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Limits to Linear Price Behaviour:
Target zones for futures regulated by price limits

Abstract
This paper analyzes the random walk behaviour of futures prices when the exchange is regulated by
price limits. Using a model analogous to exchange rate target zone models, the study tests for the
existence of a nonlinear S-shape relation between observed and theoretical futures prices. This
phenomenon reflects the adjustments in traders’ expectations even when limits are not actually hit.
The approach is illustrated for five agricultural futures contracts traded at the Chicago Board of
Trade. There is some evidence of nonlinearity in quiet periods. In cases of fundamental
realignments, that is volatile periods, this non-linearity disappears.

JEL-code:
C24, G14, G15
Keywords:
Price Limits, Target Zones, Gravitation, Mean Reversion

I. Introduction

Price Limit Regulation and Trading Behaviour

Defaulting traders, market crashes, and asymmetric information problems provoke

criticism of the integrity of derivatives exchanges. As a result, calls for further regulation arise

with almost every large realignment of market values. Regulation thus clearly responds to the

trading behaviour of market participants. Whether or not trading behaviour is also affected by

regulation has so far largely been neglected 1.

When traders are confronted with market impediments they revise their expectations

accordingly. This affects their order flow and, hence, the volatility of prices. These dynamic

adjustments are ignored by evaluations of the impact of market regulations on the price discovery

process that consider the trading process exogenous. If trades are diverted to other outlets (such

as non-regulated options or the cash market), this may lead to increased volatility and a reduction

in order flow. Thus, the ‘integrity’ of the exchange can even be further endangered due to the

trading impediments invoked by regulation.

This paper focuses on price limit regulation and investigates how it affects the trading behaviour

of market participants. Technical (i.e., statistical) consequences of price limits have been

investigated in a number of other papers. For example, as Roll (1984) correctly notes, the use of

possibly stale prices implied by limit moves will inevitably affect any informational efficiency

study. Two studies that carefully account for the possibility of limit moves are Kodres
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(1988,1993) which analyze the impact of price limits on tests of the unbiasedness hypothesis in

foreign exchange futures markets. These studies restrict the impact of limits to actual limit move

occurrences and thereby ignore any ‘intra’ limit dynamics. There are also a number of studies

more directly focussing on the impact of price limits, in particular on measures of intraday

volatility. Most of them perform this analysis in an event-study context. Ma et al. (1989),

Greenwald and Stein (1991), and Kodres and O’Brien (1994), claim that trading halts mitigate

price risk and enhance informational efficiency. Others, however, argue that limits obstruct

informational efficiency and, in the process, tend to inflate volatility excessively (see inter alia,

McMillan (1991), Lee et al. (1994), and Subrahmanyam (1994,1995)). So far, there has been no

attempt to encompass the two conflicting models. This paper proposes a modeling framework able

to discriminate between these conflicting findings.

Trading Behaviour Models

Underlying the study’s model is the notion that ex ante trading decisions incorporate the

existence of trading zones bounded by price limits. For example, market makers may try to avoid

or at least postpone the price hitting a boundary, since that would imply interrupted trading, and

hence a loss of earnings/profits.

Kuserk and Locke (1996) investigate the impact of price limits on market making

profitability and conclude that, on average, market makers profit from trading halts. This finding

contrasts with Roll’s (1984) remark that limits do create informational inefficiencies, but not a

profit opportunity. Kuserk and Locke focus on market maker behaviour immediately preceding

and following limit moves, thus ignoring potential impacts further away from those limits.

Informed traders will similarly try to smooth their planned trading volume before the price

hits a limit, after which the risk of a dissipation of their private information increases. Market

makers protect themselves against these actions by increasing the bid-ask spread upwards when

the market moves towards a limit. This may “exaggerate” volatility and lead to an incorrect

inference that price limits cause increased volatility, an argument used by gravitation proponents.

Gravitationists argue that limits are self-exciting, since they induce a strong drift in prices.

Traders, allegedly, increase this drift by unwinding positions whenever the price gets close to the

limits.

Empirical work in this area is rather limited; some examples are McMillan (1991) and

Kuserk and Locke (1996). Some of these papers deal with circuit breakers, but their findings

supposedly apply identically to price limits. A theoretical micro-structural analysis of these

(opposing) dynamic trading adjustments is given in Greenwald and Stein (1991), Kodres and
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O’Brien (1994) and Subrahmanyam (1994, 1995). Whereas the first two papers tend to support

trade suspension rules as (second best) optimal, the latter clearly rejects these rules based on an

informational inefficiency that arises because of traders advancing their trades in time as in the

informed trader context above. Obviously, the theoretical specification has some impact on the

subsequent results.

Influence of Limits on Price Expectations

This paper addresses the issue of how price expectations are influenced by limits, by using

concepts recently developed for exchange rate target zones.

A seminal paper by Krugman (1991) shows that bounded exchange rates no longer exhibit

a linear relationship with the underlying fundamentals of supply and demand. If, for example,

there is a fixed and credible upper limit, and the exchange rate is close to that limit, then the

probability of a further increase will be limited, while the probability of a decrease will be

relatively larger. Thus, the probability distribution of the next price move will become

increasingly skewed the closer it gets to the limit. This phenomenon implies a nonlinear

relationship between the actually observed price and the fundamental price. In the absence of

trade ‘disruptions’ the relationship between the two will be linear, but the presence of limits

implies a nonlinear S-shape. The relationship will be convex for prices negatively drifting towards

the lower limit, and concave for prices positively drifting towards the upper limit. Thus, the

effect of limits will theoretically be to stabilize prices. Shocks (demand/supply driven) in the

fundamental value will have a less than proportional impact on observed prices.

The statistical specification in this paper also allows for nonlinearity of a different

(opposite) type. Instead of a smoothing impact, price limits may have an exacerbating impact.

Shocks in the fundamental value will then have a more than proportional impact on the observed

price. Thus, the authors nest the two competing models of mean reversion 2 versus gravitation.

Procedure of the Paper

The study investigates the existence of similar non-linear relationships in futures markets

that are regulated by price limits. The target zone is then defined by the difference between the

upper and lower limit prices. In this case the issue is not so much whether the target zone is

credible (it may move the next day and is fully credible intraday), but whether its existence has an

impact far away from the limits. This, in particular, distinguishes the paper from previous price

limits literature. As suggested by Strongin (1995, p.205), work on the impact of price limits away

from limit moves themselves is urgently needed and this issue is addressed.
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The following hypothesis is postulated: The relationship between theoretical and observed

– that is, regulated by limits – futures prices is linear. Rejection of this hypothesis would require

analysis of the shape of the non-linearity. If the so-called S-shape familiar in exchange rate target

zones is found, it can be concluded that ‘target’ reversion occurs. If, on the other hand, an

inverse S-shape is observed, it can be concluded that gravitation occurs. The underlying theory

and its relevance for this setting is discussed in the next section.

After developing the theoretical target zone model of price expectations, it is applied

empirically to agricultural futures contracts traded at the Chicago Board of Trade. Daily limits

apply to all of these contracts and are allegedly effective in the sense that they alter trading

behaviour. The sample period, which extends from January 1988 through December 1988, was

chosen because of the frequency of limit moves (when the market closes up- or down-limit) and

limit hits (when the price hits the limit but bounces back before market close) in the months of

June and July 1988.

II. Absorbing Limits: A Target Zone Model

This paper considers the existence of a non-linear relationship between fundamental

(theoretical) futures prices and observed futures prices that are regulated by price limits.

The study adapts a procedure recently developed in the exchange rate literature. However,

there is an important difference with the exchange rate target zones in that observed futures prices

are regulated directly, whereas exchange rates are typically regulated indirectly by monetary

authorities influencing the fundamentals (ie the supply and demand of foreign exchange). As well,

unlike the well-known intramarginal regulations prevailing with exchange rate target zones,

futures price limit regulation operates only at the limits. However, the main distinction with the

target zone literature is the fact that futures price limits are valid for one day only. Except when

the closing price coincides exactly with the opening price on a particular trading day, the next

trading day will have a different target zone. The limits are not ‘credible’ on an interday basis,

but are perfectly credible intraday. For this reason, the focus of this study is on intraday trading

behaviour.

The observed intraday futures price ft+j is prevented from taking values outside of the

intraday price limits and should be treated as a censored variable,
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where f f,  are, respectively, the upper and lower limits on the N intraday futures prices for any

particular day symmetrically specified around ft, the previous days closing price that defines the

‘target’ futures price. The innovation ut+j, is the j-th intraday innovation in the futures price (ft+j -

ft+j-1), and the ut+j are conditionally distributed according to a unimodal distribution function Φ(u)

with mean zero and conditional variance σ t j+
2

Rose (1995) generalizes this conditional distribution problem in the context of doubly

censored distributions. In the case of credible reflecting barriers (such as futures price limits on

an intraday basis), the probability of ft+j exceeding the barriers will be folded inwards. Thus, Φ(u)

can hardly be expected to display normality. In fact, whereas it is likely to be unimodal, it will

typically have excessive tail probability mass. Intuitively appealing estimation methods include the

Tobit model by Yang and Brorsen (1995) and the Limited-Dependent Rational Expectations

approach advocated by Pesaran and Samiei (1992) and Pesaran and Ruge-Murcia (1996), which

model time-varying volatility as an increasing function of the distance from the target price. This

is the key notion that we exploit in this paper, albeit with a different functional specification. In a

commentary on McMillan (1991), A.S. Margulis Jr. (1991) wrote:

“[The existence of price limits] starts affecting trading decisions at some

indeterminate level [well within the price limits] and it becomes stronger and

stronger as the futures price approaches the limit price.”

If trading decisions are reflected in prices, a relationship will be observed between those prices

and the distance from the boundaries on those prices (or alternatively, the distance from the target

price). According to the target zone literature (and following from (1) above) this relationship is

nonlinear due to the distortion in Φ(.). Typically the nonlinear specifications following from the

target zone models are estimated in continuous time, but it is notoriously difficult to capture

particular empirical characteristics like fat-tailedness and time-varying volatility in those models

and the assumption of normality is frequently violated. In discrete time, a simple analytical

solution for this target zone problem has been suggested by Koedijk et al. (1997) which permits

modification of Φ(u) in line with the empirical characteristics.
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First, note from (1) that the conditional expectation of intraday futures price ft+j is

bounded,
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where Φ(.), φ(.) are, respectively, the probability distribution and probability density function of

the innovations, ut+j. Define the regression equation

f f E u ft j t j t j t j t j+ +− = ++ - + + -|1 1 ε (3)

where εt+j is orthogonal to the conditional expectation term. We know that for a credible target

zone, E[.] follows an S-shape in (ft+j-1 - ft) (see Koedijk et al., 1997). The first three derivatives

will then satisfy:
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and we can specify the following functional form, which captures these necessary requirements

for an S-shape. One approach suggested in the literature is to use a Laguerre function (as in

Miller and Weller, 1991), or one can take a Taylor series expansion around the target futures

price ft (see Rose and Svensson, 1995 and Koedijk et al., 1997), to obtain,

f f f f I f f f f et j t j t j t i t j t
i

t j t t j+
=

− = + − + − + − +∑+ - + - + - + - +1 0 1 1 2 1

2

1

2

3 1

3
δ δ δ δc h c h c h(. ) (5)

where the residual et+j consists of ε t j+  and any omitted higher order Taylor-expansion terms. The

indicator variable I(.) separates the positive from the negative deviations from the target futures

price. The fact that the error term contains omitted higher order terms unfortunately implies that

et+j is not necessarily orthogonal to the futures price change. This is a potential problem when

estimating (5), which is addressed further on.
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Testing the Hypothesis

Having estimated (5), the hypothesis can be tested. For a nonlinear relationship, i.e., to

establish whether the limits have an impact on the observed futures prices, it needs to tested

whether any of the parameters δ1, δ21, δ22 or δ3 are significantly different from zero. In the case of

non-credible limits (a finding of insignificant parameter estimates) it is expected – in the absence

of market imperfections such as bid/ask spreads, infrequent trading etc. – that the random walk

model for futures prices will prevail. If it is possible to reject a linear relationship, the study can

proceed by investigating the shape of the non-linearity. It can be considered that the following

parameter signs imply the theoretical S-shape. To find a mean-reverting target zone, δ1 needs to

be positive, δ21 (for positive deviations from ft) to be negative, δ22 (for negative deviations from ft)

to be positive, and δ3 to be negative. These conditions follow directly from (4a), (4b), and (4c).

Bleaney and Mizen (1996) model a target zone for exchange rates by specifying two

models: a linear mean-reversion versus a cubic mean-reversion, both models being nested in (5)

above, and conclude that the cubic model clearly outperforms the linear model. However, by

ignoring the quadratic terms they may have a misspecified model and, by distorting the

empirically desirable orthogonality of the error term in (5), this may have a pronounced effect on

the outcome. The study does not restrict the regression model, but instead takes a pragmatic

approach. After estimating (5), the function is investigated and it is concluded from its shape

whether or not the mean-reversion hypothesis is to be rejected.

In general, the above mentioned signs of parameters capture the mean-reverting behaviour

of the futures price, and any non-linearity involved in this behaviour. The first-order term

indicates whether the futures price reverts to the target price ft (positive sign), or gravitates

towards the limits (negative sign). The second- and third-order terms indicate the speed at which

this occurs, whereas the second-order terms also allow for asymmetric adjustments depending on

the position (above or below the target price ft) of the futures price.

Next, the error term in (5) needs to be addressed. Since time-varying conditional variance

and fat tails most often characterize futures price changes, the innovations are modelled according

to these two characteristics. Numerous authors have investigated the apparent non-normality of

futures price changes. Typically, a fat-tailed alternative has been proposed with the evidence

pointing towards the class of Student-t distributions (see Kofman, 1994). Allowance is made here

for ‘fatter-than-normal’ distributions by assuming that the innovations in (5) follow a t-

distribution:
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e t ht j t j+ ~ ,ν 0 +c h, (6)

where et is assumed to follow a symmetric Student-t distribution with mean zero, variance h, and

degrees of freedom ν (ν>2). The ν parameter measures the extent of fat-tailedness – the smaller

ν, the larger the probability mass in the tails. For ν = ∞, the t-distribution converges to a normal

distribution. For ν = 2, the t-distribution no longer has finite variance.

Note that the normal distribution based on observed excess kurtosis cannot be rejected a

priori. It is possible that the fat tails are driven by time-varying conditional variance. In that case,

the standardized price changes may well be normal. Thus the conditional variance in (6) is

allowed to have the following well known GARCH(1,1) specification.

h e ht j t j t j+ + − + −= + +β β β0 1 1
2

2 1 (7)

III. Price Limits in Agricultural Futures Contracts

Having introduced the approach, the methodology is now applied to a set of agricultural

futures contracts that are regulated by price limits.

The dataset consists of five agricultural commodities traded at the Chicago Board Of

Trade for 227 trading days in 1988. Contract descriptions and limit regulations for these contracts

are given in Appendix B.  The sample period is characterized by an unusual frequency of limit

moves, in particular in the month of June. The dataset is based on the nearby futures contracts,

which rollover two business days prior to the delivery month. This coincides with the date the

price limits are lifted on the nearby contract. A 5-minute sampling interval has been chosen,

based on a tradeoff between minimizing the number of no-trade intervals while using as much

information as possible. To some extent this choice alleviates the noise to signal problem endemic

in using high frequency data. If no price was recorded during this interval, the last previously

recorded price was taken.

Price changes (called returns from now on) are constructed from the futures prices ft:

R f ft j t j t j+ + + -= − 1. The overnight returns are omitted. The first return of each day is computed as

the difference between the last recorded price during the first five minutes of trading and the first

observed price during that interval. The rollover return is omitted and zero returns are imputed

for empty intervals to obtain up to 10,215 observations per commodity for the time period

January 5 through November 28, 1988.
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The descriptive statistics for the five contracts’ 5-minute returns are given in panel A of

Table I.  The number of limit-move days is given in the last row. It is obvious that Wheat forms

an exception among these contracts since its limits have been hit on only 9 days as compared to

between 25 and 32 limit moves for other contracts. The trading days on which the limits have

been hit are eliminated because trading in limit-up (limit-down) contracts is usually interrupted for

prolonged periods of time during a trading session. This implies an excessive number of – non-

informative – zero price changes.

The information in Table I is rather homogeneous across commodities and can easily be

summarized. There is clear evidence of skewness and excess kurtosis. It is therefore of no

surprise that the Jarque-Bera tests for normality are overwhelmingly rejected. The significance of

the Ljung-Box tests for serial correlation in the returns, and the reported first-order serial

correlation coefficient (ρ), reflect either the impact of the bid-ask bounce, the discreteness of the

data or the infrequent trading effect. When further investigating this phenomenon, it seems that

the serial correlation can be characterized as first-order autocorrelation.

TABLE I ABOUT HERE

The Ljung-Box test statistic on the squared residuals and ARCH test for heteroskedasticity

illustrate the time-varying conditionality in the variance of the returns. The ARCH test is based

on an autoregression of the squared returns on lagged squared returns, whereas the Ljung-Box

test is a serial correlation test on the squares of the returns.

A well-known characteristic of high frequency prices is the seasonality in intraday

volatility, see Andersen and Bollerslev (1997). When intraday volatility is defined as the absolute

price change over the 5-minute sampling interval, a similar U-shape pattern is found in the series.

This seasonality implies large price changes during opening of the trading session, which then

taper off during the middle of the trading session, before reverting to large price changes at the

close of the trading session. This pattern may bias the target zone results. In Appendix A, it is

explained how the series is deseasonalized to avoid that problem. This generates a new series of

deseasonalized returns Ut+j. Table I, panel B, indicates that deseasonalization has major effects on

the descriptive statistics. Skewness and kurtosis reduce to near-normal values (even though the

Jarque-Bera test statistics still reject normality). The serial correlation in returns is not affected,

but serial correlation in the squares of returns is considerably smaller (though still significant).

The next step involves an intertemporal analysis of the descriptive statistics. Since the

frequency of limit hits and moves is clustered in the middle of 1988, interest centres on the
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stability over time of certain key descriptive statistics. These statistics allegedly illustrate the

harmful aspects of price limits.

Table II is based on a three-fold sample split with reasonably comparable sample sizes:

PRE from January 5 through May 1; LIMIT from May 2 through August 31; and POST from

September 1 through November 28 3. The columns are sequentially ordered so that the first entry

is PRE, the second entry is LIMIT, and the third entry is POST. The LIMIT period coincides

with the months with the highest frequency of limit hits/moves during 1988. For Soybeans,

Soybean Meal and Soybean Oil,  a single limit hit/move is observed in the post-limit period.

A number of conclusions can be drawn from the reported measures.

 Firstly, for all contracts except Corn, the standard deviation is marginally larger during

the LIMIT period. However, this does not necessarily imply causality with limit moves. Increases

in the ‘fundamental’ (cash price) volatility could also lead to a higher frequency of limit hits

(and/or moves).

 Secondly, skewness and/or kurtosis are similar across the periods. It can be observed that

the first-order autocorrelation coefficient is significantly negative in PRE and POST samples, but

much less so for the LIMIT sample (insignificant for Soybeans and Soybean Meal). Bid-ask

spreads are known to increase with increasing variance. Despite the fact that variance is

marginally larger in the LIMIT period, however, first order autocorrelation is much lower during

that period. This may be due to infrequent trading which causes positive autocorrelation, thereby

offsetting the bid-ask effect.

TABLE II ABOUT HERE

Having discussed the empirical characteristics of the data, the paper now estimates the

target zone model for the deseasonalized returns Ut+j.  For this purpose, equation (5) is slightly

modified by including a lagged dependent variable as well as by including appropriate interactive

dummy variables Dk, to allow for different parameters in each of the three periods PRE, LIMIT

and POST.
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The autoregressive term captures the bid-ask bounce and discreteness effects typically

characterizing high-frequency intraday prices, see Harris (1990) and Miller et al. (1994). For a

dominating bid-ask effect, it is expected that δ4 will be negative. Table III reports the log-
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likelihood obtained for a number of normal and Student-t distribution models.  Likelihood Ratio

tests are performed to determine which model is best. The study estimates the unrestricted model,

where the coefficients are defined for each sub-period, and a restricted model where the

coefficients are the same for the full sample period.

A sequence of likelihood ratio tests indicate that the Student-t distribution outperforms the

normal distribution and that allowing for time-varying conditional variance results in improved

performance for the Student-t distribution.  Estimates of ν are found to be close to 11. In

addition, the unrestricted model outperforms the restricted model, though marginally so for the

Soybean complex and Wheat, so that splitting the sample into PRE, LIMIT and POST seems to

be relevant.

TABLE III ABOUT HERE

The following discussion is restricted to the Student-t cum GARCH distributional model

and to the unrestricted sub-period model.  In the cubic functional forms for all commodities, all

but one coefficient of the Taylor series approximation terms (ie the variables in (ft+j-1 – ft)) are

individually insignificant, and about half of the coefficients have the opposite sign to that

suggested by the target zone model. Collinearity is clearly a problem in interpreting the model. A

number of restrictions on the coefficients of this model were therefore considered. The log-

likelihoods for these restricted models and likelihood ratio test statistics for testing these

restrictions are presented in Table IV.  For each commodity, the null hypothesis that the

coefficients on the cubic terms are zero can be accepted. In the remaining quadratic functional

form for the five commodities, while the majority of coefficients remain individually

insignificant, it is notable that across the five commodities every coefficient has the correct sign

as predicted by the target zone model.

TABLE IV ABOUT HERE

The coefficient estimates of this quadratic functional form are presented in Table V. In

contrast with the cubic specification, there are consistent parameter estimates across commodities

and across sub-periods for the target zone variables. Except for Soybeans, and Soybean Meal, in

the LIMIT period, the constant, δδ0, is insignificantly different from zero. The first-order term, δδ1,

is also frequently insignificantly different from zero. It is, however, significant for Corn, and

does have the positive sign required for mean reversion. The second-order terms, δδ21, and δδ22, are

occasionally significant (or close to significance), particularly in the PRE and POST period.  The

non-linear model apparently performs best (in terms of significance) for Corn. Formal statistical
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tests indicate that the random walk model is the preferred model for the Soybean complex and

Wheat, whereas the quadratic functional form is the preferred model for Corn.

TABLE V ABOUT HERE

Concluding the parameter estimates discussion, it is found that there is some evidence of

non-linearity in futures prices potentially driven by the existence of price limits.

The target zone coefficients indicate that even within the limits, there may be a discernible

impact, in particular in the PRE and POST Corn samples. The consistency in the signs of these

coefficients suggests a straightforward conclusion can be drawn with regard to the gravitation

versus mean reversion theory. Even though conclusive evidence for mean reversion is not found,

gravitation can clearly be rejected.

Given that linearity is rejected by the estimates, it would be expected that the S-shape

implied by the target zone theory would be found. For this purpose, consider Figure 1 where the

fitted model for Corn from Table V is plotted according to the target zone estimates. The dashed

lines indicate the 95% confidence interval. Panel A is related to the PRE estimates; Panel B is

related to the LIMIT estimates; and Panel C is related to the POST estimates.

If the target zone mean reverting model is the true model, a (increasing) negative deviation

from the target futures price would be expected to generate a (increasing) positive futures return.

If the gravitation model is the true model a (increasing) negative deviation from the target futures

price would be expected to generate a (increasing) negative futures return. Analogous conclusions

can be drawn for positive deviations from the target futures price.

A similar shape is observed for the three sub-periods. The PRE and POST graphs clearly

display mean-reverting non-linear behaviour. The LIMIT graph also displays mean reverting

behaviour, but the confidence bands indicate that it is much less ‘impressive’ in non-linear terms;

there is hardly any reaction, or weak evidence of mean reversion. The cases where we cannot

reject ‘no reaction’ correspond to the random walk model. The evidence for the other

commodities corroborates these results. While all graphs indicate mean reversion, in most cases it

is insignificant.

FIGURE I ABOUT HERE

Thus, when the fundamental cash price is strongly drifting upwards or downwards, so that

it seems that limit hits (and moves) are imminent, the futures price process behaves like a random

walk with drift. For ‘normal’ periods, price limits seem to have a mean-reverting impact on

prices. As suggested in the introduction, it is tempting to conclude that price limits are not the
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preferred regulatory tool in case of fundamental market realignments. In the case of overreacting

markets (when there is little evidence of fundamental realignments), limits do seem to have a

moderating impact on price changes.

IV. Concluding Remarks

Price limit regulation is a hotly debated issue provoked by the occasional major

realignment in prices. Despite their limited occurrence, antagonists argue that their very existence

may deter prospective traders from entering futures trading. Protagonists, on the other hand,

argue that the occasional mayhem and chaos sufficiently underline the need for even tighter price

limits.

This paper has made an attempt to identify the impact of futures price limits on traders’

expectations, and hence price discovery. The current literature on futures price limits can be

divided between those that argue in favour of the gravitation of prices towards the limits versus

those that claim mean-reverting behaviour of prices bouncing back from the limits. Both

hypotheses imply non-linearities in futures returns. This study specifies a target zone model for

intraday futures prices that allows proper testing for the existence of this non-linearity. By

applying the model to a set of agricultural futures contracts, it is illustrated that, even without

actual limit hits (or moves) for a prolonged period of time, there is some impact of the

boundedness of prices.

All parameter estimates have signs consistent with the S-shape mean reversion hypothesis.

For Corn futures, in particular, evidence is found of mean-reverting non-linearity in futures price

returns. For the Soybean complex and Wheat, conclusive evidence for mean reversion is unable

to be found, but the gravitation hypothesis can still be rejected. Hence, there is either no impact

of price limits on traders’ expectations, or there is some moderation impact.

It is therefore tentatively concluded that price limits might not be the preferred tool in case

of major market realignments. For regular market behaviour, however, price limits seem to have

a modifying impact on volatility.
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Footnotes

1 As an example, Jorion (1995) mentions that the US repo market is a creature of Federal Reserve

Regulation Q. A market with daily turnover in excess of $500 billion has been created as

investors switched out of bank deposits as a result of Q.

2 Note that the mean reversion hypothesis is not synonymous to its statistical counterpart. In this

paper, mean reversion implies price movements towards the target price, i.e. the centre between

upper and lower price limits.

3 Note that the exact number of observations differs per commodity due to the number of

(excluded) limit move days. The sub-sample sizes are given in the Appendix (contract

specifications).
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Table I.  Descriptive Statistics

This table reports a range of descriptive statistics for the returns (ie. futures price changes) of five commodity futures
contracts traded at the Chicago Board of Trade. The nearest delivery contract has been chosen and rollover to the
next-to-nearest contract occurs two trading days prior to the delivery month. The last line indicates the number of
five-minute sampling intervals for 1988 for each of these contracts (45 observations per trading day).

Statistics given in this table comprise the first four moments, and a set of tests for normality, serial correlation, and
heteroskedasticity. A * indicates a significant rejection of the test at the 5%-level. The Jarque-Bera test is a normality
test based on skewness and excess kurtosis measures. Autocorrelation ρ gives the first-order autocorrelation
coefficient estimate. The Ljung-Box test is a test for up to 12th order serial correlation in the levels, respectively
squares of price changes. The ARCH test is a Lagrange Multiplier test for conditional heteroskedasticity in the
returns. Limit move days indicates the number of days on which the futures price closes at the limit (limit up or
down) for each of the contracts individually.

Panel A: Raw Returns, Rt+j

Corn Soybeans Soybean
Meal

Soybean
Oil

Wheat

Mean -0.00 0.02 0.01 -0.00 -0.00

Standard deviation 0.58 1.69 0.59 0.06 0.88

Skewness -0.87 -0.18 0.52 -1.17 -0.57

Excess kurtosis 31.37 16.49 28.91 26.24 24.64

Jarque-Bera test 296890.6* 67299.8* 250881.7* 208681.6* 193741.5*

Autocorrelation ρρ -0.073* -0.004 -0.044* -0.053* -0.025*

Ljung-Box (12) – levels 165.63* 102.61* 80.86* 112.66* 58.44*

Ljung-Box (12) – squares 3404.46* 3712.17* 1333.98* 733.26* 2182.79*

ARCH test 457.99* 729.94* 754.93* 230.48* 908.48*

Number of observations 8820 8865 8955 9180 9900

Limit move days 31 32 30 25 9

Panel B: Deseasonalized Returns, Ut+j

Corn Soybeans Soybean
Meal

Soybean
Oil

Wheat

Mean -0.00 0.03 0.03 0.01 0.01

Standard deviation 1.37 1.30 1.32 1.34 1.36

Skewness -0.03 -0.07 -0.00 -0.00 -0.02

Excess kurtosis 3.69 3.59 3.68 3.84 4.12

Jarque-Bera test 176.3* 135.16* 172.14* 267.34* 516.2*

Autocorrelation ρρ -0.143* -0.052* -0.045* -0.058* -0.056*

Ljung-Box (12) – levels 186.45* 72.42* 82.10* 94.30* 51.41*

Ljung-Box (12) – squares 36.33* 52.89* 136.03* 74.08* 70.51*

ARCH test 15.97* 38.28* 77.79* 46.64* 48.70*
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Table II.  Sample Split Statistics

 This table reports a set of descriptive statistics for deseasonalised returns Ut+j and test statistics for three sub-samples.
The sub-sample selection is based on the frequency of limit hits/moves. Limit hits/moves predominantly occur in the
months of June and July 1988. Hence, we distinguish a PRE, a LIMIT, and a POST sample. These sub-samples
correspond with respectively the first, second and third entry in each cell. The descriptive statistics are the first,
second, third and fourth empirical moments, and the first-order serial correlation coefficient. A * indicates a
significant rejection of the null hypothesis of normal distribution values for skewness and kurtosis and the null
hypothesis of no autocorrelation, at the 5%-level.

Mean Standard

Deviation

Skewness Excess

Kurtosis

First order

autocorrelation

Limit

moves

Corn                  PRE
                                 LIMIT
                                 POST

-0.00
0.00
-0.01

1.42
1.34
1.34

-0.07
0.11
-0.07

3.58
4.20
3.37

-0.206
-0.077
-0.107

0
31
0

Soybeans           PRE
                                 LIMIT
                                POST

0.03
0.06
0.01

1.26
1.34
1.32

-0.13
-0.09
-0.10

3.65
3.64
3.43

-0.043
-0.013
-0.102

0
31
1

Soybean Meal   PRE
                                 LIMIT
                                POST

0.01
0.07
0.02

1.26
1.37
1.34

-0.07
0.03
0.03

3.49
3.52
3.99

-0.042
0.001
-0.096

0
29
1

Soybean Oil       PRE
                                 LIMIT
                                POST

0.04
0.03
-0.04

1.31
1.37
1.35

0.03
-0.01
-0.04

3.72
3.76
4.03

-0.052
-0.044
-0.082

0
24
1

Wheat                PRE
                                 LIMIT
                                POST

-0.01
0.01
0.04

1.31
1.39
1.37

-0.10
-0.04
0.10

4.07
4.08
4.16

-0.050
-0.040
-0.084

0
9
0
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Table III.  Target Zone Log-Likelihoods

This table reports the maximized log-likelihood for the following unrestricted equation:

U D f f I f f f f U et j k k k t j t ik t j t
i

k t j t k t j
k

t j+
=

+
=

= + − + − + −
RST

UVW +∑∑ δ δ δ δ δ0 1 1 2 1

2

1

2

3 1

3

4 1
1

3

+ - + - + - - +(. ) + ,c h c h c h
where I(.) is an indicator function separating positive from negative target deviations for i=1, respectively i=2; and
a sample split dummy is indicated by k=1 (PRE), 2 (LIMIT), and 3 (POST), and the restricted equation where the
coefficients are constrained to be equal across each period, i.e., δ*1 =δ*2 =δ*3, i.e.

U f f I f f f f U et j t j t i t j t
i

t j t t j t j+
=

+= + − + − + − +∑δ δ δ δ δ0 1 1 2 1

2

1

2

3 1

3

4 1+ - + - + - - +(.) +c h c h c h
We estimate this model for the unconditional normal distribution, the unconditional Student-t distribution, and
conditional versions of both models with GARCH(1,1) errors.  Underlined entries indicate the ‘best ’ model based on
a likelihood ratio test with the appropriate degrees of freedom.

Error
Distribution

Model Corn Soybeans Soybean
Meal

Soybean
Oil

Wheat

Normal unrestricted -14,875.3 -14,544.6 -14,801.7 -15,319.7 -16,643.3

Normal restricted -14,898.2 -14,556.1 -14,811.8 -15,328.3 -16,652.6

Normal-GARCH unrestricted -14,869.6 -14,528.7 -14,751.2 -15,289.7 -16,608.4

Normal- GARCH restricted -14,892.7 -14,539.6 -14,759.6 -15,299.0 -16,616.3

Student-t unrestricted -14,825.3 -14,493.7 -14,740.6 -15,220.1 -16,478.3

Student-t restricted -14,847.7 -14,506.1 -17,751.2 -15,228.9 -16,488.1

Student-t- GARCH unrestricted -14,821.5 -14,480.4 -14,696.4 -15,190.3 -16,442.1

Student-t- GARCH restricted -14,844.1 -14,492.2 -14,705.2 -15,199.5 -16,450.3
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Table IV. Tests of Restrictions

Panel A gives the log likelihood values of the unrestricted Student-t GARCH model of Table III and for a number of
restricted versions of that model.  Panel B presents likelihood ratio test statistics and p-values for the restrictions in
parentheses. The conditional hypotheses are based on imposing the conditioning restrictions.

Panel A: Log-Likelihood Values

Restrictions Number of
Coefficients

Corn Soybeans Soybean
Meal

Soybean
Oil

Wheat

Unrestricted 22 -14,821.5 -14,480.4 -14,696.4 -15,190.3 -16,442.1

δ*1=δ*2=δ*3 10 -14,844.1 -14,492.2 -14,705.2 -15,199.5 -16,450.3

δ3*=0 19 -14,821.7 -14,482.9 -14,697.2 -15,191.3 -16,443.7

δ2*=δ3*=0 13 -14,832.2 -14,486.9 -14,700.0 -15,196.1 -16,448.0

δ1*=δ2*=δ3*=0 10 -14,832.8 -14,490.6 -14,703.2 -15,198.6 -16,452.2

δ2*=0 16 -14,825.6 -14,483.0 -14,697.0 -15,193.3 -16,446.5

δ1*=0 19 -14,822.9 -14,482.2 -14,696.5 -15,192.8 -16,442.6

Panel B: Likelihood Ratio Test Statistics

Restrictions Degrees of
Freedom

Corn Soybeans Soybean
Meal

Soybean
Oil

Wheat

δ*1=δ*2=δ*3 12 45.2 (0.000) 23.6 (0.023) 17.6 (0.128) 18.4 (0.104) 16.4 (0.176)

δ3*=0 3 0.4 (0.940) 5. 0 (0.172) 1.6 (0.659) 2.0 (0.572) 3.2 (0.362)

δ2*=δ3*=0 9 21.4 (0.011) 13.0 (0.163) 7.2 (0.616) 11.6 (0.237) 11.8 (0.225)

δ1*=δ2*=δ3*=0 12 22.6 (0.031) 20.4 (0.060) 13.6 (0.327) 16.6 (0.165) 20.2 (0.063)

δ2*=0 6 8.2 (0.224) 5.2 (0.518) 1.2 (0.977) 6.0 (0.423) 8.8 (0.185)

δ1*=0 3 2.8 (0.424) 3.6 (0.308) 0.2 (0.978) 5.0 (0.172) 1.0 (0.801)

δ2*=0|δ3*=0 6 21.0 (0.002) 8.0 (0.238) 5.6 (0.469) 9.6 (0.143) 8.6 (0.197)

δ1*=δ2*=0|δ3*=0 9 22.2 (0.008) 15.4 (0.081) 12.0 (0.213) 14.6 (0.103) 17.0 (0.049)

δ1*=0|δ3*=0 3 14.2 (0.003) 2.4 (0.494) 3.4 (0.334) 6.2 (0.102) 1.6 (0.659)

δ1*=0|δ2*=δ3*=0 3 1.2 (0.753) 7.4 (0.060) 6.4 (0.093) 5.0 (0.172) 8.4 (0.038)
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Table V.  Quadratic Target Zone Models

This table reports the parameter estimates for the Student-t cum GARCH error distribution:

U D f f I f f U et j k k k t j t ik t j t
i

k t j
k

t j+
=

+
=

= + − + −
RST

UVW
+∑∑ δ δ δ δ0 1 1 2 1

2

1

2

4 1
1

3

+ - + - - +(.) + ,d i d i
where the third order term coefficients are restricted to zero. The coefficient estimates are given for the three sub-
samples PRE, LIMIT, and POST. The t-statistics are given in parentheses (for the degrees of freedom parameter, the
null hypothesis is ν=2)  

Corn Soybeans Soybean Meal Soybean Oil Wheat

δδ 0,pre -0.0022
(-0.077)

0.0362
(1.595)

0.0155
(0.649)

0.0186
(0.727)

-0.0193
(-0.754)

δδ 0,limit -0.0057
(-0.181)

0.0725
(2.287)

0.0658
(2.116)

0.0285
(0.993)

0.0209
(0.823)

δδ 0,post 0.0239
(0.747)

0.0269
(0.928)

0.0313
(1.040)

-0.0510
(1.678)

0.0073
(0.235)

δδ 1,pre 0.1266
(2.568)

0.0067
(0.728)

0.0135
(0.466)

0.5767
(2.362)

0.0089
(0.468)

δδ 1,limit 0.0226
(1.306)

0.0087
(1.261)

0.0063
(0.344)

0.0328
(0.206)

0.0011
(0.125)

δδ 1,post 0.0626
(2.398)

0.0044
(0.524)

0.0406
(1.735)

0.1863
(0.684)

0.0247
(1.171)

δδ 21,pre -0.0504
(-2.545)

-0.0004
(-0.571)

-0.0035
(-0.449)

-0.9915
(-1.563)

-0.0017
(-0.531)

δδ 21,limit -0.0025
(-1.316)

-0.0008
(-2.667)

-0.0037
(-1.423)

-0.2662
(-0.996)

-0.0009
(-1.125)

δδ 21,post -0.0180
(-2.769)

-0.0006
(-0.857)

-0.0094
(-1.709)

-0.7621
(-0.854)

-0.0040
(-1.081)

δδ 22,pre 0.0964
(3.110)

0.0013
(1.182)

0.0057
(0.445)

1.9408
(2.582)

0.0123
(1.864)

δδ 22,limit 0.0053
(1.767)

0.0008
(2.000)

0.0047
(1.270)

0.1653
(0.811)

0.0005
(0.714)

δδ 22,post 0.0104
(1.576)

0.0002
(0.333)

0.0069
(1.408)

0.8150
(1.334)

0.0085
(1.889)

δδ 4,pre -0.2050
(-12.275)

-0.0469
(-2.635)

-0.0558
(-3.100)

-0.0565
(-3.247)

-0.0615
(-3.534)

δδ 4,limit -0.0827
(-3.919)

-0.0155
(-0.760)

-0.0070
(-0.338)

-0.0401
(-2.046)

-0.0464
(-2.651)

δδ 4,post -0.1160
(-5.771)

-0.1168
(-5.869)

-0.1069
(-5.189)

-0.0859
(-4.295)

-0.0953
(-4.862)

ββ 0 0.8682
(2.208)

0.4827
(2.887)

0.6192
(6.236)

0.6212
(4.375)

0.7498
(4.943)

ββ 1 0.0302
(2.517)

0.0416
(4.078)

0.0887
(7.040)

0.0732
(5.588)

0.0798
(6.045)

ββ 2 0.4995
(2.294)

0.6719
(6.454)

0.5536
(8.900)

0.5828
(6.824)

0.5169
(5.914)

νν 12.1996
(6.818)

11.5559
(7.126)

11.0375
(7.278)

7.9738
(8.846)

6.7075
(10.299)
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Figure 1. Target Zone Functions for Corn Futures
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APPENDIX A. DESEASONALIZING RETURNS

Theory:

As in Andersen and Bollerslev (1997) and Kofman and Martens (1997), the Flexible Fourier Form

(FFF) specification originally introduced by Gallant (1981) is used to account for deterministic

intraday volatility. The FFF models volatility as a sum of low-order polynomial and trigonometric

terms:

R
t

T
a

t

T

jt

T

jt

Tt d d
k

k k k jk jk
j

J

k

K

t d,
=

= σ α α τ
π
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ζ0 1 2

2
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2 2
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I
K + F
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K + F

H
I
K

L
NM

O
QP

RST
UVW

+
=

∑∑ cos sin , (A1)

where absolute intraday futures returns are used as the volatility measure. The FFF is partly a

quadratic function of time t = 1,…,T – to capture the intraday U-shape – and partly a trigonometric

functions of time t – to capture any other smooth patterns (e.g., regularly timed agricultural news

releases). The  σ d
k  term measures the standard deviation of futures returns on day d. By including

this interactive volatility term, allowance is made for the fact that daily volatility levels are

commonly found to be correlated. Hence, inclusion will absorb level shifts in the volatility seasonal

during the sample period. The number of (co-)sinusoids J and interactive volatility terms K is

determined by the overall goodness of fit of the regression. The futures returns will then be

deseasonalized by dividing them by their seasonal fitted value:

U
R

R
t d

t d

t d

,
,

$
=

,

(A2)

Both raw returns and deseasonalized returns have been used in the target zone estimation.

Empirical Seasonal

Consider the absolute value of futures price changes as a measure of return volatility.  These

volatility measures are averaged for each 5-minute sampling interval across trading days. This

generates an average sample volatility measure per 5-minute interval. Figure A.1 illustrates the well

known intraday U-shape (the broken line) for the average sample volatility.  Next it is investigated

whether the interactive – interdaily – volatility level should be included in the estimation of the

seasonal effect. Daily standard deviations are computed from the (45) intradaily price changes per

day. Note that the opening interval uses the difference between the last and the first observed price

within that interval. The remaining intervals use the difference between the last observed price in

that interval and the last observed price in the previous interval. Figure A.2 plots this series.

Whereas volatility is rather stable for the first four months, it clearly explodes in the following three

months, after which it becomes more stable, but at a much higher level than before. These structural

changes may have a substantial impact on intradaily volatility seasonals.
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Figure A.1

Intraday Seasonal
Corn Futures (5/1/88 to 28/11/88)
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Figure A.2

Sample Volatility of Returns
Corn Futures (5/1/88 to 28/11/88)
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Table A.1, therefore uses the interactive volatility level in the estimation of the seasonal effects.

Let J=K=1 in (A1). Higher order terms do not contribute to the shape and significance of the

seasonal.

Table A.1.  Seasonal Estimation Results

This table reports the estimation results for the seasonal in each of the five commodity futures price volatility series.
The seasonal specification is given by:

R
t

T
a

t

T

t

T

t

Tt d d
k

k k k k k
k

t d,
=

= σ α α τ
π

γ
π

ζ0 1 2

2

0

1 2 2
+ F

H
I
K + F

H
I
K + F

H
I
K + F

H
I
K

L
NM

O
QP

RST
UVW

+∑ cos sin ,

The t-statistics are given in parentheses.

Variables Corn Soybeans Soybean Meal Soybean Oil Wheat

C -0.0368
(-0.60)

0.3877
(1.85)

-0.3011
(-4.09)

-0.0179
(-2.24)

-0.5340
(-5.04)

σ ⋅ C 1.3912
(13.10)

1.1458
(9.26)

2.1925
(17.48)

1.9876
(15.52)

2.5311
(21.02)

t

T
0.0014

(0.01)
-2.3332

(-2.04)
1.3897

(3.45)
0.0338

(0.78)
2.4961

(4.31)

σ ⋅
t

T
-3.3639

(-5.80)
-2.9991

(-4.43)
-7.7483

(-11.30)
-5.9372

(-8.49)
-9.3484

(-14.21)

t
T

F
H

I
K

2 0.0717
(0.22)

2.4651
(2.21)

-1.1148
(-2.85)

0.0065
(0.15)

-2.0366
(-3.62)

σ ⋅ FH
I
K

t
T

2 3.1422
(5.57)

3.1650
(4.81)

7.1178
(10.68)

5.0545
(7.43)

8.4181
(13.16)

cos .a f -0.0377
(-1.10)

-0.3028
(-2.59)

0.0791
(1.92)

-0.0040
(-0.90)

0.1364
(2.31)

σ ⋅ cos .a f -0.0207
(-0.35)

-0.0240
(-0.35)

-0.4245
(-6.06)

-0.2058
(-2.88)

-0.4886
(-7.27)

sin .a f 0.0517
(3.40)

0.1339
(2.57)

0.0994
(5.44)

0.0127
(6.39)

0.1547
(5.89)

σ ⋅ sin .a f -0.0986
(-3.74)

-0.0369
(-1.20)

-0.2113
(-6.79)

-0.2897
(-9.12)

-0.2734
(-9.16)

The smooth solid line in Figure A.1 shows the fitted ‘average’ U-shape for Corn. Finally, Figure

A.3 shows these seasonals across days, clearly capturing the interdaily volatility changes.

Fitted Seasonals Across Days
Corn Futures (5/1/88 to 28/11/88)
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APPENDIX B. DATA

The data used in this study cover the time period 5 January 1988 through 28 November 1988. The

intraday data (all frequencies) are derived from the Tick Data Inc. time and sales tapes. The details

of the agricultural futures contracts traded at the Chicago Board Of Trade are given below.

According to Regulation 1008.01 Trading Limits, the following rules have been active for our

sample period:

Price Limits are symmetric above/below the previous business day’s settlement price.

Limits are lifted two business days before the cash month (=delivery month). For the first

half of our sample period (until June 23, 1988) limits were expanded by 150% of the

current level if, for two successive business days, the market closes at the limit for three

or more simultaneously traded maturities for a contract year. If there are less than three

maturities remaining, this rule is changed to all traded maturities. For the second half of

our sample period (as of June 24, 1988) the sequential limit days requirement was

reduced to a single business day. Expanded limits remain in action for three successive

business days. Limits remain at 150% for successive three day periods unless at the end

of such a period three or more maturities do not close at the limit. The limit expansion

will operate concurrently on the Soybean complex futures. Limits will revert to 100%

only if all futures in this complex meet the conditions for reversal.

Contract Specifications

Contract Corn Soybeans Soybean Meal Soybean Oil Wheat
Contract Size 5,000 bushels 5,000 bushels 100 tons 60,000 lbs 5,000 bushels

Delivery
Months

Mar, May, Jul,
Sep, Dec

Jan, Mar,
May, Jul,
Aug, Sep,

Nov

Jan, Mar,
May, Jul,
Aug, Sep,

Nov

Jan, Mar,
May, Jul,
Aug, Sep,

Nov

Mar, May, Jul,
Sep, Dec

Minimum
Tick Size

0.25 ¢ / bushel 0.25 ¢ / bushel 10 ¢ / ton 0.01 ¢ / lb 0.25 ¢ / bushel

Initial Limit 12 ¢ 30 ¢ $10 1 ¢ 20 ¢
Expandable

Limit
18 ¢ 45 ¢ $15 1.5 ¢ 30 ¢

Sample
Periods

5Jan – 29Apr
2May - 31Aug
1Sep – 28Nov

5Jan – 29Apr
2May - 31Aug
1Sep – 28Nov

5Jan – 29Apr
2May - 31Aug
1Sep – 28Nov

5Jan – 29Apr
2May - 31Aug
1Sep – 28Nov

5Jan – 29Apr
2May - 31Aug
1Sep – 28Nov

Observations
in Samples

3645
2475
2700

3690
2475
2700

3690
2565
2700

3690
2790
2700

3690
3465
2745


