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ABSTRACT We consider the pricing of American bond options in a Heath-Jarrow-
Morton framework in which the forward rate volatility is a function of time to maturity
and some underlying interest rate. It turns out that in this case the resulting pricing
partial differential operators are two dimensional in the spatial variables. In this paper
we investigate an efficient numerical method to solve these partial differential equations
for American option prices and the corresponding free exercise surface. We consider in
particular the method of lines which other investigators (eg Carr and Faguet (1994) and
Van der Hoek and Meyer (1997)) have found to be efficient for American option pricing
when there is one spatial variable. In extending this methodfor the two dimensional
case, we solve the pricing equation by discretising the timevariable and one of the
state variables and use the spot rate of interest as a continuous variable. We compare
our method with the lattice method of Li, Ritchken and Sankarasubramanian (1995).1

1 Introduction

The Heath-Jarrow Morton approach to modeling the term structure of interest rates pro-
vides a complete and consistent theoretical framework for the evaluation of interest rate
contingent claims. This approach mirrors for interest ratemarkets the Black-Scholes
framework for the stock option. However, the main implementation difficulty of the
Heath-Jarrow-Morton model is that for the most general specifications of the forward
rate volatility function, the stochastic process for the instantaneous spot rate of interest
is non-Markovian. That is, the evolution of the instantaneous spot rate depends on the
all the paths taken by the term structure since the initial date. Hence, popular lattice
models used for pricing interest rate options in this framework will be non-recombining
and tend to grow exponentially with the number of steps in thelattice.

A great deal of research has therefore gone into determiningwhich specification
of the forward rate volatility functions allow the stochastic dynamics driving the term

1This document is preliminary and incomplete. Please do not quote without author’s permission.
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structure of interest rates to be reduced to Markovian form.In particular Cheyette
(1992), Ritchken and Sankarasubramanian (1995), Carverhill(1994) and, Bhar and
Chiarella(1997), show that this is possible when the forward rate volatility is a function
of the spot rate of interest and time to maturity. Inui and Kijima (1997), and Chiarella
and Kwon (2004) have shown that this reduction is also possible when the functional
dependence on the spot rate is extended to functional dependence on a whole set of
forward rates. In this way the dynamics of the entire yield curve can be reasonably
well captured by the dynamic evolution of a finite number of rates (usually one would
use the most liquidly traded rates). An important result in this literature is that with this
quite general volatility specification it is possible to obtain a closed form expression for
zero coupon bond prices in terms of the underlying rates.

The reduction to Markovian form comes at the cost of increasing the dimension
of the state space by introducing integrated variance type quantities. A feature of the
Markovian representation is that it is possible to obtain the infinitesimal generator for
the transition probability density of the stochastic process driving the term structure of
interest rates, from which it is then possible to obtain the partial differential equations
determining the value of interest rate contingent claims.

In Chiarella and El-Hassan (1997), we have considered and solved by the method
of lines partial differential equation for American options on zero coupon bonds in the
case where the forward rate volatility is a deterministic oftime to maturity. In this pa-
per we extend that work by allowing the forward rate volatility to be a function of the
instantaneous spot rate of interest and time to maturity. Weknow from Ritchken and
Sanakarasubrnaian (1995) and Bhar and Chiarella (1997) that in this case the Marko-
vian system driving the term structure of interest rates depends on the spot rate itself
and an accumulated variance quantity. Li, Ritchken and Sankarasubramanian(1995)
also consider the problem of pricing interest rate contingent claims in this framework.
They develop a binomial-type lattice model which involves maintaining a vector of
information on the accumulated variance at each node of the tree.

In this paper, we also consider the same problem but from the point of view of
considering the partial differential equation implied by the infinitesimal generator of
the two state variable stochastic process. Our approach allows us to obtain the par-
tial differential equation which is the analogue of the Black-Scholes partial differential
equation in that is also preference free. It also allows us toapply the full gamut of the
numerical techniques for the solutions of partial differential equations to the evalua-
tion of interest rate contingent claims. We believe this framework clarifies the pricing
of interest rate contingent claims in the HJM framework and adds to the tool kit for
pricing such claims. Here the numerical technique we employis the method of lines
which has been successively applied to the American put options on common stock by
Goldenberg and Schmidt (1994), Meyer and Van der Hoek (1997)and Carr and Faguet
(1996). The method of lines is found to be accurate and relatively efficient. An ad-
vantage of the method is that the delta of the option is a by-product of the numerical
procedure. Furthermore, the solution generates a value surface for a variety of values
of the underlying state variables for a given point in time. The method also facilities
the determination of the early exercise surface for the American option problem. We
test the accuracy of the method by using it to solve the partial differential equation for
bond prices for which there is a known analytic solution.
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The plan of the paper is as follows. In section 2, we discuss the reduction to Marko-
vian form, the bond pricing formula and derivation of the partial differential equation
for the value of contingent claims. In section 3, we outline the method of lines as
applied to the American put bond options problems. Section 4, discusses numerical re-
sults and sections 5 draws some conclusion and makes suggestions for further research.

2 Markovian HJM Models

The driving state variable of the HJM approach is
� ���� �

, the forward rate at time
�

for instantaneous borrowing at time
�

. HJM show that under the equivalent martingale
measure the forward rate dynamics can be expressed as� ���� � � � ���� � � 	
� ���� � ���� (1)

where

����� � �� � �� ���� � �� �
	 �� ����� ����� (2)�� ���� � ��
is the forward rate volatility function whose third argument indicates

possible dependence on a stochastic variable such as���� or
� ���� �

itself. Finally,����� is a Wiener process under the equivalent martingale measure.
From equation (1), we readily obtain the process for the instantaneous spot rate,������ � ��� ���, as the stochastic integral equation

���� � � ����� � 	
� �� ����� ��
	
� �� ����� ������ �

	
� �� ����� ��� ����� (3)

or the stochastic differential equation����� � ��������� � ���
	
� �� ����� ��

	
� �� ����� ������  
	
� ��� ����� ��� �����

!"��� ��� �� ��� ������ (4)

The price of a pure discount bond# ���� � $� %&' ( �)	 � ��� ��*+, by Ito’s

lemma satisfies the stochastic differential equation�# ���� � � ����# ���� ��� � �� �
	 �� ����� ����
!" # ���� �� �����

� 	
� �� ��� � ��� ����� (5)
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The non-Markovian nature of the foregoing stochastic dynamical system stems
from the third term in the drift coefficient of the stochasticdifferential equation (4)
for ����. This term is an integral over the history of the noise process. A number
of authors have shown how to reduce the non-Markovian systemto a Markovian sys-
tem of higher dimension by making various assumptions aboutthe volatility function�� ����� ��

; see Cheyette (1992), Caverhill (1994), Ritchken and Sanakarasubramanian
(1995), Bhar and Chiarella (1997, 1998).

Bhar and Chiarella (1997) in particular show that if�� ���� � �� � ,-��  ��./01�/	23������� � 4 ��
(6)

where
,-���

is a polynomial,,-��� � 5� � 56� � � � � � 5-�-�
and

3
is some reasonably well-behaved function, then the system dynamics may be

expressed in Markovian form. The cost of this reduction is the introduction of some
supplementary state variables that summarize various statistical properties of the path
history.

Here we shall focus on the special case of (6) having the form�� ���� � �� � �./01�/	23������ �� 4 ���
(7)

Typically we will take 3��� � �7 �� 8 9��
(8)

so that the case
9 � 6� allows us to draw a link to the generalised Cox-Ingersoll-Ross

model of Hull and White (1984) and the square root process of Duffie and Kan (1996).
Ritchken and Sankarasubramanian (1995) and Bhar and Chiarella (1997) show that

for the forward rate volatility (7) the stochastic dynamicsfor ����may be expressed in
the Markovian form�� � :;��� � ��<  =�> �� � �3���� ��� (9)�< � :3����  ?=<> ��� <��� � ��

(10)

where we set ;��� @ ������� � =� ������
we note that the quantity

<���
can also be expressed as

<��� � 	
� 3�����./�01�/A2�� (11)

which is a function of the history of the� process up to time
�
.

Following the standard HJM argument interest rate contingent claims can be ex-
pressed as expectations with respect to the probability distribution generated by the
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stochastic systems (9), (10) that we denote by
�B
. For instance the price of a discount

bond maturing at any time TC is given by

# ���<����C� � �B	 ��%&' DEF �G
	 ������HIJ
!" � (12)

Similarly, the price of a European call option on this bond with exercise priceK
and which matures at time

�
(L�C� is given byM���<���� � � �B	 ��%&' DEF �
	 ������HIJ�# ���<��N�C�  K�O

!" � (13)

We useP��� �<� �� Q�	 �<	 � ��denote the transition probability density of the dif-
fusion process (9), (10) between times

�
and

� �� L � �
, this quantity satisfies the

Kolmogrov backward equation KP � �P�� � �� (14)

whereK, the infinitesimal generator of the diffusion process (9), (10) is defined byKP @ R?��3���� ��P��� � :;��� � ��<  =�> �P�� � :3����  ?=<> �P�< � (15)

For a general interest rate dependent claim,S ���<���� �maturing at time
�

, appli-
cation of the Feynman-Kac formula to (12) yields the partialdifferential equation that
must be obeyed by the value of that claim (with appropriate boundary conditions).

For instance, if the claim is a zero coupon bond, the bond price must satisfyK# � �#��  �# � �� (16)

which is to be solved on some time interval
�� 8 � 8 �C subject to# ���<��C ��C� �R. However we know from Ritchken and Sankarasubramanian (1995) that it is possible

to obtain a closed form solution for the bond price in this case. In fact# ���<����C� � # ��� ������C�#1�� ����� �� %&' T R?U����� �<��� � U���� ��� �����  �����V �
(17)

where W���� � � R= XR  ./01�/	2Y �
Similarly the partial differential equation for the price of the bond option

M���<���� �
in (13) satisfies the partial differential equationKM � �M��  �M � �� (18)

which is to be solved on the time interval
� 8 � 8 �

subject toM���<�� �� � � �# ���<�� ��C�  K�O � (19)
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3 The Solution Algorithm: Method of Lines with In-
variant Imbedding

3.1 Formulation

In section 2 of this paper, we presented the two-state variable partial differential equa-
tion (18) for the price of bond options that is both preference free and matches the
initial term structure of interest rates. The derivation ofequation (18) was facilitated
by the choice of the forward rate volatility of the form givenin (7) which renders the
dynamics of the spot rate of interest in the HJM framework Markovian. Hence, the
price of any claim, where the underlying state variable is the spot rate of interest (and
the accumulated variance

<�
, must satisfy equation (18) subject to appropriate bound-

ary conditions.
Let Z���<���� � denote the price of an American option on a pure discount bond

with exercise priceK and expiry
�

. The maturity of the underlying discount bond is�C, where
� 8 �C. Note that both the price of the discount bond and the value ofthe

option on the bond are functions of the same state variables,namely the stochastic spot
rate of interest, r, and the accumulated variance,

<
, whose dynamics are given by (9)

and (10) for the volatility function specified in (7). Hence,the price of the American
option,Z���<���� � must satisfy the partial differential equation (18). In particular,
the price of the American put option on a pure discount bond must satisfy the partial
differential equation KZ � �Z��  �Z � �� (20)

in the continuation region C.
The continuation region is defined asM � [���<� �Q� L � L �\�� L < L <\�� 8  8 � ] � (21)

In this region, the optimal strategy for the American put is to hold rather than
exercise the option. Also in this region, the price of the pure discount bond is greater
than the time dependent critical price of the bond,# ��\�<\� �\��C�. This is the bond
price at,���� � �\����< � <\ and

�\ � ^_` �a  4 ����� b �\��� c � (see Chesney,
Elliott and Gibson (1993)). Hence, the continuation regioncan be redefined in terms
of the discount bond price asM � T ���<� �Q# ���<� ��C� 4 # ��\�<\� ��C��� 8  8 � V�

(22)

The compliment of the continuation region, the stopping region,d is defined asd � [���<� �Q� b �\�� 8  8 � ] � (23)

or in terms of the bond price

d � T ���<� �Q# ���<� ��C� 8 # ��\�<\� ��C��� 8  8 � V�
(24)
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The optimal strategy in this region is to exercise the optionwith the price of the put
option given by its intrinsic value,

�K  # ���<����.
Equation (20) must be solved subject toZ���<� �� � 4 ef&�K  # ���<� ��C����� (25)

i.e.
���<� � g M�Z ���<�� �� � � ef&�K  # ���<�� ��C��� (26)Z��\�<\� �\�� � � K  # ��\�<\� �\��C�� (27)h�5�Z��\�<\� �\�� � �  h�5��K  # ��\�<\� �\��C��� (28)

(This last condition translates to the smooth pasting condition ijik llkmk 1noNpoN	oN�G2 � R.)
Let us note here that since

<
is not an observable quantity but an endogenous vari-

able the question of when to exercise simply translates to the observation of the inter-
est rate with respect to time. Thus the grad operator defaults to the one-dimensional
derivative. Hence, the condition for the American option collapses to the one vari-
able case where one only requires to smoothly paste to the surface with respect to�,
independently of

<
. Note this is not to say that one collapses to only a free line but

the intersection of a surface with a plane that is characterised only by� and
�
. The

intersection between the two surfaces gives rise to a
<

dependent surface. One can
view this as a three dimensional manifold being cut by a two dimensional surface. This
is an important point to note. The intersection of the two surfaces yields an

���<���
manifold despite the fact that one is pasting against an otherwise two dimensional (ie<

independent) surface.
The more subtle boundary condition for the American option is at� � �. Unlike, in

the case of an equity option, one cannot set the value of the option to zero at� � � since
the value of the option in fact migrates upward as a function of time. This migration is
in general not known a priori, therefore one has to adopt special solution techniques to
handle the migrating boundary. We have found that the most consistent estimate of the
value of the option at� � � could be obtained by setting the derivative of the option
value function to zero at� � �.

The value of options with an American style exercise featureis the solution of a free
boundary value problem and requires the determination of the optimal early exercise
boundary as well as the value of the option. Analytic formulas do not exist in general
for American type options. Hence, the valuation of such options reduces to solving the
system (20) subject to (25) – (28) by a range of fast and accurate numerical solution
techniques such as the method of lines (Meyer, (1977, 1980, 1981), Goldenberg and
Schmidt (1994), Meyer and Van Der Hoek (1997)), linear complimentarity method or
variational inequality techniques (Wilmott, Dewynne and Howison, (1993)). Another
popular numerical technique used is that of binomial (or trinomial) trees.

Here, we apply the method of lines to evaluate American interest rate options in
the two-dimensional state variable Markovian framework described in section 2. Li,
Ritchken and Sankarasubramanian (1995) propose an algorithm for solving this prob-
lem in a binomial tree framework. Our objective here is to formulate and solve the
problems in a partial differential equation framework.
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The method of lines with invariant imbedding is a numerical technique used for
solving partial differential equations and can be applied to free boundary problems by
tracking the time dependent free boundary. In general, the technique involves discretis-
tion of the time variable, thus replacing the time derivative with its discrete approximate
analogue at each time step. This reduces the partial differential equation to a sequence
of second order non-homogenous ordinary differential equations, which must be suc-
cessively solved at each time step. By applying a Ricatti transformation, each second
order non-homogenous boundary value problem can be transformed into a system of
three first order ordinary differential equations, thus reducing second order boundary
value problems to first order initial value problems with theobvious advantages.

In the case of our problem, where we have two state variabes, rand
<
, and the

time variable, both the
<

and time variables are discretised (while maintaining conti-
nuity case for the r variable) and their partials replaced with difference quotients. The
multi-point free boundary problem for the resulting systemof second order ordinary
differential equations is then solved. At each time step of this algorithm a free boundary
problem for an ordinary differential equation must be solved by conversion to an initial
value problem through invariant imbedding (or sweeping method). The free boundary
is found as the root of a function derived from the boundary conditions.

The advantages of using a numerical technique such as the method of lines for
solving the American option problem include relative efficiency and accuracy, and the
ability to handle coefficients of the partial differential equation which are functions of
the state variables and time (Meyer, 1977). The method is well suited to free boundary
problems as it is relatively simple to determine the free boundary or free surface as part
of the solution algorithm. The method of lines can be appliedto both one-dimensional
and multidimensional free boundary problems. The formulation and subsequent of
the American option in a partial differential equation framework is very useful as the
resulting solutions are in the form of value surfaces. This gives the solution values for
a large number of underlying state variables simultaneously.

3.2 The Solution Algorithm

The method of lines technique was applied to the problem of American put options on
stocks by Goldenberg and Schmidt (1994), Meyer and Van Der Hoek (1997) and Carr
and Faguet (1995). The complete algorithm and implementation details in Goldenberg
and Schmidt (1994), Meyer and Van Der Hoek (1997) form the basis of the application
of the method of lines in multidimensional form to this problem, as summarised below.

For illustrative purposes, we rewrite the parabolic operatorK as5�����Z��� � q���<����Z�� � r���<��Z�< � (29)

where the coefficients
5���, q���<��� and

r���<� are given by5��� � R?��3���� � (30)q���<��� � �������� � =� ����� � ��<  =��� (31)r���<� � 3���  ?=<� (32)
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with 3��� � �7 �
and < � 	
� 3������./�01	/A2�� (33)

Using the following discretisations on
<

and t,� � st��
for
s �u� � � �� ��

with
u � �t� � (34)

and < � vt<�
for
v � K� � � � � �with K � wt< � (35)

noting that we do not discretise� at this stage.
For the rest of this section the above discretisation schemewill be used with the

following notation Z���vt<�st�� � Zxy ���� (36)

where theZ��� are twice differentiable functions. In explaining the implementation
of the solution algorithm,Z���vt<�st���� Zxy ���� should be taken to indicate the
value of any interest rate contingent claim.q��� vt<�st�� � qxy ���� (37)r��� vt<� � ry���� (38)

with
5��� staying the same because there is no discretisation of r at this stage.

As discussed above, we approximate the partial derivativeswith respect to
<

and
�

with difference quotients as follows:�#�� z ZxO6y ���  Zxy ���t� �
(39)�#�< z ZxyO6���  Zxy ���t< �
(40)

Note, at first glance it would appear that we have taken a forward difference in
time, however this is not so. Since time runs from

�
down to 0, we have in fact taken

a backward difference, the same as for
<
.ZxO6y ���  Zxy ���t� � 5�����Zxy ������ � q���<����Zxy ������ r���<�ZxyO6���  Zxy ���t<  �Zxy ��� � �� (41)

Now, substituting the notation given by equations (37) – (40) into (41) we have thatZxO6y ���  Zxy ���t� � 5�����Zxy ������ � qxy ����Zxy ������ r1y�� {ZxyO6���  Zxy ���t< |  �Zxy ��� � �� (42)
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Collecting coefficients ofZxy ���,ZxO6y ��� andZxy/6��� together, we obtain the
second-order ordinary differential equation:

DEF5���}
~j�� 1n2}n~� qxy ���}j�� 1n2}n  �� � 6�	 � ���n2�p � HIJZxy ���� X 6�	ZxO6y ��� � 6�pr1y��ZxyO6Y � �� (43)

The first part of equation (43) constitutes the current unknown variableZxy ���.
The second and third boxed terms represent known values fromthe previous time stepZxO6y ��� and the previous

<
valuesZxyO6���.

We can write equation (15) as��Zxy ������ � �xy ����Zxy ����� �W1y��Zxy ��� � Mxy ���� (44)

where the coefficients
�xy ���, W1y�� and

Mxy ��� are given by�xy ��� �  qxy ���5��� � (45)Wy��� � X� � 6�	 � 6�pry���Y�5���� (46)Mxy ��� �  � 6�pry���ZxyO6 � 6�	ZxO6y �����5���� (47)

with boundary conditionsZxy ������ � Uxy � andZxy ��� � �xy � �
and initial condition

�s � u� Z�y ��� � ��
The second order ordinary differential equation in (44) canbe reduced to a first

order system by means of the transformations� xy ��� � �Zxy ����� �
(48)�� xy ����� � �xy ���� xy ��� �Wy���Zxy ��� � Mxy ���� (49)

whereZ is assumed to be a Ricatti transform of V such thatZxy ��� � �xy ���� xy ��� ��xy ���� (50)

The representation in (23) implies the following Ricatti equation:��xy ����� � R  �xy ����xy ���  Wy�����xy ����� � (51)��xy�� �  �xy ��� �Wy����xy ���  Mxy ���� � (52)
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where
�xy ,

Wyand
Mxy are given in (18) and (19).

Equations (51) and (52) can be solved numerically as indicated in Appendix 2 to
determine

�
and

�
at each point in time (see Goldenberg and Schmidt (1994), Meyer

and Van der Hoek (1997)). The Ricatti transformation holds for all values of the state
variables,�, including the free boundary. Hence, once

�
and

�
are known, the critical

value of� at time step
�x is determined as the root of equation (50) using the boundary

conditions (27) and (28) for the option. Having determined the values of
�

and
�

,�
is found by substituting (50) into (49) and integrating numerically. The value of the

contingent claim at this step is determined by substitutingthe
�

,
�

and
�

into the
Ricatti transformation (50).

Under the method of lines, the hedge parameters are also determined as part of the
solution. In particular,

� ��� is the delta of the option.
Figure 1 illustrates the determination of the critical value �\ at a particular point in

the
�<���

grid. Figure 2 indicates the sequence in which points in the
�<���

are stepped
through. Figure 3 illustrates the free surface in

���<��� space.

4 Results

In this section we present some prelimary results obtained by applying the method of
lines with invarinat imbedding to the valuation of Americanput option on zero coupon
bonds. The bond prices required in the boundary conditions (27) and (28) are calculated
using equation (17).

Time
Steps

Exercise
65

Price
70

Run
Time (secs)

100 6.79 9.48 1.04
500 6.85 9.53 5.12
1000 6.90 9.54 10.91
2000 6.91 9.55 17.34

Table 1:Option values calculated using method of lines with invariant imbedding.

Three year American put option on a 10 year zero coupon bond. Bond face value =
100; The volatility structure is given by equations (7) and (8) with

� � ���?
,
= � ��R,

and
9 � ���

. The initial term structure of interest rates is assumed to be flat at 5%.
To gain some insight into the relative accuracy and computational efficiency of

the method of lines technique as applied to the problem proposed in this paper, we per-
form some comparison of results with the Li, Ritchken and Sankarasubramanian (1995)
method for solving American bond options in this framework.Their method consists
of a binomial-type lattice model to evaluate American options in the two-dimensional
state variable Markovian HJM framework. Their model provides a discretised approxi-
mation for the spot rate process����. The lattice is constructed after a transformation is
made to convert the spot rate process into a constant volatility process. A reconnecting
lattice is then constructed for the transformed spot rate process, while maintaining a
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vector at each node to represent the process for the accumulated variance. Derivative
prices can be calculated on the lattice by means of backward recursion. The algorithm
converges to the continuous time limit if the time and

<
partitions are made arbitrarily

fine.

Time
Steps

Exercise
65

Price
70

Run
Time
(secs)

100 6.78 9.47 2.33
500 6.82 9.50 8.72
1000 6.89 9.52 18.96
2000 6.91 9.55 22.38

Table 2:Option values calculated using the lattice model.

Three year American put option on a 10 year zero coupon bond.Bond face value =
100; The volatility structure is given by equations (7) and (8) with

� � ���?
,
= � ��R,

and
9 � ���

. The initial term structure of interest rates is assumed to be flat at 5%.
The maximum number of

<
values allowed at each node is 8.

Comparison of Table 1 with Table 2, show that the method of lines with invariant
imbedding is slightly faster for the same level of accuracy.However a more meaningful
comparison would be to compare the complexity of the algorithms which will be part
of future work on this model. Furthermore, it should be notedthat the method of lines
provides the option value surface, the free boundary surface and the delta of the option
simultaneously.

5 Conclusion

We have set up the problem of pricing contingent claims undera specific assumption
about the forward rate volatility function as the solution of a partial differential equa-
tion. We have shown that the method of lines is an efficient method to price American
claims in this framework. Comparison with the quasi-analytical solution in the special
square root process indicates that the method is very accurate. The method also allows
us to generate as a by-product option deltas and early exercise surfaces. Computational
time compares favorable with the lattice method of Li, Ritchken and Sanakarasubra-
maian and is somewhat faster for a given level of accuracy. The method we propose
also has the advantage of more readily handling quite general initial term structures in
comparison to lattice models.

Further research will focus on the case where the forward rate volatility function
is a function of not only instantaneous spot rate but also a series of discrete forward
rates. The infinitesimal generator for this case can be easily obtained from the frame-
work of Chiarella and Kwon (2004). If for example, one were totake the case in which
the forward rate volatility function depends on the instantaneous spot rate of interest
and one forward rate (eg a long rate), then one would have a preference free Brennan-
Schwartz type two-factor model. It turns out that in this case the infinitesimal generator

12



depends on three state variables, namely the two rates and the accumulated variance.
The method of lines or indeed other method for the numerical solution of partial dif-
ferential equations could be applied to the problem of pricing in such a framework. It
is for such higher dimensional problems that the methods of lines may display its true
advantages when compared to existing methods for handling American bond options.
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Appendix

Solving for
�

,
�

and
�

To solve for
�xy ����� xy ��� and

�xy ��� we use a discrete mesh of the space vari-
able�, which we denote by �� � �t� for

� � �� � � ����
(53)

Solving for
�xy ��� using��xy ����� � R  �xy ����xy ���  Wy�����xy ����� � (54)

To solve for
�xy ��� we use a mesh of the space variable�,�� � �t�� for

� � �� � � ����
(55)

and employ the following notation�� � �xy �������O6 � �xy ���O6�� (56)�� � �xy �������O6 � �xy ���O6�� (57)W� � Wy�����W�O6 � Wy���O6�� (58)

where
�xy ,

Wy and
Mxy are given in (18) and (19).

Using the notation defined by equations (55) – (58), equation(54) can be solved
for
���� by integrating using the implicit trapezoidal rule.��O6  ��t� � R? T :R  ��O6��O6  W�O6���O6>� :R  ����  W���� > V�

(59)

Now equation (30) can be written as�����O6 � �W��O6 � �M � ��
(60)
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where the coefficients
��
,
�W

and
�M

are given by�� � W�O6� (61)�W � ? �t���O6t� �
(62)�M � W���� � � ? �t���t� ���  ?� (63)

Equation (60) which defines the new variable for R is a quadratic equation that can
be solved analytically. The solution to the quadratic equation (60):��O6 �  �W �� �W�  ��M? �� �

(64)

Since
���� � �

, i.e.
�� � � we see that for the first step

�M �  ?
. This is an

important observation since in our case both
�� = 0 and

W� = 0 are singular at� � �,
thus we require to solve the reduced quadratic equation,W6��6 � �? �t��6t� ��6  ? � �� (65)

Equation (64) can be written in more stable form as��O6 �  ? �M�W �� �W�  ��M � (66)

The Equation for W���� �  ���� �W���� ���  M���� � (67)

To solve for
�

, we following the notation already given and again use the implicit
trapezoidal rule so that��O6  ��t� �  R? [��O6 �W�O6��O6 � M�O6� ��� �W��� � M��] � (68)

With
�� known, and all the

��’s also known, it is a simple matter to solve equation
(68) for

��O6 . ��O6 � ���� � �Wt��M �
(69)

where the coefficients��, �W and �Mare given by the following expressions

�� � R  t�����O6t� �
(70)�W � R? ���M�  ��O6M�O6� � (71)�M � R� t���O6W�O6? �
(72)
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As discussed for the Ricatti equation, the equation for
�

is singular at� � �
.

Therefore, in order to start the algorithm, we need to solve
�6

as a special case. Here
we use the fact that

�� = 0 and having already solved for
�6

, the special case for
�6

is given by �6 � �� � �Wt��M �
(73)

where �W �  R?��O6M�O6� (74)

and �M � R� t���O6W�O6? �
(75)

since
� � Rby the fact that

�� = 0.
The V equation���� � ����� �W�������� � ��� � �W���� ��� � M���� � ������ � �� (76)

Repeating the procedure that was used for solving
���� and

������O6  ��t� � R? DEF
����O6 �W�O6��O6� ��O6 � �W�O6��O6 � M�O6��� ���� �W���� �� � �W��� � M��� HIJ� (77)

With
��, ��O6,�� ,

��O6 and
��O6 known, we now solve for

���� � ����O6  �W�M � � � �  R� ���� �� (78)

where
��
,
�W

and
�M

are given by�� � R  R? ���O6 �W�O6��O6�t�� (79)�W � t�? ��W��� � M�� � �W�O6��O6 � M�O6�� � (80)�M � R� R? ��� �W����t�� (81)

16



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• 

• 

• 

• 

• 

• • • • • • • 

• 

• 
• 

• 

• 

• 
• 

m∆t 

k∆φ 

φ

φ 

t 
T 

maxr

mr

Figure 1:Determining�\ at a particular point in the
�<���

grid.
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Figure 2:The way in which the algorithm steps through the
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grid.
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Figure 3:Illustrating the free surface in
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