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QUADRATIC HEDGING OF BASIS RISK

H. HULLEY† AND T. A. MCWALTER‡,∗

Abstract. This paper examines a simple basis risk model based on
correlated geometric Brownian motions. We apply quadratic criteria
to minimize basis risk and hedge in an optimal manner. Initially, we
derive the Föllmer-Schweizer decomposition of a European claim. This
allows pricing and hedging under the minimal martingale measure, cor-
responding to the local risk-minimizing strategy. Furthermore, since the
mean-variance tradeoff process is deterministic in our setup, the min-
imal martingale- and variance-optimal martingale measures coincide.
Consequently, the mean-variance optimal strategy is easily constructed.
Simple closed-form pricing and hedging formulae for put and call options
are derived. Due to market incompleteness, these formulae depend on
the drift parameters of the processes. By making a further equilibrium
assumption, we derive an approximate hedging formula, which does not
require knowledge of these parameters. The hedging strategies are tested
using Monte Carlo experiments, and are compared with recent results
achieved using a utility maximization approach.
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2 H. HULLEY AND T. A. MCWALTER

1. Introduction

When a contingent claim is written on an asset or process which is not
traded, it is natural to enquire about the effectiveness of hedging with a
correlated security. In this situation the market is incomplete, and the
risk that arises as a result of imperfect hedging is known as basis risk.
Examples include weather derivatives, real options, options on illiquid stocks
and options on large baskets of stocks.

Since not all the risk can be hedged, we are dealing with a typical in-
complete market situation, in which the appetite for risk must be specified
(usually in terms of a utility function). Recently, a number of authors have
formulated the problem of hedging basis risk in terms of the utility maxi-
mization approach (see e.g. Davis, 1999, 2006; Henderson, 2002; Henderson
and Hobson, 2002; Monoyios, 2004, 2007; Zariphopoulou, 2001). By con-
trast, we shall consider the application of quadratic criteria. Our approach
is similar to that of Schweizer (1992) (see also Duffie and Richardson 1991),
where the application was hedging futures with a correlated asset. For com-
prehensive reviews on the theory of quadratic hedging, the reader is directed
to Pham (2000) and Schweizer (2001).

We now describe the organization of this paper. To start with, in Sec-
tion 2 we provide a summary of the terminology and general theory used
throughout. In particular, we discuss the two quadratic approaches of local
risk minimization and mean-variance hedging. Key to the construction of
hedging strategies is a decomposition of the contingent claim, known as the
Föllmer-Schweizer (FS) decomposition. We also briefly describe the minimal
martingale measure and the variance-optimal martingale measure.

A simple basis risk model comprising two correlated geometric Brownian
motions is specified in the third section. We assume that it is not possible
to trade in the process on which the claim is written, but that the second
process is a security which is available for trade. Since the general theory
is developed in terms of discounted securities, we specify the discounted
dynamics of the two processes.

The FS decomposition of the claim is derived in the fourth section. This
is achieved by expressing the non-traded process in terms of the traded se-
curity and an orthogonal process. By using a drift-adjusted representation
of the non-traded process, it is possible to construct the minimal martin-
gale measure. The Feynman-Kac theorem can then be used to express the
discounted claim price as the solution of a PDE boundary-value problem.

In Section 5 we present the hedging strategies for the two quadratic ap-
proaches. The FS decomposition makes it easy to specify the locally risk-
minimizing strategy, with prices determined by taking expectations under
the minimal martingale measure. Furthermore, since the mean-variance
tradeoff process is deterministic under our model assumptions, the minimal
martingale measure and the variance-optimal martingale measure coincide.
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The mean-variance optimal self-financing strategy is thus easily constructed
as well.

Having obtained a PDE representation of the price of the claim and its
hedge parameters, in discounted terms, the sixth section does the same in
non-discounted terms, by employing a simple transformation of variables.
Remarkably, the PDE that emerges, for both local risk minimization and
mean-variance optimization, is the familiar Black-Scholes PDE, with a “div-
idend yield” parameter playing a risk-adjustment role. Consequently, both
approaches yield classical closed-form derivative pricing formulae for Euro-
pean calls and puts (which is advantageous from a computational point of
view). However, the hedge ratios for the two quadratic criteria are different,
which reflects the different attitudes to risk they imply.

In Section 7 we briefly introduce the utility maximization approach to our
problem that was proposed by Monoyios (2004, 2007). In the limiting case
of maximum risk aversion, we observe that his hedging algorithm becomes
the local risk-minimizing strategy.

A disadvantage of the quadratic hedging rules, as well as the approach of
Monoyios, is that they rely explicitly on drift estimates for the asset price
processes. In Section 8 we make an extra assumption, based on CAPM
equilibrium, which allows the derivation of a “naive” approximation of the
local risk-minimizing strategy. The advantage of this naive strategy is that
it does not require knowledge of the drift parameters.

In the penultimate section we demonstrate the effectiveness of the qua-
dratic hedging approaches numerically, and compare the results with those
obtained using the Monoyios algorithm and the naive strategy. Finally,
Section 10 concludes the paper.

2. General Theory

This section briefly introduces the terminology and theory required for the
remainder of the paper. We shall merely summarize the necessary results;
the reader is directed to the literature, primarily the account of Schweizer
(2001), for further information and proofs.

We start by fixing a finite time-horizon T ∈ (0,∞) and a filtered probabil-
ity space (Ω,F ,F,P). All processes are defined on this space, exist over the
time interval [0, T ], and are adapted to the filtration F = (Ft)t∈[0,T ], which
in turn is assumed to obey the usual conditions. For the sake of simplicity,
we take F0 to be trivial, and set F := FT .

We consider a frictionless financial market, with a single risky security
and a bank account, denoted by S and B respectively. The process X will
represent the discounted risky security, i.e. X := S/B. For the moment,
we leave the dynamics of the processes unspecified, except to say that the
bank account is predictable, and that X is a special semimartingale with
canonical decomposition X = X0 + M + A, where M ∈ M2

0,loc(P) and A
is a process with finite variation. We say that X satisfies the structure
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condition if there exists a predictable process α, such that A =
∫
αd〈M〉

and the mean–variance tradeoff process K̂ :=
∫
α2 d〈M〉 is a.s. finite. In

addition, we also introduce a contingent claim H, which we take to be an
FT -measurable square-integrable random variable.

Let Θ denote the family of predictable processes φ, such that the gain
process G(φ) :=

∫
φdX belongs to the space S2(P) of square-integrable

semimartingales. A hedging strategy is a pair of processes (ξ, η), where ξ ∈ Θ
and η is an adapted process, such that the value process V (ξ, η) := ξX+η is
right continuous and square-integrable. The process ξ represents a holding
in X, while η represents a holding in the bank account.

Since we are dealing with an incomplete market, the cost of a contingent
claim is not unique, and is consequently preference-dependent. In order to
quantify the risk of imperfect hedging, a cost process C(ξ, η) := V (ξ, η) −
G(ξ) is introduced. In a complete market C is deterministic and equal to
the preference-independent price of the claim—this follows directly from
the martingale representation results of Harrison and Pliska (1981, 1983).
In an incomplete market C is a stochastic process. Our aim is to price
the claim by estimating CT at inception, and to minimize the risk (i.e. the
deviation of the hedge portfolio from the terminal payoff) by minimizing a
suitable quadratic functional of the cost process. We briefly outline the two
approaches of local risk minimization and mean-variance hedging.

2.1. Local Risk Minimization. With this approach we consider those
strategies that replicate the contingent claim H at time T ; i.e. we insist on
the condition

VT (ξ, η) = H a.s. (1)

Since the market is incomplete, we need to relax the usual complete market
constraint that the value process be self-financing. As it happens, the weaker
notion of a mean-self-financing strategy—which corresponds to the situation
where the cost process is a martingale—is appropriate in this context.

Local risk minimization is a variational concept. Intuitively, it entails the
instantaneous minimization of the conditional variance of the increments of
the cost function C under the measure P. This is implemented with the
introduction of a risk-quotient, which we do not consider here—for details
we refer the reader to the original references (Schweizer, 1990, 1991, 2001).
Subject to certain technical conditions, it can be shown that finding the
local risk-minimizing strategy is equivalent to finding a decomposition of
the claim, known in the literature as the Föllmer-Schweizer decomposition.
A claim H is said to admit a Föllmer-Schweizer (FS ) decomposition if it
can be expressed as

H = H0 +
∫ T

0
ξHs dXs + LHT a.s., (2)

where H0 ∈ R, ξH ∈ Θ and LH ∈M2
0(P) is strongly orthogonal to M .
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In order to provide a precise statement of the local risk minimization
optimality result, we need to introduce the so-called minimal martingale
measure. To simplify matters, we shall assume that X, and hence also M
and A, are continuous. Now define a process Ẑ, by setting

Ẑt := E

(
−
∫ ·

0
αs dMs

)
t

,

for all t ∈ [0, T ]. It can be shown (see Schweizer 2001) that Ẑ ∈ M2
0,loc(P),

and that ẐX and ẐL are P-local martingales, for all L ∈M2
0,loc(P) strongly

orthogonal to M . Now suppose, furthermore, that Ẑ ∈ M2(P), and define
a probability1 measure P̂ ∼ P, by setting

dP̂
dP

:= ẐT ∈ L2(P).

Then Ẑ may be interpreted as the density process for P̂, in the sense that
dP̂/dP|Ft = Ẑt, for all t ∈ [0, T ].

The probability measure P̂, defined above, is an equivalent local martin-
gale measure (ELMM) for X, and is called the minimal martingale measure.
It is minimal in the sense that, apart form transforming X into a local mar-
tingale, it preserves the remaining structure of the model—in particular it
preserves the martingale property of all martingales strongly orthogonal to
M (see Föllmer and Schweizer (1991) for an amplification of this point). We
are now able to state the optimality result.

Theorem 1. Suppose that X is continuous, and hence satisfies the structure
condition. Furthermore, suppose that the density process for the minimal
martingale measure for X satisfies

Ẑ ∈M2(P). (3)

If H admits an FS decomposition (2), then (ξ̂, η̂) := (ξH , V̂ − ξHX) deter-
mines a (mean-self-financing) locally risk-minimizing strategy for H, where
the intrinsic value process is defined by setting

V̂t := EP̂ [H |Ft] = H0 +Gt(ξH) + LHt ,

for all t ∈ [0, T ]. Furthermore, a sufficient condition for (2) and (3) is that
K̂ is uniformly bounded.

Proof. See Theorem 3.5 of Schweizer (2001). �

1Note that continuity of M and the assumption of a.s. finite K̂ ensure that the Doléans
exponential E

(
−
∫ ·
0
αs dMs

)
is strictly positive.
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2.2. Mean-Variance Hedging. In contrast to local risk minimization, we
now insist that the hedge portfolio be self-financing over the life of the option
[0, T ). At its maturity, however, a profit or shortfall is realized, so that
condition (1) is met. The mean-variance optimal strategy is characterized
as that strategy for which the profit or loss at time T has the smallest
variance. More precisely, the mean-variance optimal strategy is the self-
financing strategy (ξ̃, η̃), with ξ̃ = ξ(v) and V0(ξ̃, η̃) = v, such that

E
[
(CT − v)2

]
= E

[(
H − v −GT

(
ξ(v)
))2
]

is minimized over all
(
v, ξ(v)

)
∈ R×Θ. The initial value v is known as the

approximation price of H.
Related to the problem of finding the mean-variance optimal strategy is

the problem of finding the variance-optimal martingale measure for X. As
before, we assume that X is continuous2, and consider the set P2

e(X) of all
measures Q ∼ P, where Q is an ELMM for X, with dQ

dP ∈ L
2(P). Then a

measure in P2
e(X) is called variance-optimal if it minimizes

Var
[
dQ
dP

]
= E

[(
dQ
dP
− 1
)2
]

= E

[(
dQ
dP

)2
]
− 1,

over all Q ∈ P2
e(X).

In general, the minimal martingale measure and the variance optimal
martingale measure are different, in which case significant effort is required
to find the mean-variance optimal strategy (see e.g. Heath et al. 2001).
Under certain circumstances, however, the measures coincide—the following
theorem provides such an instance, and the resultant form of the mean-
variance optimal strategy.

Theorem 2. Suppose X is continuous, and that the final value of the mean-
variance tradeoff is deterministic (thus ensuring that the FS decomposition
(2) exists). Then the variance-optimal martingale measure and the mini-
mal martingale measure coincide. Furthermore, the mean-variance optimal
strategy for H is the self-financing strategy (ξ̃, η̃), with ξ̃ = ξ(v), where

v = EP̂ [H]

and
ξ
(v)
t = ξHt + αt

(
V̂t − v −Gt

(
ξ(v)
))
,

for all t ∈ [0, T ]. It then easily follows from the self-financing property that

η̃t = v +Gt
(
ξ(v)
)
− ξ(v)t Xt,

for all t ∈ [0, T ].

Proof. See Theorems 4.6 and 4.7 of Schweizer (2001). �

2In the case whereX is not continuous, a more general set of signed martingale measures
must be considered—see Section 4 of Schweizer (2001) for details.
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With the mathematical requisites established, we are now in a position
to introduce the market assumptions and apply the theory to the problem
of hedging basis risk.

3. Market Assumptions

As in the previous section, we fix a finite time-horizon T ∈ (0,∞) and
a stochastic basis (Ω,F ,F,P), which supports two orthogonal Brownian
motions W and W⊥. All processes are defined on the above stochastic basis
(in particular, they exist over the time interval [0, T ]), and are adapted to
the filtration F = (Ft)t∈[0,T ], which we take to be the augmentation of the
filtration generated by W and W⊥. It therefore follows that F satisfies the
usual conditions.

We specify a bank account process B, as follows:

Bt := ert,

for all t ∈ [0, T ], where r > 0 is a constant short rate. The process S
represents a traded risky asset, while U is an observable correlated process
on which an option is written. The option is European, with maturity T
and payoff h(UT ), for some Borel-measurable function h : R+ → R+. The
objective is to hedge this claim using the traded asset S, in such a way that
the basis risk is minimized.

Since the analysis is carried out using discounted assets, we introduce two
new processes—X representing the discounted traded asset, and Y repre-
senting the discounted non-traded process—by setting

X :=
S

B
and Y :=

U

B
.

Furthermore, we assume that the discounted assets are driven by the Brow-
nian motions W and W⊥, as follows:

dXt = (µS − r)Xt dt+ σSXt dWt, (4)

dYt = (µU − r)Yt dt+ σUYt(ρ dWt +
√

1− ρ2 dW⊥t ) (5)

for all t ∈ [0, T ], where σU , σS > 0, µU , µS > r and −1 ≤ ρ ≤ 1 are
constants. We wish to hedge the discounted European claim h̄(YT ), where
h̄ : R+ → R+ is defined by

h̄(x) := e−rTh(erTx),

for all x ∈ R+, using the discounted traded asset X.
For convenience, we define the Sharpe ratios for the traded asset and the

non-traded process as follows:

θS :=
µS − r
σS

and θU :=
µU − r
σU

.

In the case where the assets are perfectly correlated (i.e. ρ = 1), it is well
known (see e.g. Davis 1999) that the absence of arbitrage implies that their
Sharpe ratios should be equal (i.e. θU = θS). Under this condition, the
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(non-discounted) price of a European call or put on the non-traded asset is
given by BS(t, Ut, 0, σU ), where

BS(t, s, q, σ) := δ
(
se−q(T−t)N(δd1)−Ke−r(T−t)N(δd2)

)
,

is the standard Black-Scholes formula, with

d1 :=
ln(s/K) + (r − q + σ2/2)(T − t)

σ
√
T − t

and d2 := d1 −
√
T − t.

Also, δ = 1 for a call and δ = −1 for a put, while K > 0 is the strike
price, and q ∈ R is a dividend yield parameter3. Hedging is then achieved
by holding

σUUt
σSSt

∆BS(t, Ut, 0, σU ) (6)

units of the traded asset S at each time t ∈ [0, T ], where

∆BS(t, s, q, σ) := δe−q(t−T )N(δd1)

is the usual Black-Scholes delta. It will be shown that the quadratic hedging
approaches are consistent with this limiting regime.

4. The Föllmer-Schweizer Decomposition

We now derive the FS decomposition for the basis risk model presented
in the previous section. To start with, note that X satisfies the structure
condition, since its canonical decomposition takes the form

Xt = X0 +Mt +
∫ t

0
αs d〈M〉s, (7)

with

Mt :=
∫ t

0
σSXs dWs and αt :=

µS − r
σ2
SXt

, (8)

for all t ∈ [0, T ]. We seek a decomposition of the discounted claim of the
form

h̄(YT ) =: H = H0 +
∫ T

0
ξHs dXs + LHT a.s., (9)

where H0 ∈ R, ξH ∈ Θ and LH ∈M2
0(P) is strongly orthogonal to M .

Now, by rearranging (4), we get

dWt =
dXt

σSXt
− θS dt,

for all t ∈ [0, T ]. Substituting this into (5) yields

dYt
Yt

= (µU − r − ρσUθS) dt+ σU

(
ρ

σSXt
dXt +

√
1− ρ2 dW⊥t

)
, (10)

3Usually the dividend yield applies to the stock on which the option is priced. Note
that we have not modeled a dividend yield in our basis risk model. We will, however,
require this more general Black-Scholes formula later.
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for all t ∈ [0, T ]. We now specify the drift-adjusted process Ỹ as the unique
strong solution of the backward stochastic differential equation

dỸt = Ỹt

(
dYt
Yt

+ κ dt

)
,

for all t ∈ [0, T ], where
κ := σU (ρθS − θU ) , (11)

and ỸT = YT is the terminal condition (for existence and uniqueness see §2
of El Karoui et al. (1997)). A simple calculation shows that

Ỹt = e−κ(T−t)Yt,

which, when substituted into (10), yields

dỸt = σU Ỹt

(
ρ

σSXt
dXt +

√
1− ρ2 dW⊥t

)
, (12)

for all t ∈ [0, T ].
We now construct the minimal martingale measure for X. By the defi-

nition of the minimal martingale measure and the canonical decomposition
(7), the density process for P̂ is given by

Ẑt = E

(
−
∫ ·

0
αs dMs

)
t

= E (−θSW )t ,

for all t ∈ [0, T ]. Since X is a martingale under P̂, we can define a new
process Ŵ as follows:

dŴt = dWt + θS dt,

for all t ∈ [0, T ]. Since Ŵ Ẑ is a martingale and
〈
Ŵ
〉P̂
t

=
[
Ŵ
]
t

= t, for
all t ∈ [0, T ], Lévy’s characterization of Brownian motion (see e.g. Shreve,
2004, Thm. 4.6.4, p. 168) informs us that Ŵ is a Brownian motion under P̂.
Rewriting (4) and (12) in terms of Ŵ gives

dXt = σSXt dŴt

and
dỸt = σU Ỹt

(
ρ dŴt +

√
1− ρ2 dW⊥t

)
, (13)

for all t ∈ [0, T ]. Note that W⊥ is strongly orthogonal to M , which means
that its martingale property is preserved under the minimal martingale mea-
sure. Since 〈U〉P̂t = [U ]t = t, we see that U is also a Brownian motion under
P̂, again by Lévy’s characterization of Brownian motion. This in turn means
that the expression in brackets in (13) is a Brownian motion under P̂.

We now use the Feynman-Kac theorem (see e.g. Shreve 2004, Thm. 6.4.1,
p. 268) to infer a PDE representation for the claim. Define F : [0, T ] ×
(0,∞)→ R+, by setting

F (t, x) := EP̂
[
h̄(ỸT )

∣∣∣ Ỹt = x
]
,
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for all (t, x) ∈ [0, T ]× (0,∞). Obviously we then have

F (T, x) = h̄(x), (14)

for all x ∈ (0,∞). According to the Feynman-Kac theorem, F satisfies the
following PDE:

∂F

∂t
(t, x) +

1
2
σ2
Ux

2∂
2F

∂x2
(t, x) = 0, (15)

for all (t, x) ∈ [0, T ] × (0,∞), with terminal condition (14). Applying Itô’s
formula to the process (F (t, Ỹt))t∈[0,T ] yields

h̄(YT ) = h̄(ỸT ) = F (T, ỸT ) = F (0, Ỹ0) +
∫ T

0

∂F

∂x
(t, Ỹs) dỸs

+
∫ T

0

(
∂F

∂t
(s, Ỹs) +

1
2
σ2
U Ỹ

2
s

∂2F

∂x2
(s, Ỹt)

)
ds.

Substituting (12) and (15) into this expression gives

h̄(YT ) = F (0, Ỹ0) +
∫ T

0
ρ
σU Ỹs
σSXs

∂F

∂x
(s, Ỹs) dXs

+
∫ T

0
σU Ỹs

√
1− ρ2

∂F

∂x
(s, Ỹs) dW⊥s .

This is the FS decomposition we have been looking for. Comparing terms
with (9), we obtain

H0 = F (0, Ỹ0) = EP̂
[
h̄(ỸT )

]
;

ξHt = ρ
σU Ỹt
σSXt

∂F

∂x
(t, Ỹt); and

LHt =
∫ t

0
σU Ỹs

√
1− ρ2

∂F

∂x
(s, Ỹs) dW⊥s ,

(16)

for all t ∈ [0, T ].

5. Hedging Strategies

Now that we have the FS decomposition, we can easily determine the
locally risk-minimizing strategy. By Theorem 1 it is the mean self-financing
strategy (ξ̂, η̂) determined by

(ξ̂t, η̂t) :=
(
ξHt , V̂t − ξHt Xt

)
,

where ξH is given by (16) and

V̂t := EP̂
[
h̄(ỸT )

∣∣∣Ft

]
= F (t, Ỹt),

for all t ∈ [0, T ]. (Here ξ̂ specifies the holding in the discounted traded asset
X, and η̂ is the holding in the bank account.)
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It is also an easy matter to find the mean-variance optimal strategy. Since
X satisfies the structure condition, we can use (8) to obtain the mean-
variance trade-off process K̂, as follows:

K̂t =
∫ t

0
α2
sd〈M〉s =

∫ t

0

(
µS − r
σS

)2

ds = θ2
St,

for all t ∈ [0, T ]. This is clearly bounded on [0, T ], and thus by Theorem 2,
we can express the self-financing mean-variance optimal strategy (ξ̃, η̃) as
follows:

(ξ̃t, η̃t) :=
(
ξ
(v)
t , v +Gt

(
ξ(v)
)
− ξ(v)t Xt

)
,

where

v = EP̂
[
h̄(ỸT )

]
= F (0, Ỹ0) and ξ

(v)
t = ξHt + αt

(
V̂t − v −Gt

(
ξ(v)
))
,

for all t ∈ [0, T ]. Here G
(
ξ(v)
)

is the gain from trading in the discounted
asset X, using ξ(v).

6. Closed-Form Expressions for Pricing and Hedging

In the previous two sections we manipulated the discounted assets to ob-
tain the FS decomposition of the discounted claim, as well as the hedge port-
folios (in terms of the discounted assets) for the two quadratic approaches. It
is interesting to note that (15) looks similar to the discounted Black-Scholes
PDE. By transforming variables, we now consider the situation without dis-
counting.

Define the function V : [0, T ]× (0,∞)→ R+, by setting

V (t, s) := ertF
(
t, e−rtse−κ(T−t)

)
,

for all (t, s) ∈ [0, T ]× (0,∞). The PDE (15) may then be rewritten as

rV (t, s) =
∂V

∂t
(t, s) + (r − κ)s

∂V

∂s
(t, s) +

1
2
σ2
Us

2∂
2V

∂s2
(t, s),

for all (t, x) ∈ [0, T ]× (0,∞), with the terminal condition, corresponding to
(14), given by

V (T, s) = h(s),

for all s ∈ (0,∞). When h(s) is the payoff of a put or a call, the solution
of this PDE is given by the Black-Scholes option pricing formula for a stock
with a continuous dividend yield κ:

V (t, s) = BS(t, s, κ, σU ).

Noting that

∂V

∂s
(t, s) = e−κ(T−t)

∂F

∂x

(
t, e−rtse−κ(T−t)

)
,
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a simple substitution into (16) allows the computation of the hedge param-
eters for the optimal strategies. For the local risk-minimizing strategy, we
have

ξ̂t = ρ
σUUt
σSSt

∂V

∂s
(t, Ut) = ρ

σUUt
σSSt

∆BS(t, Ut, κ, σU ), (17)

for all t ∈ [0, T ]; and for the mean-variance optimal strategy, we get

ξ̃t = ξ̂t +
µS − r
σ2
Se
−rtSt

(
V̂t − v −Gt

(
ξ̃
))

= ξ̂t +
µS − r
σ2
Se
−rtSt

(
V̂t − v −

∫ t

0
ξ̃u d

(
e−ruSu

))
,

(18)

with
V̂t = e−rtV (t, Ut) = e−rtBS(t, Ut, κ, σU )

and
v = V (0, U0) = BS(0, U0, κ, σU ),

for all t ∈ [0, T ]. Recall that v in this context is interpreted as the approxi-
mation price of the claim.

Note that when U and S are perfectly correlated (i.e. when ρ = 1), arbi-
trage considerations ensure that their respective market prices of risk must
be equal. In this case, it follows from (11) that κ = 0, which implies that
(17) and (6) are the same. This demonstrates that the local risk minimiza-
tion approach is consistent with the standard Black-Scholes hedge in the
limiting case of a complete market.

It is possible to show that the mean-variance hedging strategy is also
equivalent to the Black-Scholes strategy in the limiting case. Since we are
dealing with a complete market, the cost process is constant and equal to the
approximation price of the claim v. Therefore, the term in brackets in (18)
is equal to zero, for all t ∈ [0, T ], thereby showing that the mean-variance
strategy is equal to the local risk-minimizing strategy (and, in turn, to the
Black-Scholes hedge).

7. The Utility Formulation of Monoyios

In this section we briefly outline the utility formulation of the basis risk
problem presented in Monoyios (2004, 2007) and highlight the connection
between this approach and the local risk-minimizing approach. We do not
present the full details of how the pricing and hedging rules are derived, but
direct the reader to the original papers for details.

The basic problem of hedging basis risk may be expressed as a utility
maximization problem, as follows

(ξ∗, η∗) = arg max
(ξ,η)

E [U(VT (ξ, η) + nh(UT ))] , (19)

where n is the number of options written. The utility function used by
Monoyios is the exponential utility function

U(x) = − exp(−γx),
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for all x ∈ (0,∞), were γ ∈ (0, 1) is the risk aversion parameter.
Unfortunately the problem (19) does not have a closed-form analytical

solution, and Monoyios therefore proposes two numerical schemes to allow
the computation of prices and hedge parameters. The first paper (Monoyios
2004) uses a perturbation expansion, while the second paper (Monoyios
2007) uses cumulant expansions in a similar manner. In both cases, prices
and hedge parameters are effectively specified as power series expansions in
terms of the following dimensionless parameter4:

a := −γ(1− ρ2)n.

Monoyios assumes that n = −1, corresponding to a single short put position,
thereby ensuring that 0 < a < 1. In Proposition 3 of Monoyios (2007), the
indifference pricing formula is given by

p(n)(t, u) = e−r(T−t)
5∑
j=1

aj−1

j!
kj(h(UT )) + O(a5), (20)

where kj is the jth cumulant of the payoff under the minimal martingale
measure, conditional on Ut = u. The optimal hedging strategy (see Propo-
sition 2 and Corollary 1 of Monoyios (2007)) is given by

∆(H)
t = −nρσUUt

σSSt

∂p(n)

∂u
(t, Ut). (21)

The pricing and hedging rules in Monoyios (2004) are equivalent to the
above rules, with the sum evaluated only over the first 4 terms.

The first cumulant in (20) is given by k1(h(UT )) = EP̂ [h(UT ) |Ut = u],
which means that, under the situation of maximum risk aversion (i.e. γ → 0),
the indifference price of the option is equal to the price calculated using the
local risk-minimizing portfolio choice. Although we do not prove it here,
it can also be shown that, under maximum risk aversion, the local risk-
minimizing hedge ratio (17) coincides with the optimal hedging strategy
(21) above.

It should be noted that in order to provide a good level of hedging (i.e. low
variance of the distribution of profits and losses from hedging), the risk
aversion parameter should be small (γ ∼ 0.01). As we shall see in Section 9,
it is only feasible to carry out basis risk hedging when the correlation has an
absolute value close to unity. This leads to a very small positive value for a.
With this in mind, we expect to see similar numerical results for the utility
formulation to those produced by the local risk-minimizing approach.

Due to a constraint in the utility maximization formulation, the algo-
rithms proposed by Monoyios cannot be used directly for pricing and hedg-
ing a call option. To overcome this shortcoming, Henderson and Hobson

4Note that in Monoyios (2004) the Taylor expansion is made in terms of ε =
√

1− ρ2,
but only even powers of ε appear in the expansion, and each term incorporates the relevant
power of γ.
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(2002) suggest modeling the call using a static hedge consisting of put op-
tions. By contrast, the quadratic formulations are applicable to both puts
and calls, without modification.

8. A Naive Strategy

While the hedging strategies derived in Section 6 have the advantage
of yielding closed-form expressions, they implicitly (through the dividend
yield parameter κ) rely on being able to estimate the drift coefficients of the
asset price processes. As is well known this is very difficult to do. For an
amplification of this point, see Rogers (2001), where the error in the classical
Merton model, as a result of parameter uncertainty, is compared with the
error due to discrete rebalancing.

Monoyios (2007) proposes a filtering approach to estimate the drift coeffi-
cients from observations of the asset prices, and finds expressions which could
in principle be used as the starting point for a numerical scheme similar to
that outlined in the previous section. Here we pursue a different approach,
by posing the following question: What is the best possible hedge, if one is
ignorant of the drift parameters?

One way of doing this is by assuming that ρ = 1, in which case no-
arbitrage considerations imply that θU = θS . In this case we obtain (6) as an
approximate hedging strategy, which is independent of the drift coefficients
of the assets. Monoyios (2004) uses this strategy as a benchmark in his
numerical experiments (even when ρ 6= 1). Using the capital asset pricing
model (CAPM) as inspiration, we shall now derive an improved benchmark
strategy, which is independent of the drifts of the underlying assets, without
imposing any assumptions on the value of ρ.

Under the assumptions of the CAPM, we can express the “beta” of U ,
with respect to the “market portfolio” S, as follows:

βU := ρ
σU
σS
.

The following relation then expresses the drift rate of U in terms of the drift
rate of S, under the assumptions of CAPM equilibrium:

µU − r = βU (µS − r)
(see e.g. Luenberger, 1998, §7.3, p. 177). The above two equations imply
that

θU = ρθS .

From (11) it now follows that κ = 0, and therefore (17) yields the following
naive approximation to the local risk-minimizing strategy:

ξ̂nt := ρ
σUUt
σSSt

∆BS(t, Ut, 0, σU ). (22)

Note that this strategy requires no knowledge of the drift coefficients of the
assets, but nevertheless imposes no constraints on the correlation coefficient.
In Section 9, where it is used as a benchmark for our numerical simulations,
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we shall see that it performs substantially better than the naive strategy of
Monoyios (2004), outlined above.

Of course, it is possible to raise numerous objections to the CAPM as-
sumptions in the context above. Nevertheless, as we shall see in the results
of our numerical simulations, the hedging strategy (22) performs remark-
ably well. Thus, even if the CAPM is economically unjustified in our setup,
taking account of the actual value of ρ improves hedging performance.

9. Hedge Simulation Results

To evaluate the effectiveness of hedging using the quadratic techniques, we
now analyze the results of some hedge simulations. Initially, a comparison of
the quadratic techniques with the numerical results obtained by Monoyios
(2004, 2007) was undertaken for a European put option. The put was written
on the non-traded asset U and the risk was hedged by trading in S. Table 1
lists the model parameters used.

A Monte Carlo experiment was undertaken to test hedging performance.
One million paths for U and S were generated, and rebalancing was allowed
to take place 200 times, at equal intervals, over the life of the option. The
approximation price of the option was used as the initial endowment. At
the end of the period a profit or loss was recorded, as the difference between
the accumulated gain from hedging and the expiry value of the option.

Five strategies were used to compute the hedge parameters. These were
the naive strategy (22), the local risk-minimizing hedge ratio (17), the mean-
variance optimal hedge ratio (18), the O(a4) hedge ratio proposed in Sec-
tion 4.1.1 of Monoyios (2004), and the O(a5) hedge ratio of Proposition 2
in Monoyios (2007).

Two values of ρ were used, namely 0.85 and 0.95, while three values of
the risk aversion constant γ were used for the Monoyios algorithms, namely
0.001, 0.01 and 0.1. Tables 2 and 3 provide summary statistics for the Monte
Carlo experiments.

It should be noted that the O(a4) and O(a5) Monoyios algorithms give
the same results for γ = 0.001 and γ = 0.01. This is due to the fact that the
parameter a is very small for these levels of risk aversion, making the fifth
order term in the expansions (20) and (21) irrelevant—see the discussion in
Section 7. The fifth order term only makes a difference when γ = 0.1, and
even then, only for the smaller correlation coefficient.

Histograms of the resulting terminal profits or losses are given in Figure 1.
Since the γ = 0.001 results are not significantly different from those of the
local risk-minimizing strategy, and since the γ = 0.1 histograms are not very
accurate, we only provide histograms for the O(a5) Monoyios algorithm with
γ = 0.01.

The results are encouraging, with the local risk-minimizing strategy per-
forming at least as well as the Monoyios algorithm (i.e. higher mean/median
profit and lower standard deviation). This is not surprising, since for small
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values of γ we are close to being maximally risk-averse. The mean-variance
optimal strategy performed slightly better than the other two, with a stan-
dard deviation that was 1–2% lower. This can be seen as an enhanced peak
around the mean in the relevant histograms. One slight drawback of this
method is that its largest losses exceeded the largest losses of the other meth-
ods. The naive strategy performed surprisingly well (certainly significantly
better than the naive strategy in Monoyios’ simulations). This is due to
the fact that, under the choice of parameters used, the CAPM equilibrium
condition is not unreasonable.

Table 4 shows the approximation prices for various values of the corre-
lation coefficient, for both put and call options, based on the parameters
presented in Table 1. It is interesting to note that the approximation prices
for the put are lower than the Black-Scholes prices, while the converse is
true for the call. One should not interpret these prices as the premiums
charged for the options, since not all risk is hedged, due to incompleteness.
It is therefore necessary to estimate the standard deviation of the hedging
error, so that the option writer can charge an appropriate risk premium.

Figure 2 shows the approximation prices and standard deviations of hedg-
ing errors for the put, using the naive, local risk-minimizing and mean-
variance optimal hedging strategies. Figure 3 shows the same results for a
call. The standard deviations were estimated based on Monte Carlo samples
of 100,000 paths. We see from these graphs that hedging basis risk is only
viable when the assets are highly correlated (in absolute value)—the error
in hedging increases rapidly as the correlation between the assets decreases.
It is interesting to note that the naive strategy performs very well for cor-
relations close to unity. As the correlation coefficient reduces and becomes
negative, it becomes less and less effective, however. This is due to the fact
that, under the asset parameters used, the CAPM equilibrium assumption
becomes less realistic as the correlation decreases.

10. Conclusions

In this paper we used quadratic criteria to derive simple closed-form hedg-
ing rules for minimizing basis risk. These rules are considerably simpler than
the hedging rules based on utility maximization, and perform slightly bet-
ter. Their simplicity is a consequence of the fact that they are based on
the Black-Scholes formula. By contrast, the utility maximization approach
requires the use of series expansions in order to solve the relevant PDEs,
which were in turn originally derived using a “distortion” technique. It is
important to note that all algorithms are only effective when the traded and
non-traded assets are highly correlated (in absolute value)—this confirms
the sobering conclusions of Davis (2006).

As is usual in incomplete market settings, the solutions depend on esti-
mating the growth rates of the assets—a task which is recognized to be very
difficult. In order to address this issue, we have derived a naive hedging
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strategy that does not depend on the drift parameters. This comes with an
implicit drawback, however—the performance of the strategy is dependent
on how well a CAPM equilibrium condition is obeyed. In order to estab-
lish if this assumption is reasonable, in the context of specific real-world
applications, further investigation is required.
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U0 S0 K r µU σU µS σS T
100 100 100 5% 0.12 0.30 0.10 0.25 1 year

Table 1. Model parameters employed by the hedge simula-
tions (the same as in Monoyios (2004)).

Strategy Max Min Mean SD Median
Naive 36.02 -44.99 -0.0341 6.6530 0.9150
Local Risk 35.49 -44.94 0.0123 6.6487 1.1130
Mean variance 40.64 -47.24 0.0113 6.5908 1.0246
Monoyios O(a4), γ = 0.001 35.52 -44.94 0.0101 6.6487 1.1037
Monoyios O(a5), γ = 0.001 35.52 -44.94 0.0101 6.6487 1.1037
Monoyios O(a4), γ = 0.01 35.78 -44.96 -0.0096 6.6498 1.0231
Monoyios O(a5), γ = 0.01 35.78 -44.96 -0.0096 6.6498 1.0231
Monoyios O(a4), γ = 0.1 37.90 -44.95 -0.2101 6.7894 0.2264
Monoyios O(a5), γ = 0.1 37.90 -44.95 -0.2094 6.7880 0.2299

Table 2. Summary statistics of hedging error for the put
option with parameters given by Table 1 and ρ = 0.85.

Strategy Max Min Mean SD Median
Naive 23.96 -28.98 -0.0283 4.0133 0.2169
Local Risk 23.59 -29.11 0.0072 4.0075 0.3554
Mean variance 26.08 -30.76 0.0064 3.9726 0.3249
Monoyios O(a4), γ = 0.001 23.60 -29.11 0.0063 4.0075 0.3521
Monoyios O(a5), γ = 0.001 23.60 -29.11 0.0063 4.0075 0.3521
Monoyios O(a4), γ = 0.01 23.70 -29.08 -0.0014 4.0079 0.3230
Monoyios O(a5), γ = 0.01 23.70 -29.08 -0.0014 4.0079 0.3230
Monoyios O(a4), γ = 0.1 24.71 -28.77 -0.0796 4.0453 0.0315
Monoyios O(a5), γ = 0.1 24.71 -28.77 -0.0796 4.0453 0.0316

Table 3. Summary statistics of hedging error for the put
option with parameters given by Table 1 and ρ = 0.95.
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ρ Put Call
-0.95 5.3127 23.7315
-0.75 5.6321 22.6965
-0.50 6.0493 21.4435
-0.25 6.4870 20.2358
0 6.9451 19.0730
0.25 7.4238 17.9549
0.50 7.9231 16.8812
0.75 8.4428 15.8514
0.95 8.8733 15.0588
1 9.3542 14.2312

Table 4. Put and call option approximation prices for var-
ious values of ρ. (For ρ = 1, they are Black-Scholes prices.)
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Figure 1. Histograms of the hedging errors for the put op-
tion, based on one million sample paths. The approximation
prices were 8.6564 and 8.8733, corresponding to correlation
coefficients of 0.85 and 0.95, respectively.
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Figure 2. Approximation price and standard deviation of
hedging error vs correlation, for the put option with param-
eters given by Table 1.
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Figure 3. Approximation price and standard deviation of
hedging error vs correlation, for the call option with param-
eters given by Table 1.
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