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Summary. The paper presents a consistent approach to the modeling
of general and specific market risk as defined in regulatory documents.
It compares the statistically based beta-factor model with a class of
benchmark models that use a broadly based index as major building
block for modeling. The investigation of log-returns of stock prices
that are expressed in units of the market index reveals that these
are likely to be Student t distributed. A corresponding discrete time
benchmark model is used to calculate Value-at-Risk for equity portfolios.
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1 Introduction

Trading portfolios of financial institutions are characterized by non-linear
instruments, tied to complex trading strategies. The nominal volume of such
positions is in general not proportional to the risk that is taken. Financial
institutions can run énternal models for calculating regulatory capital, see
Basle (1996a, 1996b). In this context it is important to see how regulatory
terms are translated into quantitative risk modeling.

Market risk, which is due to fluctuations of market prices, plays an es-
sential role in determining regulatory capital. It is understood as the core
risk that an institution is exposed to through its trading portfolio. Market
rigk is split into general and specific market risk. For an equity portfolio gen-
eral market risk denotes the risk exposure of the portfolio against the equity
market as a whole. On the other hand, specific market risk relates to the
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rigk of holding an individual security, which is not covered by general market
risk. Specific market risk can be decomposed into idiosyncratic and event
risk. This distinction is used because events like mergers, earnings surprises,
bankruptcies and rating migrations are key inputs for the individual security
dynamics.

The separation of market risk into its general and specific components
has significant impact on the amount of regulatory capital required to cover
the market risk of a trading book. In the framework of internal models
this capital charge is determined by means of a risk measure, the Value-
at-Risk (VaR). This paper addresses issues arising from the application of
the current regulatory approach. The rich literature on VaR comprises, for
instance, RiskMetrics (1996), Alexander (1996), Duffie & Pan (1997, 2001),
Jorion (2000) and Embrechts et al. (2002).

As prices are relative, a modeling structure should define an appropriate
reference unit to be used as numeraire or benchmark in establishing a corre-
sponding metric for measuring risk. In this paper we suggest a benchmark ap-
proach, where we consistently use a broadly based index (BBI) as benchmark.
This defines a natural model structure, which goes beyond the regression
based beta-factor model and considerably improves the measurement of mar-
ket risk. Furthermore, as shown in Platen (2003), a BBI approximates under
general conditions the growth optimal portfolio (GOP), see Kelly (1956). Us-
ing the GOP as reference unit the resulting benchmark model has a number
of useful properties, see Platen (2001, 2002).

We analyze in this paper log-returns of equity prices when these are ex-
pressed in units of the equity market index. Strong evidence is shown that
these are Student t distributed with degrees of freedom that range typically
between 3 and 5. This leads to the specification of a Student t benchmark
model that can be shown to yield VaR numbers consistent with empirical
findings.

2 Discrete Time Market

Let us consider a discrete time equity and fized income market. Prices are
assumed to change their values only at the given discrete, equidistant times
0<to<ti <...<t, <ooformne{0,1,...}. The time step size is denoted
by A = t;y1 — t;, which is assumed to be small, ¢ € {0,1,...,n — 1}. We
consider d + 1 primary assets, d € {1,2,...} and denote by SZ(]) the strictly
positive value at time ¢; of the jth primary security account, which is typically
an equity or bond with all dividends and coupon payments reinvested, j €
{0,1,...,d}, i € {0,1,... ,n}. We assume that SZ(O) is the riskless savings
account at time ¢;. The return Rgi)l of the jth primary security account at



time #;41 is defined as
=2 _gW o (2.1)

fori € {0,1,...,n—1}and j € {0,1,...,d}, where Hi(i)l is the corresponding
growth ratio. This leads us naturally to the introduction of the jth log-return
at time #;41 in the form

L), =108 (BY)), (2:2)
where we assume that
E(L) ~ P A (2.3)

fori € {0,1,...,n—1},5 € {0,1,...,d} and some finite random variable 7,
Here E; denotes the conditional expectation given the information up until

).

time t;. Note, for typical daily price movements the return Rgi)l approximates

well the log-return Lg_)l.

By a' we denote the transpose of a vector or a matrix. For the char-
acterization of a portfolio at time #; it is sufficient to describe the vector of
proportions m; = (7751), ... ,ngd))T, with ng) € (—00,00) denoting the pro-
portion of the value of the portfolio at time #; that is invested in the jth
primary security account, j € {0,1,...,d}. Obviously, the proportions sum
to one, that is

d
9 =1 (2.4)

7=0

for all ¢ € {0,1,...,n}. The value of the corresponding portfolio at time

t; is denoted by Slg”). The number 5{ of units of the j-th primary security
account at time #; is then given by the relation

g™
L e (2.5)
S(])

forj € {0,1,...,d} and i € {0,1,... ,n}. The corresponding portfolio return
is

2

d
R = 1) 1= 0 RO, 20
=0

with portfolio growth ratio HZ(:)I for i € {0,1,...,n— 1}. Under assumption
(2.3) it follows for small A

E; (log (Hi(:)l)) ~ ™ A (2.7)



with

(77) _ Zﬂ.(]) @)

for i€ {0,1,...,n—1}.

3 Regulatory Terminology and Framework

We denote by VaRh(SZ(”),a) the VaR number at time #; of a given portfolio
S(™) with proportions 7, a given level of significance a and a forecast horizon
of h trading days, typically h € {1,10} and a = 99%. More precisely, this
VaR number denotes the a-quantile of the distribution function of the random
variable

(m) _ g(m) ()

Sz7;7, S " Sz—:h’

where Slg”) is known at time ¢;. The variable S'Z(I)h denotes at time t;, 5 the
random value of the at the time ¢; fixed portfolio, that is

d
z:)h = Z 5; Sz(-]i-)h’

J=0

where the number of units 5? to be held in the jth primary security account
at time ¢; is given in (2.5). The VaR number can be interpreted as an upper
bound of losses that might only be surpassed with probability 1 — «

Next we quote several official regulatory definitions, see Basle (1996a,
1996b), that have to be implemented appropriately: Market risk is defined
as the risk of losses in on and off-balance-sheet positions arising from move-
ments in market prices. The risks subject to this requirement are: the risks
pertaining to interest rate related instruments and equities in the trading book;
foreign exchange risk and commodity risk throughout the bank. ... General
market risk covers the risk of holding long or short positions in interest rate
or equity risk against the market as a whole. ... The market should be iden-
tified with a single factor that is representative for the market as a whole,
for example, a widely accepted broadly based stock indezx for the country con-
cerned. ... Specific risk includes the risk that an individual debt or equity
security moves by more or less than the general market in day-to-day trading,
including periods when the whole market is volatile. Specific risk includes the
risk that an indiwidual debt or equity security moves by more or less than the
general market in day-to-day trading, including periods when the whole mar-
ket is volatile. Specific risk covers that risk in holding long or short positions
n an individual equity or debt security. Event risk covers the risk, where the
price of an individual debt or equity security moves precipitously relative to



the general market due to a major event, e.g., on a take-over bid or some
other shock event; such events would also include the risk of default.

We emphasize, it is a regulatory requirement that a broadly based index
(BBI) serves as a reference unit, which we will naturally incorporate in our
approach by using a BBI as benchmark, denoted by S,

The differentiation between different forms of risk allows a bank to tai-
lor regulatory capital, that is capital cushions or reserves that correspond
to the inherent risks of a given portfolio. Assume that an internal model
provides for a portfolio S{™, the VaR number VaR10(S§7T),99%) at time ¢;
for general market risk. Furthermore, suppose that a prescription is given to
calculate separately the specific risk with the associated VaR figure denoted
by VaRfO(SZ(”),QQ%). To determine the regulatory capital Cf at time ¢; for

the portfolio SZ(”) the following formula has to be applied:

CR = ma,x{VaRw (8(7,99%) +m - VaR§, ($(,99%)

1.8 . 1 & .
Moo lZVaRm (55}, 99%) +m - ;VaR‘fo (5{,99%) }

=0

Internal models that cover idiosyncratic risk, which is specific risk but not
event risk, are called surcharge models. In that case the variable m equals
1. For those models that cover specific risk including event risk, m is set to
zero. M denotes a safety multiplier which is usually set to 3. We remark,
that event risk, when it is covered by general market risk, does not require
particular regulatory capital.

4 Beta Factor Model

It is common practice, see RiskMetrics (1996) and Basle (1996a), to regress
the return RZ(_JBI of the jth primary security account at time #;11 on the, so
called, jth beta factor 80 to separate the impact of general and specific
market risk. To apply a beta factor model for equities, a system of linear
regression equations is used, where

Rz@l = Rgg-)l + 5(j)Rz($)1 + 51@1 (4.1)

fori € {0,1,...,n—1} and j € {0,1,...,d}. Recall that Rg?r)l is the return

of the savings account and Rgf;)l is that of the BBI. Hence, 8% = 0 and

e =0 by definition. Furthermore, in a beta factor model the Gaussian
+1

T
random variable egi)l for the jth idiosyncratic noise and R§j’;’1 are assumed



to be such that

E; (55-]21) = 0; E; (51@1 Rgﬂ) =0
m((2)") = (¢9)" B((72)") = ()" (m(r2))"
E; (55.]21 55—?1) 0; E (Rz@l Rz(?l) = BYE; ((R§:)1)2) + Rz(?i-)l E; (Rz(f?)l)

for i € {0,1,... ,n — 1} and 4,¢ € {0,1,...,d} with £ # j. Under these
assumptions, o) = ag?i) = 0 by definition. Note that the return ngi)l of the

i
jth primary security account in (4.1) depends linearly on the return Rl(f;)l of

the BBI S(@. The j-th idiosyncratic noise 65_121, is neither correlated to the
)

market return RZ( 1 nor to the other idiosyncratic noise terms egi)l for £ # j.
As a result of these assumptions, the conditional variance of the return of
the jth primary security account equals

(+9) = B((r% -5 (r)))

Y (o) + (o) (4.2

with

(o) = B:(RF - B(BD,))

fori € {0,1,...,n—1} and j € {0,1,...,d}. In this setup the returns and
also their conditional variances, see (4.1) and (4.2), are linearly related. The
first and second term in (4.2) express the general and specific market risk,

respectively. The quantity 8¢ R§j’;’1 in (4.1) is the so-called beta~equivalent

of the return RE_’BI. Note, the beta factor model, which is a linear regression
model with constant beta factor, has a purely statistical motivation.

5 Benchmark Framework

In the following, we consider an alternative to the beta factor model, which
allows us to separate general and specific market risk in a canonical way.
This separation is achieved in a natural setting using a BBI S(® ag reference
unit or benchmark. We introduce the jth benchmarked growth ratio

o HY
B =5 (5.1)
i+1



for i € {0,1,...,n—1} and j € {0,1,... ,d}, see (2.1) and (2.6). Equation
(5.1) allows us to express the growth ratio of the jth primary security account
as the product

Hi(j-)l = Hz(-a I:Ii(j-)1 (5.2)

for i € {0,1,...,n — 1} and j € {0,1,...,d}. This product provides a

multiplicative decomposition of the jth growth ratio. The first factor H, Z(f)l is

related to general market risk, whereas the second factor I:Ii(fr)1 is naturally
tied to the specific market risk of the jth primary security account at time
t;+1. In this benchmark framework we denote the logarithm of the j-th
benchmarked growth ratio (5.1), by

LD =1log (ﬂ§i’1) (5.3)
and obtain the conditional expectation
E; (L‘Ql) ~ i A (5.4)

with A9 = — ™ for i € {0,1,... ,n — 1} and j € {0,1,... ,d}.

BBIs, for instance, the S&P100, S&P500, S&P1000 and the MSCI world
index behave all in a very similar manner. In Platen (2003) it has been shown
under general assumptions that BBIs approximate the GOP. Thus the GOP

is naturally approximated when modeling general market risk by a BBI.

6 Semiparametric Benchmark Models

Let us introduce a general class of semiparametric benchmark models, where
we assume that the jth centralized log-return admits the structure

d
Xi(i)l = Lz(-]i-)l - E; (Lg-]i-)l) =- Z Ug’k \/ZZz(f-)l (6.1)
k=1

for j € {0,1,... ,d} and i € {0,1,... ,n — 1}. Note that Xi(f:)l is the central-

ized log-return of the benchmarked savings account. Here, o7 * is called the

jth wvolatility at time t; with respect to the kth source of uncertainty Zl(i)l

1 d . . .
We choose Zi( +)1, . ,Zi( +)1 as random variables with zero conditional mean

E(z{)) =0, (6.2)

unit conditional variance

E; ((Z§i’1)2) —1 (6.3)



and such that
£
Ei(7%), 7)) =0 (6.4)

for £ # k with ¢ € {0,1,...,n — 1} and k,¢ € {1,2,...,d}. We assume
for technical reasons that an absolute conditional moment of order slightly
greater than two exists for the vector of uncertainty Z; 11 = (Z, Z.(Jlr)l, e ZZ.(i)l )T
Note that in contrast to the beta factor model, we are not restricted to the
use of Gaussian random variables. Nor do we assume the independence of
market returns and benchmarked individual returns.

We obtain from (6.1) - (6.4) the second order normalized conditional
moments

d
) 1 . )
£ Oy _ k Lk
gt = B (XD x{h) = od* o (6.5)
=1
fori € {0,1,...,n—1} and 4,£ € {1,2,...,d}. Relation (6.5) allows us to
introduce the conditional covariance matriz
;= [c]4,_, = D; D] (6.6)

2

with volatility matriz

D; = [o? 11, (6.7)
i € {0,1,...,n — 1}. The volatility matrix D; can be interpreted as the
Cholesky decomposition of ¥;. If the volatility matrix D; is invertible, then,
by (6.1), the vector Zip1 = (Z),..., 29T
can be explicitly expressed in the form

of the sources of uncertainty

1
VA

i€ {0,1,... ,n—1}. By equations (5.1), (5.3) and (6.1) with j =0 it can be
seen that

-1
Zig1 = — D7 X,

0
X z'(+)1

IA’E?& - E (IA’S?&)
= log (Hi(-(',)-)l) —E; (log (Hi(-?-)l)) —log (Hl(f_)l) + E; (log (Hz(ﬂ))

Since the growth ratio Hi(f:)l of the savings account is known at time ¢; the
first two terms in the above formula offset each other. Thus, we obtain the
log-return of the BBI in the approximate form

log (B(F)) = -X, + Ei(10g (BE)) ) ~ -x{) (6.8)



for i € {0,1,...,n — 1}, because Ei(log(Hi(f)l)) ~ nF)A is of higher order
than v/A. This means, the uncertainty of the log-return of the BBI is ap-
proximately the negative of that of the benchmarked savings account. Since
the return ngi)l of the jth primary security account is small we obtain from
relation (2.1) and the expansion of the logarithm that

R, = Y, - 1~10g (BY)), (6.9)
for i € {0,1,...,n — 1} and j € {0,1,...,d}. Now, relation (5.2) yields
together with (6.8), (5.3) and (6.1) by neglecting higher order terms that

R, ~1og (HY, ) =10g (H) +1og (A ) » - + X2y, (6.10)

The above described semiparametric benchmark model is based on the
multiplicative relationship (5.2) between growth ratios. As is evident from
(6.8) and (6.1), the volatility o; ** provides a measure for general market risk,
that is the exposure of the BBI towards the k-th source of uncertainty ZZ(J’:)I
Similarly, by (5.3) and (6.1) the volatility af’k quantifies its specific market
risk, that means the exposure of the j-th benchmarked primary security
account towards the k-th source of uncertainty, ¢ € {0,1,...,n — 1}, j €
{0,1,...,d} and k € {1,2,... ,d}.

Summarizing (6.10) and (6.1) provides the following representation of the
stochastic component of the return of the jth primary security account

d
B~ > (o of*) VA 2, (6.11)
k=1

for i € {0,1,...,n—1} and j € {0,1,...,d}. Similarly, using (6.8), (6.9)
and (6.1), we obtain for the stochastic part of the return of the BBI the
approximate expression

d
R, = B - 1~log (BR ) ~ -X = > P VA ZY)
k=1

for i € {0,1,...,n —1}. By (6.12), (6.11), (6.2), (6.3) and (6.4) we get

E; ((RV” )2) ~ A Xd: (09”“)2 (6.13)
Z ™ - i , .

(6.12)

E; ((Rgflf) ~A Y (o0F - ag"’“)2 (6.14)

k=1



and
(R R ) ~ A ké (o0* = of*) o?* (6.15)

for i € {0,1,...,n — 1}. We can define the following approximate ratio of
covariances of returns as generalized jth beta factor ,BZ(] ) at time t;, where

j T d 0,k ik 0,k i
B T (o)t gt e

n((r2)) =L () =t (o)’

for i € {0,1,...,n — 1} and j € {0,1,...,d}. The above relation provides
the equivalent of the common beta factor in a benchmark framework. Note

that we get for the domestic savings account the beta factor ,BZgO) =0, as is

to be expected. Moreover, for the generalized beta factor ,Blg”) of a portfolio
S(m) with

£ (R, 52

E; ((351)1)2)

one can show by similar arguments as above that
d 0,k d (&) gk
_ 2k 0i Dijmo T OF
$d 0,8\ 2
k=1 \7i

Note that the generalized beta factor of the semiparametric benchmark model
is time dependent and matches the well-known return relationship of the
Capital Asset Pricing Model, see Merton (1973). Finally, for the GOP S(®
it can be shown, see Platen (2002), that

g™ —

B™ =1 (6.16)

7

for i € {0,1,...,n—1} and k € {1,2,...,d}. Therefore, using (6.16) and
(6.17) the generalized beta factor ,BF) of the GOP, and thus a BBI, is ap-
proximately one.

d
7 oi* ~ 0 (6.17)
=0

7 Generalized Hyperbolic Benchmark Models

One can now specify appropriate families of distributions for the sources of
uncertainty Zi(l), e Zi(d). Let us choose the log-return distribution from the

10



well established class of generalized hyperbolic distributions, see Barndorfi-
Nielsen (1978). We assume, for simplicity, that the centralized log-returns of
benchmarked share prices have a symmetric generalized hyperbolic distribu-
tion.

The main feature that we explore in the following concerns the shape
of the tails of the probability density fx of centralized log-returns X. The
symmetric generalized hyperbolic density is of the form

B 1 i (.’L’—nA)2 %(A—%)
fx(e) = ax/ZKA(a)\/;(H A )

Ky (a 1+ %) (7.1)

forz € R, where p, A€ R, § >0and a =ad with a #0if A>0and d #0
if A > 0. Here K\(-) is the modified Bessel function of the third kind with
index A.

The symmetric generalized hyperbolic distribution is a four parameter
family of distributions. The two shape parameters are A and &, defined so
that they are invariant under scale transformation as described below. For
& = 0 and X € [-2,0] we have infinite kurtosis. The parameter 5 in (7.1) is a
location parameter, where the log-return X has mean mx = nA. We define
the parameter ¢ as the unique scale parameter such that the variance of X
is vx = ¢?A and

8% Kxy1(a)

ZRA(3) otherwise.

\ { 23 if §=0,ie,A>0,a=0

c
It can be shown that for A — £o0o or & — oo the symmetric generalized
hyperbolic distribution asymptotically approaches the Gaussian distribution.
Thus the log-returns of the lognormal model, see Black & Scholes (1973),
appear as limiting cases of the above class of distributions.

We will now describe four particularly important symmetric generalized
hyperbolic distributions that coincide with the log-return distributions of
important asset price models that have been suggested by different authors:

The Student t distribution was originally suggested by Praetz (1972) as a
suitable distribution for asset returns. For the Student t distribution one sets
a =0 and A < 0. The parameter v = —2 is called the degrees of freedom.
We have finite variance for v > 2 and finite kurtosis k., = 3 Z—:Z for v > 4.
The Student t distribution is a three parameter distribution, where smaller
degrees of freedom v imply heavier tails.

Barndorf-Nielsen (1995) proposed a model, where the log-returns gener-
ate a normal-inverse Gaussian mixture distribution. Here the shape parame-
ter A is fixed at the level A = —0.5. This distribution is also a three parameter

11



distribution. A smaller shape parameter & implies larger tail heaviness with
kurtosis £, = 3 (1 +a~1).

Eberlein & Keller (1995) suggested asset price models, where log-returns
follow a hyperbolic distribution with shape parameter A = 1. It is also a three
parameter distribution. Its kurtosis

3K, (a) Ks(a)
T TRy (@)

depends on the shape parameter &, which can be shown to reach its maximum
value of k. = 6 for @ = 0.

Madan & Seneta (1990) proposed a class of models that result in log-
returns which follow a variance gamma distribution. This distribution arises
if one sets @ = 0 and A > 0. A smaller A implies heavier tails for this three
parameter distribution with kurtosis £, = 3 (1 + A71).

8 Testing Benchmark Models

In this section we identify a distribution that best fits the log-returns of BBIs
and benchmarked stock prices. We note that for several of the aforementioned
distributions the kurtosis can be infinite. Therefore, a statistical method that
relies on higher order moments should not be used. The maximum likelihood
approach avoids this problem. We recall, for fixed j € {1,2,... ,d} that the
log-returns Xi(]), i € {0,1,...,n — 1}, are independent and identically dis-
tributed. We define the likelihood ratio in the standard form A = f—’“m, where
L, represents the maximized likelihood function of a particular three param-
eter distribution, for instance, the Student t distribution. With respect to
this distribution the maximum likelihood estimate for the parameters is com-
puted. On the other hand, Ly, denotes the maximized likelihood function
for the four parameter symmetric generalized hyperbolic distribution.

As n — oo the test statistic L, = —2In A is asymptotically chisquare
distributed, see Rao (1973), with degrees of freedom one. Asymptotically, we
then have the relation

P (Ln < X%—a,l) ~ FX2(1) (X%—a,l) =1- a, (81)

as n — 00, where F,2(;y denotes the chisquare distribution with one degree
of freedom and xi_,, ; its 100(1 — a)% quantile.

We can now check, say, for the standard 99% significance level whether
or not the test statistic L, is in the 1% quantile of the chisquare distribution
with one degree of freedom. This means, if the relation

Ly < Xg.01,1 ~ 0.0002 (8.2)

is not satisfied, then we reject on a 99% significance level the hypothesis that
the suggested distribution is the true underlying log-return distribution.

12



We study benchmarked US stock price log-returns on the basis of daily
benchmarked share price data, provided by Thomson Financial for the eleven
year period from 1987 to 1997, using the S&P500 as BBI. The total number of
observed daily log-returns for each benchmarked stock is about 2500, which
provides reliable asymptotic results for the maximum likelihood ratio test.
In Table 1 we show the test statistics L,, for twenty leading shares of the US
market. The stock codes correspond to those commonly used. The smallest
L,, value identifies the best fit and is displayed in bold type.

Inverse Variance
Stock Student t Gaussian Hyperbolic Gamma,
GE 0.0000 1.4334 2.2260 3.8726
KO 0.0000 14.2692 21.9366 28.6322
XON 0.0000 16.0676 23.2020 31.0282
INTC 0.0000 15.8856 32.1382 41.9714
MRK 1.6614 0.8386 4.8766 10.5624
RD 0.0000 6.3572 10.7048 16.2154
IBM 0.1730 14.1344 51.5752 64.7730
MO 0.0000 18.2024 53.7858 62.0374
PG 0.0000 20.7162 32.5862 39.2176
PFE 0.0170 4.5236 9.2526 14.2854
BMY 0.0000 12.9818 24.0392 30.6054
T 0.0000 11.6994 25.4518 34.2240
WMT 0.0000 6.7546 14.4522 21.7498
JNJ 1.2272 1.1620 5.8662 12.0374
LLY 0.0000 6.8344 12.7520 17.8614
DD 5.4536 1.5960 0.5434 0.0000
DIS 0.0000 16.9802 31.0480 41.4124
HWP 0.0000 19.8886 38.8200 50.4892
PEP 0.0000 14.7938 25.9036 35.8268
MOB 0.0398 1.9694 5.0566 8.7238

Table 1: The L,-values for log-returns of benchmarked US stocks.

We note that for the majority of log-returns of benchmarked stock prices the
Student t distribution gives the smallest L,, value and thus yields the best
fit in the class of symmetric generalized hyperbolic distributions considered.

We observe that fifteen of the twenty L, values in Table 1 appear to
be smaller than the X%.01,1 = 0.0002 quantile. For fourteen of these the
hypothesis that the Student t distribution is the true underlying distribution
cannot be rejected at a 99% significance level.

A similar study has been performed for the Australian, German, Japanese
and UK market using the corresponding market index as BBI. Detailed results
for the other four markets can be obtained from the authors. For thirty one
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of the one hundred stocks considered, the Student t distribution could not be
rejected at a 99% significance level as the true underlying distribution. In all
five markets the Student t distribution clearly provides the best fit for most
log-returns of the benchmarked stocks.

To illustrate the results for all five markets we plot in Figure 1 the esti-
mated (&, A)-parameter values for the one hundred examined benchmarked
stocks. These estimates characterize the specific shape of the tails for the
estimated symmetric generalized hyperbolic densities. The positive part of
the d-axis in Figure 1 parameterizes the variance gamma distribution. We
note that only one of the one hundred stocks generated an (&, A)-estimate
on the positive A-axis. The hyperbolic distribution is represented by pairs of
shape parameters (@, A) with A = 1. There are about three to four points in
Figure 1 that are located in the neighborhood of the horizontal line A = 1.
The points (&, A) on the horizontal line A = —1 correspond to the normal-
inverse Gaussian distribution. We note that several stocks generate points in
the area close to this line. Note that for small & the normal-inverse Gaus-
sian distribution coincides asymptotically with the Student t distribution and
most & parameter estimates are less than one. It is obvious that most of the
one hundred (&, A)-estimates are concentrated close to the negative A-axis.
This is the area that is characteristic for distributions that are similar to
the Student t distribution. It appears that the (&, A)-estimates support a
Student t distribution with a parameter value for A of approximately —2,
which corresponds to four degrees of freedom, see Section 7. The average
estimated degrees of freedom for the Student t distribution obtained from all
benchmarked stocks was o = 4.377.
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Figure 1: (@&, A)-plot for log-returns of benchmarked stocks.

In a study similar to that described above it has been shown in Hurst & Platen
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(1997) that the log-returns of BBIs of the equity markets of most developed
economies support the Student t distribution, again with degrees of freedom
close to four. As an alternative to the above mentioned studies, a series of
papers, see, for instance, Dacorogna et al. (2001), has shown that the tails of
asset log-returns follow approximately a power law, where the estimates of the
so-called tail index are typically in the range of three to five. This is consistent
with our findings for benchmarked stock log-returns. Furthermore, we remark
that the Student t benchmark model can be interpreted as a discrete time
analog of the, so-called, minimal market model, see Platen (2001, 2002),
which models the dynamics of a discounted GOP that exhibits minimum
variance in its drift. These lead to Student t distributed log-returns of the
GOP with theoretically predicted v = 4 degrees of freedom.

9 VaR Analysis

Ags outlined in the introduction and in Section 3, the modeling of event risk
in internal models is of increasing importance in VaR analysis. The above
class of semiparametric benchmark models is able to encompass event risk by
choosing an adequate leptokurtic distribution for the sources of uncertainty.
Incorporating event risk completes VaR modeling for measuring market risk
by taking into account all regulatory subcategories of market rigk, that is
general, idiosyncratic and event risk.

As an alternative to the above approach, Gibson (2001) used a mixing dis-
tribution to specify a five parameter model that puts sufficient mass into the
tails of log-return distributions by introducing different regimes for the means
of certain mixed distributions. Duffie & Pan (2001) apply jump-diffusions for
modeling idiosyncratic and event risk in the context of VaR, which relies on
various parameters. Though the class of jump-diffusions is intuitively appeal-
ing, the parameters are difficult to estimate. Huschens & Kim (1999) studied
a VaR model that uses Student t distributed returns but not in a benchmark
setting.

In the following version of a Student t benchmark model we specify in a
parsimonious way the sources of uncertainty, where we exploit the fact that
symmetric generalized hyperbolic distributions admit a representation of a
mixture of normal distributions. This means, if one chooses the variance of
a conditionally Gaussian distribution as the inverse of a Gamma, distributed
random variable, then the resulting distribution is a Student t distribution.
To generate the Student t distributed sources of uncertainty Zi(?r)l, ceey Zi(i)l
appropriately, we set

z{) = yra Y, 9.1)
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where 7,41 denotes the market activity with

—1
2\ (1 7.0\
Tit1 = (1 - _) (‘ Z (71[’1(421) > (92)
v v
£=1
for i € {0,1,...,n— 1} and k € {1,2,...,d} with v € {3,4,...}. Addi-
tionally to the independent standard Gaussian distributed random variables
Yl(ﬂ that appear in (9.1) we employ further independent standard Gaussian
random variables 1/11%)1. Hence, the random variables 7;41 are chisquare dis-

tributed with v degrees of freedom. Consequently, the random variables Zz(—’;:-)l
are Student t distributed with unit variance and v degrees of freedom. The
market activity 7;41 can be interpreted as a daily increment of the random
intrinsic time of the market. Note, the market activity converges to 1 as the
degrees of freedom v tend to infinity, which yields the lognormal benchmark
model.

In addition to the typical parameters of the lognormal benchmark model
we have used here only the extra parameter v, which is sufficient to charac-
terize the leptokurtosis of the Student t distribution. As shown previously,
the typical parameter choice for v is about 4. Smaller degrees of freedom
generate log-returns with more extreme movements.

An important feature of the resulting multivariate Student t distribution
is its copula. It realistically captures the dependence of extreme asset price
movements as shown in Embrechts et al. (2002) and related work. The Stu-
dent t-copula, which is characterizing the joint occurrence of extreme moves
in log-returns of several benchmarked stocks, is in our model automatically
captured.

To calibrate the above Student t benchmark model one needs to estimate
the volatilities o7*, typically obtained from a standard calibration using (6.5)
and a Cholesky decomposition to derive g7**. The above model then repre-
sents a simple extension of the lognormal model, where one needs only to
add an estimate for the degrees of freedom v. It is reasonable to set v = 4,
as we will see from Table 2 and is theoretically predicted in Platen (2002).

The equations (9.1) and (9.2) give a prescription that can also be used
for simulation purposes. They involve the Cholesky decomposition D; of
the covariance matrix ¥;, see (6.7). The Student t benchmark model pro-
vides accurate results if the VaR calculation is based on extensive Monte-
Carlo simulations. However, sufficiently accurate Monte-Carlo simulations
are extremely time consuming. To circumvent this problem, we propose the
following highly efficient method for VaR calculations:

In practice, equity portfolios, are typically dominated by large linear
portfolios. Note that the joint distribution of the random vector X;y; =
(X X7
freedom, where

is a multivariate Student t distribution with v degrees of

Xiy1 = /Tiy1 Di Y.
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Since Y;+1 is Gaussian and % is independent chisquare distributed, the
resulting multivariate Student t distribution for X;., belongs to the class of
elliptical distributions. For linear portfolios the calculation of VaR numbers is
for this class of distributions analytically tractable. More precisely, a theorem
in Fang et al. (1990) yields the representation

a” Xip1 = |a" Dyl Gita (9.3)

for any given weight vector a, where | - | is the Euclidean norm, a € ®¢,
D;r D; =%; and (;4+1 denotes a Student t distributed scalar random variable
with v degrees of freedom. The representation (9.3) significantly simplifies the
VaR calculation for linear portfolios with an extremely large number of con-
stituents. Furthermore, we mention that if a portfolio with many constituents
is not linear but represents a diversified portfolio in the sense described by
Platen (2003), then it approximates the GOP and thus also our benchmark,
the BBI. This asymptotics yields accurate VaR numbers and saves computa-
tional time when compared to standard Monte-Carlo simulation.

Since the multivariate Student t distribution is an elliptical distribution,
it is shown by Embrechts et al. (2002), that VaR is in this case a coherent
risk measure, see Artzner et al. (1997). This fact is highly important for the
consistent use of VaR as a risk measure for the internal capital allocation to
particular business lines.

In order to calculate VaR for short term horizons we apply, for simplicity,
the so-called square root time rule. This approximation is in line with the
regulatory recommendations of the Basle Committee. From (9.3) we obtain
then the following formula for the VaR number of a given portfolio S(™ at
time t;.

VaRy(S\™, ) & Vi VaT S;aVh At (v). (9.4)

Here V; denotes the market value of the portfolio at time ¢;, \/aT X; a char-
acterizes the volatility of the portfolio, A the time step size for a trading day,
h the number of trading days and #,(v) the a-quantile of the standardized
Student t distribution with v degrees of freedom.

v | o 10 5 4 3 2
¢ | 1 | 106|111 | 112 | 1.14 | 1.16

Table 2: Event factor ¢ in dependence on degrees of freedom wv.

Obviously, the product (9.4) generalizes the well-known short hand for-
mula, used in RiskMetrics, to calculate VaR by including the event factor
ta (v)

= , 9.5
= (9.5)
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that is
VaRh(Si(”), a) ~VivaT TiavVhAg,p. (9.6)

Here ¢, is the a-quantile of the standard Gaussian distribution. Conse-
quently, the event factor ¢ adjusts the standard VaR formula to a level that
captures approximately event risk when one uses the Student t benchmark
model as internal model. According to the quantiles of the Gaussian and
Student t distribution one obtains by (9.4) the event factors shown in Ta-
ble 2. Even for rather small degrees of freedom, say v = 2, the additional
regulatory capital will not surpass 16%. To confirm the appropriate choice
of the model and its calibration one needs to perform stress tests, see Basle
(1996a). Along these lines, Gibson (2001) performed an extensive study using
representative portfolios for US institutions, which identified an event factor
of about ¢ = 1.12. This is exactly the event factor that matches in Table 2
the degrees of freedom v = 4, which again supports the model proposed in
Platen (2002) and also our empirical findings.
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