag lengths is arbitrary. However other simulations (not
reported) indicate some robustness of the results presented in this paper.
13As in Brock and Hommes (1998), the dynamics of the system through various types of bifurcation
can be analyzed and one of interest. However, in this paper, we focus on the dynamics of the stochastic
system when the return process of the underlying deterministic system is stable.
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the returns converge to constants, the average wealth proportions, as expected,
stay at their initial level, while the average population proportions are evenly
distributed, and there is no herd behavior.

4.1.2. Effect of Noise. Select the annualized standard derivation of the noisy dividend
yield process, q = 0.03 = 3%. When adding a noisy dividend process to the adap-
tive system, the general features of the corresponding deterministic system (without
the noise), such as the results (i)-(ii) above, still hold. However, it has a significant
impact on the dynamics of the system, such as wealth and population distributions,
autocorrelation of returns, volatility of returns and prices etc., as indicated below. In
particular, the dynamics of the model is greatly affected by agents’ behavior, which
is measured by their extrapolation rate, d̄, and switching intensity, β. The following
discussion is focused on the dynamics of the system for various combinations of these
two parameters d̄ and β.

The following results are based on the parameters selected above, unless otherwise
indicated.

• Wealth distribution.
Wealth distribution is largely influenced by agents’ extrapolation and strategy
switching activity. It is found that, in general, a strong extrapolation leads
type 1 agents (with lag 3) accumulate more wealth than type 2 agents do. In
other words, type 1 trading strategy(with lag of 3) is more profitable than type 2
(with lag of 5) under the noisy dividend process. Furthermore, as the switching
intensity β increases, the profitability of type 1 trading strategy is improved
significantly. This result is unexpected and interesting. This result is optimal
in terms of the initial wealth and population distributions.

– Effect of the initial wealth distribution.
When the wealth and population are evenly distributed across the two
types of agents initially (i.e. w̄o = 0, no = 0), on average, type 1 agents
accumulate more wealth (about 5% to 6%) than type 2 agents over the
whole period, as indicated by the time series plot for the wealth (w̄t) in
Figure 4.1. Also, as the extrapolations rate increases (i.e. as d̄ increases),
type 1 agents accumulate more wealth than type 2 agents (say, about 2%
to 3% more for d̄ = 0.5, compared to 5-6% more for d̄ = 0.53). This sug-
gests that, when both types of agents start with the same level of wealth
and have the same number of traders, agents using short memory length
accumulate more wealth than ones using long memory span. In other
words, type 1 trading strategy is more profitable under the noisy dividend
process. This result still holds when the initial wealth is not so evenly dis-
tributed. However, on average, when type 1 agents start with more wealth
than type 2 (say w̄o = 0.2, that is type 1 agents have 20% more initial
wealth than type 2 agents do on average), the prices can be pushed imme-
diately to very high levels so that any further trend chasing from type 1
agents can cause price to overshoot, leading an explosion of price.

– Effect of the initial population distribution
For a fixed initial wealth proportion w̄o (say w̄o = 0) and a range of no

(say, no ∈ (−1, 0.5)), w̄t increases in t. But for large no (say no = 0.6),
the prices are pushed to explosion. This indicates that type 1 agents ac-
cumulate more wealth over the period, even when the population of type
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2 agents is high initially. However, an initial over concentration of type 1
agents can lead to overshooting of price.

• Herd behavior.
Herd behavior is measured by the population proportion difference nt and the
switching intensity parameter β. For β = 0, there is no switching between
the two trading strategies. However, when agents are allowed to switch (i.e.,
β > 0), as indicated by the time series plot for the population (nt) in Figure
4.1, agents switch between two strategies frequently. In general, because of
the profitability of type 1 strategy, more agents switch from type 2 to type
1, as indicated by the mean and standard deviation of the population nt in
Table A.2.1. Also, as the switching intensity β increases, the frequency of
such switching increases too. Furthermore, as β increases, both prices and
returns become more volatile, as indicated by the time series plots on returns
(ρt) and prices (pt) in Figure 4.1.

• Excess volatility and volatility clustering.
As indicated by the time series plot of returns ρt in Figure 4.1, adding the noisy
dividend process causes an otherwise stable return series to fluctuate. This fact
itself is not unexpected. What is of interest is the contrast between the simply
normally distributed dividend process that is input to the system and the return
process that is the output of the system. With the increase of either the standard
derivation of the noise process q, or agents extrapolation rate d̄, or switching
intensity β, both returns and prices become more volatile. Moreover, volatility
clustering is also observed.

• Autocorrelation.
Significant positive autocorrelation (AC) for lags 1 and 2, negative for lags 3
to 8, positive for lags 9-14, are founded, as indicated by Table A.2.4. However,
as lag length increases, the ACs become less significant.

• Overshooting.
Related simulations indicate that either strong extrapolation (corresponding to
high d̄), or high volatility of the dividend yield process (q), or high switching
density (β) can cause price to overshoot and lead to price explosion. Numerical
simulations also show that, to avoid price overshooting, a minimum level of
risk premium (δ̄) is required.

4.2. Other Lag Length Combinations. How the above results are affected by dif-
ferent lag length combinations is interesting and important, and is addressed in the
following.

• (L1, L2) = (3, 7): The general dynamic features are similar to the case when
(L1, L2) = (3, 5), except for the following differences.

– The underlying deterministic system is stable over a wide range of ex-
trapolation rates d̄ ∈ [0, d∗). d∗ ≈ 0.57 for L2 = 5 and d∗ ≈ 0.773 for
L2 = 7.

– The trading strategy with short lag dominates the market. Similar impacts
of initial wealth and population distributions, the switching intensity, and
the standard derivation of the noisy process on the returns and wealth dy-
namics are also observed over a wider range of the parameters and initial
values. However, compared with the previous case, for the same set of
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FIGURE 4.1. Time series plots for returns (top left), wealth (top
right) and population (bottom left) distributions, and prices (bottom
right) when the same momentum trading strategies with different lags
(L1, L2) = (3, 5) are used. Here, δ̄ = 0.6, d̄ = 0.53 and q = 0.03.

parameters and initial values, both the profitability and herd behavior in-
crease, as indicated by the time series plots for wealth and population in
Figure A.2.1 and the corresponding statistical result in Table A.2.1.

– ACs are significantly positive for lags 1 and 2, either positive or negative
for lag 3, but not significantly, negative for lags 4 to 9, positive for lags 10
to 15, as indicated in Table A.2.4 .

• (L1, L2) = (10, 14): Compared with the previous two cases, the following
differences have been observed.

– The upper bound d∗ for returns of the underlying deterministic system to
be stable increases to d∗ ≈ 1.57.

– By adding the noisy process, the trading strategy with memory length 10
accumulates more wealth than the one with lag length 14. However, com-
paring with the previous cases, for the same set of parameters and initial
values, the profitability and herd behavior of the strategy of lag 10 over
the one with lag 14 is much less significant (at about 0.1% to 0.2%), as
indicated by the time series plots in Figure A.2.2 and the corresponding
statistical results in Table A.2.2; although an increase of extrapolation im-
proves the profitability of the strategy with lag 10, as indicated by the time
series plots in Figure 4.2 and the corresponding statistics in Table A.2.2
for d̄ = 1.2.
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– Indicated by Table A.2.4, ACs oscillate and become less significant when
agents extrapolate weakly (say, for d̄ = 0.5), but become more significant
when agents extrapolate strongly (say, d̄ = 1.1).

– Comparing with the previous cases, there is less herd behavior. This is
partially because of the less significant profitability of one strategy with
lag 10 over the other with lag 14.
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FIGURE 4.2. Time series plots for wealth and population distribu-
tions, returns and prices when the same momentum trading strategies
with different lags (L1, L2) = (10, 14) are used. Here, δ̄ = 0.6, d̄ = 1.2
and q = 0.03.

• (L1, L2) = (10, 26):
– The upper bound d∗ for returns of the underlying deterministic system to

be stable increases to d∗ ∈ (2.2, 2.3).
– By adding the noisy process, with the same parameters and initial values,

profitability of type 1 trading strategy (with lag length 10) becomes ques-
tionable, as indicated by the time series plots in Figures A.2.3 and 4.3 and
the corresponding statistics in Table A.2.3.

– As demonstrated by Table A.2.4, the ACs have less patterns and do not
die out as lags increase.

4.2.1. Summary. In summarizing, we obtain the following results when both types of
agents follow the same momentum trading strategy, but with different memory lengths.
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FIGURE 4.3. Time series plots for wealth and population distribu-
tions, returns and prices when the same momentum trading strategies
with different lags (L1, L2) = (10, 26) are used. Here, δ̄ = 0.6, d̄ =
1.2, q = 0.03 and w̄o = 0.6.

• Without the noisy process, an increase in lag length from either one of the
trading strategies stabilizes the return series of the underlying deterministic
system, and enlarges the range of the extrapolation. However, for the same
set of parameters, the profitability of the trading strategies and herd behavior
become less significant.

• Adding the noisy dividend process in general improves the profitability of the
trading strategies with short lag length L1 (say, (L1, L2) = (3, 5) and (3, 7)).
However, such profitability becomes less significant when the short lag length
L1 increase, and is even questionable (say (L1, L2) = (10, 14) and (10, 26)).

• When trading strategies become profitable, agents tend to adopt a herd behav-
ior — more agents switch to the more profitable strategy over the time period.
However, over concentration (in terms of the initial average wealth, population
proportion), or over extrapolation (in terms of high extrapolation rates and im-
proper risk premium levels) can cause overshooting of price and push prices to
explosion, leading to a market crash.

• Momentum trading strategies can push the prices to a very high level and lead
the returns to be more volatile, exhibiting volatility clustering.

• ACs follow certain patterns when one of the trading strategies becomes prof-
itable and die out as lags increase. However, such patterns become insignificant
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when the profitability of the trading strategy becomes less significant, and even
questionable.

• Price levels are more determined by the risk premium levels rather than other
parameters (say extrapolation rate and switching intensity).

5. WEALTH DYNAMICS OF CONTRARIAN TRADING STRATEGIES

In this section, we consider the quasi-homogeneous model with d1 = d2 = d < 0
and 1 ≤ L1 < L2, that is both types of agents follow the same contrarian trading strat-
egy except for having different memory lengths. As discussed in Section 3, some em-
pirical studies suggest that contrarian trading strategies are more profitable over long
periods. Our results in this section provide some support for this view and show that
the adaptive model presented in this paper is capable of characterizing some features
founded in empirical studies. Furthermore, similar to the previous section, wealth and
population distributions, statistical properties of returns (such as volatility clustering,
autocorrelations), and herd behavior are discussed.

5.1. Case: (L1, L2) = (3, 5). With the selection of the parameters and initial values
in (3.8)-(3.9), consider first in the next subsection the dynamics of the underlying
deterministic system, that is, when q = 0. The impact of the noisy processes on the
dynamics is then studied in the subsequent subsection.

5.1.1. No-noise Case. Let q = 0. For d̄ = −0.4, initial difference of population
proportions no = 0 and any initial wealth proportion w̄o, it is found that

ρt → ρ∗ = 15.45% (annual), w̄t → w̄o, nt → 0.

By changing parameters and initial values, the following results are obtained.
• Risk premium and over-pricing

It is found that, ceteris paribus, for δ̄ = δ/σ2 = 0.4, ρt → ρ∗ = 11.52%, while
for δ̄ = 0.6, ρ∗ = 15.45%. In general, a high level of risk-adjusted premium
leads to a high return and a high price correspondingly. In fact, for the given
parameters, there exists δo ∈ (0.6, 0.7), a so called bifurcation value, such that
the returns converge to fixed values for δ̄ < δo and diverge for δ̄ > δo, leading
prices to explode.

• Over-reaction and price shooting
Based on the parameters selected, there exists do ∈ (−0.53,−0.52) such that,
ceteris paribus, returns converge to fixed values for (0 >)d̄ > do and diverge
for d̄ < do, leading prices to overshoot. Like the momentum trading strategies,
over-extrapolation from contrarian trading strategies also cause overshooting
of prices.

• Wealth distribution
Unlike the case of the momentum trading strategies, wealth distributions of
the deterministic system are affected differently by the extrapolation rate d̄,
switching intensity, initial wealth and population distributions.

– In general, as d̄(< 0 decreases and is near the bifurcation value, the prof-
itability of trading strategy with long lag (L = 5) is improved signifi-
cantly, say from 5% for d̄ = −0.454, to 25% for d̄ = −0.48, and to 50%
for d̄ = −0.5. However, for fixed d̄ < 0, say d̄ = −0.5, as β increases,
the profitability of trading strategy 2 becomes less significantly, say from
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45% for β = 0.1 to 20% for β = 2. This is different from the case of
using momentum trading strategy.

– For fixed no 6= 0 and a range of w̄o (say, no = 0.3 and w̄o ∈ (−0.5, 0.5)),

ρt → ρ∗ = 15.45% (annual), w̄t → w̄o − ε, nt → 0

with ε ≈ 10−6. This implies that agents’ wealth are distributed according
to their initial wealth distribution, although populations are not evenly
distributed initially.

– For fixed w̄o < 0 (say, w̄o = −0.3) and no ∈ [−1, 1], type 2 agents
accumulated more wealth than type 1 agents over a very short period,
but the difference is not significant (about 1%). In other words, when
the initial average wealth for type 2 agents is more than average wealth
for type 1 agents, no one of the contrarian trading strategies can make
significant profit over the other, no matter how the initial populations are
distributed.

– For fixed w̄o > 0 (say, w̄o = 0.3) and no ∈ [−1, 1], type 2 agents ac-
cumulated more wealth than type 1 agents over a very short period, and
the difference becomes more significant (up to 37%) as more agents use
type 2 trading strategy initially. This implies that, when the initial average
wealth of type 1 agents is higher than the one of type 2 agents, agents
using contrarian strategy with long memory length (L2 = 5) are able to
accumulate more wealth over a very short period than agents using the
same strategy but with short memory length (L1 = 3). In addition, the
profitability becomes more significant when there are more agents using
the strategy with long memory length initially. This is different from the
case when agents use momentum strategies.

• Herd behavior
The dynamics have no significant difference for different switching intensity
parameter β when the returns of the underlying deterministic system is stable.
However, as d̄ near the bifurcation value, herd behavior is also observed.

5.1.2. Effect of Noise. Let the annualized standard derivation of the noisy dividend
yield process q = 3%. The following results are based on the parameters selected
above, unless the difference is indicated.

• Wealth distribution

– Effect of the initial wealth distribution — When the wealth and population
are evenly distributed among two types of trading strategies initially (i.e.
w̄o = 0, no = 0), type 2 agents accumulate more average wealth (about
5% to 7%) more than type 2 agents over the whole period, as indicated
in Figure 5.1 for the time series plots on wealth and population. Also, as
extrapolations increase (i.e. as d̄ decreases), such extrapolations help type
2 agents accumulate more wealth than type 1 agents (say, about 5% for
d̄ = −0.45, and about 45% for d̄ = −0.5). This suggests that, when both
types of agents start with the same level of wealth and have equal number
of traders, agents using long memory length (L2 = 5) accumulate more
wealth than ones using short memory length (L1 = 3). In other words,
type 2 agents benefit significantly from the noisy dividend noisy process.
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This result still holds when the initial wealth are not so evenly distributed
(say, w̄o ∈ (−0.6, 0.3) for d̄ = −0.5).
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FIGURE 5.1. Time series plots for wealth and population distribu-
tions, returns and prices when the same contrarian trading strategies
with different lags (L1, L2) = (3, 5) are used. Here, δ̄ = 0.6, d̄ =
−0.45 and q = 0.03.

– Effect of the initial population distribution —Similar to the case without
noise, the wealth distribution is affected differently as a function of dif-
ferent initial wealth levels. For fixed w̄o < 0 and a range of no (say,
w̄o = −0.3 and no ∈ (−0.8, 0.65)), the profitability of trading strategy 2
does not change much for different no. However, for fixed w̄o > 0 and a
range of no (say, w̄o = 0.3 and no ∈ (−0.9, 0.9)), the profitability of trad-
ing strategy 2 increases significantly as more and more agents use trading
strategy 2. Price overshooting is possible when the populations are over
concentrated in use of one of the trading strategies.

• Herd behavior
Herd behavior is also observed for changing parameter β. Given the profitabil-
ity of the trading strategy over the long memory span, more agents tend to
switch to this more profitable strategy, as indicated by the time series plot of
population in Figure 5.1 and the corresponding statistic in Table A.2.5. Fur-
thermore, as β increases, both prices and returns become more volatile, leading
to excess volatility.
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• Excess volatility and volatility clustering
The addition of a noisy process cause an otherwise stable return series to be
exhibit fluctuations. Similar to the case of using momentum trading strategies,
an increase of either the standard derivation of the dividend yield noisy process
q, or agents extrapolation d̄, leads both returns and prices to be more volatile.
Moreover, volatility clustering is also observed, as illustrated by the time series
plot on the return in Figure 5.1 and the corresponding statistics in Table A.2.5.

• Autocorrelation
ACs are significantly negative for odd lags and positive for even lags for all
lags, as indicated in Table A.2.6.

• Overshooting — Similar to the momentum trading strategies discussed in Sec-
tion 4, the noisy process has a significant impact on prices. An increase of q
can push prices to significantly high levels. This can also result from either
strong extrapolation (corresponding to low d̄), or high risk premia δ̄, or high
switching density β and causes prices to explode.

5.2. Other Cases.
• (L1, L2) = (3, 7): The general dynamic features are similar to the case when

(L1, L2) = (3, 5), except for the differences indicated below.
– The underlying deterministic system is stable over a wide range of extrap-

olation rates d̄ ∈ (d∗, 0] with d∗ ∈ (−0.53,−0.52) for L2 = 5, while with
d∗ ∈ (−0.65,−0.6) for L2 = 7.

– Similar to the previous case, the trading strategy with long lag L2 = 7
dominates the market,in particular, when d̄ is near the bifurcation value.
However, for the same set of parameters, compared with the case of L2 =
5, the profitability is reduced slightly. On the other hand, agents can ex-
trapolate over a wide range (of the parameter d̄). Similar impacts of initial
wealth and population distributions, the switching intensity, and the stan-
dard derivation of the noisy process on the dynamics can be observed over
a wider range of the parameters.

• (L1, L2) = (10, 14):
– The lower bound d∗ for returns of the underlying deterministic system to

be stable decreases to d∗ ∈ (−1.6,−1.5). By adding the noisy process,
with the same parameters and initial values, the profitability of type 1
trading strategy (with lag length 14) becomes questionable, as indicated
by the time series plots of the wealth in Figure 5.2 and the corresponding
statistics in Table A.2.5.

– The patterns of the ACs are maintained, but they become less significant
(for the same parameter d̄ = −0.45), as shown in Table A.2.6.

– Compared with the previous cases, there is less herd behavior, as illus-
trated by the time series plot for the population in Figure 5.2 and the cor-
responding statics in Table A.2.5. This is partially because of the less
significant (even no) profitability of the strategy with lag 14 over the other
with lag 10.

• (L1, L2) = (10, 26): The following differences have been observed.
– In this case the lower bound d∗ (on d̄) such that returns of the underlying

deterministic system be stable decreases to d∗ ∈ (−2.2,−2.1). By adding
the noisy process, the trading strategy with memory length 26 accumulates
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FIGURE 5.2. Time series plots for wealth and population distribu-
tions, returns and prices when the same contrarian trading strategies
with different lags (L1, L2) = (10, 14) are used. Here, δ̄ = 0.6, d̄ =
−0.45 and q = 0.03.

more wealth than the one with lag length 10, as shown in Figure 5.3 and
Table A.2.5. However, comparing with the previous cases (L1, L2) =
(3, 5), (3, 7), the profitability of the strategy of lag 26 over the one with
lag 10 is much less significant (at about 0.01% to 0.04% more for d̄ =
−0.45), although a strong extrapolation can improve the profitability of
the strategy with lag 26 (at about 5% to 7% for d̄ = −2.0).

– The ACs become less significant when agents extrapolate weakly (say,
d̄ = −0.45), as indicated in Table A.2.6 , and more significant when agent
extrapolate strongly (say, d̄ = −2.0).

5.2.1. Summary. In summarizing, we obtain the following results when both
types of agents follow the same contrarian trading strategy, but with different
memory lengths.

– Without the noisy process and a given set of parameters, an increase in lag
lengths of the trading strategies stabilizes the return series of the underly-
ing deterministic system. As both d̄ and β are near their bifurcation val-
ues, the profitability of trading strategies and herd behavior are observed,
in general.

– Adding a noisy dividend process, in general, improves the profitability of
the trading strategies with long lag lengths (say, L2 = 5, 7, 26). However,
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FIGURE 5.3. Time series plots for wealth and population distribu-
tions, returns and prices when the same contrarian trading strategies
with different lags (L1, L2) = (10, 26) are used. Here, δ̄ = 0.5, d̄ =
−0.4 and q = 0.01.

such profitability becomes less significant when the relative difference be-
tween the two lag lengths is small (say, L1 = 10, L2 = 14).

– Similar to the case of using momentum trading strategies, herd behavior is
observed when one of the trading strategies becomes (significantly) prof-
itable. Also, over-concentration (in terms of the initial average wealth and
population proportion), or over extrapolation (in terms of low extrapola-
tion rates and improper risk premium levels) can cause overshooting of
price and push prices to explode, leading to a market crash. Price lev-
els are more determined by the risk premium levels than other parameters
(say extrapolation rate and switching intensity).

– The ACs are significantly negative for odd lags and positive for even lags
when the memory lengths of the contrarian trading strategies are small.
However, they become less significant when the memory lengths increase.

6. CONCLUSIONS

To incorporate investor psychology into the standard asset pricing theory in finance
and characterize the interaction of heterogeneous agents, an adaptive model on asset
pricing and wealth dynamics with agents using various trading strategies is developed.
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As a special case, a quasi-homogeneous model of two types of agents using either mo-
mentum or contrarian trading strategies is introduced to analyze the profitability of the
trading strategies over different time intervals. It is found that agents with different
time-horizon coexist. Our results shed light on the empirical finding that momentum
trading strategies are more profitable over short time intervals, while contrarian trading
strategies are more profitable over long time intervals. It should be pointed out that this
is an unexpected result from the set up of the adaptive model. Even though the quasi-
homogeneous model is one of the simplest cases of the adaptive model, it generates
various phenomena observed in financial markets, including rational adaptiveness of
agents, overconfidence and underreaction, overreaction and pricing shooting, herd be-
havior, excess volatility, and volatility clustering. The model also displays the essential
characteristics of the standard asset price dynamics model assumed in continuous time
finance in that the asset price is fluctuating around a geometrically growing trend.

Our analysis in this paper is based on a simplified quasi-homogeneous model and
further analysis on the adaptive model is necessary to explore the potential explanatory
power of the model. One of the extensions is to consider models of two or three
different types of trading strategies, to analyze the profitability of different trading
strategies, and to examine the stylized facts of the return distribution. Secondly, the
attitudes of investors towards the extrapolation and risk premium change when the
market environment changes and this change should be made endogenous. Thirdly,
there should be a more extensive simulation study of these richer models once they
are developed. In fact a proper Monte-Carlo analysis is required to determine whether
the models can generate with a high frequency the statistical characteristics of major
indices such as the S&P500. These extensions are interesting problems which are left
to future research work.
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Appendix A.1. PROOF OF PROPOSITION 2.1

Proof. It follows from (2.2) and (2.6) that

w̄i,t =
W̄i,t

W̄t

=
W̄i,t−1[R + (ρt − r)π̄i,t−1]

W̄t

=
w̄i,t−1[R + (ρt − r)π̄i,t−1]

W̄t/W̄t−1

. (A.1.1)

Note that
W̄t

W̄t−1

=

∑h
j=1

W̄j,t

W̄t−1

=
h

∑

j=1

w̄j,t−1[R + (ρt − r)π̄j,t−1]. (A.1.2)

Then both (A.1.1) and (A.1.2) lead to (2.8).
With the notations introduced in Section 2, the market clearing equilibrium price equation

(2.5) can be rewritten as:
h

∑

j=1

nj,tπ̄j,tW̄j,t = Npt/H. (A.1.3)

Note that

Wt =
H

∑

j=1

Wj,t =
h

∑

j=1

`j,tW̄j,t = H
h

∑

j=1

nj,tW̄j,t. (A.1.4)

It follows from (A.1.3) and (A.1.4) that the market clearing price equilibrium equation (A.1.3)
becomes

Wt

h
∑

j=1

nj,tπ̄j,tw̄j,t = Npt

h
∑

j=1

nj,tw̄j,t, (A.1.5)

From (A.1.5)

Wt

Wt−1

∑h
j=1

nj,tπ̄j,tw̄j,t
∑h

j=1
nj,t−1π̄j,t−1w̄j,t−1

= (1 + ρt − αt)

∑h
j=1

nj,tw̄j,t
∑h

j=1
nj,t−1w̄j,t−1

. (A.1.6)

Note that

Wt

Wt−1

=

∑h
j=1

nj,tW̄j,t
∑h

j=1
nj,t−1W̄j,t−1

=

∑h
j=1

nj,tw̄j,t−1[R + (ρt − r)π̄j,t−1]
∑h

j=1
nj,t−1w̄j,t−1

. (A.1.7)

Substituting (A.1.7) into (A.1.6),

h
∑

j=1

nj,tw̄j,t−1[R + (ρt − r)π̄j,t−1]
h

∑

j=1

nj,tπ̄j,tw̄j,t

= (1 + ρt − αt)
h

∑

j=1

nj,tw̄j,t

h
∑

j=1

nj,t−1π̄j,t−1w̄j,t−1. (A.1.8)

Also, using (2.8),

h
∑

j=1

nj,tπ̄j,tw̄j,t =

∑h
j=1

nj,tπ̄j,tw̄j,t−1[R + (ρt − r)π̄j,t−1]
∑h

k=1
w̄k,t−1[R + (ρt − r)π̄k,t−1]

, (A.1.9)

h
∑

j=1

nj,tw̄j,t =

∑h
j=1

nj,tw̄j,t−1[R + (ρt − r)π̄j,t−1]
∑h

k=1
w̄k,t−1[R + (ρt − r)π̄k,t−1]

. (A.1.10)
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Substitution of (A.1.9) and (A.1.10) into (A.1.8) and simplification of the corresponding ex-
pression leads to equation

h
∑

j=1

nj,tw̄j,t−1π̄j,t[R + (ρt − r)π̄j,t−1]

= [(ρt − r) + (1 + r − αt)]

( h
∑

j=1

nj,t−1π̄j,t−1w̄j,t−1

)

. (A.1.11)

Solving for ρt from (A.1.11), one obtains equation (2.9) for the return ρt. �
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Appendix A.2. TIME SERIES PLOTS, STATISTIC AND AUTOCORRELATION RESULTS

For both momentum and contrarian trading strategies with different combinations of lag
lengths (L1, L2), this appendix provide

• Time series plots for wealth (w̄t, the difference of wealth proportions), population (nt,
the difference of population proportions), returns (ρt), and prices (pt);

• Numerical comparative statics for wealth (WEA), population (POP), and returns (RET);
• Autocorrelation coefficients (AC) for return series with lags from 1 to 36.
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FIGURE A.2.1. Time series plots for wealth and population distribu-
tions, returns and prices when the same momentum trading strategies
with different lags (L1, L2) = (3, 7) are used. Here, δ̄ = 0.6, d̄ = 0.53
and q = 0.03.
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FIGURE A.2.2. Time series plots for wealth and population distribu-
tions, returns and prices when the same momentum trading strategies
with different lags (L1, L2) = (10, 14) are used. Here, δ̄ = 0.6, d̄ =
0.53 and q = 0.03.

(3, 5) (3, 7)
RET WEA POP RET WEA POP

Mean 0.000721 0.023248 0.003062 0.000525 0.003973 0.000484
Median 0.000691 0.022135 0.001505 0.000542 0.004138 0.000219

Maximum 0.043964 0.050955 0.042773 0.023386 0.008098 0.012162
Minimum -0.046662 -1.00E-06 -0.002759 -0.021407 -4.00E-06 -0.00715
Std. Dev. 0.011343 0.014838 0.004475 0.006339 0.002526 0.001512
Skewness -0.020851 0.155153 2.998613 0.023471 0.032782 1.6045
Kurtosis 3.241269 1.815871 15.84896 2.9332 1.589621 10.42554

Jarque-Bera 12.49201 312.2396 41896.41 1.389 415.389 13635.28
Probability 0.001938 0 0 0.499324 0 0

TABLE A.2.1. Statistics of time series of wealth, population and re-
turns for momentum trading strategies with (L1, L2) = (3, 5), (3, 7)
and δ̄ = 0.6, d̄ = 0.53 and q = 0.03.
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FIGURE A.2.3. Time series plots for wealth and population distribu-
tions, returns and prices when the same momentum trading strategies
with different lags (L1, L2) = (10, 26) are used. Here, δ̄ = 0.6, d̄ =
0.53 and q = 0.03.

(10, 14)(a) (10, 14)(b)
RET WEA POP RET WEA POP

Mean 0.000641 0.000215 2.36E-05 0.000739 0.004879 0.000536
Median 0.000682 0.000233 6.00E-06 0.000685 0.005311 0.000173

Maximum 0.019241 0.000403 0.001285 0.02642 0.008898 0.015336
Minimum -0.014757 -3.00E-06 -0.001252 -0.021672 0 -0.004178
Std. Dev. 0.004793 0.000118 0.000232 0.006001 0.002481 0.001424
Skewness -0.016961 -1.52E-01 0.506932 0.069921 -0.211947 2.629638
Kurtosis 3.018244 1.900675 6.319931 3.119651 2.01417 15.73849

Jarque-Bera 0.309123 270.9888 2510.89 7.058159 239.9537 39576.5
Probability 0.856791 0 0 0.029332 0 0

TABLE A.2.2. Statistics of time series of wealth, population and re-
turns for momentum trading strategies with (L1, L2) = (10, 14) and
δ̄ = 0.6, q = 0.03, d̄ = 0.53 for (a) and d̄ = 1.2 for (b).
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(10, 26)(a) (10, 26)(b)
RET WEA POP RET WEA POP

Mean 0.000641 8.66E-06 -7.90E-07 0.000651 -0.000483 -6.68E-05
Median 0.000678 5.00E-06 -1.30E-05 0.000521 -0.000365 -8.70E-05

Maximum 0.01877 7.80E-05 0.002522 0.020166 0.000299 0.008564
Minimum -1.48E-02 -6.20E-05 -0.002285 -0.019343 -0.001257 -0.007335
Std. Dev. 0.00473 2.33E-05 0.000328 0.005295 0.000433 0.001248
Skewness -2.04E-02 0.217143 0.159003 0.090161 -0.091597 0.23871
Kurtosis 3.001559 3.132038 7.858779 2.949879 1.620711 7.002653

Jarque-Bera 0.346695 42.93333 4940.334 7.298971 403.4138 3385.919
Probability 0.840845 0 0 0.026004 0 0

TABLE A.2.3. Statistics of time series of wealth, population and
returns for momentum trading strategies with (L1, L2) = (10, 26),
q = 0.03, and δ̄ = 0.6, d̄ = 0.53 for (a), and δ̄ = 0.6, d̄ = 1.2 for
(b).
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FIGURE A.2.4. Time series plots for wealth and population distri-
butions, returns and prices when the same contrarian trading strategies
with different lags (L1, L2) = (3, 7) are used. Here, δ̄ = 0.6, d̄ =
−0.45 and q = 0.03.



34 CARL CHIARELLA AND XUE-ZHONG HE

Lag (3,5) (3,7) (10,14) (10, 14)(a) (10, 26) (10, 26)(a)

1 0.775 0.567 0.21 0.519 0.17 0.369
2 0.412 0.265 0.063 0.293 0.048 0.157
3 -0.04 0.009 0.025 0.178 0.019 0.076
4 -0.492 -0.317 -0.015 0.146 -0.023 0.041
5 -0.753 -0.366 -0.018 0.105 -0.021 0.025
6 -0.824 -0.314 0.006 0.06 0.006 -0.016
7 -0.643 -0.257 0.01 0.005 0.01 -0.03
8 -0.287 -0.182 -0.009 -0.036 -0.009 -0.048
9 0.118 -0.057 0.002 -0.1 0.005 -0.075

10 0.489 0.037 -0.017 -0.191 -0.013 -0.113
11 0.696 0.108 -0.095 -0.35 -0.094 -0.284
12 0.704 0.189 -0.044 -0.308 -0.033 -0.202
13 0.514 0.185 -0.016 -0.258 -0.005 -0.094
14 0.187 0.135 -0.026 -0.239 -0.005 -0.037
15 -0.176 0.084 -0.114 -0.304 -0.029 -0.009
16 -0.478 -0.007 -0.041 -0.245 -0.002 0.017
17 -0.628 -0.065 -0.016 -0.167 0 0.034
18 -0.602 -0.077 -0.007 -0.106 -0.002 0.03
19 -0.411 -0.084 0.019 -0.05 0.017 0.028
20 -0.114 -0.084 0.015 -0.028 0.013 0.035
21 0.2 -0.057 -0.009 0.023 -0.012 0.045
22 0.448 -0.033 -0.007 0.09 -0.006 0.066
23 0.56 -0.022 -0.002 0.107 -0.002 0.063
24 0.509 0.018 -0.014 0.12 -0.017 0.053
25 0.322 0.038 0.013 0.15 0.009 0.014
26 0.05 0.04 0.031 0.191 0.006 -0.019
27 -0.227 0.065 0.018 0.192 -0.036 -0.106
28 -0.424 0.048 0.017 0.172 -0.001 -0.091
29 -0.499 0.018 -0.002 0.147 -0.011 -0.055
30 -0.428 0 0.014 0.115 0.001 -0.03
31 -0.241 -0.029 0.003 0.099 -0.004 -0.008
32 0.006 -0.044 0.036 0.054 0.034 0.008
33 0.241 -0.038 0.014 0.027 0.015 0.007
34 0.399 -0.033 -0.032 -0.003 -0.03 0.008
35 0.436 -0.03 -0.014 -0.016 -0.011 -0.015
36 0.348 0.001 -0.023 -0.041 -0.023 0.011

TABLE A.2.4. Autocorrelation coefficients (AC) of returns for mo-
mentum trading strategies with (L1, L2) = (3, 5), (3, 7), (10, 14) and
(10, 26). The parameters are: δ̄ = 0.6, d̄ = 0.53 and q = 0.03 for
(3, 5), (3, 7), (10, 14) and (10, 26); δ̄ = 0.6, d̄ = 1.2 and q = 0.03 for
(10, 14)(a); and δ̄ = 0.6, d̄ = 1.2 and q = 0.03 and (10, 26)(a).
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(3, 5) (3, 7)
RET WEA POP RET WEA POP

Mean 0.000732 -0.021357 -0.002489 0.000586 -0.003781 -0.000436
Median 0.000565 -0.020961 -0.00115 0.00061 -0.003947 -0.000253

Maximum 0.058371 1.00E-06 0.001417 0.024943 1.00E-06 0.001301
Minimum -0.049512 -0.041469 -0.02122 -0.024361 -0.007294 -0.005522
Std. Dev. 0.0172 0.012664 0.003256 0.007258 0.002071 0.000648
Skewness 3.94E-02 -0.23075 -1.79741 -2.38E-02 0.128596 -1.706059
Kurtosis 2.623585 1.776767 6.184726 2.73569 1.77624 7.727226

Jarque-Bera 30.8166 356.1715 4806.214 15.02887 325.8435 7082.505
Probability 0 0 0 0.000545 0 0

(10, 14) (10, 26)
RET WEA POP RET WEA POP

Mean 0.000546 -1.36E-05 -1.74E-06 0.000587 -9.89E-05 -1.53E-05
Median 0.000481 -5.00E-06 -5.00E-06 0.000674 -1.00E-04 -4.00E-06

Maximum 0.018059 2.10E-05 0.000912 0.016719 1.60E-05 0.001042
Minimum -0.018072 -5.40E-05 -0.000972 -0.018608 -2.74E-04 -0.001083
Std. Dev. 0.004875 2.01E-05 0.000136 0.004787 8.84E-05 0.000182
Skewness 0.067356 -0.269859 0.137827 -0.084361 -0.498882 -0.30024
Kurtosis 3.073003 1.604405 7.232651 2.928112 2.074143 6.742584

Jarque-Bera 4.891911 466.5478 3748.941 7.008679 386.0658 2993.831
Probability 0.086643 0 0 0.030067 0 0

TABLE A.2.5. Statistics of time series of wealth, population and re-
turns for contrarian trading strategies with parameters δ̄ = 0.6, d̄ =
−0.45 and q = 0.03 and lag length combinations (L1, L2) are (3, 5) for
(a), (3, 7) for (b), (10, 14) for (c), and (10, 26) for (d).
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Lag (3,5) (3,7) (10,14) (10, 26)

1 -0.944 -0.678 -0.144 -0.155
2 0.922 0.53 0.056 0.047
3 -0.914 -0.529 -0.014 -0.025
4 0.93 0.636 -0.01 0.003
5 -0.924 -0.563 -0.001 0.001
6 0.926 0.479 0 -0.003
7 -0.914 -0.462 0.016 0.01
8 0.909 0.533 -0.003 0.004
9 -0.902 -0.51 0.009 0.001

10 0.906 0.452 0.011 -0.003
11 -0.9 -0.428 0.097 0.107
12 0.896 0.451 -0.016 -0.039
13 -0.891 -0.427 0.026 0.009
14 0.889 0.393 -0.013 0.006
15 -0.884 -0.371 0.051 -0.027
16 0.882 0.37 -0.017 0.009
17 -0.876 -0.366 0.014 -0.004
18 0.875 0.351 -0.013 0.013
19 -0.869 -0.337 0.009 -0.001
20 0.867 0.34 -0.008 -0.01
21 -0.863 -0.322 0.01 0.004
22 0.861 0.297 0.025 -0.001
23 -0.858 -0.282 -0.008 -0.016
24 0.857 0.277 0.016 -0.014
25 -0.851 -0.271 -0.02 0
26 0.849 0.245 0.012 -0.002
27 -0.844 -0.232 -0.002 0.043
28 0.844 0.228 0.014 -0.014
29 -0.841 -0.224 -0.001 0.021
30 0.838 0.215 -0.002 -0.019
31 -0.833 -0.202 -0.019 0.013
32 0.83 0.193 -0.01 -0.009
33 -0.828 -0.186 -0.012 0.007
34 0.825 0.181 0.021 0.001
35 -0.82 -0.162 0.01 0.008
36 0.817 0.162 0.001 0.01

TABLE A.2.6. Autocorrelation coefficients (AC) of returns for con-
trarian trading strategies with parameters δ̄ = 0.6, d̄ = −0.45, β =
0.5 and q = 0.03 and lag length combinations (L1, L2) =
(3, 5), (3, 7), (10, 14) and (10, 26).
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