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1 Introduction

New challenges are arising from the need to integrate the modeling of risk in the
fields of finance, insurance and other areas of risk management. Also a consistent
and more general modeling framework is needed to jointly accommodate the
widely used risk neutral and actuarial pricing methodologies. This framework
should provide enough flexibility for realistic modeling but, of course, exclude
arbitrage.

In the literature one can find various notions of arbitrage, see, for instance, Ross
(1976), Harrison & Kreps (1979), Harrison & Pliska (1981), Kreps (1981), Duffie
& Huang (1986), Dalang, Morton & Willinger (1990), Lakner (1993), Fritelli
& Lakner (1994), Delbaen & Schachermayer (1994, 1998), Karatzas & Shreve
(1998), Yan (1998), Jouini, Kallal & Napp (2001), Shiryaev & Cherny (2002),
Goll & Kallsen (2003) and Davis (2003). Usually, the word arbitrage means that
one cannot generate strictly positive wealth from zero initial capital. In most of
the above mentioned cases the exclusion of arbitrage is linked to the existence of
an equivalent risk neutral measure. In a general semimartingale setting this is for-
mulated in Delbaen & Schachermayer (1994, 1998) as the Fundamental Theorem
of Asset Pricing.

On the other hand, the growth optimal portfolio (GOP) has been studied by sev-
eral authors, including Kelly (1956), Long (1990), Korn & Schäl (1999), Becherer
(2001), Korn (2001), Bühlmann & Platen (2002), Goll & Kallsen (2003) and
Platen (2002, 2004). The GOP is the portfolio that maximizes long term ex-
pected growth. Furthermore, when used as numeraire under standard risk neutral
assumptions, it makes prices that are expressed in units of the GOP martingales
under the real world probability measure.

In Platen (2002) and Heath & Platen (2002a, 2002b, 2002c, 2003) realistic asset
price models are studied for which no equivalent risk neutral measure exists.
To cover these and a wide range of other models this paper assumes weaker
conditions for the proposed modeling framework than those typically considered
in the literature. It generalizes the results in Platen (2002, 2004) by allowing for
a wider range of semimartingale models. In particular, models can be handled
where the candidate risk neutral measure is not equivalent to the real world
probability measure and/or the corresponding Radon-Nikodym derivative is not
a martingale.

The paper presents in Section 2 a general semimartingale benchmark modeling
framework. Section 3 lists important properties of benchmarked portfolios. In
Section 4 it is shown that the GOP is the best performing portfolio. Contingent
claim pricing is considered in Section 5. Finally, Section 6 provides some examples
of benchmark models.
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2 Semimartingale Benchmark Framework

2.1 Primary Securities

Let us consider a frictionless financial market model over the time period [0,∞). It
is assumed that d+1 nonnegative primary security accounts exist, d ∈ {1, 2, . . .}.
Primary securities may generate dividends or other investment income for the
owner of the respective security. Let us denote by S(j)(t) the value at time
t ∈ [0,∞) of the jth primary security account, j ∈ {0, 1, . . . , d}. The account
S(j) consists of units of the jth primary security with all income reinvested. In
the case when the jth primary security account consists of one share starting
at the time zero, then S(j)(t) denotes the cum-dividend value of this share at
time t including all accumulated dividends. We assume that the units of primary
securities are infinitely divisible such that continuous trading is possible.

The primary security account vector process S = {S(t) = (S(0)(t), S(1)(t), . . . ,
S(d)(t))>, t ∈ [0,∞)} is assumed to form a semimartingale, which is right con-
tinuous with left hand limits defined on a filtered probability space (Ω,A,A, P ),
satisfying the usual conditions, see Protter (1990). The information structure of
the market is described by the right continuous filtration A = (At)t∈[0,∞) with At

representing the information available at time t and A0 the σ-algebra consisting
of all null sets and their complements. The filtration A is defined as the augmen-
tation under P of the natural filtration AS, generated by the primary security
account vector process S.

In general, not all primary security accounts are available for hedging. However, a
unique prescription in the form of a semimartingale vector stochastic differential
equation, which characterizes the evolution of the vector S(t) of primary security
accounts over the time t ∈ [0,∞), is assumed to be given for S(t), see Jacod
(1979), Yan (1998) and Shiryaev & Cherny (2002).

2.2 Expected Return

In addition to the given primary security accounts, we consider wealth processes
S(δ) = {S(δ)(t), t ∈ [0,∞)}, also called portfolios, which are formed as linear
combinations of these accounts, where

S(δ)(t) = δ>(t) S(t) (2.1)

We denote by L(S) the space of <d+1-valued, predictable strategies δ = {δ(t) =
(δ(0)(t), . . . , δ(d)(t))>, t ∈ [0,∞)} for which the corresponding gains from trade,
that is, the Itô vector integral

∫ t

0
δ>(s) dS(s) exists for all t ∈ [0,∞), see Jacod

(1979). Here δ(j)(t) denotes the number of units of the jth primary security
account S(j)(t) that are held at time t in the wealth process S(δ)(t).
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A wealth process S(δ) = {S(δ)(t), t ∈ [0,∞)} with corresponding strategy δ ∈ L(S)
is called self-financing if

S(δ)(t) = S(δ)(0) +

∫ t

0

δ>(s) dS(s) (2.2)

for all t ∈ [0,∞). In the following we will only deal with self-financing wealth
processes and strategies and therefore from now on omit the word “self-financing”.
Any process is at any time either nonnegative or negative and can be separated
into nonnegative and negative components. A negative wealth process can be
interpreted as nonnegative though generated via a short position. Therefore, we
concentrate on the analysis of the set of all nonnegative wealth processes that are
A-adapted, right-continuous and have left hand limits. Let us denote by V (V+)
the set of all nonnegative (strictly positive) wealth processes.

Each market participant holds a nonnegative total wealth process. If the to-
tal wealth process becomes zero or negative, then the investor must declare
bankruptcy. This means the legally established principle of limited liability forces
any realistic financial modeling to incorporate the fact that when nonnegative
wealth processes reach the level zero they must remain at the level zero. If this
were not the case, there would be obvious arbitrage. We make this more precise
in the following definition.

Definition 2.1 We say, a nonnegative wealth process S(δ) = {S(δ)(t), t ∈
[0,∞)} ∈ V permits arbitrage if

P
(
S(δ)(τ) = 0

)
= 1 (2.3)

and
P

(
S(δ)(σ) > 0

∣∣Aτ

)
> 0 (2.4)

for any stopping times τ ∈ [0,∞) and σ ∈ [τ,∞). A given market model excludes
arbitrage if no nonnegative wealth process S(δ) ∈ V of the above kind exists.

As can be seen from the above definition, arbitrage will arise if there exists a
nonnegative portfolio process, which generates from zero initial capital strictly
positive wealth with strictly positive probability. Consequently, by exploiting
such arbitrage opportunities, one is able to systematically generate unlimited
wealth from nothing.

Let us prepare the formulation of natural assumptions that will exclude arbitrage.
An important quantity, of interest to investors, is the expected return of a wealth
process. For any portfolio S(δ) ∈ V and pair of stopping times τ ∈ [0,∞) and
σ ∈ (τ,∞) we call the conditional expectation

Rδ
τ,σ = E

(
S(δ)(σ)

S(δ)(τ)

∣∣∣∣Aτ

)
− 1 (2.5)
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the expected return of S(δ) over the period [σ, τ ]. Here we set 0
0

= 1. We
consider returns also in other denominations. Thus, similarly as above, for any
portfolio S(δ) ∈ V , strictly positive portfolio S(δ) ∈ V+ and pair of stopping times
τ ∈ [0,∞) and σ ∈ (τ,∞) we call

Rδ,δ
τ,σ = E

(
S(δ)(σ)

S(δ)(σ)

S(δ)(τ)

S(δ)(τ)

∣∣∣∣∣Aτ

)
− 1 (2.6)

the expected return of S(δ)

S(δ) over the period [σ, τ ]. The possibility of unlimited
expected returns is economically not realistic and therefore excluded by the fol-
lowing assumption.

Assumption 2.2 There exists a strictly positive reference portfolio S(δ∗) ∈ V+

and for each pair of stopping times τ ∈ [0,∞) and σ ∈ (τ,∞) an Aτ -measurable,

nonnegative, integrable random variable K
(δ∗)
τ ∈ [0,∞) such that for all nonneg-

ative wealth processes S(δ) ∈ V the expected return of S(δ)

S(δ∗) satisfies the inequality

Rδ∗,δ
τ,σ ≤ K(δ∗)

τ . (2.7)

According to Assumption 2.2 all returns of nonnegative portfolios in the denomi-
nation of the strictly positive reference portfolio S(δ∗) are assumed to be integrable,
which is a natural condition.

Condition (2.7) in Assumption 2.2 is, for instance, violated if two portfolios exist
that have different drifts but the same martingale component. In such circum-
stances one can form a nonnegative portfolio that starts with zero initial value
and rises to any desired expected future value in finite time. Such a possibility
indicates the existence of an arbitrage opportunity, which by Assumption 2.2 is
excluded.

2.3 Arbitrage

It is important to verify that the above described financial market model does
not permit arbitrage. As previously expressed in Definition 2.1, the notion of
arbitrage relates to the possibility to generate strictly positive wealth from zero
initial capital. We obtained from Assumption 2.2 for nonnegative portfolios an
upper bound for their expected returns, when expressed in units of a reference
portfolio. Now, we will show that this property is sufficient to exclude arbitrage.

Theorem 2.3 A financial market model does not permit arbitrage if Assump-
tions 2.2 is satisfied.
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Proof: Under Assumption 2.2 consider a nonnegative wealth process S(δ) ∈ V+

and a pair of stopping times τ ∈ [0,∞) and σ ∈ [τ,∞), where

S(δ)(σ) ≥ S(δ)(τ) = 0 (2.8)

almost surely. It follows by (2.6) and (2.7) that

E

(
S(δ)(σ)

S(δ∗)(σ)

∣∣∣∣Aτ

)
≤ S(δ)(τ)

S(δ∗)(τ)

(
Kδ∗

τ + 1
)

= 0 (2.9)

almost surely. Obviously, due to relations (2.8) and (2.9) the nonnegative bench-
marked value Ŝ(δ)(σ) cannot be strictly greater than zero with any strictly positive
probability. Thus the inequality (2.4) in Definition 2.1 cannot hold, which proves
the theorem. ¤

We remark that in the above financial market model there can be a free lunch
with vanishing risk in the sense of Delbaen & Schachermayer (1994, 1998). This
is equivalent to the absence of an equivalent local martingale measure. Note
that the above model does not require any assumption on the existence of an
equivalent local martingale measure. However, this does not mean that such
a model permits infinite expected returns or infinite expected growth for any
nonnegative wealth process, as we will see below. An example of a model without
equivalent local martingale measure will be given in Section 6.2. Furthermore,
market participants cannot generate in the above model strictly positive wealth
from zero initial capital. The existence of an equivalent risk neutral measure
seems to be not essential for the construction of a consistent market model, as we
will see below. Avoiding this condition provides substantial modeling freedom,
as is demonstrated in Platen (2002, 2004) and Heath & Platen (2002a, 2002b,
2002c, 2003) and Breymann, Kelly & Platen (2003). It seems that the condition
on the existence of an equivalent local martingale measure is predominantly a
mathematical assumption. No economic reason appears to explain why such a
property must be imposed on a realistic financial market model.

Some no-arbitrage definitions in the literature permit limited debt, see, for in-
stance, Harrison & Kreps (1979), Harrison & Pliska (1981) and Karatzas & Shreve
(1998). For a wide range of models there exists a strictly positive reference portfo-
lio that when used as benchmark or numeraire makes all benchmarked portfolios
to local martingales. This applies, for instance, to jump diffusion models. By
Fatou’s Lemma it can be easily shown that for such models also negative bench-
marked portfolios with limited debt form supermartingales and the no-arbitrage
property can be extended to include these portfolios.

2.4 Expected Growth

For an investor the expected growth of wealth over longer time periods is usually
the main quantity of interest. In the following definition we use the convention
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that log(0) = −∞ and log(∞) = ∞. For a pair of stopping times τ ∈ [0,∞),
σ ∈ (τ,∞) and a given nonnegative wealth process S(δ) ∈ V its expected growth
gδ

τ,σ over the time interval [τ, σ] is defined as the conditional expectation

gδ
τ,σ = E

(
log

(
S(δ)(σ)

S(δ)(τ)

) ∣∣∣∣Aτ

)
. (2.10)

We can prove the following inequality.

Lemma 2.4 Under Assumption 2.2 there exists a strictly positive reference
portfolio S(δ∗) ∈ V+ such that for all stopping times τ ∈ [0,∞) and σ ∈ [τ,∞)
any nonnegative wealth process S(δ) ∈ V satisfies the inequality

gδ
τ,σ ≤ R(δ∗)

τ,σ + K(δ∗)
τ (2.11)

almost surely.

Proof: Consider a strictly positive reference portfolio S(δ∗) ∈ V+, given by
Assumption 2.2, and any nonnegative wealth process S(δ) ∈ V and stopping
times τ ∈ [0,∞) and σ ∈ [τ,∞). Using the inequality log(x) ≤ x − 1 for x ≥ 0
together with (2.5) and (2.10)

gδ∗
τ,σ = E

(
log

(
S(δ∗)(σ)

S(δ∗)(τ)

) ∣∣∣∣Aτ

)
≤ R(δ∗)

τ,σ (2.12)

and similarly by (2.6) and (2.10) we obtain

gδ
τ,σ = E

(
log

(
S(δ)(σ)

S(δ)(τ)

S(δ∗)(τ)

S(δ∗)(σ)

) ∣∣∣∣Aτ

)
+ gδ∗

τ,σ

≤ E

(
S(δ)(σ)

S(δ)(τ)

S(δ∗)(τ)

S(δ∗)(σ)
− 1

∣∣∣∣Aτ

)
+ gδ∗

τ,σ

= Rδ∗,δ
τ,σ + gδ∗

τ,σ. (2.13)

Consequently, by (2.13), (2.12) and (2.7) we get

gδ
τ,σ ≤ Rδ∗,δ

τ,σ + R(δ∗)
τ,σ ≤ R(δ∗)

τ,σ + K(δ∗)
τ .

Thus the inequality (2.11) holds almost surely. ¤

2.5 Growth Optimal Portfolio

The above notion of expected growth allows us to introduce the growth optimal
portfolio (GOP), which we will use as numeraire or benchmark. The GOP was
originally introduced by Kelly (1956). It is the wealth process with maximum
expected growth over all finite time intervals. To define this process properly in
the given general semimartingale setting we introduce the notion of a perturbed
reference portfolio.
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Definition 2.5 For a given strictly positive reference portfolio S(δ∗) ∈ V+, a
nonnegative perturbing portfolio S(δ) ∈ V, some initial fraction ε ∈ (0, 1

2
] and a

stopping time τ ∈ [0,∞) we define the corresponding perturbed reference portfolio
S(δτ,ε,δ∗ ) = {S(δτ,ε,δ∗ )(s), s ∈ [τ,∞)} by

S(δτ,ε,δ∗ )(s) =





ε
(

S(δ∗)(τ)

S(δ)(τ)

)
S(δ)(s) + (1− ε) S(δ∗)(s) for S(δ)(τ) > 0

S(δ∗)(s) for S(δ)(τ) = 0
(2.14)

and s ∈ [τ,∞).

Note that a perturbed reference portfolio S(δτ,ε,δ∗ ) is always strictly positive with
value S(δ∗)(τ) at initial time τ . Now we define for a given perturbed reference
portfolio S(δτ,ε,δ∗ ) the derivative of its expected growth with respect to the initial
fraction ε ∈ (0, 1

2
] of the perturbation.

Definition 2.6 For a pair of stopping times τ ∈ [0,∞), σ ∈ [τ,∞), a strictly
positive reference portfolio S(δ∗) ∈ V+ and a nonnegative perturbing portfolio

S(δ) ∈ V we define the derivative Qδ∗,δ
τ,σ of the expected growth g

δτ,ε,δ∗
τ,σ over the

time interval [τ, σ] with respect to the initial fraction ε as the almost sure limit

Qδ∗,δ
τ,σ

a.s.
= lim

ε→0+

1

ε

(
g

δτ,ε,δ∗
τ,σ − g

δτ,0,δ∗
τ,σ

)
. (2.15)

The derivative Qδ∗,δ
τ,σ provides information on how a small perturbation of the

reference portfolio S(δ∗) by another wealth process S(δ) changes the expected
growth. If this derivative is zero, then for a small initial fraction ε > 0 there is
little change in the expected growth of S(δτ,ε,δ∗ ). Note that Qδ∗,δ

τ,σ is Aτ -measurable.

The expected growth provides a long term measure for the performance of a port-
folio whereas the expected return is more a short term measure for the expected
short term increase of wealth. The following lemma establishes an important link
between the expected return of the perturbing portfolio and the above deriva-
tive of the expected growth. It demonstrates that the expected return is like a
derivative of the perturbed expected growth.

Lemma 2.7 Under Assumption 2.2 there exists a strictly positive reference
portfolio S(δ∗) ∈ V+ such that for any nonnegative wealth process S(δ) ∈ V the
identity

Qδ∗,δ
τ,σ = Rδ∗,δ

τ,σ (2.16)

holds for all pairs of stopping times τ ∈ [0,∞) and σ ∈ (τ,∞).

Proof: For ε ∈ (0, 1
2
], S(δ) ∈ V , S(δ∗) ∈ V+, τ ∈ [0,∞) and σ ∈ (τ,∞) we

introduce the notations

h(δ)
τ,σ =

S(δ)(σ)

S(δ)(τ)
, (2.17)
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and

V δ∗,δ
τ,σ (ε) =

1

ε
log

(
ε h

(δ)
τ,σ + (1− ε) h

(δ∗)
τ,σ

h
(δ∗)
τ,σ

)
. (2.18)

Applying the inequality log(x) ≤ x− 1 for x ≥ 0 provides the upper bound

V δ∗,δ
τ,σ (ε) ≤ 1

ε


ε

(
h

(δ)
τ,σ − h

(δ∗)
τ,σ

)
+ h

(δ∗)
τ,σ

h
(δ∗)
τ,σ

− 1




=
h

(δ)
τ,σ

h
(δ∗)
τ,σ

− 1. (2.19)

Similarly, it can be seen from (2.18) that

V δ∗,δ
τ,σ (ε) = −1

ε
log

(
h

(δ∗)
τ,σ

ε h
(δ)
τ,σ + (1− ε) h

(δ∗)
τ,σ

)

≥ −1

ε

(
h

(δ∗)
τ,σ

ε h
(δ)
τ,σ + (1− ε) h

(δ∗)
τ,σ

− 1

)

= − h
(δ∗)
τ,σ − h

(δ)
τ,σ

ε h
(δ)
τ,σ + (1− ε) h

(δ∗)
τ,σ

.

Hence since ε ≤ 1
2
, it is straightforward to show that

V δ∗,δ
τ,σ (ε) ≥ − 1

1− ε
≥ −2. (2.20)

By (2.19), (2.20), the Dominated Convergence Theorem and L’Hospital’s rule one
obtains from (2.15) and (2.18) for given stopping times τ ∈ [0,∞) and σ ∈ (τ,∞)
that

Qδ∗,δ
τ,σ = lim

ε→0+
E

(
V δ∗,δ

τ,σ (ε)
∣∣∣Aτ

)

= E

(
lim

ε→0+

1

ε
log

(
ε

(
h

(δ)
τ,σ

h
(δ∗)
τ,σ

− 1

)
+ 1

) ∣∣∣∣Aτ

)

= E

(
h

(δ)
τ,σ

h
(δ∗)
τ,σ

− 1

∣∣∣∣Aτ

)
,

which by (2.7) provides (2.16). ¤

Note that by Definition 2.6 any strictly positive portfolio S(δ∗) ∈ V+ satisfies
under Assumption 2.2 the relation

Qδ∗,δ∗
τ,σ = 0 (2.21)
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for all stopping times τ ∈ [0,∞) and σ ∈ [τ,∞). In general, for a strictly
positive reference portfolio S(δ∗) ∈ V+ and a nonnegative portfolio S(δ) ∈ V the
derivative Qδ∗,δ

τ,σ can be positive or negative. Now, let us characterize a GOP as a
portfolio that achieves maximum expected growth over any given time interval.
The derivative of the expected growth, introduced in Definition 2.6, leads us to
the following definition.

Definition 2.8 A strictly positive reference portfolio S(δ∗) ∈ V+ is called a
GOP if for all stopping times τ ∈ [0,∞) and σ ∈ (τ,∞) and each nonnegative
perturbing wealth process S(δ) ∈ V the derivative of its perturbed expected growth
over the time interval [τ, σ] is less than or equal to zero, that is

Qδ∗,δ
τ,σ ≤ Qδ∗,δ∗

τ,σ = 0. (2.22)

Lemma 2.7 and Definition 2.8 allow us then to obtain the following important
result.

Corollary 2.9 Under Assumption 2.2 the strictly positive wealth process S(δ∗)

∈ V+ in this assumption is a GOP if and only if all nonnegative wealth processes
S(δ) ∈ V, when expressed in units of S(δ∗), are (A, P )-supermartingales.

This statement expresses a direct relationship between choosing the best per-
forming portfolio as benchmark and obtaining supermartingales as benchmarked
price processes. In Bühlmann & Platen (2002) a similar result is derived for the
special case of discrete time market models, see also Platen (2003). By assum-
ing additionally that an equivalent local martingale measure exists, Kramkov &
Schachermayer (1999), Becherer (2001) and Goll & Kallsen (2003) have obtained
analogous supermartingale properties. Corollary 2.9 demonstrates that the ex-
istence of an equivalent local martingale measure is not necessary for the above
type of supermartingale property to hold. It is now straightforward to prove the
following statement.

Corollary 2.10 Under Assumption 2.2 the reference portfolio S(δ∗) equals a
unique GOP if and only if the constant K

(δ∗)
τ in this assumption can be almost

surely set to zero for all stopping times τ ∈ [0,∞).

Proof: It is clear from Corollary 2.9 that if a unique GOP S(δ∗) exists, then one
can choose in Assumption 2.2 the GOP as reference portfolio and thus set the
random variable K

(δ∗)
τ for all t ∈ [0, T ] to zero. On the other hand, if one has a

strictly positive reference portfolio S(δ∗) ∈ V+ with K
(δ∗)
τ = 0 for all t ∈ [0, T ],

then all nonnegative portfolios expressed in units of S(δ∗) are supermartingales.
Thus by Corollary 2.9 the portfolio S(δ∗) is then a GOP. Regarding its uniqueness
let us suppose for the moment that there exist two different GOPs. By Corollary
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2.9, both GOPs, when expressed in units of the other one, must be supermartin-
gales. This can only be true if both are identical, which proves the uniqueness in
Corollary 2.10. ¤

Note that the GOP is unique as a value process but may be formed by different
portfolio strategies. Whether the bound K

(δ∗)
τ in Assumption 2.2 can be set to

zero for a strictly positive reference portfolio S(δ∗) for all stopping times τ ∈ [0,∞)
can best be verified when a particular class of market models is given. Goll &
Kallsen (2003) study the dynamics of certain types of semimartingale models
in relation to the corresponding GOP. For these types of general models it is
straightforward to verify the following assumption. It ensures by Corollary 2.9
the existence and uniqueness of a GOP.

Assumption 2.11 There exists a reference portfolio S(δ∗) such that Assump-
tion 2.2 is satisfied with the bound

K(δ∗)
τ = 0 (2.23)

for all stopping times τ ∈ [0,∞).

Having established by Assumptions 2.2 and 2.11 the existence and uniqueness of
the GOP we choose S(δ∗) as numeraire or benchmark and call the above modeling
framework a benchmark model. A portfolio process S(δ) = {S(δ)(t), t ∈ [0,∞)},
when expressed in units of the GOP S(δ∗), is then called a benchmarked portfolio
process and is denoted by Ŝ(δ) = {Ŝ(δ)(t), t ∈ [0,∞)} with

Ŝ(δ)(t) =
S(δ)(t)

S(δ∗)(t)
(2.24)

for all t ∈ [0,∞). According to Corollaries 2.9 and 2.10 we obtain the following
result directly.

Corollary 2.12 Under Assumptions 2.2 and 2.11 all benchmarked, nonnega-
tive portfolio processes Ŝ(δ) are (A, P )-supermartingales.

Once a candidate GOP process has been identified in a semimartingale market
model, all that remains open is the verification that all benchmarked, nonnegative
wealth processes are supermartingales. If this can be shown, then by Corollaries
2.9 and 2.10 the candidate GOP is indeed the unique GOP. To perform such
a check is usually much simpler than solving the related complex constrained
optimization problem of maximizing the expected growth, where the GOP must
remain strictly positive.
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3 Properties of Benchmarked Wealth Processes

Under the standard risk neutral modeling setup, see Karatzas & Shreve (1998), it
is quite delicate to consider the limit over time of securities when the time horizon
tends to infinity. Such limit is, for instance, relevant for long term investments
and perpetual derivatives. For the standard Black-Scholes model one already
encounters problems, see Karatzas & Shreve (1998), when aiming to extend the
time horizon to infinity. Here the equivalence between the risk neutral and real
world probability measure breaks down as will be discussed at the end of Section
6.1. Under the benchmark approach we avoid these kind of problems.

Based on the supermartingale property, for any given nonnegative benchmarked
portfolio Ŝ(δ) various well-known results from martingale theory, see Elliott (1982),
Ikeda & Watanabe (1989), Protter (1990) and Jacod & Shiryaev (2003), can be
applied to a benchmark model. In the following we list several such properties.

Corollary 3.1 Under Assumptions 2.2 and 2.11 a nonnegative, benchmarked
portfolio value Ŝ(δ)(t) converges almost surely to an integrable random variable
Ŝ(δ)(∞) as t tends to infinity, that is

Ŝ(δ)(∞)
a.s.
= lim

t→∞
Ŝ(δ)(t), (3.1)

where
E

(
Ŝ(δ)(∞)

)
< ∞. (3.2)

This means, benchmarked nonnegative portfolios are well defined and integrable
at the infinite time horizon. If we denote the information set at t = ∞ by
A∞ =

∨
t∈[0,∞)At, then for a stopping time τ ∈ [0,∞), A ∈ Aτ and s > τ a.s.

one has by the supermartingale property of Ŝ(δ) that

∫

A

Ŝ(δ)(τ, ω) dP (ω) ≥
∫

A

Ŝ(δ)(s, ω) dP (ω). (3.3)

Letting s tend to infinity we get

Ŝ(δ)(τ) ≥ E
(
Ŝ(δ)(∞)

∣∣Aτ

)
(3.4)

a.s. and Ŝ(δ) = {Ŝ(δ)(t), t ∈ [0,∞]} is then an (A, P )-supermartingale on [0,∞].

Similarly, we have the Optional Sampling Theorem for supermartingales on [0,∞],
which shows that observed benchmarked nonnegative prices at any stopping time
are at least equal to their expected values at any future stopping time.
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Corollary 3.2 Under Assumptions 2.2 and 2.11 for a benchmarked nonnega-
tive portfolio Ŝ(δ) and two stopping times σ, τ ∈ [0,∞] such that σ ≤ τ a.s. the
benchmarked portfolio values Ŝ(δ)(σ) and Ŝ(δ)(τ) are integrable and

Ŝ(δ)(σ) ≥ E
(
Ŝ(δ)(τ)

∣∣Aσ

)
(3.5)

a.s.

The following definition of what constitutes a fair value is shown to be natural
and rather useful in derivative pricing.

Definition 3.3 A wealth process V = {V (t), t ∈ [0,∞)} is called fair if its

benchmarked value V̂ (t) = V (t)

S(δ∗)(t) forms an (A, P )-martingale V̂ = {V̂ (t), t ∈
[0,∞)}.

From Lemma 2.7 we obtain the following interesting property of expected returns
of benchmarked fair portfolios.

Corollary 3.4 Under Assumptions 2.2 and 2.11 for a nonnegative portfolio
process S(δ) the expected return Rδ∗,δ

τ,σ of its benchmarked value is zero for all

τ ∈ [0,∞) and σ ∈ [τ,∞] if and only if the portfolio process S(δ) is fair.

This shows that the benchmarked nonnegative wealth processes that achieve the
highest expected returns are martingales. Additionally, it follows by Corollary
3.4 and Lemma 2.7 that the fair, strictly positive wealth processes provide the
highest expected growth. This indicates that the GOP is in several ways the best
performing portfolio and fair portfolios play a preferred role for investors.

Let us apply further standard results from martingale theory.

Corollary 3.5 Under Assumptions 2.2 and 2.11 a uniformly integrable, bench-
marked, fair portfolio process Ŝ(δ) = {Ŝ(δ)(t), t ∈ [0,∞]} is an (A, P )-martingale
on [0,∞], where

Ŝ(δ)(∞) = lim
t→∞

Ŝ(δ)(t) (3.6)

almost surely, and for all stopping times σ, τ ∈ [0,∞] such that σ ≤ τ a.s. one
has

Ŝ(δ)(σ) = E
(
Ŝ(δ)(τ)

∣∣Aσ

)
(3.7)

a.s. with integrable Ŝ(δ)(σ) and Ŝ(δ)(τ).

This means, the actual benchmarked value of a fair wealth process is at any time
the best forecast of its future benchmarked values, including the one at the infinite
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time horizon, provided the benchmarked wealth process is uniformly integrable.
Note that it holds also an Optional Sampling Theorem, similar to Corollary 3.2,
for uniformly integrable, benchmarked fair wealth processes.

For a nonnegative portfolio process S(δ) ∈ V let

TS(δ) = inf{t : S(δ)(t) = 0} (3.8)

denote its default time, which is the time when it first reaches the level zero. For
the total wealth process of a market participant this is the time when bankruptcy
must be declared. The following result shows that any nonnegative portfolio that
reaches the level zero remains zero afterwards.

Corollary 3.6 Under Assumptions 2.2 and 2.11 a nonnegative portfolio pro-
cess S(δ) ∈ V has almost surely the value

S(δ)(t) = 0 (3.9)

for all t ∈ [TS(δ) ,∞).

This is a fundamental property of nonnegative portfolios. It provides a mathe-
matical basis for the legal principle of limited liability. Note that if in Corollary
3.6 the benchmarked portfolio Ŝ(δ) is uniformly integrable, then it follows that
S(δ)(t) = 0 for all t ∈ [TS(δ) ,∞], which includes the infinite time horizon.

Finally, we describe the Doob-Meyer decomposition, which provides a fundamen-
tal unique characterization of the structure of benchmarked nonnegative wealth
processes.

Corollary 3.7 Under Assumptions 2.2 and 2.11 a nonnegative wealth process
S(δ) ∈ V with value S(δ)(t) at time t has a unique decomposition of the form

S(δ)(t) = (M (δ)(t) + A(δ)(t)) S(δ∗)(t) (3.10)

for t ∈ [0,∞). Here A(δ) = {A(δ)(t), t ∈ [0,∞)} is a nonincreasing, predictable
process with A(δ)(0) = 0 a.s. and M (δ) is an (A, P )-local martingale.

By equation (3.10) we obtained a unique decomposition of each nonnegative port-
folio. Its benchmarked value splits into the sum of a local martingale and a nonin-
creasing predictable process. By splitting a general portfolio into its nonnegative
and negative components and applying the above Doob-Meyer decomposition to
each of these components one obtains a unique decomposition for all portfolios.

4 The GOP as Best Performing Portfolio

The GOP can be considered to be the best performing portfolio in different ways.
In the following, we would like to substantiate this property by describing some
general mathematical results.

14



4.1 Expected Growth

By relation (2.13) it follows that for any nonnegative wealth process S(δ) ∈ V
that the difference between the expected growths gδ

τ,σ and gδ∗
τ,σ over the time

interval [τ, σ] is bounded by the corresponding expected return Rδ∗,δ
τ,σ for Ŝ(δ).

Furthermore, from Corollary 2.9 we know that the expected return Rδ∗,δ
τ,σ for Ŝ(δ)

is not greater than zero. This leads directly to the following result.

Corollary 4.1 Under Assumptions 2.2 and 2.11 for any nonnegative wealth
process S(δ) ∈ V its expected growth over the time interval [τ, σ] with stopping
times τ ∈ [0,∞) and σ ∈ (τ,∞) satisfies the inequality

gδ
τ,σ ≤ gδ∗

τ,σ (4.1)

almost surely.

Thus, over any finite period the expected growth of the GOP is never smaller
than that of any other nonnegative wealth process. This is one characterization
which shows that the GOP outperforms all other portfolios.

4.2 Systematic Outperformance

For an investor it is of interest to know whether or not it is possible to sys-
tematically outperform the GOP by constructing another portfolio with better
performance over any time period. To make this mathematically precise we in-
troduce the following definition.

Definition 4.2 A strictly positive wealth process S(δ) ∈ V+ is said to system-
atically outperform another strictly positive wealth process S(δ̄) ∈ V+ if for some
stopping times τ ∈ [0,∞) and σ ∈ [τ,∞) with

S(δ)(τ) = S(δ̄)(τ) (4.2)

and
S(δ)(σ) ≥ S(δ̄)(σ) (4.3)

almost surely, then

P
(
S(δ)(σ) > S(δ̄)(σ)

∣∣Aτ

)
> 0. (4.4)

According to the above definition, if a nonnegative wealth process systematically
outperforms the GOP, then it can generate, with strictly positive probability, over
some period certain wealth that is strictly greater than what can be achieved by
the GOP. We can prove the following theorem.
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Theorem 4.3 Under Assumptions 2.2 and 2.11 any nonnegative wealth pro-
cess cannot systematically outperform the GOP.

Proof: Consider a benchmarked, nonnegative wealth process Ŝ(δ) = {Ŝ(δ)(t), t ∈
[0,∞)}, where we have at a stopping time τ ∈ [0,∞) the benchmarked value

Ŝ(δ)(τ) = 1 (4.5)

almost surely and for a later stopping time σ ∈ [τ,∞) the inequality

Ŝ(δ)(σ) ≥ 1 (4.6)

almost surely. Then it follows by the supermartingale property (3.4) of Ŝ(δ), the
Optional Sampling Theorem and the property (4.5) that

0 ≥ E
(
Ŝ(δ)(σ)− Ŝ(δ)(τ)

∣∣Aτ

)
= E

(
Ŝ(δ)(σ)− 1

∣∣Aτ

)
. (4.7)

Obviously, due to (4.7) and (4.6), the benchmarked value Ŝ(δ)(σ) cannot be
strictly greater than Ŝ(δ)(τ) = 1 with any strictly positive conditional proba-
bility, which means that

P
(
Ŝ(δ)(σ)− 1 > 0

∣∣Aτ

)
= 0. (4.8)

Therefore, it follows by (4.7) and (2.24) that

P
(
S(δ)(σ) > S(δ∗)(σ)

∣∣Aτ

)
= 0 (4.9)

almost surely. This proves by Definition 4.2 the theorem. ¤

Similarly, by exploiting the martingale property of benchmarked fair portfolios
one can prove the following result.

Corollary 4.4 Under Assumptions 2.2 and 2.11 any fair portfolio cannot be
systematically outperformed by the GOP.

This is an interesting statement. It shows that in terms of expected returns all
fair, benchmarked portfolios are equally attractive to an investor. However, as we
will see below, in the long term only one of these fair portfolios is almost surely
outgrowing the others.

4.3 Long Term Growth Rate

Let us now mention also a pathwise result. We define the long term growth rate
g̃δ for a strictly positive wealth process S(δ) as the almost sure limit

g̃δ
∞

a.s.
= lim sup

t→∞

1

t
log

(
S(δ)(t)

S(δ)(0)

)
. (4.10)
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Note that g̃δ
∞ is random and there is no expectation taken in (4.10). The fol-

lowing result shows that the GOP has the largest long term growth rate. Thus,
over a sufficiently long period it is almost surely pathwise superior to all other
nonnegative portfolios.

Corollary 4.5 Under Assumptions 2.2 and 2.11 for all strictly positive port-
folio processes S(δ) the GOP has the maximum long term growth rate, that is

g̃δ∗
∞

a.s.
= lim sup

t→∞

1

t
log

(
S(δ∗)(t)

S(δ∗)(0)

)
≥ lim sup

t→∞

1

t
log

(
S(δ)(t)

S(δ)(0)

)
a.s.
= g̃δ

∞ (4.11)

almost surely.

Proof:

This proof uses analogous arguments as applied for a similar result in Karatzas
& Shreve (1998). Consider a nonnegative portfolio S(δ) with

S(δ)(0) = S(δ∗)(0). (4.12)

By Corollary 2.12 the nonnegative benchmarked portfolio Ŝ(δ) is an (A, P )-
supermartingale. As a supermartingale on [0,∞], see (3.4), the benchmarked
portfolio Ŝ(δ) = {Ŝ(δ)(t), t ∈ [0,∞]} satisfies by (4.12) the well-known inequality

exp{ε k}P

(
sup

k≤t≤∞
Ŝ(δ)(t) > exp{ε k}

∣∣A0

)
≤ E

(
Ŝ(δ)(k)

∣∣A0

)
≤ Ŝ(δ)(0) = 1

(4.13)
for all k ∈ {1, 2, . . .} and ε ∈ (0, 1), see Elliott (1982). Let us fix ε ∈ (0, 1), then

∞∑

k=1

P

(
sup

k≤t≤∞
log

(
Ŝ(δ)(t)

)
> ε k

∣∣A0

)
≤

∞∑

k=1

exp{−ε k} < ∞. (4.14)

The Lemma of Borel-Cantelli implies the existence of a random variable K̄ε such
that

log
(
Ŝ(δ)(t)

)
≤ ε k ≤ ε t

for all k ≥ K̄ε and t ≥ k almost surely. Thus, one has almost surely

sup
t≥k

1

t
log

(
Ŝ(δ)(t)

)
≤ ε

for all k ≥ K̄ε and therefore

lim sup
t→∞

1

t
log

(
S(δ)(t)

S(δ)(0)

)
≤ lim sup

t→∞

1

t
log

(
S(δ∗)(t)

S(δ∗)(0)

)
+ ε (4.15)

almost surely. Noting that relation (4.15) holds for all ε ∈ (0, 1) the inequality
(4.11) follows by (4.10). ¤
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The above results indicate that actively managed funds cannot systematically
outperform the GOP, unless they have access to non-public information, invest
in securities that are not publicly traded or detect arbitrage in the market. There-
fore, the best that a long term investor in a no-arbitrage world can do, based on
these probabilistic considerations, is to simply invest in some approximation of
the GOP. Of course, investors with a short time horizon may not invest fully in
the GOP. For them it is optimal to form according to the mutual fund theorem,
see Platen (2002), in a portfolio process that holds some wealth invested in a risk
free asset but keeps the remaining wealth in the GOP.

5 Fair Valuation

5.1 Contingent Claim Pricing

It is of fundamental importance to formulate a consistent pricing concept that
is both economically reasonable and computationally tractable. The previously
established notion of a fair price, given in Definition 3.3, satisfies this criterion.

From Definition 3.3 and Corollary 3.4 it follows that over any time interval [t, s]
for a fair, nonnegative portfolio S(δ) the derivative of the expected growth Qδ∗,δ

t,s is
zero. Thus, a small perturbation of the GOP by a fair portfolio does not alter the
expected growth of the perturbed GOP greatly. This constitutes an important
robustness property, which applies to all fair investments that are added in small
quantities to the GOP. Fair pricing has some similarity to utility indifference
pricing, see Davis (2003), however no utility function is here involved.

From Definition 3.3 and Corollary 3.5 it follows by the martingale property of
a uniformly integrable, benchmarked, fair value process V̂ = {V̂ (t), t ∈ [0,∞)}
that

E
(
V̂ (σ)

∣∣Aτ

)
= V̂ (τ) (5.1)

a.s. for all stopping times τ ∈ [0,∞] and σ ∈ [τ,∞]. The benchmarked fair price
can therefore be interpreted as the best forecast of all of its future benchmarked
values including that at infinity.

Definition 5.1 A contingent claim Hτ is defined as an Aτ -measurable payoff
at a stopping time τ ∈ [0,∞] with

E

( |Hτ |
S(δ∗)(τ)

)
< ∞. (5.2)

From Definitions 3.3 and 5.1 the following fair pricing formula is obtained.
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Corollary 5.2 For a contingent claim Hτ the fair price UHτ (t) at time t ∈
[0, τ ] is given by the fair pricing formula

UHτ (t) = S(δ∗)(t) ÛHτ (t), (5.3)

where the corresponding fair, benchmarked contingent claim price process ÛHτ =
{ÛHτ (t), t ∈ [0, τ ]} has at time t ∈ [0, τ ] the value

ÛHτ (t) =
UHτ (t)

S(δ∗)(t)
= E

(
Hτ

S(δ∗)(τ)

∣∣∣∣At

)
. (5.4)

For a given contingent claim Hτ the corresponding benchmarked, fair price pro-
cess ÛHτ = {ÛHτ (t), t ∈ [0, τ ]} is a martingale, see (5.4) and (5.1).

For hedging it is important to identify for a given contingent claim a wealth
process that perfectly replicates this claim.

Definition 5.3 For a contingent claim Hτ we call a wealth process S(δ) =
{S(δ)(t), t ∈ [0, τ ]} replicating if

Ŝ(δ)(τ) =
Hτ

S(δ∗)(τ)
(5.5)

almost surely.

This means, a replicating wealth process equals at the maturity date τ the payoff
of the corresponding contingent claim. If in the given benchmark model each con-
tingent claim can be replicated, then we call the model complete. Otherwise, it is
called incomplete. Due to the supermartingale property of benchmarked, nonneg-
ative portfolio processes we can prove that at any given time a fair, replicating
price process equals the minimal value of all replicating portfolio processes.

Corollary 5.4 Under Assumptions 2.2 and 2.11, if for a nonnegative con-
tingent claim Hτ its fair price process UHτ equals a replicating portfolio process
S(δHτ ) ∈ V, then any other nonnegative replicating portfolio process S(δ̄) ∈ V is
less than or equal to the corresponding fair price process, that is

UHτ (t) = S(δHτ )(t) ≤ S(δ̄)(t) (5.6)

almost surely for all t ∈ [0, τ ].

Proof: Note that the replicating, benchmarked, nonnegative, fair price process
ÛHτ = {ÛHτ (t), t ∈ [0, τ ]} given in (5.4) is an (A, P )-martingale. By Corollary
2.12 all nonnegative benchmarked wealth processes are supermartingales. Con-
sequently, if the nonnegative contingent claim Hτ can be perfectly replicated by
a nonnegative wealth process S(δ̄) at maturity τ , then we have

ÛHτ (τ) = Ŝ(δHτ )(τ) = Ŝ(δ̄)(τ). (5.7)
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At any earlier time t ∈ [0, τ ] the value Ŝ(δ̄)(t) of the supermartingale Ŝ(δ̄) is greater
than or equal to ÛHτ (t), which proves by (2.24) the inequality (5.6). ¤

The fair price is as the minimal replicating price economically the rational price
when there are several replicating portfolios. The corresponding hedging strategy,
also for the case of incomplete markets, will be discussed elsewhere.

5.2 Risk Neutral Pricing

Now, let us show that fair pricing generalizes the established standard risk neutral
pricing methodology. For this purpose we consider the Radon-Nikodym derivative
process Λ = {Λ(t), t ∈ [0, T ]} with T < ∞ for the candidate risk neutral pricing
measure P̃ with

dP̃

dP
= Λ(T ) (5.8)

with

Λ(t) =
B(t) S(δ∗)(0)

S(δ∗)(t) B(0)
(5.9)

for t ∈ [0, T ]. Here B(t) denotes the riskless asset at time t, which is usually
called the savings account. By using (5.9) one can rewrite for a contingent claim
Hτ the fair pricing formula (5.3) for the fair value process UHτ in the form

UHτ (t) = E

(
S(δ∗)(t)

S(δ∗)(τ)
Hτ

∣∣∣∣At

)

= E

(
Λ(τ)

Λ(t)

B(t)

B(τ)
Hτ

∣∣∣∣At

)
(5.10)

for t ∈ [0, τ ]. In the special case when an equivalent risk neutral martingale
measure P̃ exists, we obtain from (5.10) with (5.9) the risk neutral pricing formula

UHτ (t) = Ẽ

(
B(t)

B(τ)
Hτ

∣∣∣∣At

)
(5.11)

for all t ∈ [0, τ ], provided that the assumptions for the Girsanov Theorem are
satisfied. Here Ẽ denotes expectation under the equivalent risk neutral martingale
measure P̃ . This confirms that standard risk neutral pricing is a particular case
of fair pricing if an equivalent risk neutral martingale measure P̃ exists.

In general, in a benchmark model the candidate risk neutral measure P̃ may not
be equivalent to the real world probability measure P . Also the Radon-Nikodym
derivative process Λ may not be an (A, P )-martingale. An example is given in
Section 6.2 where the risk neutral pricing formula (5.11) breaks down. Examples
of benchmark models that reflect stylized empirical facts and where standard risk
neutral pricing does not apply, are described in Platen (2001, 2002), Heath &
Platen (2002a, 2002b, 2002c, 2003) and Breymann, Kelly & Platen (2003).
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5.3 Actuarial Pricing

Using Corollary 5.2 we note that the zero coupon bond that pays one monetary
unit at the fixed maturity date τ ∈ [0, T ] with T < ∞ has at time t ∈ [0, τ ] the
fair price

P (t, τ) = S(δ∗)(t) E

(
1

S(δ∗)(τ)

∣∣∣∣At

)
. (5.12)

For a contingent claim Hτ , which is independent from the GOP value S(δ∗)(τ)
and has a given deterministic maturity date τ , the following widely used actuarial
pricing formula can be directly obtained from the fair pricing formula (5.3) and
relation (5.12).

Corollary 5.5 For a contingent claim Hτ , which is independent of the GOP
value S(δ∗)(τ) and has a deterministic maturity date τ ∈ [0, T ], its fair price
UHτ (t) satisfies the actuarial pricing formula

UHτ (t) = P (t, τ) E
(
Hτ

∣∣At

)
(5.13)

for t ∈ [0, τ ].

To obtain (5.13) one only needs to use the fact that the expectation of the product
of independent random variables equals the product of their expectations. Thus,
the commonly used net present value pricing rule is recovered as a consequence
of the fair pricing formula. Note that this applies only for contingent claims that
are independent of the GOP, which is typical for a range of valuation problems in
the insurance area, see Bühlmann & Platen (2002). It also applies for most real
option valuations and weather derivatives, see Platen & West (2003). It should
be emphasized again that the discounted conditional expectation of the given
payoff in (5.13) is taken with respect to the real world probability measure P .
Furthermore, the interest rate in formula (5.13) that is implicitly used to compute
(5.12) may be stochastic. This case is typically not considered in most actuarial
pricing problems but can be easily handled under (5.13).

6 Examples of Benchmark Models

Let us illustrate the above benchmark framework through some examples. In
each of the following benchmark models we set, for simplicity, the interest rate
to zero such that

B(t) = S(0)(t) = 1 (6.1)

denotes the constant savings account for t ∈ [0, T ] with T < ∞. Furthermore, we
identify a risky primary security account process by S(1) = {S(1)(t), t ∈ [0, T ]}.
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6.1 Black-Scholes Model

At first, we study the well-known Black-Scholes model. Here S(1)(t) satisfies the
stochastic differential equation (SDE)

dS(1)(t) = S(1)(t) (a dt + σ dW (t)) (6.2)

for t ∈ [0, T ] with S(1)(0) > 0. The appreciation rate a and the volatility σ
are constants and W = {W (t), t ∈ [0, T ]} is a standard Wiener process on
(Ω,A,A, P ). A portfolio value

S(δ)(t) = δ(0)(t) S(0)(t) + δ(1)(t) S(1)(t) (6.3)

satisfies the SDE

dS(δ)(t) = S(δ)(t) π1
δ (t) σ (θ dt + dW (t)) (6.4)

for t ∈ [0, T ]. Here

θ =
a

σ
(6.5)

is known as the market price for risk and

π1
δ (t) =

δ(1)(t) S(1)(t)

S(δ)(t)
(6.6)

is the fraction of the portfolio value S(δ)(t) that is invested in the risky primary
security account S(1). Obviously,

π0
δ (t) = 1− π1

δ (t) (6.7)

for t ∈ [0, T ].

By the Itô formula we obtain for the logarithm of a strictly positive portfolio
value S(δ)(t) the SDE

d log(S(δ)(t)) = gδ(t) dt + π1
δ (t) σ dW (t)

with growth rate

gδ(t) = π1
δ (t) σ θ − 1

2

(
π1

δ (t) σ
)2

for t ∈ [0, T ]. Thus, by maximizing the growth rate we find the optimal fraction

π1
δ∗(t) =

θ

σ
(6.8)

for the GOP S(δ∗)(t). The GOP satisfies with this fraction the SDE

dS(δ∗)(t) = S(δ∗)(t) θ (θ dt + dW (t)) (6.9)
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for t ∈ [0, T ] with S(δ∗)(0) > 0.

By the Itô formula it follows from (6.4) and (6.9) that the benchmarked portfolio
value Ŝ(δ)(t) satisfies the SDE

dŜ(δ)(t) = Ŝ(δ)(t) π1
δ (t) σ dW (t) (6.10)

for t ∈ [0, T ]. Obviously, when π1
δ (t) is a deterministic function of time, then

Ŝ(δ) is an (A, P )-martingale. Thus, the benchmarked risky primary security ac-

count Ŝ(1)(t) = S(1)(t)

S(δ∗)(t) and the benchmarked savings account Ŝ(0)(t) = S(0)(t)

S(δ∗)(t)
are (A, P )-martingales. Obviously, the Radon-Nikodym derivative process Λ =

{Λ(t) = Ŝ(0)(t)

Ŝ(0)(0)
, t ∈ [0,∞)} is an (A, P )-martingale. For the Black-Scholes model

the predictable process A(δ) in the Doob-Meyer decomposition (3.10) is zero.

Already under the simple Black-Scholes model and risk neutral pricing the infinite
time horizon is difficult to analyze. This problem is caused by the fact that the
Radon-Nikodym derivative process λ = {λ(t) = S(δ∗)(t)−1, t ∈ [0,∞)} for the risk
neutral measure P̃ is not uniformly integrable. Thus, the risk neutral measure P̃
is not necessarily equivalent to P on A∞.

6.2 Strict Local Martingale Portfolio

By an appropriate choice of the strategy δ = {δ(t) = (δ0(t), δ1(t))>, t ∈ [0, T ]}
under the previously introduced Black-Scholes model one can construct bench-
marked portfolios that are strict local martingales.

As an example, let us consider a squared Bessel process Z = {Z(t), t ∈ [0, T ]} of
dimension ν > 2, which satisfies the SDE

dZ(t) = ν dt + 2
√

Z(t) dW (t) (6.11)

for t ∈ [0, T ] and Z(0) > 0. We then note that with the fraction

π1
δ̄ (t) =

2− ν

σ Z(t)
(6.12)

we get the portfolio S(δ̄) with benchmarked value

Ŝ(δ̄)(t) = Z(t)1− ν
2 (6.13)

for t ∈ [0, T ], when Ŝ(δ̄)(0) = Z(0)1− ν
2 . As is known from Revuz & Yor (1999),

the process Ŝ(δ̄) is an (A, P )-local martingale but not a martingale, despite the
fact that E((Ŝ(δ̄)(t))α) < ∞ for exponents α < ν

ν−2
for t ∈ [0, T ]. For instance,

for α = 1 and ν = 4 its expectation equals

E
(
Ŝ(δ̄)(t)

∣∣A0

)
= Ŝ(δ̄)(0)

(
1− exp

{
− 1

2 Ŝ(δ̄)(0) t

})
< Ŝ(δ̄)(0) (6.14)
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for t ∈ (0, T ], see Platen (2002). This shows that Ŝ(δ̄) cannot be a martingale. In
this case the Doob-Meyer decomposition for Ŝ(δ̄)(t) forms a, so called, potential,
which is a nonnegative supermartingale that converges over time to zero.

6.3 Alternative Market Models

In Platen (2001, 2002) a class of alternative market models has been suggested,
where the time transformed GOP value S(δ∗)(t) satisfies an SDE of the form

dS(δ∗)(t) = 4 dt + 2
√

S(δ∗)(t) dW (t)

for t ∈ [0, T ] with S(δ∗)(0) > 0. Obviously, S(δ∗) is here a squared Bessel process
of dimension four, see (6.11). The benchmarked savings account

Ŝ(0)(t) =
S(0)(t)

S(δ∗)(t)
=

(
S(δ∗)(t)

)−1

is then by (6.1) its inverse and therefore also a strict (A, P )-local martingale. As

is well known, the Radon-Nikodym derivative process Λ = {Λ(t) = Ŝ(0)(t)

Ŝ(0)(0)
, t ∈

[0, T ]} with Λ(T ) = dP̃
dP

for the corresponding candidate risk neutral measure P̃
is then a strict (A, P )-local martingale. Under P the probability of the squared
Bessel process S(δ∗) of dimension four for reaching zero is zero. However, under
P̃ the corresponding risk neutral probability is strictly positive since the squared
Bessel process S(δ∗) has under P̃ the dimension zero, see Revuz & Yor (1999).
Consequently, in this case the measures P and P̃ are not equivalent. Furthermore,
Λ is not a martingale. These properties of the model do not permit the application
of the risk neutral pricing methodology. The model also provides a free lunch
with vanishing risk in the sense of Delbaen & Schachermayer (1994, 1998). The
above benchmark framework encompasses the class of alternative market models
mentioned above, which provide realistic models for the world stock index in
different denominations, as shown in Breymann, Kelly & Platen (2003).

6.4 Jump Diffusion Model

We consider as risky primary security account S(1)(t) a stock that follows a jump
diffusion process with SDE

dS(1)(t) = S(1)(t−) (a dt + σ dW (t)− (dN(t)− λ dt)), (6.15)

for t ∈ [0, T ] with S(1)(0) > 0 and T < ∞, where the appreciation rate a and
the volatility σ are constant. Here W is a standard Wiener process and N =
{N(t), t ∈ [0, T ]} is an independent Poisson process with constant intensity λ >
0. Obviously, by the SDE (6.15) it follows that when the Poisson process generates
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the first jump, then the stock price process S(1) defaults to the level zero and
remains zero thereafter, see Corollary 3.6.

Additionally to the savings account B(t) = S(0)(t) = 1 and the stock S(1)(t) we
consider also a defaultable bond S(2)(t) which matures at T > 0. The SDE for
S(2)(t) let be given in the form

dS(2)(t) = S(2)(t−) (λ dt− dN(t)) (6.16)

for t ∈ [0, T ] with S(2)(0) = exp{−λT}. The defaultable bond pays one monetary
unit at time T when the stock does not default until T .

A portfolio

S(δ)(t) =
2∑

j=0

δ(j)(t) S(j)(t)

with strategy δ = {δ(t) = (δ(0)(t), δ(1)(t), δ(2)(t))>, t ∈ [0, T ]} satisfies the SDE

dS(δ)(t) = S(d)(t−)
(
π1

δ (t−) [σ (θ dt + dW (t))− (dN(t)− λ dt)]

− π2
δ (t−)(dN(t)− λ dt)

)

with market price for risk θ = a
σ
. It therefore has the growth rate

g̃δ(t) = π1
δ (t) σ θ − 1

2

(
π1

δ (t) σ
)2

+
(
π1

δ (t) + π2
δ (t)

)
λ + log

(
1− π1

δ (t)− π2
δ (t)

)
λ

for t ∈ [0, T ]. By maximizing this growth rate the optimal fractions for the GOP
S(δ∗) are obtained as

π1
δ∗(t) =

θ

σ
and π2

δ∗(t) = − θ

σ

for t ∈ [0, T ]. Thus the GOP value S(δ∗)(t) satisfies the SDE

dS(δ∗)(t) = S(δ∗)(t) (θ dt + dW (t)),

which is the same as in the above Black-Scholes example. Note that the GOP is
here not dependent on the jumps of the stock. In practical terms this means that
the corresponding risk is diversifiable and a zero market price for risk has been
allocated to the uncertainty that a default arises or not.

Consider now a portfolio S(δ). Then we get for its benchmarked value Ŝ(δ)(t) =
S(δ)(t)

S(δ∗)(t) by the Itô formula the SDE

dŜ(δ)(t) = Ŝ(d)(t−)
(
(π1

δ (t) σ − θ) dW (t)− (
π1

δ (t−) + π2
δ (t−)

)
(dN(t)− λ dt)

)

for t ∈ [0, T ]. This SDE is driftless and Ŝ(δ) is therefore an (A, P )-local martin-
gale. Consequently, for this jump diffusion model we have in the Doob-Meyer
decomposition of benchmarked portfolios (3.10) the nonincreasing process A(δ)

being zero, that is A(δ)(t) = 0 for all t ∈ [0, T ].
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6.5 A Discrete Time Model

Finally, we consider an example with predictable jump times. Let us assume that
the risky primary security account S(1)(t) jumps only at the discrete time points
τi = i∆ for i ∈ {1, 2, . . .}, where we use some small time step size ∆ > 0. We
denote by

iτ = max{i ∈ {0, 1, . . .} : τi ≤ t}
the index of the last discretization time before time t. The risky primary security
account price satisfies then the expression

S(1)(t) = S(1)(0)
iτ∏

`=1

h` (6.17)

for t ∈ [0, T ]. Here the jump ratio h` is assumed to be independent and lognor-
mally distributed, where

log(h`) ∼ N (µ ∆, σ2 ∆)

is a Gaussian random variable with mean µ∆ and variance σ2∆, ` ∈ {1, 2, . . . , iT}.
A strictly positive portfolio S(δ) needs to have a fraction π1

δ (t) ∈ [0, 1] that lies
between zero and one for all t ∈ [0, T ]. Otherwise, S(δ) can become negative. Its
ith jump ratio is then

S(δ)(τi+1)

S(δ)(τi)
= π0

δ (τi) + π1
δ (τi) hi+1 = 1 + π1

δ (τi) (hi+1 − 1).

The expected growth, see (2.10), of a strictly positive portfolio for the ith time
step τi is

gδ
τi,τi+1

= E

(
log

(
S(δ)(τi+1)

S(δ)(τi)

) ∣∣∣∣Aτi

)

= E
(
log

(
1 + π1

δ (τi) (hi+1 − 1)
) ∣∣∣Aτi

)
(6.18)

for all i ∈ {0, 1, . . . , iT}. Let us now compute the optimal expected growth gδ∗
τi,τi+1

at time τi. The first derivative of gδ
τi,τi+1

with respect to π1
δ (τi) is

∂gδ
τi,τi+1

∂π1
δ (τi)

= E

(
hi+1 − 1

1 + π1
δ (τi) (hi+1 − 1)

∣∣∣∣Aτi

)
(6.19)

and the second derivative has the form

∂2gδ
τi,τi+1

∂(π1
δ (τi))2

= −E

(
(hi+1 − 1)2

(1− π1
δ (τi) (hi+1 − 1))2

∣∣∣∣Aτi

)
(6.20)
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for i ∈ {0, 1, . . . , iT}. We observe that the second derivative is always negative.
Therefore, the expected growth has at most one maximum. However, this max-
imum may arise for a fraction π1

δ (τi) with a value outside the interval [0, 1]. To
clarify this possibility we compute with (6.19) the values

∂gδ
τi,τi+1

∂π1
δ (τi)

∣∣∣∣
π1

δ (τi)=0

= E
(
hi+1

∣∣Aτi

)− 1 (6.21)

and
∂gδ

τi,τi+1

∂π1
δ (τi)

∣∣∣∣
π1

δ (τi)=1

= 1− E

(
1

hi+1

∣∣∣∣Aτi

)
(6.22)

for i ∈ {0, 1, . . . , iT}. Due to (6.20) the first derivative
∂gδ

τi,τi+1

∂π1
δ (τi)

is decreasing for

π1
δ (τi) increasing if

E
(
(hi+1)

p
∣∣Aτi

) ≥ 0 (6.23)

for both exponents p = 1 and p = −1. Then the values in (6.21) and (6.22) have
opposite signs and there exists some fraction π1

δ∗(τi) ∈ [0, 1] such that

∂gδ
τi,τi+1

∂π1
δ (τi)

∣∣∣∣
π1

δ (τi)=π1
δ∗ (τi)

= 0 (6.24)

for i ∈ {0, 1, . . . , iT}. On the other hand, when condition (6.23) is violated, then
the value of the optimal fraction π1

δ∗(τi) is located at one of the endpoints of the
interval [0, 1]. Note that in this case the derivative (6.19) will, in general, not be
zero. This means, in such a case we do not find a genuine maximum for π1

δ∗(τi)
within the interval [0, 1]. Essentially we have three cases to consider:

1. At first we need to study the situation when the derivative
∂gδ

τi,τi+1

∂π1
δ (τi)

becomes

zero for π1
δ∗(τi) ∈ [0, 1]. This is the case, which provides a genuine maximum

in [0, 1]. Using the well-known Laplace transform of a Gaussian random
variable we get

E
(
(hi+1)

p
∣∣Aτi

)
= exp

{(
p µ +

σ2

2

)
∆

}
(6.25)

for exponents p ∈ {−1, 1}. Therefore, (6.24) only holds for

|µ| ≤ σ2

2
. (6.26)

For this case we can show for ∆ → 0 that the optimal fraction π1
δ∗(τi)

approaches asymptotically the value

lim
∆→0

π1
δ∗(τi) =

1

2
+

µ

σ2
.
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With the strategy δ(τi) = (δ(0)(τi), δ
(1)(τi))

> with δ(0)(τi) = 1, δ(1)(τi) = 0
we obtain for the expected return of the benchmarked savings account and
also for δ(τi) = (δ(0)(τi), δ

(1)(τi))
> with δ(0)(τi) = 0 and δ(1)(τi) = 1, that is

for the expected return of the benchmarked risky primary security account,
the almost sure limit

lim
∆→0

Rδ∗,δ
τi,τi+1

a.s.
= 0

for i ∈ {0, 1, . . . , iT}. In this case, where |µ| ≤ σ2

2
, it follows by Corollary

3.5 for all strictly positive portfolios S(δ) that these can be interpreted in
the limit to be fair.

2. In the case when µ < −σ2

2
the risky primary security account underperforms

markedly when compared to the GOP. The optimal fraction is then

π1
δ∗(πi) = 0

for all i ∈ {0, 1, . . . , iT}. The GOP consists of the savings account S(0). We
obtain with δ(0)(τi) = 0 and δ(1)(τi) = 1 the ith expected return

Rδ∗,δ
τi,τi+1

= exp

{(
µ +

σ2

2

)
∆

}
− 1 < 0

for i ∈ {0, 1, . . . , iT}. This shows that the benchmarked risky primary se-
curity account price process Ŝ(1) is a strict supermartingale, which is not a
local martingale as in the previous continuous time examples. It can be seen
that the martingale property is already violated when Ŝ(1) is immediately
stopped after one time step. Furthermore, the Doob-Meyer decomposi-
tion (3.10) shows a corresponding process A(δ) that is strictly decreasing.
Clearly, by Definition 3.3 the stock S(1) is here not a fair price process. We
can check whether S(0) is possibly fair. This is simple because the GOP
S(δ∗) is equivalent to the savings account S(0). Therefore, the benchmarked
savings account is constant and thus a martingale. Consequently, by Defi-
nition 3.3 the savings account is in this case a fair price process.

3. It remains to study the case when µ > σ2

2
, where the stock is performing

extremely well. Obviously, the optimal fraction is then

π
(1)
δ∗ (τi) = 1

for all i ∈ {0, 1, . . . , iT}. This means, the GOP is formed when all wealth
is invested in the risky primary security account S(1). For δ(0)(τi) = 1 and
δ(1)(τi) = 0 the ith expected return of the benchmarked savings account
satisfies the expression

Rδ∗,δ
τi,τi+1

= exp

{(
−µ +

σ2

2

)
∆

}
− 1 < 0,

which shows that the benchmarked savings account is a strict supermartin-
gale and not a local martingale. Consequently, S(0) is not fair for µ > σ2

2
.
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On the other hand, the benchmarked risky primary security account Ŝ(1)(t)
is constant and thus a martingale and fair.

This example demonstrates that there are benchmark models with benchmarked
portfolios that are supermartingales but not local martingales. As we have seen,
this arises for instance, when there are jumps in the underlying security at pre-
dictable stopping times and the corresponding jump ratios vary anywhere between
zero and infinity.
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