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Abstract

We give explicit upper bounds for convergence rates when approx-
imating (both one- and two-sided general curvilinear) boundary
crossing probabilities for the Wiener process by similar probabili-
ties for close boundaries (of simpler form for which computing the
probability is feasible). In particular, we generalize and improve
results obtained by Pötzelberger and Wang [13] for the case when
approximating boundaries are piecewise linear. Applications to
barrier option pricing are discussed as well.
Keywords: Wiener process, boundary crossing probabilities, barrier
options
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1. Introduction and main results

Computing the probability P (g−, g+) for the standard Wiener process

{Wt} to stay within a corridor between two given boundaries g−(t) <

g+(t) during a specified time interval [0, T ] is crucial in many important

applications including sequential statistical analysis and pricing financial

barrier options. In fact, basing on the Donsker–Prokhorov invariance

principle, such a probability is often used as an approximation to a similar
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boundary crossing probability for a random walk (or even a more general

process). Computing the probability P (g−, g+) in non-trivial cases is,

however, a rather tedious task by itself, that in its turn, requires using

some approximation methodology as well.

A standard approach to this problem is to approximate the given (gen-

eral curvilinear) boundaries g± with some other boundaries f± of a form

enabling one to relatively easily compute the probability P (f−, f+), a

popular choice for f± being piecewise linear boundaries (for which a com-

bination of the total probability formula, Markov property and known

explicit formulae for linear boundary crossing probabilities for the Brow-

nian bridge process immediately gives the desired probability P (f−, f+)

as a finite-dimensional Gaussian integral of a product-form integrand [19,

11, 13]; see also our Remark 5 below). To justify the use of P (f−, f+)

instead of P (g−, g+), one must, of course, give an upper bound for the

difference between the two values.

As a recent advance in this direction, we mention here a paper by

Pötzelberger and Wang [13] (see also further references to be found in

that paper). The authors, under the assumptions that the boundaries

g± are twice continuously differentiable with g′′±(0) 6= 0 and g′′±(t) = 0

at most at finitely many points t ∈ (0, T ], proposed a special rule for

choosing a sequence of “optimal partitions” t
(n)
0 = 0 < t

(n)
1 < · · · < t

(n)
n =

T of [0, T ] (generally speaking, depending on the boundaries) with the

following property: if g
(n)
± are piecewise linear boundaries with nodes at

(t
(n)
i , g±(t

(n)
i )), i = 0, 1, . . . , n, then for

∆n := |P (g−, g+)− P (g
(n)
− , g

(n)
+ )|

one has the asymptotic bound

lim sup
n→∞

n2∆n ≤ A, (1)

where the constant A depends on both the shape of the boundaries g±
and the rule used to form the partitions {t(n)

i }0≤i≤n(through a couple of

integrals that could actually be computed—at least, numerically).
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One could observe that the above conditions on the boundaries (in

particular, on g′′± being non-zero) appear to be irrelevant (and are just

due to the method employed in [13]). In this paper, we show that this is

the case indeed, and that a much nicer than (1) explicit estimate holds

for ∆n under more general assumptions on the boundaries and when one

simply uses uniform (or any other fine enough) partitions of [0, T ] (see

Corollary 1 below).

This finding is based on a general simple result that admits a short

self-contained proof, and of which a precise formulation is as follows. Let

g±(t) be two functions on [0, T ], such that g−(0) < 0 < g+(0). Denote by

P (g−, g+) := P (g−(t) < Wt < g+(t), t ∈ [0, T ])

the probability that the trajectory of the standard Wiener process {Wt}t≥0

will stay between the boundaries g± during the whole time interval [0, T ].

If g−(t) ≥ g+(t) at some t ∈ [0, T ], we simply get P (g−, g+) = 0. In the

case of one-sided (upper) boundary, we will be just using the notation

P (−∞, g+).

By LipK we will denote the class of Lipschitz functions on [0, T ] with

the constant K ∈ (0,∞): g ∈ LipK iff

|g(t + h)− g(t)| ≤ Kh, 0 ≤ t < t + h ≤ T,

and by ‖ · ‖ the uniform norm of a (bounded) function on [0, T ]: ‖g‖ =

sup0≤t≤T |g(t)|.
Theorem 1. If g± ∈ LipK and ‖g± − f±‖ ≤ ε for some functions f± on

[0, T ], then

|P (−∞, g+)− P (−∞, f+)| ≤ (2.5K + 2T−1/2)ε (2)

and

|P (g−, g+)− P (f−, f+)| ≤ (5K + 4T−1/2)ε. (3)

The same bounds will also hold for the differences

P (−∞, g+; B)− P (−∞, f+; B) and P (g−, g+; B)− P (f−, f+; B), (4)
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where, for a Borel set B,

P (g−, g+; B) := P (g−(t) < Wt < g+(t), t ∈ [0, T ]; WT ∈ B).

Remark 1. The result (or a weaker form thereof) might actually be al-

ready known. It was observed in Borovkov [4] that, with a right-hand side

of the form C(K +T−1/2)ε, where C is some absolute constant, the above

inequalities can be derived from relation (2.22) in Nagaev [10], estimates

in Sahkanenko [16] and the Donsker–Prokhorov invariance principle.

Remark 2. It is clear from the proof of Theorem 1 that a somewhat more

precise than (3) bound holds in the two-sided boundary case: assuming

that g± ∈ LipK± , one can replace 5K on the right-hand side of that bound

with 2.5(K− + K+). Observe also that, under additional assumptions

about the monotonicity of the boundaries g±, the values for the constants

in bounds (2) and (3) can be made somewhat smaller (see Lemma 1

below).

Next we will formulate our improvement of (1) which is a simple conse-

quence of Theorem 1 based on the fact that, for smooth enough functions,

the approximation rate by piecewise linear functions will be a quadratic

function of the partition rank. More precisely, the following result holds.

Corollary 1. Let g± be continuously differentiable on [0, T ], K = max{‖g′−‖, ‖g′+‖},
and let g′± be absolutely continuous satisfying |g′′±| ≤ γ < ∞ a.e. If

0 = t0 < t1 < · · · < tn = T is a partition of [0, T ] of rank δ =

max0<i≤n |ti − ti−1|, and f± are piecewise linear with nodes at the points

(ti, g±(ti)), then

|P (−∞, g+)− P (−∞, f+)| ≤ (0.313K + 0.25T−1/2)γδ2. (5)

and

|P (g−, g+)− P (f−, f+)| ≤ (0.625K + 0.5T−1/2)γδ2 (6)

In particular, if the partition is uniform: ti = iT/n, 0 ≤ i ≤ n, and g
(n)
±

denote the respective piecewise linear approximations to g±, then δ = T/n



Boundary Crossing for Wiener Process 5

and hence, instead of the asymptotic bound (1), we obtain the following

inequality:

∆n ≤ Dn−2, D = (0.625K + 0.5T−1/2)γT 2. (7)

The same bounds will hold for the differences (4).

Remark 3. From the proof of the corollary it is obvious that its assump-

tions can be somewhat relaxed: we can only assume that the boundaries

g± are piecewise continuously differentiable (with the derivatives satisfying

the stated conditions). The inequalities (6)–(5) remain valid as long as all

the points at which any of g± is not differentiable belong to the partition.

Remark 4. If the assumption g+, f+ ∈ LipK fails, but the functions

are absolutely continuous with square integrable derivatives, and g+(0)−
f+(0) = g+(T )− f+(T ), then the following bound holds:

|P (−∞, g+; B)−P (−∞, f+; B)| ≤ P (WT ∈ B)

[
1

2π

∫ T

0

(g′+(s)−f ′+(s))2 ds

]1/2

.

The proof of this result and also similar bounds for the two-sided boundary

crossing probabilities in the case B = (M,∞) was given in [11].

Remark 5. It appears that Wang and Pötzelberger [19] were the first to

combine the total probability formula, the Markov property of the Wiener

process and a known explicit formula for a (one-sided) linear boundary

crossing probability for the Brownian bridge process to show that the

one-sided boundary crossing probability P (−∞, g(n)) for a piecewise linear

function g(n) can be represented as an n-fold Gaussian integral. Novikov et

al. [11] gave in their Theorem 1 a more general formula for the two-sided

boundary crossing probabilities with arbitrary (measurable) boundaries

g± that is equivalent to the following representation: for any Borel set B,

P (g−, g+; B) = E

[
1{WT∈B}

n−1∏
i=0

pi(g−, g+| Wti ,Wti+1
)

]
(8)

with 1A being the indicator function of the event A and

pi(g−, g+|xi, xi+1) := P
(
g−(s) < Ws < g+(s), s ∈ [ti, ti+1]|Wti = xi,Wti+1

= xi+1

)
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(with B = R, see also Theorem 2 in [13]).

In the special case when g−(s) = −∞, s ∈ [ti, ti+1], and g+(s) is a

linear boundary on this interval, the last probability has the following

simple form used in [19]:

pi(−∞, g+|xi, xi+1) = 1− exp

{
−2(g+(ti)− xi)(g+(ti+1)− xi+1)

ti+1 − ti

}
(9)

(this is a well-known expression for the linear boundary crossing proba-

bility by the Brownian bridge process, see e.g. p.63 in [2]). In the case

of two-sided linear boundaries g±, the probability pi(g−, g+|x, y) is given

by a rapidly convergent infinite series of exponential functions (for details

and numerical examples see e.g. [11] or [13]). In both cases (of one-sided

or two-sided piecewise linear boundaries), the complexity of the numerical

computation of the n-fold Gaussian integral on the right-hand side of (8)

appears to be acceptable due to a relatively simple form of the functions

pi(g−, g+|xi, xi+1).

Nardo et al. [9] found another parametric family of one-sided boundaries

(that could be called “generalized Daniels’ boundaries”, cf. [5]), for which

the probability p−(−∞, g+|, xi, xi+1) also has a relatively simple form: if,

for t ∈ [ti, ti+1],

y(t) := (d1 − d2)(t− ti) + d2 < u(t) := (d∗1 − d∗2)(t− ti) + d∗2

with d1, d2, d
∗
1, d

∗
2 ∈ R and, on that time interval,

g+(t) = xi +
(t− ti)(xi+1 − xi)

ti+1 − ti
+ u(t)− (t− ti) ln(D(t)/2)

2(u(ti)− y(ti))
(10)

with

D(t) = C1 +

√
C2

1 + 4C2
2 exp

{
−4

(u(t)− y(t))(u(ti)− y(ti))

t− ti

}
> 0,

where Cj > 0, then

pi(−∞, g+|xi, xi+1) = 1− C1 exp

{
−2d∗1(u(ti)− y(ti))

ti+1 − ti

}

− C2 exp

{
−4(2d∗1 − d1)(u(ti)− y(ti))

ti+1 − ti

}
(11)
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(our notation is slightly different from that in [9]).

If C1 = 1 and C2 = 0, then the function g+(t) in (10) is linear, and

putting d∗2 = g+(ti) − xi, d∗1 − d∗2 = g+(ti+1) − xi+1, we get from (11) the

well-known result (9). Generally, the parametric curve (10) depends on six

parameters, so we can use it as a second-order spline with the boundary

conditions

g
(n)
+ (ti) = g+(ti),

d

dt
g

(n)
+ (ti) =

d

dt
g+(ti), ti =

iT

n
, i = 0, 1, ..., n,

It is well-known (see e.g. Chapter 1 in [17]) that the approximation rate of

four times continuously differentiable functions g±(t) by the second-order

spline functions g
(n)
± (t) on uniform partitions is

ε := ‖g± − g
(n)
± ‖ = O(n−4) as n →∞.

Therefore by Theorem 1

|P (g−, g+; B)− P (g
(n)
− , g

(n)
+ ; B)| = O(n−4).

Of course, to meet the additional boundary conditions for such an approx-

imation, one has to solve a system of nonlinear equations, and therefore

the computational complexity of this approach could be higher compared

to the piecewise linear approximation.

In conclusion, note that in the literature, there exist several quite

different approaches to computing numerical approximations to P (g−, g+)

and P (−∞, g), which have different computation complexity (see e.g.

[6, 7, 8, 15, 9] and references therein). Knowing not only the order, but

also the form of the approximation error allows one to further improve

the approximation rate by using the so-called Richardson extrapolation

that is based on the idea of extrapolating computed results to much bigger

values of n (see e.g. [1]).

In Section 3 we will discuss an application of Theorem 1 to estimating

the accuracy of approximations for double-barrier option prices.
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2. Proofs

Due to the self-similarity property of the Wiener process, we can assume

without loss of generality that T = 1 (the general case bounds will follow

then by the standard scaling argument).

We will begin the proof of Theorem 1 with the obvious relation

P (g− + ε, g+ − ε) ≤ P (f−, f+) ≤ P (g− − ε, g+ + ε). (12)

Note that

0 ≤ P (g− − ε, g+ + ε)− P (g−, g+)

= [P (g− − ε, g+ + ε)− P (g−, g+ + ε)] + [P (g−, g+ + ε)− P (g−, g+)],

where both terms on the right-hand side can be dealt with in the same

way. So it suffices to consider the second one only, and for that term we

clearly have

P (g−, g+ + ε)− P (g−, g+)

= P
(
0 ≤ sup

0≤t≤1
(Wt − g+(t)) < ε, inf

0≤t≤1
(Wt − g−(t)) > 0

)

≤ P
(
0 ≤ sup

0≤t≤1
(Wt − g+(t)) < ε

)
= P (−∞, g+ + ε)− P (−∞, g+)

=: ∆ε(g+) ≤ ∆ε := sup
f∈LipK

∆ε(f). (13)

As the same argument applies to the first term as well, we get

0 ≤ P (g− − ε, g+ + ε)− P (g−, g+) ≤ 2∆ε.

Similarly,

0 ≤ P (g−, g+)− P (g− + ε, g+ − ε) ≤ 2∆ε,

and together with (12) these inequalities imply that

|P (g−, g+)− P (f−, f+)| ≤ 2∆ε.

Basically the same argument shows that

|P (g−, g+; B)− P (f−, f+; B)| ≤ 2∆ε



Boundary Crossing for Wiener Process 9

as well. In the case of one-sided boundaries, even a simpler argument

gives

|P (−∞, g+)− P (−∞, f+)| ≤ ∆ε.

The desired bounds (2)–(3) will now follow from the next assertion.

Lemma 1. Let g be a function on [0, 1], g(0) ≥ 0, such that for some

K± ∈ [0,∞)

−K−h ≤ g(t + h)− g(t) ≤ K+h, 0 ≤ t < t + h ≤ 1. (14)

Then

∆ε(g) ≤ (2K+ + 0.5K− + 2)ε, ε > 0. (15)

Proof. Put τ := inf{t > 0 : Wt > g(t)} and observe that

∆ε(g) = P
(
0 ≤ sup

0≤t≤1
(Wt − g(t)) < ε

)

=

∫ 1

0

P (τ ∈ dt) P
(

sup
t≤s≤1

(Ws − g(s)) < ε|Wt = g(t)
)

≤
∫ 1

0

P (τ ∈ dt) P
(

sup
0≤s≤1−t

(Ws −K+s) < ε
)
. (16)

The last probability is known in explicit form (see e.g. formula 1.1.4 on

p.197 in [2]): denoting by Φ the standard normal distribution function,

we get

P
(

sup
0≤s≤1−t

(Ws −K+s) < ε
)

= Φ
(
K+

√
1− t +

ε√
1− t

)
− e−2K+εΦ

(
K+

√
1− t− ε√

1− t

)

≤ Φ
(
K+

√
1− t +

ε√
1− t

)
−Φ

(
K+

√
1− t− ε√

1− t

)
+ (1− e−2K+ε).

Using the obvious inequalities Φ′(x) ≤ 1/
√

2π and 1−e−2K+ε ≤ 2K+ε, we

get from the above representation that that probability on the left-hand

side does not exceed
√

2/π(1− t)ε + 2K+ε.

Now we need to deal with P (τ ∈ dt). For any fixed t ∈ [0, 1], introduce

the boundary

gt(s) := g(t) + K−(t− s), 0 ≤ s ≤ 1,
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and put

τt := inf{s > 0 : Ws > gt(s)} = inf{s > 0 : Ws + K−s > g(t) + K−t}.

Obviously, due to our assumption about g,

P (τ ∈ (t, t + h)) ≤ P (τt ∈ (t, t + h)), 0 ≤ t < t + h ≤ 1, (17)

and hence it just remains to bound the right-hand side of this inequality.

Since {Ws + K−s}s≥0 is a continuous processes with stationary inde-

pendent increments, the distribution of τt can be readily found from the

Kendall’s formula (see e.g. Theorem 1 on p.66 in [3]; see also formula

2.0.2 on p.223 in [2] for our special case): it will have the density

vt(s) :=
P (τt ∈ ds)

ds
=

g(t) + K−t√
2πs3

exp{−(g(t)+K−(t−s))2/2s}, s > 0.

Now from (17) it follows that τ will also have a density p(t) and

p(t) ≤ vt(t).

Returning to (16) and our bound for the integrand in it, we have, for any

r ∈ (0, 1),

∆ε(g) ≤ ε

√
2

π

∫ 1

0

p(t) dt√
1− t

+2K+ε

∫ 1

0

p(t) dt ≤ ε

√
2

π

[∫ r

0

+

∫ 1

r

]
+2K+ε

≤ ε

√
2

π(1− r)

∫ r

0

p(t) dt + ε

√
2

π

∫ 1

r

vt(t) dt√
1− t

+ 2K+ε. (18)

As
∫ r

0
p(t) dt < 1, we just have to estimate the last integral in (18), and for

that, we will find the maximum possible value of vt(t) over all admissible

under the lemma’s assumptions values g(t) ≥ g(0) − K−t ≥ −K−t (as

g(0) ≥ 0). To this end, compute

sup
{
m(y) := (y + K−t)e−y2/2t : y ≥ g(0)−K−t

}

by taking the derivative of the function m(y) with respect to y and

equating it to zero, which yields

0 = 1− (y + K−t)y/t.
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Solving this for y, we get

y± = −K−t

2
±

√
t +

K−t

2
.

Now noting that the root y− is inadmissible and that m′′(y+) < 0, we see

that we found the maximum indeed, so that

vt(t) ≤ y+ + K−t√
2πt3

=
1√
2π

(
K−

2
√

t
+

√
1

t2
+

(K−)2

4t

)
≤ 1√

2π

(
K−
√

t
+

1

t

)

using
√

a2 + b2 ≤ a + b, a, b ≥ 0.

Therefore

√
2

π

∫ 1

r

vt(t) dt√
1− t

≤ 1

π

[∫ 1

r

K−dt√
t(1− t)

+

∫ 1

r

dt

t
√

1− t

]

=
1

π

[
K−(π − 2 arcsin

√
r) + 2

∫ π/2

arcsin
√

r

du

sin u

]

≤ K−

π
(π − 2 arcsin

√
r) +

2(π/2− arcsin
√

r)

π
√

r

∣∣∣∣
r=1/2

=
K−

2
+

1√
2
.

Substituting this into (18) (with r = 1/2) and noting that
√

4/π+1/
√

2 <

2, we readily get inequality (15). This completes the proof of Lemma 1

and therefore that of Theorem 1 as well.

To prove Corollary 1, it suffices to show that, for the maximum devi-

ation of the piecewise linear approximant f from the original boundary

function g with the assumed properties, one has

‖f − g‖ ≤ γδ2/8, (19)

as the desired result will then immediately follow from Theorem 1. The

proof of bound (19) is elementary and is included only for the exposition

completeness’ sake.

Clearly,

‖f − g‖ = max
0<i≤n

max
t∈[ti−1,ti]

|f(t)− g(t)|,
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so we have to show that the bound holds for all the maximum deviations

on each of the subintervals [ti−1, ti], i = 1, . . . , n. Consider the first of

them (the same argument will clearly work for all the others as well). Put

ξ = arg max
t∈[t0,t1]

|f(t)− g(t)|

and observe that g′(ξ) = f ′(ξ). Putting

h(t) = g(ξ) + g′(ξ)(t− ξ), t ∈ [t0, t1].

we see that the last observation means that the plots of the linear (at

least, on the subinterval [t0, t1]) functions f and h are parallel to each

other: f(t)− h(t) = const, t ∈ [t0, t1].

Next, for j = 0, 1, one has

max
t∈[t0,t1]

|f(t)− g(t)| = |f(ξ)− g(ξ)| = |f(ξ)− h(ξ)| = |f(tj)− h(tj)|

= |g(tj)− h(tj)| = |g(tj)− g(ξ)− g′(ξ)(tj − ξ)|

=

∣∣∣∣
∫ tj

ξ

[∫ u

ξ

g′′(v) dv

]
du

∣∣∣∣ ≤
γ

2
(tj − ξ)2.

Now since minj=0,1(tj − ξ)2 ≤ ((t1 − t0)/2)2 ≤ δ2/4, the bound (19) and

hence the statement of Corollary 1 are proved.

3. Approximations for time-dependent barrier options prices

In this section we will discuss how the above results can be applied to

barrier options pricing.

It is well known that, under the no-arbitrage assumption, the fair price

of a (replicable) option (on an underlying asset with a price process

{St}t≥0) with maturity T and payoff fT is given by E(fT /BT ), where E

denotes the operation of taking expectation with respect to a risk-neutral

measure P and {Bt}t≥0 is the bank account process (for detail see e.g.

[18]). We will consider a call option with strike KT and time-dependent

lower/upper barriers G±(t) such that G−(t) < G+(t), t ≤ T . In this case,

the payoff function is given by

fT = (ST −KT )1{ST >KT ; G−(t)<St<G+(t), t∈[0,T ]}.



Boundary Crossing for Wiener Process 13

Assume that the bank account process is non-random and has the form

Bt = exp

{∫ t

0

r(s) ds

}
,

where r(t) is a positive function of time (the spot interest rate). Under the

assumptions of the standard diffusion model, the price of the underlying

asset St (under risk-neutral measure) has the following representation:

St = S0 exp

{∫ t

0

[r(s)− σ2/2] ds + σWt

}
, (20)

where σ is the (constant) volatility of the price process.

The following statement gives the representation of the option price in

terms of the boundary crossing probabilities.

Proposition 1. The fair price of the above double-barrier call option is

given by

S0p1 −KT exp

{
−

∫ T

0

r(s) ds

}
p0,

where

p1 = P
(
f−(t) < σWt + σ2t < f+(t), t ∈ [0, T ]; σWT + σ2T > F

)
,

p0 = P
(
f−(t) < σWt < f+(t), t ∈ [0, T ]; σWT > F

)
,

F = ln(KT /S0) +
1

2
σ2T −

∫ T

0

r(s) ds,

and

f±(t) = ln(G±(t)/S0) +
1

2
σ2t−

∫ t

0

r(s) ds, t ∈ [0, T ].

One can easily prove this statement using Girsanov’s transformation

(for details in the case of a one-sided barrier, see e.g. [12]).

To calculate the probabilities p0 and p1, one could use several differ-

ent techniques: a PDE approach [20], integral equations for the case

of one-sided barriers [15, 9], and Monte-Carlo simulation [14]. As both

probabilities p0 and p1 are of the form P (g−, g+; (M,∞)), one can also

use a numerical approximation based on the integral representation (8)

with a proper chosen spline approximations and respective probabilities
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pi(g−, g+|xi, xi+1). In particular, using piecewise linear (on uniform par-

titions) approximations for boundaries will yield, by Corollary 1, ap-

proximation rate O(n−2). Using generalized Daniels’ boundaries (see

Remark 5 above), the rate of convergence could potentially be improved

up to O(n−4) (or even to a higher order). Discussing the computational

efficiencies of different numerical techniques is beyond the scope of the

present paper.
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