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Abstract  

Individuals, endowments and trusts face uncertain lifetimes. When the planning horizon 

of an entity is stochastic and Pareto distributed, hyperbolic discounting and time-varying 

consumption rates are optimal. We derive expressions for the optimal rate of 

consumption (draw-down) from wealth for family trusts facing positive probabilities of 

extinction at each generation. Using birth statistics for the UK, we compute family 

extinction probabilities and show that they are well-approximated by a Pareto 

distribution, hence family trusts will discount hyperbolically. Numerically optimised 

consumption paths for family trusts with CRRA preferences are decreasing but always 

higher than for infinitely-lived trusts. 
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Many problems in economics and finance require planning over long time horizons and 

in all such problems the discount rate is critical. Researchers from Ramsey (1928) to 

Stern (2006)1 have recognised that choosing a discount rate is rarely a disinterested 

decision, but usually represents some amalgamation of economic ‘science’ with inter-

generational ethics or politics.  

While it is analytically convenient for economists to choose non-stochastic 

boundaries (either fixed or infinite) for multi-period problems, more often than not a 

problem’s inherent uncertainty extends beyond, say, random investment payoffs or 

uncertain income to the horizon itself. If the planning horizon is stochastic, discounting 

cannot arbitrarily be fixed at some unobserved level of impatience: it must be treated as a 

function of the probability density of the horizon. Further, stochastic horizon problems 

are ubiquitous. The simplest individual consumption problems are subject to uncertainty 

over the length of life, and the same is true of the majority of plans for firms, financial 

institutions, governments and societies. 

Time-varying discounting has sometimes been used to harmonise observed 

patterns of behaviour with the predictions of theory, and attributed to weak ethics or a 

lack of altruism on the part of the decision-maker. For example, hyperbolic discounting, 

where impatience depends on a person’s interest in the well-being of those living in the 

future, or, indeed, in the well-being of future ‘selves’, has been proposed to explain 

anomalous savings behaviour (see Phelps and Pollack, 1968). However we do not have to 

appeal to weak ethics to justify non-constant discount rates when simple horizon 

uncertainty may be sufficient. 

                                                 
1 See also Stern’s discussion at http://www.hm-
treasury.gov.uk/media/1/8/Technical_annex_to_the_postscript_P1-6.pdf 
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Here we offer a new explanation for hyperbolic discounting that does not rely on 

arguments relating to the failure of altruism, requiring only rational uncertainty over the 

long-term survival of the planning entity. Since, as we show below, the empirical survival 

function of a multi-generation family has a hazard rate that declines over time, hyperbolic 

discounting applies naturally to the planning problem of a family trust. As well as 

analysing the family trust case, we show more generally that the standard constant 

relative risk aversion (CRRA) consumption planning model under horizon uncertainty 

implies time-varying draw-downs, and constant draw-down rates are a special case. 

We use numerical optimisation methods calibrated to UK birth statistics and a 

representative investment model to newly estimate optimal spending paths for a family 

trust. (We make use of the theory of branching processes to calculate the probability of 

family extinction at each generation.) For a risk-averse foundation or trust expecting real 

investment returns at 4.75% each year, the ideal real annual spending rate begins around 

1.65% of wealth, compared with the infinite horizon optimal rate of 1.54%, and declines 

slowly as the generations pass, then increases steeply as the family reaches extinction. 

 

1. Literature 

There is a well-documented tendency among people and animals to discount near events 

more than distant events (Loewenstein and Thaler, 1989; Ainslie, 1975). This type of 

impatience, which decreases as time horizon increases, can be modelled by a hyperbolic 

function. The hyperbolic discounting function was first used to describe the behaviour of 

pigeons, but can also explain anomalies in human behaviour, notably in savings patterns 
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(Laibson, Repetto and Tobacman, 1998), where stated intentions and realized actions are 

sometimes inconsistent. 

In his pioneering work on aggregate savings, Ramsey (1928) asserts that any 

positive discounting of the future is ‘ethically indefensible and arises merely from the 

weakness of the imagination’. Ramsey actually relents from this uncompromising view 

by using a non-zero discount rate in the analysis which follows this statement, but he 

does rule out the possibility of ‘savings being selfishly consumed by a subsequent 

generation’. Others are less optimistic about the strength of imagination than Ramsey, 

allowing that the current generation could be less-than-perfectly altruistic towards future 

generations. Phelps and Pollack (1968), for example, consider a multi-generation model 

of consumption and saving: consumption in period t is discounted by tbυ  where υ  is the 

rate of time preference and ,  (0 1)b b< <  represents the current generation’s altruism. The 

closer b is to one, the more concerned is the current generation about the welfare of 

future generations. They recognise that if succeeding generations have these same quasi-

hyperbolic preferences but cannot control the savings behaviour of their descendants, the 

outcome is a Nash-equilibrium where saving is lower than the Pareto-optimal level. The 

current generation rationally consume faster than the Pareto-optimal rate in an effort to 

limit over-spending by their children and grandchildren. 

Similar outcomes can occur when a buffer-stock consumer plays an intra-personal 

game with future ‘selves’ (Harris and Laibson, 2001). The ‘current self’, a hyperbolic 

discounter, expects ‘future selves’ to over-consume relative to the current self’s 

preferences. Harris and Laibson show that the effective rate of impatience in this case 

depends on future scarcity, is stochastic, and endogenous to the model. Laibson, Repetto 
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and Tobacman argue that this type of discounting can explain savings behaviour that 

seems inconsistent with a standard exponentially discounted model. 

On the other hand, the prior question of why decision makers might use 

hyperbolic discounting remains open. Two recent studies have given alternative 

explanations for decreasing impatience over long horizons, both related to uncertainty 

about future payoffs. Sozou (1998) looks at a payoff of fixed size, 0v , t  periods in the 

future, which has current value 0( ) exp( )v t v tλ= − . The instantaneous hazard rate is λ  

and the probability of receiving the payoff in period t  is determined by the survival 

function ( ) exp( )F t tλ= − . However if the consumer does not know the true underlying 

value of the (constant) hazard rate, but holds a prior belief that λ  is exponentially 

distributed, then he or she will compute a hyperbolic discount function by Bayesian 

updating. 

Dasgupta and Maskin (2005) argue that while both a declining hazard rate and 

Sozou’s analysis can produce hyperbolic discounting behaviour in the sense of 

decreasing impatience, these cannot explain preference reversals, where a consumer 

switches from one course of action to another simply because of the passage of time, or 

time-inconsistent behaviour. Dasgupta and Maskin’s own explanation for hyperbolic 

discounting rests on uncertainty over when, rather than whether, a payoff will be realized. 

They give the example of a blackbird waiting for fruit to ripen before eating, subject to 

uncertainty about ripening time and over the ‘survival’ of the fruit (payoff), which may 

be ambushed by a flock of impatient crows. Uncertainty over when the payoff will be 

realized (ripening) rather than just whether it will be realized (crow ambush), can result 
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in a preference reversal. In addition, if the blackbird needs to learn about ripening times, 

we can observe time-inconsistency. 

Here we derive the general result that rational agents facing uncertainty over a 

long-term planning horizon often exhibit time-varying rates of impatience that are 

derived from the probability of ‘survival’. Constant discounting is a special case arising 

when horizon length follows a known exponential distribution (section 2 below), but 

agents will exhibit hyperbolic discounting when survival is Pareto distributed. Pareto 

distributed survival implies declining hazard rates and consequently decreasing 

impatience over more distant events. In section 3 we estimate the survival function for a 

representative UK family: we find that the Pareto distribution is a good fit to current 

fertility data, that extinction is certain at observed birth rates, and that the mean survival 

of a UK family is about six generations. Numerical estimates of optimal spending paths 

for a family trust (section 4) using the estimates hyperbolic discounting function are 

shallow U-shaped curves, always above the infinite-horizon spending rate.  

 

2. Discounting under horizon uncertainty 

Our problem is to generalise the model of optimal draw-down for an infinitely-lived 

entity facing uncertain investment returns to include the case where the survival of the 

entity is uncertain.2 For a family trust, consumption stands for payments to current family 

beneficiaries, funded from an investment portfolio. The family faces two sources of 

uncertainty: stochastic returns to the trust fund, and random survival of the family.3 We 

                                                 
2 For a general discussion of this standard problem see Ingersoll (1987) and Korn and Korn (2001). 
3 In some respects this analysis follows Dasgupta and Maskin (2005). 



 

6 

do not specify the distribution of investment returns, except that they are assumed 

independent and identically distributed (i.i.d). The trust is extinguished when the family 

ceases, so we treat residual trust funds as having no utility value when the family is not 

alive to enjoy them. 

In most common law jurisdictions a family trust deed is invalid if it attempts to tie 

up wealth for the benefit of generations not yet in existence. The common law ‘rule 

against perpetuities’ (Burke 1976), or codified law relating to the same issue, usually 

requires the interest (assets) in the trust to be vested (passed to beneficiaries) within 80 or 

90 years. However some US jurisdictions are allowing large dynastic trusts to avoid the 

restrictions of the rule and exist for much longer before vesting. In our analysis we 

assume either that the trust is exempt from the ‘rule against perpetuities’, or equivalently 

that the trust continues under a ‘rolling’ deed which the family voluntarily recreates at 

each generation.4 

Let T be the random time the family survives. We treat the survival time as a 

continuous random variable and denote as pdf(t) the probability density of T, the 

extinction density with distribution function ( )F t , and ( )F t  its complementary 

distribution function. It follows that ( ) ( )  and (0) 1,  ( ) 0F t pdf t F F
t

∂
= − = ∞ =

∂
 so that the 

family survives almost surely in period zero but eventual extinction is inevitable. We 

discuss the inevitability of extinction further below. 

The trust aims to maximise expected utility for as long as the family survives, 

where utility is derived from consumption (the distributions of funds) out of stochastic 

                                                 
4 We thank Mr Vincent Taubman of TD Asset Management for drawing our attention to some of the legal 
constraints on trust deeds and trustees. 
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wealth. Let the utility of consumption be ( ( )) ( ( )) ( )U C t U C t h t=  where h(t) is some 

positive discount function expressing general impatience; possibly h(t) = 1, and for now 

we assume h(0) = 1. If we write 
C
E  to mean expectation over consumption, the value of 

expected utility conditioning on survival until time t is: 

( )
0

( ) ( ) |
t

C
L t E U C s ds T t

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
∫  (1) 

and 
0

( ) ( ) ,L L t pdf t dt
∞

= ∫  the unconditional value. 

Now, integrating by parts, 

0 0

0 00

( ( )) ( )

( ( )) ( ) ( ) ( ( )) ,

t

C

t

C C

L E U C s ds pdf t dt

E U C s dsF t E F t U C t dt

∞

∞ ∞

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

⎡ ⎤ ⎡ ⎤
= − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

∫ ∫

∫ ∫
 (2) 

using Leibnitz’s rule, simplifying, and noting the first expression is zero when 

0

0

( ( )) 0
C
E U C s ds
⎡ ⎤

=⎢ ⎥
⎣ ⎦
∫ , we arrive at 

( )
0

( ( ))
C

L E F t U C t dt
∞⎡ ⎤= ⎢ ⎥⎣ ⎦∫ . (3) 

If survival is exponentially distributed with a constant hazard rate, 

( ) exp( )F t tλ= −  and if general impatience is constant so that ( ) exp( )h t pt= − , we 

recover Blanchard’s (1985) result, 

[ ]
0

exp ( ) ( ( )) .
C

L E p t U C t dtλ
∞⎧ ⎫

= − +⎨ ⎬
⎩ ⎭
∫  (4) 
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In other words, uncertainty over family survival simply increases impatience by a 

constant hazard rate, raising consumption permanently above the optimal rate for an 

infinitely-lived dynasty. 

However this analysis can also deal with hyperbolic discounting and quasi-

hyperbolic discounting.5 Define hyperbolic discounting as a discount function 

( ) (1 ) ; 0, 0,D t t
γ
ββ β γ−= + > >  (5) 

and quasi-hyperbolic discounting by  

( ) ; 1 0, 0 1.tD t b bυ υ= > > < <  (6) 

If we arbitrarily set general impatience at zero so that h(t) = 1, then the survival function 

is 

( ) (1 )  ,F t t
γ
ββ −= +  (7) 

and  

( 1)( ) (1 )pdf t t
γ
βγ β − +

= +  (8) 

is the density of family extinction, whilst for quasi-hyperbolic discounting the survival 

function is  

( ) tF t bυ= , 

and the density of family extinction is 

1( ) ln( ) ln

1ln .

t t

b
t

pdf t b bυ υ υ
υ

υ
υ

⎛ ⎞= − = ⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (9) 

                                                 
5 We note that Harris and Laibson (2001) actually include 0( )U C  as a component of L. They call this the 
‘Utility Boost’, a term we set to zero. 
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The first density (8) can be thought of as Pareto, where the family survives almost 

surely in the initial period (0) 1F = , but is extinct in the limit ( ) 0F ∞ = . The second (9) 

is not normalised in that (0) ,  and ( ) 0.F b F= ∞ =  If exp( ), 0υ λ λ= − > , and 

( ) exp( )F t b tλ= − , this is similar to (4) and corresponds to the case where a proportion of 

families, (1-b), die initially at t = 0; so (0)F b= . However, we could also have the case 

of a degenerate extinction probability in that *( ) (1 ) ( )F t F tρ ρ= − +  where *( )F t  has the 

usual property ensuring extinction in the limit, *( ) 0F ∞ = . This brings about no 

important changes but allows us to incorporate ( )1 ρ− , a finite probability that the family 

will last forever. 

We now apply this analysis by estimating the density function of family survival 

for a typical UK family using current fertility data.  

 

3. Estimating family extinction 

The probability that a family eventually reaches extinction along the female or male line 

generally will depend on the average number of daughters (sons) born to women (men) in 

the family. The expected number of children of one gender or the other born to any 

individual mother or father can be written as 

0 2 32 3 ...,
1,i

n a a a
a
= + + +

=∑
 (10) 

where ia  is the probability that a parent has exactly i children of their own gender. It is 

possible to show that, under some simplifying assumptions, the critical rule for eventual 

family extinction is that 1n <  (Steffensen, 1995 and Christensen, 1995). So in the case 
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where the expected number of, say, daughters born to mothers is greater than one, the 

probability of family survival down the female line, ( )1 ρ− , is non-zero in the limit. In 

the case where 1n < , ( ) 0F ∞ =  and the family will eventually become extinct.  

Theories of family extinction and the related literature on branching processes are 

associated with Sir Francis Galton, who posed the problem of the survival of aristocratic 

surnames in 1873 (see Harris, 1963 and Kendall, 1966.) Despite the fact that this is a 

standard problem in population studies, it appears that few empirical estimates of family 

extinction are available (Albertsen, 1995). But the question remains interesting since 

changing fertility patterns in the 20th century mean that extinction probabilities are likely 

to have increased in western countries. In the UK for example, the number of children of 

either sex being born to each woman (total fertility rate) was around 1.79 in 2005, which 

is below the long-term replacement rate required to maintain a stable population, and 

much less than the peak total fertility rate of 2.95 occurring in 1960. 

Earlier studies are rare, but do give estimates of extinction probabilities that are 

less than one in the limit, reflecting higher historical fertility rates. For example, Lotka 

(1931) published an estimate of 0.8797 for the probability of male line extinction for the 

US white population of 1920, and Keyfitz (1968) calculated the likelihood of female line 

extinction at 0.8206 using 1960-61 US data, along with similar calculations for Hungary, 

Israel, Mexico and Japan. Hull (1998) reconsidered Lotka’s calculations in the context of 

a population with two sexes and concluded that, under some restrictions over the 

availability of partners to the males of concern, the extinction probability lies in the range 

(0.856, 0.992], not greatly different from Lotka’s original estimate. 
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Our estimation follows the method of Keyfitz: beginning with the official UK 

statistics on the distribution of women over the age of 45 by number of live births, we 

adjust this probability to the number of daughters and then compute the likelihood that 

the female line becomes extinct in the limit, along with the probability that the family line 

becomes extinct at any particular generation. We cannot be sure that the same distribution 

of birth probabilities applies to the male line, since paternity data collected in the UK are 

incomplete and there is no comparable table of birth probabilities for men, but it is 

plausible that a dynasty which passes its wealth through sons rather than daughters might 

face similar survival probabilities. In addition, we work on the assumption that the group 

of families who create inherited trusts have fertility patterns the same as the population 

average. There might be reasons to assume both higher (better health prospects), or lower 

(more educated women with later first births, Rendall et al., 2005) birth rates. 

In 1930, two Danish mathematicians, Steffensen and Christensen, separately and 

simultaneously solved Galton’s problem, proving that the probability that any family line 

reaches extinction at generation g can be computed by the recursion 

2 3
0 1 1 2 1 3 1 ...g g g gx a a x a x a x− − −= + + + +   (11) 

where 1gx −  is the probability of extinction at or before generation g-1, and ia  is as 

defined for equation (10). In the limit, this probability approaches one when n<1. If, at 

the first generation, we set the probability of family extinction 1 0x a= , where 0a  is the 

probability that the first female in the family (the establisher of the trust) has no 

daughters, and we assume that the probability that each generation has exactly zero, one, 

two or more daughters is the same for this particular family as for the a certain 

representative cohort of mothers, we can estimate a series for gx  using UK national 
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cohort data on births. We also assume that each subsequent generation has the same 

constant and known fertility distribution.  

Table 1 sets out the estimated probability that a woman born in 1960 in England 

or Wales has a specified number of children. By assuming that girls and boys are equally 

likely to be born live,6 we also derive the corresponding probability that a woman gives 

birth to the specified number of girls, where the probability of R=r girls among n 

children7 is 

( )( ) 0.5 nn
rP R r C= = .  (12) 

The values in the lowest row of Table 1 are estimates of the probability that a 

particular family has exactly zero, one, two, three or four or more daughters, that is, ia  in 

equations (10) and (11). By substituting these values into (10) and checking whether 

1n < , we can infer the overall likelihood of family extinction along the female line: the 

expected number of daughters to a woman born in 1960 is 0.945<1, which satisfies the 

condition for eventual family extinction. Further, by substituting these values into (11), 

setting the initial probability of extinction at 1 0 0.38x a= = , and then generating 

{ }
2g g

x
∞

=
recursively as 2 3 4

0 1 1 2 1 3 1 4 1g g g g gx a a x a x a x a x− − − −= + + + + , we can compute the 

likelihood that the representative family becomes extinct at any particular future 

generation. 

[INSERT TABLE 1 HERE] 

The generational survival probability 

                                                 
6 In fact, boys are slightly more likely to be born than girls, but also suffer higher average mortality for 
most of life. 
7 We assume that the probability that a woman has exactly 4 children is 0.1 to make this estimate, i.e., that 
all families are 4 children or less. 
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1g gs x= − , 2 3 4
0 1 1 2 1 3 1 4 1g g g g gx a a x a x a x a x− − − −= + + + +  (13) 

derived using the probabilities ia  in Table 1, begins at 1 initially, decreases steeply over 

the first few generations and converges slowly towards zero, as we can see from the 

second column in Table 2. The generation g hazard rate, gλ , that is the risk of extinction 

at the current generation conditioning on the family having survived so far, is set out in 

column four. 

[INSERT TABLE 2 HERE] 

Since the estimated hazard rate is declining with time, we expect that family 

trustees with rational uncertainty over survival will discount future consumption with 

decreasing impatience as the time horizon lengthens.  

In section 2 above, we proposed that the planning horizon, here limited by family 

survival, might be exponentially distributed, so that ( ) exp( )F t tλ= −  or Pareto distributed 

so that ( ) (1 )  F t t
γ
ββ −= + . The recursively computed survival function in Table 2 

represents a discrete analogue to the continuous cumulative survival distribution ( )F t . 

By fitting both an exponential and a hyperbolic curve to the discrete survival function, we 

can estimate values for the constant exponential hazard rate λ , and the parameters of the 

hyperbolic function, γ  and β .  

To find the best fitting continuous distribution function, we calculate 100 

generations of discrete survival probabilities, and space each generation 45 years apart.8 

We then fit the curve  

                                                 
8 Average age at first birth for this birth cohort is 27.8, and higher (over 30) for more educated women (see 
Rendall et al. 2005), but we complete a generation after all children are born, and the end of the fertile 
period is assumed to be age 45. 
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ˆ ˆ45exp expˆexp,

i t
y e ei

λ λ− −
= = ,  (14) 

where λ̂  is the estimated hazard rate which minimises the sum of squared errors 

exp
100 100

452 2

0 0

ˆmin ( ) ( ) ( )i
i i i

i i
f y y y e λ

λ λ −

= =

= − = −∑ ∑ . (15) 

The fitted exponential curve is shown in Figure 1 below. Here, λ̂  is 0.0063, 

which is analogous to a constant discrete-time subjective discount factor, of 0.994 per 

year.9 In other words, under these assumptions, an expectation of current average rates of 

family extinction creates mild impatience. However the graph shows that the fit of the 

function is poor, with the exponential approximation under-predicting and then over-

predicting discrete recursive survival probabilities. The sum of scaled squared errors, a 

guide to the accuracy of the exponential approximation, is 

2
exp,100

exp 0
exp,

ˆ( )
3,071,600

ˆ
i i

i
i

y y
sse

y=

−
= =∑ . The mean time to extinction under the estimated 

exponential distribution is 158.7 years, or 3.53 generations of 45 years. 

[INSERT FIGURE 1 HERE] 

A hyperbolic function is a better approximation to the family survival function. 

Using the same recursively computed discrete survival probabilities, we fit the Pareto 

function  

( )
ˆ

ˆ

,
ˆ ˆ ˆˆ (1 45 )  , 0, 0hyp iy i

γ
ββ β γ

−
= + ≥ > ,  (16) 

where the parameters γ  and β  minimise the sum of squared errors, 

                                                 
9 The exponential approximation is fitted by the Matlab function FMINSEARCH which computes a 
numerical non-linear optimisation by a simplex method.  
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( )
100 100

2 2
,

0 0

ˆmin ( , ) ( ) ( (1 45 ) )i i i
i i

f y y y i
γ
β

γ β γ β β −

= =

= − = − +∑ ∑  (17) 

Figure 2 shows the fitted curve when the estimated survival function is 

ˆ
ˆˆ( ) (1 ) ;F t t

γ
ββ

−
= +  and the estimated parameter values are ˆ ˆ0.0076 and =0.0111β γ= . In 

this case the sum of scaled squared errors is 
2

,100
0

,

ˆ( )
0.2471

ˆ
i hyp i

hyp i
hyp i

y y
sse

y=

−
= =∑ , much 

lower than the exponential curve. The mean of the extinction function is  

( ) ( )
( 1)

0
0

1 1 1( ) (1 )
(1 )

tE t t t dt
t

γ
β

γ
β

γγ β
β γ γ β

β

∞

∞ − +
⎡ ⎤

+⎢ ⎥= + = =⎢ ⎥− −
⎢ ⎥+⎣ ⎦

∫ . (18) 

The limit of the integral as t →∞  can be derived by L’Hopital’s rule since  

( ) ( )
1

1 1lim lim
(1 ) (1 )

t t
t

t t
γ γ
β β

γ

β γ β β γ β
→∞ →∞

−

+
=

− + − +

, 

which goes to zero when 1γ
β
> . 

For the estimated parameter values ˆ ˆ0.0076, 0.0111β γ= = , the expected value of 

the distribution, or the mean survival of the typical UK family from this cohort is 285.7 

years, or 6.3 generations of 45 years. Hence the hyperbolic distribution predicts a much 

slower mean extinction time than the exponential distribution. 

[INSERT FIGURE 2 HERE] 

Had we sufficient data, we could make a statistical comparison between the rival 

exponential and hyperbolic functions, but that would also entail dealing with some 

complex issues of testing.10 Statistically, the exponential distribution is nested inside the 

                                                 
10 We intend to test this hypothesis in later work. 
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hyperbolic distribution, being the special case where 0β = . This restriction corresponds 

to a boundary value for the parameter space of beta values for the hyperbolic distribution. 

Further, the distribution of a test statistic based upon likelihood ratio principles is a 

weighted sum of chi squared variables with the weights depending upon nuisance 

parameters. For the moment, we shall content ourselves with noting that the hyperbolic 

seems a much better fit, both on visual grounds, and in terms of sum of squared errors, 

and continue to work with the assumption that the survival probabilities are known with 

certainty. 

Using the estimated parameters, the formula for the hyperbolic hazard rate is 

ˆ'( )ˆ
ˆ( ) 1hyp

F t
F t t

γλ
β

= − =
+

 (19) 

whereas the exponential hazard rate is the constant expλ . We compare the constant 

exponential hazard with the hyperbolic hazard in Figure 3 below. The 225 years along the 

horizontal axis corresponds to five 45-year generations. Over that time the hyperbolic 

hazard rate declines from around 0.011 to close to 0.004, against the constant exponential 

approximation of 0.0063. 

[INSERT FIGURE 3 HERE] 

Having derived an approximate survival density for a family, we can now apply 

the analysis of section 3 to the trust planning problem. 

 

4. Family trust draw-down with hyperbolic discounting  

Here we present estimates of the impact of uncertain survival on the optimal draw-down 

rate of a family trust. The continuous time hyperbolic function we fitted to recursive 
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family survival probabilities acts a time-varying discount rate for the optimal draw-down 

of the family trust. In other words, the rate at which the family becomes extinct is the rate 

at which future consumption will be discounted.  

Consider the discrete-time approximation to the utility maximisation problem set 

out in equation (3). The family trust plans to maximise expected utility over consumption 

tC  (payments to beneficiaries or disbursements to worthy causes), by choosing each 

period a draw-down from uncertain wealth t tmW , where the gross returns to the trust’s 

investment portfolio are denoted tZ% . We represent the probability of family survival at 

time t by the time-varying parameter, tδ (= (1 )t
γ
ββ −+ ), where t now takes integer values 

for years. This parameter can be interpreted as a discrete-time analogue to the continuous 

cumulative survival density ( )F t  and represents the discount factor at time t. 

Assuming that utility is time-separable and additive, the trust’s problem is to 

maximise expected utility from consumption, 0L , 

0 0
0

( ) , where 0 1,t t t
t

L E U Cδ δ
∞

=

⎛ ⎞
= < <⎜ ⎟

⎝ ⎠
∑   (19) 

t t tC mW=  (20) 

1 (1 )t t t tW m W Z+ = − % . (21) 

We can rewrite (21), the difference equation in wealth as, 

1

0
0

(1 )
t

t i i
i

W W m Z
−

=

= −∏ % . (22) 

We define 
1

1 1
0

,  where
t

t i t
i

V Z V
−

− −
=

=∏% % %  is the accumulated value of one unit of 

wealth invested at time 0 and held until time t; it is random and assumed non-negative. If 
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iZ%  are also non-negative and independent and identically distributed (i.i.d.), 

then ( )1tV
θ

−
% has a constant mean and ( )

1

1
t

tE V θ
−

⎡ ⎤
⎣ ⎦

%  is constant for all t, if the mean exists. 

Thus equation (22) can be written as: 

( )
1

0 1
0

1
t

t t i
i

W W V m
−

−
=

= −∏% , (23) 

and expected utility as, 

1

0 0 0 1
0 0

(1 )
t

t t t i
t i

L E U mW V mδ
−∞

−
= =

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∏% .  (24) 

The first-order condition for optimal draw-down at time t is therefore: 

1 1

0 1 0 1
0 00

0 1 1

0 1 0 1
1 0 0,

' (1 ) (1 )
0.

' (1 ) (1 )

t t

t t i t t i
i i

t j t j
t

t j t j i t j t j t j i
j i i i t

U m m W V W V m
L E
m

U m m W V m W V m

δ

δ

− −

− −
= =

+ − + −∞

+ + + − + + −
= = = ≠

⎡ ⎤⎛ ⎞
− − −⎢ ⎥⎜ ⎟

∂ ⎝ ⎠⎢ ⎥= =⎢ ⎥∂ ⎛ ⎞
⎢ ⎥− −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∏ ∏

∑ ∏ ∏

% %�

% %�

 (25) 

Explicit solutions for the draw-down rate depend on the form of the utility function. 

For log utility, ( ) ln( ),t tU C C=  

11
1

0 1
0

'( ) (1 )
t

t t t t i
i

U C C mW V m
−−

−
−

=

⎡ ⎤
= = −⎢ ⎥

⎣ ⎦
∏% . (26) 

After substituting (26) into (25) and simplifying we get  

( )
10 0

1

t j
jt

t t t

L
m m m

δ
δ

∞

+
=∂

= − =
∂ −

∑
, 

so that,  
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1 0

t t
t

t t j t j
j j

m δ δ

δ δ δ
∞ ∞

+ +
= =

= =
+∑ ∑

. (27) 

Equation (27) will be constant for a constant δ , so that draw-down depends entirely on 

the constant rate of time preference and 

1m δ= − . (28) 

Using the condition that 0 0

1

0
t t

L L
m m +

∂ ∂
= =

∂ ∂
 at the optimum we can write the change in the 

draw-down path as  

01 1

1

1
t j

jt t t

t t
t j

j

m m
m

δ
δ
δ δ

∞

+
=+ +
∞

+
=

⎛ ⎞
⎜ ⎟− ⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
, (29) 

As the term in brackets in (29) approaches one, the proportional change in the 

optimal draw-down rate varies with the discrete-time hazard rate, 1t t

t

δ δλ
δ

+ −
= . For the 

hyperbolic (Pareto) survival function, this hazard rate is declining over time, so the 

proportional change in the draw-down also declines. 

For constant relative risk aversion (CRRA) utility where 

1

( ) , '( )
1

t
t t t

CU C U C C
α

α

α

−
−= =

−
, and α  is the coefficient of relative risk aversion, an 

analogous result obtains. Defining the risk-adjusted expected return to wealth as 

1( )E Z αϕ −= %  and 1
1( )t

tE V αϕ −
−= % , the optimal draw-down at time t when the discount rate is 

constant is  

( )
1

1m αδϕ= − . (30) 
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However if the discount rate varies with time, then combining the utility function with 

(25) gives 

11
1

1 1 1
1 1

2 1

1 ( (1 ) ) 1
t j

j
t t t t j t j i

j i tt

m m m m
α

α α αδ ϕ δ ϕ
δ

−

+ −∞
− − −

+ + + +
= = +

⎧ ⎫
⎡ ⎤⎪ ⎪= + − +⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

∑ ∏  (31) 

and the change in the drawdown rate will be 

1

1
1

1 1 1
1 1

2 11
1

1
1 1 1 1

2 2
3 21

1 1 1 1
1 1

2

1 ( (1 ) ) 1

1 ( (1 ) ) 1

1 ( (1 ) )

t j
j

t t t j t j i
j i ttt

t jt
j

t t t j t j i
j i tt

j
t t t j t j i

j it

m m m
m
m

m m m

m m m
α

α
α α α

α
α α α

α α α

δ ϕ δ ϕ
δ

δ ϕ δ ϕ
δ

ϕ δ δ ϕ
δ

+ −∞
− − −

+ + + +
= = ++

+ −∞
− − − −

+ + + +
= = ++

∞
− − − −

+ + + +
=

⎡ ⎤
+ − +⎢ ⎥

⎣ ⎦=
⎡ ⎤

+ − +⎢ ⎥
⎣ ⎦

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠=

∑ ∏

∑ ∏

∑

( )

[ ]

1

1
1

1
11

1
1 1 1 1

2 2
3 21

1
1 1 1

1 1 1 2 2 1
1 1

1

1 ( (1 ) ) 1

( [(1 ) 1] 1

1

t j

t

t j
j

t t t j t j i
j i tt

t t t t t t

t

m m m

m m m
α

α

αα
α α α

α α α α

α α

δ ϕ δ ϕ
δ

δ ϕ δ δ ϕ

δ

+ −

= +

+ −∞
− − − −

+ + + +
= = ++

− − −
+ + + + + +

⎡ ⎤
+⎢ ⎥

⎣ ⎦

⎡ ⎤⎛ ⎞
+ − +⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦

⎡ ⎤+ − − + ϒ +⎣ ⎦=
ϒ +

∏

∑ ∏

 (32) 

where 
1

1 1 1 1
2 2

3 2

( (1 ) )
t j

j
t t t j t j i

j i t

m m mα α αδ ϕ δ ϕ
+ −∞

− − − −
+ + + +

= = +

ϒ = + −∑ ∏ . Taking logs, 

1
1

1 1 1
1 1 2 2 1

1 1ln( / ) ln( ) ln( )

1 1ln( [(1 ) 1] ) ln( ) .

t
t t

t

t t t t t

m m

m m mα α α

δ ϕ
α δ α

δ δ ϕ
α α

+
+

− − −
+ + + + +

≈ +

⎡ ⎤+ + − − + ϒ − ϒ⎢ ⎥⎣ ⎦
 (33) 
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So the change in the optimal rate of draw-down will be approximately proportional to 

1

1t

t

αδ ϕ
δ
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 a function of the decreasing survival probability tδ , increasing with expected 

returns and shrinking as risk aversion rises.  

Hence the hyperbolic discounting resulting from uncertain family survival results 

in subtle but important differences in optimal spending plans when compared with the 

constant draw-downs under an infinite horizon. 

Since we cannot find analytical solutions to the spending problem, we compute a 

numerical optimisation calibrated to historical data. Consider a family trust whose 

investment return is 4.75% p.a. in real terms.11 This figure is close the 15 year historical 

average for a typical UK trust with a well-diversified portfolio. Figure 5 below sets out a 

numerical estimate of the first 500 years of the optimal draw-down of a family trust 

whose survival is modelled by the Pareto distribution estimated in Figure 2, where 

( ) (1 ) ; 0, 0t F t t
γ
βδ β β γ−= = + ≥ >  and the estimated parameter values are 

ˆ ˆ0.0076 and =0.0111β γ= . The first panel is for a trust with relative risk aversion at 5 

and the second panel for a trust with relative risk aversion at 2. The solid line shows the 

optimal spending rate for the Pareto (hyperbolic) path, while the dotted line is the infinite 

horizon path where general impatience is set to zero, and the dashed line is the optimal 

path using the exponential approximation to family survival set out in Figure 1. 

Declining hazard rates create a decreasing shape in the hyperbolic curves, but the 

certainty of eventual extinction ensures that both the hyperbolic and exponential draw-

down rates are higher than that for an infinitely lived-trust. An ideal spending plan at 

                                                 
11 For estimates of investment returns to UK charitable trusts see Satchell and Thorp (2007).  
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lower risk aversion ( 2α = ) begins close to 1.65% p.a., and drops toward 1.5%. The more 

risk averse trust ( 5α = ) consumes more slowly, but the optimal path still shows a 

declining rate in the first few generations. Generally speaking, a lower level of risk 

aversion means a much steeper decrease in spending earlier in the life of the trust, 

indicating a stronger preference for current consumption.  

 [INSERT FIGURE 5 HERE] 

 

5. Conclusion 

Recent studies (Sozou, 1998 and Dasgupta and Maskin, 2005) have shown that 

decreasing impatience can be a rational response to uncertainty over whether or when a 

future payoff might occur. Uncertainty over horizon is a very common problem for long-

term investors, and family trusts are just one example of the many bodies that must 

consider stochastic ‘survival’. Indeed we all have to plan for uncertain lifetimes. By 

contrast with family survival, which we have modelled using a Pareto distribution with 

hyperbolically declining hazard rates, individual mortality (at least later in life) is better 

fitted by the increasing hazards typical of a Gompertz function. An increasing hazard rate 

suggests rationally increasing impatience, perhaps motivating the elderly aunt who says 

'but I'll be dead by then' as a reason for not thinking further than next Christmas. 

In the standard inter-temporal consumption model with i.i.d. returns, time-varying 

hazards mean time-varying optimal draw-down rates, a result that goes against the 

customary advice to trusts and endowments to spend at a constant rate. Our results have 

interesting implications for family foundation trustees. Estimates for UK families along 

the female line, assuming that current fertility patterns stay constant into the future, signal 
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eventual extinction for a typical family. Faced with the resulting hyperbolic survival 

function, it seems hard for a trustee behaving in the interest of the multi-generational 

family to justify a policy of constant consumption. The ideal plan spends more rapidly in 

the near future and steadily but more slowly as the trust ages, moving to a rapid increase 

in the rate of spending as extinction approaches.  

Our results could be applied to more general survival problems, including the 

survival of financial institutions such as banks, mutual funds or hedge funds, or to more 

general macroeconomic questions such as the estimation of a social discount rate, 

questions which we plan to look into in future work. 
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Table 1 

Estimated distribution of women of child-bearing age by number of children 

 

Population proportion of women born 1960 having number of children (live births) 
by age 45 

0 1 2 3 4 or more 

0.18 0.13 0.38 0.20 0.10 

Estimated probability of women born 1960 having number of daughters (live births) 
by age 45 

0 1 2 3 4 

0a = 0.380 1a = 0.355 2a = 0.208 3a = 0.050 4a = 0.007 

 

Source: Table 10.5, Birth Statistics, Series FM1 no.34, Office for National Statistics, London, UK.  

Note: We infer the probability of daughters by assuming that girls and boys are equally likely, so if the 

probability that a woman from this cohort has 2 children is 0.38, the probability that one will be a girl is 

0.5x0.38 and that 2 will be girls is 0.25x0.38 etc. We use these as estimates of the probabilities ia in 

equation (10) that a typical family has exactly zero, one, two, three or four or more daughters. 
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Table 2 

Estimated probability of family survival 

Number of 
Generations 

Extinction Probability 

gx  
Survival Probability 

1g gs x= −  
Hazard Rate 

gλ  

0 0.000 1.000  
1 0.380 0.620 0.380 
2 0.548 0.452 0.271 
3 0.646 0.354 0.217 
4 0.711 0.289 0.183 
5 0.757 0.243 0.160 
6 0.792 0.208 0.144 
7 0.819 0.181 0.131 
8 0.841 0.159 0.121 
9 0.859 0.141 0.113 

10 0.874 0.126 0.106 
11 0.887 0.114 0.100 
12 0.897 0.103 0.095 
13 0.907 0.093 0.092 
14 0.915 0.085 0.088 
15 0.922 0.078 0.085 
16 0.928 0.072 0.081 
17 0.934 0.066 0.080 
18 0.939 0.061 0.077 
19 0.944 0.056 0.076 
20 0.948 0.052 0.073 
25 0.964 0.037 0.066 
30 0.974 0.026 0.064 
35 0.981 0.019 0.059 
40 0.986 0.014 0.053 
45 0.989 0.011 0.053 
50 0.992 0.008 0.047 

130 ≈ 1.000 ≈ 0.000  
Note: Table shows the probability of family extinction and survival down the female line where the 

probability of extinction at generation g is given by 2 3 4
0 1 1 2 1 3 1 4 1g g g g gx a a x a x a x a x− − − −= + + + +  and 

ia  is the probability that a mother has exactly i daughters. Values of ia  are taken from the last row of 

Table 1, the estimated distribution of daughters to the cohort of mothers born in England and Wales in 

1960. The recursion begins with 1 0 0.38x a= =  and continues with ia  fixed. The hazard rate is the 

probability of extinction between generation g-1 and g, conditional on having survived to time g, which is 

computed by 1

1

, 1 .g g
g g g

g

s s
s x

s
λ −

−

−
= = −  
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Fig. 1 

Fitted exponential survival function 
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Note: This figure shows a graph of the fitted exponential function exp

ˆ
ˆ t

ty e λ−=  where iy is the probability 

of family survival at generation i=t/45 and t are years. The generation t/45 survival probabilities are 

calculated recursively from equation (11) along the female line for the 1960 birth cohort of English and 

Welsh women, assuming that the likelihood of the birth of 0-4 girls exactly is constant over time and 

homogeneous across the population. (See Tables 1 and 2 in the text.) Function is fitted by fminsearch in 

Matlab which uses a simplex method for non-linear optimisation to minimise the sum of squared errors 

exp
100 100

452 2

0 0

ˆmin ( ) ( ) ( )i
i i i

i i
f y y y e λ

λ λ −

= =

= − = −∑ ∑ . 
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Fig. 2 

Fitted hyperbolic survival function 
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Note: This figure shows a graph of the fitted hyperbolic function ( )
ˆ

ˆˆˆ (1 45 ) .iy i
γ
ββ

−
= +  where iy is the 

probability of family survival at generation i=t/45 and t are years. The generation i survival probabilities 

are calculated recursively from equation (11) along the female line for the 1960 birth cohort of English and 

Welsh women, assuming that the likelihood of the birth of 0-4 girls exactly is constant over time and 

homogeneous across the population. (See Tables 1 and 2 in the text.) Function is fitted by fminsearch in 

Matlab which uses a simplex method for non-linear optimisation to minimise the sum of squared errors. 

( )
100 100

2 2
,

0 0

ˆmin ( , ) ( ) ( (1 45 ) )i i i
i i

f y y y i
γ
β

γ β γ β β −

= =

= − = − +∑ ∑  
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Fig. 3 

Estimated hazard rate for multi-generational family survival 
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Note: Figure shows the estimated exponential hazard rate exp
ˆ 0.0063λ =  and the estimated hyperbolic 

hazard rate 
ˆ'( )ˆ
ˆ( ) 1hyp

F t
F t t

γλ
β

= − =
+

 where ˆ ˆ0.0076 and =0.011β γ= . See Figures 1 and 2 and the 

text for estimation details. 
 



 

31 

Fig. 5 

Optimal draw-down with survival uncertainty 
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Note: Figure shows the estimated optimal spending rates with and without uncertainty over family survival 

for a trust with power utility preferences 11( )
1t tU C C α

α
−=

−
, and investment returns close to 4.75% p.a. 

Estimates of the risk-scaled investment returns are bootstrapped from historical portfolio returns to a 

typical investment trust (See Satchell and Thorp 2007). The hyperbolic survival probability of the family is 

given by the distribution function, ( ) (1 ) ; 0, 0,F t t
γ
ββ β γ−= + ≥ >  ˆ ˆ0.0076 and =0.0111β γ=  

and the exponential survival probability is exp
ˆ

ˆ t
ty e λ−= , exp

ˆ 0.0063λ = . Numerical optimisation is via the 

fminimax routine in Matlab.  
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