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Persistent bear market conditions have led to a shift of focus in the tracking error literature.
Until recently the portfolio allocation literature focused on tracking error minimization as a
consequence of passive benchmark management under portfolio weights, transaction costs
and short selling constraints. Abysmal benchmark performance shifted the literatureis focus
towards active portfolio strategies that aim at beating the benchmark while keeping tracking
error within acceptable bounds. We investigate an active (dynamic) portfolio allocation
strategy that exploits the predictability in the conditional variance-covariance matrix of asset
returns. To illustrate our procedure we use Jorionis (2002) tracking error frontier
methodology. We apply our model to a representative portfolio of Australian stocks over the
period January 1999 through November 2002.
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1. Introduction

Persistent bear market conditions on stock markets worldwide have generated a bull market
in the tracking error literature. Practitioner-oriented journals (in particular the Journal of
Portfolio Management and the Journal of Asset Management, see our references) recently
devoted whole issues to implementation and performance measurement of tracking error
investment strategies. More technical f mathematically-inclined fi journals (e.g., the

International Journal of Theoretical and Applied Finance) publish ever-faster optimization
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and risk measurement algorithms for increasingly realistic portfolio dimensions. Not
coincidentally, this surge in academic interest &racksi the global stock market slump with
fund manager performance coming under intense scrutiny from investors.

With absolute return performance as a first-order condition of investoris utility
preferences, tracking the benchmark as closely as possible is normally sufficient during bull
market conditions. When the benchmark fails to deliver, however, fund managers will have to
prove relative return performance against the benchmark. The aim is then to persistently
outperform the benchmark. Of course, such performance will only be feasible if the manager
is prepared to accept active risk, and hence incur a risk penalty. Most investment funds accept
that investors want to cap this penalty and therefore set a maximum portfolio tracking error
accordingly. Thus, tracking error can either be the investment goal, or an investment

constraint. This leads to the following two interpretations of index tracking:

A passive strategy that seeks to reproduce as closely as possible an index or benchmark
portfolio by minimizing the tracking error of the replicating portfolio;

or,

an active strategy that seeks to outperform an index or benchmark portfolio while staying

within certain risk boundaries defined by the benchmark.

What distinguishes these strategies is the composition of total risk exposure. Both active and
passive strategies will incur incidental risk, while the active strategy will also incur
intentional risk. Intentional risk may consist of stock specific risk (active stock selection) or
systematic risk (active benchmark timing). Interestingly, some index fund managers claim
that ex ante passive indexing generates persistent above average returns i i.e., an active
portfolio outcome. Of course, what they really mean is that passive indexing often
outperforms the average active strategy (which is more likely a reflection of the poor active
outcomes). A standard measure used to trade off active performance against intentional risk is
the information ratio (a.k.a. appraisal ratio), defined as the portfoliois active return @i the
alpha fi divided by the portfoliois active risk. This standardized performance measure can be
used to assess ex ante opportunity but it is more frequently used to assess ex post

achievement. Ex ante opportunity is defined by the maximum possible /R given a set of



forecast stock returns (and their forecast risk measures) and an inefficient benchmark'. A
passive manager (minimizing tracking error) will have an ex ante /R close to zero. An active
manager (maximizing excess returns) will have a much larger /R. The ex post achieved /R
will depend on the realized excess return over the benchmark and as such depend on the
Information Coefficient (/C). The manageris /C measures the correlation between forecast
excess returns and realized excess returns. Whereas the ex ante /R will (by necessity) be
strictly non-negative, the ex post /R can of course be negative. For a comprehensive
discussion of these performance measures, we refer to Grinold and Kahn (1999). Active
managers perceive that they need to frequently reallocate their portfolios either to &apturei
excess returns or to stay within a tracking error constraint. At times this may lead to a less
than perfectly diversified portfolio, and will incur substantial transaction costs and assume
high total risk. Of course, few passive index fund managers hold portfolios that exactly match
the index, e.g., due to liquidity constraints. Just as active management incurs transaction
costs, the passive manager then also has to rebalance the €indexi portfolio to match the actual
index returns as closely as possible. This suggests that there is a fairly close symmetry in the
treatment of active and passive tracking error strategies. The key difference in the
interpretation of passive and active ex post /R is that the best active manager will be
characterized by a persistently large positive /R, whereas the best passive manager will have
an ex post IR close to zero.?

The passive tracking practitioners have been well served by the academic literature.
Rudd (1980), Chan and Lakonishok (1993) and Chan, Karceski, and Lakonishok (1999) are
but a few of the many examples of this literature. The active tracking practitioners have not
yet attracted similar attention®. To the best of our knowledge, Roll (1992) and Jorion (2002)

are the first papers that comprehensively derive and interpret active portfolio allocation

' If the benchmark happens to be an efficient portfolio, the ex ante maximum possible /R will be zero! Of
course, this is highly unlikely in practice. Typical benchmarks like the S&P500 or the ASX200 are commonly
found well below the efficient frontier.

* However, the measure can be poorly defined. Consider the passive manager who actually holds the benchmark
portfolio. For this manager, the /R will not be defined.

3 Most standard investment textbooks still discuss tracking error in a passive portfolio management context, see
e.g., Elton et al. (2003, p.677). Tracking error is then typically defined as the standard error of a regression of
the passive portfolio returns on benchmark returns, see also Treynor and Black (1973). This regression
measure is appropriate if the ibetal in the regression equals 1 (as it would for passive portfolios), but it will
overstate tracking error when this is not the case (as it would for active portfolios). The same applies to the
correlation measure suggested in Ammann and Zimmermann (2001). We therefore define tracking error as the
square root of the second moment of the deviations between active portfolio returns and benchmark returns.
Alternatively, one can define tracking error as the mean absolute deviation between active portfolio and
benchmark returns, see e.g., Satchell and Hwang (2001). Both definitions can be used for ex ante tracking
error (using forecast active and benchmark returns) as well as ex post tracking error (using realized active and
benchmark returns).



solutions within a tracking error context. There are a few papers (e.g., Clarke et al., 2002) that
investigate different active strategies with or without constraints on weights and/or risk.
Unlike Roll and Jorion they do not analytically trace the trade-off between active risk-taking
and expected excess returns.

In this paper we apply Jorionis approach to active portfolio management within a
tracking error constrained environment. We extend the methodology by taking a careful (and
practical) approach to compute the input list. We investigate the impact of seriously
inefficient benchmarks (which Jorion excludes) and the introduction of short selling
constraints. We apply the methodology to the top-30 stocks of the Australian Stock Exchange
during a three year sample period characterized by a strong bull market followed by a sharp
and persistent bear market. We find, not surprisingly, that market conditions have a
substantial impact on the active portfolio allocation and its ex post performance. This

becomes even more apparent when we allow for short selling constraints.

The next section briefly describes our methodology, by reviewing the well-known
portfolio optimization algebra and the lesser-known tracking error analytical solutions. We
also describe how we operationalize the general portfolio allocation model. Section 3
summarizes the data from the Australian Stock Exchange and illustrates typical
implementation issues that confront portfolio managers. Section 4 discusses the empirical
results of our tracking error optimization. We conclude with lessons learnt from this exercise

and possible venues for further research.

2. Methodology

Our methodology is based on Jorion (2002) to derive a constrained tracking error frontier.
Define an observation, or estimation, period [t-},t] from which we derive the input list. Based
on this input list we first compute the &lobali efficient frontier without restrictions on risk or
weights (except for the usual full investment constraint). We then investigate the reduction in
investment opportunities when we introduce a tracking error constraint, followed by a short
selling constraint. The introduction of a benchmark leads to a tracking error frontier, from
which we derive the (conditionally) optimal active portfolio allocation. We then track this
active portfoliois performance over a subsequent tracking period [t+1,t+k] and compute the
realized tracking error. We dynamically update the active portfolio allocation at different

frequencies (daily, weekly, monthly). Each time we update the investment opportunity set,



we also locate the new &x antei position of the previous periodis active portfolio relative to
the updated tracking error frontier.

Computation of the input list (arguably the most important stage of portfolio
management, see Zenti and Pallotta, 2002) tends to be inconsistent in practice. Return
forecasting is a strictly separate exercise from risk forecasting. Stock analysts provide the
portfolio manager with forecast returns. These are typically point estimates without matching
confidence intervals, i.e., stock analysts do not generate prediction intervals, see Blair (2002).
A stock analystis information set typically comprises accounting information, economic
information, management information, etc. It would be extremely complicated to combine the
uncertainty surrounding each information variable into a single confidence interval for the
stock return forecast. That is, the accuracy of the forecast is hard to define and measure.
Econometric forecast models are commonly based on a much smaller information set of
fairly homogeneous variables (like historical returns, dividends, growth rates). Even for these
models it is still a challenge to find the joint confidence interval. In the absence of an
analytical solution, simulation techniques or scenario analysis may be used to generate the
uncertainty measure. The highest density forecast region proposed in Blasco and Santamaria
(2001) or the bootstrapped prediction densities in Blair (2002) would be more promising
candidates to solve this problem. In the absence of analyst forecasts (as in our application),
the portfolio manager may apply some version of the beta pricing model along the lines of
Rosenberg and Guy (1976), and Rosenberg (1985). We do not use fundamental information fi
as the portfolio manager would fi but instead opt for the following simplification of the

BARRA model to forecast betas:
Bf,t = (1 - (F)Bu,t + (th (1)

where 3, is the beta computed over the estimation period (effectively derived from the
forecast variance-covariance matrix as discussed below) and £, is the long-run beta used to
&moothi the forecast,’ with a smoothing parameter @ Of course, there are different
techniques to choose the smoothing parameter (e.g., Bayesian updating, Maximum
Likelihood Estimation) and the historical long-run beta. We do not focus on the selection of @
or f3, but do investigate the sensitivity of our results to different values of @ We then use

stock i's smoothed forecast beta, 53, to generate its forecast return

* In our application, 3, is computed as an &xpandingi average, i.c., at each optimisation period we compute the
long-run beta over the full sample period up to that date (alternatively one could use the average beta
measured over the year preceding the observation period).



E, (Ri,t+1 ) = Rtf + ,3}, |.Et (RB,t+1 )_ Rth (2)
where the forecast return on the benchmark is its average return over the estimation period.
Of course, our choice of a single factor model is a further simplification. Grinold and Kahn
(1999) discuss more appropriate multifactor generalizations (including the BARRA risk
factor model). Chan, Karceski and Lakonishokis (1999) multifactor model i though restricted
to forecast (co)variances 1 is potentially suitable to generate the complete input list, both risk
and return forecasts. Given that we do not intend to maximize the ex post Information Ratio,
we do not pursue those more elaborate models at this stage.

As suggested in Blair (2002) and discussed above, portfolio managers often apply
forecast risk models in complete isolation from forecast return models. They might adopt a
number of modeling specifications. Most of these are based on the premise that a stockis
volatility changes over time (as does its beta). The ARCH model by Engle (1982) and its
many offspring have dominated the academic portfolio literature for the past two decades.
Much progress has been made in achieving ever better fitting specifications for univariate
time series. Multivariate extensions i quite crucial for portfolio applications @i have not
witnessed similar advances, the main obstacle being the dimensionality problem. A
completely unrestricted time-varying variance-covariance matrix is almost impossible to
estimate for realistic portfolio dimensions (let alone achieving convergence in a realistic time
frame)’. Pragmatic solutions are therefore needed and we opt for the approach advocated by
RiskMetrics6 (1995). Forecast volatility is an exponentially weighted moving average

(EWMA) of past squared returns for stock i:
2 . i D2
0., = (1 - A)Z{; A Ri,t—_j (3)
=

where A, the decay factor, depends on how fast the mean level of squared returns changes
over time. The more persistent (autocorrelated) the squared returns will be, the closer A
should be to 1. For highly persistent time series of financial returns, we find values of A
between 0.9 and 1. Given the choice of decay factor, we then determine how many past
observations should be used to compute forecast volatility. For a tolerance level of 0.01
(when we consider the observationis impact on forecast volatility to have sufficiently
&ecayedi), and 4=0.9, we need about 40 historical observations. As in RiskMetricsd , we
apply (3) to each element of the variance-covariance matrix. Theoretically, with a universe of

n stocks we should have as many as nt+(n)X(n-1)/2 unique Ais and matching estimation



periods. In our application this implies 465 individual variance forecast processes. While still
computationally feasible (and certainly faster than a multivariate GARCH estimation of the
same dimension), for our purposes we impose a single A on all variance-covariance elements.
The penalty for this choice is reduced precision in the forecast variance-covariance matrix. It
would be worthwhile to further investigate whether there is a idiversificationi effect in this
additional forecast error across stocks, which would effectively reduce this penalty.

Which brings us to the next step, portfolio optimization. Rudd and Rosenberg (1980)
comprehensively derive the investment allocation problem for a restricted portfolio universe
(that is, for example, only the top 50 liquid stocks on a particular exchange) to match
empirical practice. Jorionis (2002) derivation is similar in style and we follow his notation.

First, the standard constrained portfolio variance minimization problem

min w,Qw,
s.t. w, X1 =1 (4)
wpXE =

where E is a vector of forecast returns and Q is the forecast variance-covariance matrix of
returns and 4 is a target portfolio return. Optimization over portfolio weights wp leads to the

well known hyperbola in mean i standard deviation space:
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The weights of the efficient portfolios that fall on the hyperbola are readily obtained for
different values of the target return constraint. Easy to apply, but of course, as soon as
additional constraints are added on (e.g., a short selling constraint), we lose this analytical
result and have to numerically optimize to find the feasible investment opportunity set. Now,
if we slightly refocus the optimization problem to reflect a isearchi for portfolio value added

(in excess of a benchmark portfolio value), we get

max da,E
st. ap,*xt=0 (6)
a,Qa, <%

> A recent exception is Timmermann and Blake (2002) but their portfolio dimensions are small.



where the active weights ap (in deviation from the benchmark weights, wg) have to add to
zero to satisfy our original full investment constraint. This guarantees that total active
portfolio weights, wg+ap, still add up to one. Active risk (in deviation from benchmark risk)
may not exceed tracking error target variance 2. Jorion derives the active portfolio solution if

we set the tracking error constraint exactly equal to the target excess variance as

0 = i\/%Q_l [E -gl} )

where B, C and D are as defined in (4). As Jorion notes, these are solutions in excess return
versus excess risk space. For ease of comparison with the standard portfolio setup, we would

rather have a representation in the mean (total return) versus standard deviation (total risk)

space:
max a,kE
st a,x1=0 )
: (61)
a,Qa, <%

(WB + aP)'Q(WB + aP) =0,

which upon maximization results in the following ellipsoidal solutions (4p , Op )
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as long as the benchmark (i ,03 ) lies within the efficient set. The ellipse is vertically
centred around the benchmark expected return, but it is horizontally centred around the
benchmark variance plus tracking error variance. The ellipseis principal axis is horizontal if
benchmark expected return coincides with the expected return of the global minimum
variance portfolio (thyp=B/C). If Ug>Lyp T typical in a bullish market @i it will have a
positive slope; if (p<typ 0 in a bearish market fi it will have a negative slope. Jorion
provides an extensive discussion of displacements of the tracking error ellipse for changes in

target tracking error variance. For our purposes we just mention two more relevant metrics:

/'IMAX =/'13 + “Dz
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for the mean and variance of the maximum expected excess return portfolio. Note that the
portfolio manager can only generate excess returns by assuming tracking error. Note also that
the penalty for this active portfolio allocation not only increases with tracking error variance
but also with a more efficient benchmark portfolio (an increasing gap between tiz and B/C).
The more efficient the benchmark, the harder it will be to beat its performance.

We test the Jorionis methodology on real data. Two empirical features stand out for our
application. The benchmark is frequently so inefficient, that its expected return falls below
the expected return of the global minimum variance portfolio (B/C). Also, the unconstrained
weights take completely unrealistic values during bear market conditions with huge short
selling implications. We therefore add a short selling constraint. This complicates matters, as
Jorion suggests. The numerical optimization of (4) with such a constraint poses no particular
problems. Unfortunately, we cannot simply édistorti the tracking error ellipse by taking the
intersection of the tracking error ellipse and the constrained mean-variance efficient frontier.
We have to perform an integrated numerical optimization of (61) including the short selling
constraint. The solution set then becomes considerably thinner. Ultimately we look for the
maximum excess return active portfolio (a single point) that satisfies all constraints
simultaneously. There is no analytic solution for this problem. Numerical optimization is,

however, quite feasible.

3. Data Issues
Our application considers a portfolio of 30 Australian stocks with a &educedi Australian All
Ordinaries Index (XAQO) as our benchmark. The stock price data and risk-free interest rates
are obtained from Datastream and IRESS Market Technology. The top-30 stocks account for
about 62% of the XAO index’. We standardize the top-30 weights to add up to 100% and
generate a new top-30 benchmark accordingly. We choose a sample that covers the rather
turbulent period from 4 January 1999 until 29 November 2002, a total of 991 trading days.
What makes this sample particularly appealing is the strong bull market from the start of our
sample until April 2000, followed by a sequence of collapses and persistent bear market
conditions until the end of our sample.

Figure 1 indicates that our top-30 benchmark tracks the XAO index quite closely for the
first year and a half of our sample. Mid 2000, however, the top-30 starts to diverge

% The top-10 stocks already account for over 40% of the XAO. For comparison, the top-10 stocks in the S&P500
account for about 25%. This dominance of a few stocks should make it theoretically easy to keep the tracking



substantially from the XAO index. The underperformance of the XAO index is easily
explained by the under representation of technology stocks in the top-30, relative to the XAO.
This is even more apparent when we include the S&P500 in the comparison. Whereas the
S&P500 outperforms both top-30 and XAO indices until about June 2000, it has been much
more exposed to the tech stocks collapse. A closer look at the key market drops in Figure 1

highlights this phenomenon.

Figure 1. All Ordinaries versus Top-30 Benchmark Index and S&P500
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Note: Indices have been &tandardizedi at 100 on the 1% of January 1999. The benchmark consists of the Top-30
stocks in the All Ordinaries.

Ranked by the size of the S&P500 collapse they are: the Nasdaq collapse on the 14™ of
April 2000, the 17" of September 2001 (following September 11), the 12™ of March 2001,
the 3™ of September 2002, the millennium bug on the 4™ of January 2000 and the 19" of July
2002. The initial Nasdaq collapse is mirrored in the XAO collapse on the following trading
day, but to a lesser extent for the top-30. Subsequent tech stock spillovers are less apparent i
indicating the smaller presence of tech stocks in the Australian market. These US-led
collapses have a moderate impact on the XAO index, but have virtually no impact on the top-
30 index. Market wide collapses (like September 11, and the millennium bug), on the other
hand, are similarly reflected in the XAO and the top-30 index. The lesser exposure to
extremal price changes of the top-30 index does not imply less volatility. The standard
deviation of returns is almost identical for both Australian indices (13% per annum), but both

are substantially less volatile than S&P500 returns (a standard deviation of 22% per annum).

error within acceptable bounds. Our ex post tracking error results show that this is true with a short-selling
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Figure 2 stresses the relevance of time-variation in the risk-free rate of return (the 90-day
bill rate). It suggests that the bull market returns were somewhat tempered by a rising risk-
free rate of return. Similarly bear market negative returns were offset by a decline in the risk-
free rate of return (at least after October 2000). This offset lasts until April 2002, when the
risk-free rate again starts to increase and risk-taking performance was doubly penalized

(squeezing the excess returns).

Figure 2. Risk-Free Rate of Return
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Table 1 summarizes the full sample input list. The top-30 stocks are listed by descending
top-30 weight. Annualised mean returns and annualised standard deviations are given in
columns 3 and 4, respectively. Volatility varies between a low of 15% (WFT) and a high of
53% (QBE), but is generally around 30% per annum. Risk compensation is rather meagre at a
low of 120% (LLC) mean return to a high of 19% (WES) mean return. Our benchmark
compares reasonably well with a mean return of 5% pa. (median return of 11% pa.) against a
standard deviation of 13% pa. Taking into account that the risk-free rate of return varied
between 4% and 7% pa., this does not suggest a generous excess return.

Table 1 also gives daily (not annualised) maximum return and minimum return in
columns 5 and 6, respectively. The maxima vary between 4% and 25%, while the minima
vary between fi4% and 1n35%, truly extremal values. Not surprisingly, the empirical
distributions of daily returns are hugely kurtotic (fat-tailed). This causes problems when we
want to operationalise the input list for portfolio optimisation purposes. The non-normality of
stock returns suggests that mean-variance optimization might not reflect investorsi utility

tradeoff between risk and return.

constraint, but is emphatically not true when short selling is possible.
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Table 1. Descriptive Statistics for Top 30 ASX Stocks

Code Top-30 Annualized Annualized Daily Daily Beta Ljung-Box
weight Average Standard Maximum Minimum (p=12)

return deviation return return Test

NAB 12.60 7.31 24.10 5.00 -13.87 1.18 25.87
CBA 9.37 4.06 20.80 3.97 -7.13 0.95 12.27
BHP 8.94 16.43 29.93 6.87 -7.62 1.21 16.72
TLS 7.75 -13.09 25.67 8.34 -9.86 0.91 20.49
WBC 6.96 6.75 21.12 4.87 -5.21 0.92 11.00
ANZ 6.81 14.42 21.99 4.71 -5.60 0.99 22.07
NCP 4.85 4.18 46.49 24.57 -14.89 1.95 9.18
AMP 4.14 -11.55 26.61 7.65 -8.03 1.03 17.16
RIO 4.14 14.88 30.02 7.18 -5.78 1.13 16.19
WOW 3.11 18.17 23.41 5.16 -8.34 0.53 28.93
WSF 2.38 13.38 29.62 20.92 -6.55 0.86 16.35
WES 231 19.03 26.78 10.58 -6.42 0.71 17.49
FGL 2.29 1.35 21.95 4.83 -7.06 0.49 36.79
WMC 2.28 13.41 34.32 16.32 -10.40 0.97 46.10
SGB 2.18 14.57 18.93 7.17 -5.02 0.53 6.92
WPL 2.05 12.55 27.02 7.57 -11.13 0.62 13.06
BIL 1.92 -19.41 33.86 9.54 -35.25 0.83 25.12
CML 1.90 -6.72 27.77 12.83 -18.18 0.61 10.62
WEFT 1.67 -1.01 14.98 3.64 -4.38 0.38 20.28
CSR 1.54 11.46 27.07 9.16 -6.37 0.74 9.91
PBL 1.47 3.51 29.22 10.41 -10.83 0.82 21.62
GPT 1.31 -1.55 16.60 4.55 -3.98 0.42 19.58
CCL 1.20 -1.16 35.65 12.42 -10.80 0.69 13.43
MBL 1.20 10.35 26.65 7.11 -11.46 0.91 37.72
TEL 1.13 -13.72 29.44 9.63 -9.12 0.77 13.88
CSL 1.13 10.84 39.41 26.76 -12.01 0.76 22.29
LLC 1.05 -20.15 29.68 5.32 -17.11 0.72 36.05
QBE 0.98 4.67 52.83 41.85 -52.62 1.25 131.26
AGL 0.92 -3.61 22.54 4.42 -8.48 0.38 33.24
AXA 0.79 -4.04 29.61 7.89 -6.12 0.78 17.97
Index 100.00 4.82 13.28 2.65 -5.14 1.00 11.83

Note: Columns 2-6 are in percentages. The top-30 weights are ifixedl as of November 2002 and are the
standardized (they sum to 100%) XAO-weights on that date. We ignore any weight changes during our
sample period. Betas are computed against the top-30 index. The Ljung-Box column gives the test
statistic for serial correlation in the returns up to 12" order lag length, with a 95% critical value of 21.03.

12



Campbell et al. (2001) illustrate an alternative optimisation procedure that better captures
the kurtotic (and perhaps skewed) nature of stock returns. As a matter for future research, we
could incorporate an equivalent tracking error constraint in their optimisation procedure. As
long as the empirical distributions are symmetric, we expect very little difference in terms of
active weight selection.

Unlike stock analysts, we do not have the fundamentals (growth forecasts, accounting
information, etc.) to value and then rank stocks by forecast return to generate buy/sell signals.
Our information set is restricted to historical returns. For simplicity, consider the following
example where our forecast return is a simple average of the past 5 trading daysi returns. If
we happen to encounter a single extremal return in our information sample (say, 10.58%) and
four zero returns, we generate an annualised forecast return of 535%. Clearly, the extremal
return is non-representative for forecast purposes. Even for longer information samples (say a
month, or 20 trading days) this inflation of annualised forecast returns based on extremal
observations remains a problem. It reflects the fact that daily stock return distributions are not
normally distributed, but are better characterized by some fat-tailed distribution (like, e.g., a
Student-t). Unlike the normal distribution, a Student-t is not iclosed under addition,i i.e., its
properties (e.g., the variance) cannot be simply scaled to derive equivalents at a different
sampling frequency (say from daily to annualised).

This problem highlights the difficulties that one encounters when optimising portfolios
of individual stocks based on simplistic input list rules. It might explain why the academic
literature prefers to build efficient portfolios from portfolios of individual stocks’. &ndexingi
clearly normalizes the empirical distributions (just consider the descriptive statistics for the
top-30 index), which makes these portfolios much more suitable for portfolio optimisation
purposes. This may be feasible for academic purposes, but it will not typically be a
satisfactory solution for practical purposes. To somehow moderate the impact of extremal
returns on our input list, we therefore choose to forecast returns based on a smoothed beta
model as explained in the previous section.

Of course, the validity of using past average returns to forecast future returns (either as a
simple average or as a market expectation) depends crucially on the stationarity of stock
returns. The Ljung-Box portmanteau statistic (autocorrelation up to lag length 12) in column

8, Table 1, indicates that quite a few series display significant autocorrelation (95% critical

The authors are well aware of more important reasons (like the errors-in-variables correction) for this choice.
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value )., = 21.03). As suggested by Lawton-Browne (2001), this may lead to a downward

bias in ex ante tracking error. We investigate this below.

4. Empirical Results

To start our analysis, we first compute our input list. To update the vector of forecast returns,
E, we use a simplified version of the BARRA beta pricing model encapsulated in equations
(1) and (2). There is no real precedent for this procedure, and it obviously lends itself for
future improvement. We choose ¢=0.34 for our application, but also investigate the
sensitivity of our results for different values of @ This procedure generates fairly smoothly
evolving forecast returns.

To update the forecast variance-covariance matrix, we use the RiskMetrics"™ EWMA
methodology. It is simple to understand, straightforward to implement, and generates
GARCH-like variance processes. To illustrate this point, consider the GARCH(1,1) output in
Figure 3 for NAB. The GARCH(1,1) parameters were estimated at a,=0.17, a,=0.74, while
the average decay factor in the EWMA was estimated to be 4=0.91 (with an effective
estimation sample length of 40 days). The EWMA process is somewhat smoother, but there

seems little to separate the two processes i a similar point is made in RiskMetricsd (1995).

Figure 3. NAB Conditional Volatility i GARCH(1,1) versus EWMA
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Note: Annualized standard deviations for NAB are based on fitting a GARCH(1,1) model:
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Whereas it is relatively straightforward to estimate a univariate GARCH(1,1) process
like the one above, the computational burden becomes excessive for a multivariate GARCH

process involving 30 stocks. Scowcroft and Sefton (2001) investigate the performance of a
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number of time-varying risk matrix specifications i including the EWMA and GARCH
models fi and find that the tracking error predictions agreed reasonably well.

Figure 4 gives some insight in the dynamically updated input list for three stock
components in the top-30 benchmark: NAB (the largest weight, 12.6% and a full-sample
unconditional beta of 1.18), NCP (the highest full-sample unconditional beta, 1.95) and AGL
(the lowest full-sample unconditional beta, 0.38). Figure 4 shows the time variation in their

betas, according to equation (1).

Figure 4. Time Variation in Betas
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Note: Unconditional betas are respectively 1.18 (NAB), 1.95 (NCP), and 0.38 (AGL); Betas are measured
against the top-30 benchmark index.

NAB has the more stable beta, whereas NCP and AGL (the stocks with more extreme 1 high
and low @i betas) have much more volatile intertemporal betas. This has obvious
repercussions for the forecast returns according to equation (2), where the more volatile beta

forecasts will generate more volatile stock return forecasts.

Figure 5. Time Variation in Correlation
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Note: NAB-WBC unconditional correlation =0.46; NCP-AGL unconditional correlation = 0.06;
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Figure 5 illustrates the time-varying intra-sector correlation between NAB and WBC,
two banking stocks in our universe; respectively between NCP and AGL for an inter-sector
illustration. Intra- and inter-sector time-varying correlation are equally volatile, but obviously
have a different mean. The intra-sector correlation displays switching behaviour with periods
of high correlation alternating with periods of low correlation and not much in between. The
inter-sector correlation does not share this feature.

Having completed the input list, we can proceed to compute the efficient frontier solving
(4) with A=0.91. Then we solve (6i) to obtain the active tracking error frontier with a tracking
error target of 5%. Our top-30 benchmark is found to be seriously inefficient (throughout our
sample period with a few exceptions when it is close to the global efficient frontier) which
suggests active investment opportunities. Or, in ex ante Information Ratio terms, they offer a
positive IR for active portfolio managers. To illustrate this, consider the following two
representative optimization periods. Figures 6a and 6b are representative for a bull market
episode, respectively a bear market episode. As expected in a bull (bear) market the active
investment opportunity set i1 the ellipse fi is upward (downward) sloping. The benchmark (the
square symbol) typically has lower risk than the individual stocks (the diamond symbols) but

of course, only average expected returns.

Figure 6. Bulls and Bears
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The location of the active portfolios chosen in the previous period optimisation is also
indicated in both graphs. Without rebalancing, the unconstrained active portfolio (circle
symbol outside ellipse) needs no longer be on the updated ellipse. As it turns out, the

constrained active portfolio (circle symbol inside ellipse) is always inside the updated ellipse,
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but the unconstrained active portfolio is almost without exception outside the updated
tracking error frontier. That does not necessarily imply a violation of the tracking error
constraint over that period, but does imply an ex ante tracking error violation for the
subsequent period.

We summarize our dynamic optimisation exercise in Figure 7, which gives the active
portfolio weights for three stocks (NAB, NCP, AGL) in the (un)constrained active portfolios.
Perhaps surprisingly the unconstrained weights fi the black lines fi are as volatile (in both
positive and negative direction) during the bull market as they are during the bear market.
There is limited evidence of short-lived persistence in the active weights, suggesting that
portfolios need to be rebalanced fairly frequently (at least monthly). The short selling
constrained weights fi the grey lines fi are obviously much smoother which implies

substantially less rebalancing costs.

Figure 7. Active portfolio weights for NAB, NCP and AGL
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Note: Weights are given as fractions. Weights in the top-30 benchmark are respectively 0.126 (NAB), 0.049
(NCP), and 0.09 (AGL). Grey lines give no short selling weights; Black lines give unconstrained weights.

A comparison across stocks is interesting. The stock with the highest top-30 benchmark
weight and a moderate beta (NAB), switches most frequently from positive to negative active
positions. The stock with the lowest weight in the top-30 and the lowest beta (AGL), has
predominantly positive active weights (although with substantial volatility). The stock with

the highest beta (NCP) i not surprisingly the least éAustraliani of the 30 stocks fi has the
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most stable active weights (although they switch frequently from positive to negative and
vice versa without much persistence).

Since we rebalance every time period, our ex ante tracking error is always exactly equal
to the target. This is clearly not the case ex post. The problem now is how to measure the ex
post tracking error. We choose to measure ex post performance using a quadratic tracking
error measure,” that is the squared deviation of portfolio returns from benchmark returns. We
first measure the ex post difference between portfolio return and benchmark return, i.e., the
active return. This active/excess return performance is illustrated in Figure 8. A comparison
suggests that the short selling constrained active portfolio only rarely éwanders awayi from
the benchmark (Figures 6a and 6b are fairly typical of this phenomenon). In fact, the

constrained portfolio seems to i hugi the benchmark over the tracking period.

Figure 8. Ex Post Active Returns
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Note: the histograms have frequency count on the vertical axis and daily (fractional) excess returns on the
horizontal axis.

The standard deviation of short selling constrained excess returns is almost exactly 5%
per annum. Not entirely surprising given the visual evidence in Figure 8, the unconstrained
standard deviation is 20% per annum. A nice illustration indeed of the theoretical result of the
downward bias in ex ante tracking error as a forecast of ex post tracking error, Satchell and
Hwang (2001). Further empirical evidence for this bias is given in Zenti and Pallotta (2002).

Among the possible reasons for this bias, Lawton-Browne (2001) and Scowcroft and
Sefton (2001) suggest autocorrelation in returns and volatility clustering. We therefore
investigate the impact of both violations of the mean-variance optimization assumptions. We
also look at the sensitivity of our results to variations in tracking duration, and tracking error

target. The results of these exercises are given in Tables 2a, 2b, and 2c.

¥ Rudolf et al. (1999) suggest that a mean absolute deviation measure would be preferable since it matches fund
managersi compensation schedules. We agree that this is worth investigating.
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Table 2a. Ex Post Tracking Error ii Varying tracking duration

Tracking Constrained Unconstrained
Duration (days) Tracking Error Tracking Error
1 5.27% 19.67%
2 5.27% 19.93%
3 5.02% 19.68%
4 5.23% 19.77%
5 4.93% 20.54%
10 4.87% 19.76%
20 5.11% 19.85%
40 5.04% 19.79%
60 4.77% 18.20%
125 5.28% 22.25%

Note: tracking error target, VZ=0.05; volatility persistence parameter A=0.91.

Table 2b. Ex Post Tracking Error fi Varying tracking error target

Tracking Error Constrained Unconstrained
Target (st.dev) Tracking Error  Tracking Error
1% 1.08% 3.97%
2.5% 2.59% 9.93%
5% 5.11% 19.85%
10% 7.57% 39.70%
20% 12.52% 79.41%

Note: tracking duration = 20 days; volatility persistence parameter A=0.91.

Table 2¢. Ex Post Tracking Error fi Varying volatility decay factor

EWMA decay Constrained Unconstrained
Factor (A) Tracking Error  Tracking Error
0.85 4.66% 50.84%
0.87 4.84% 36.40%
0.90 4.67% 15.25%
0.91 5.11% 19.85%
0.95 4.69% 12.62%
0.97 4.32% 11.66%
0.99 4.67% 15.25%

Note: tracking duration = 20 days; tracking error target, vZ=0.05.

Table 2a gives ex post tracking errors (as a standard deviation of active returns) for a range of
tracking durations (k=1,0,125 days). Apparently, the duration of tracking does not
materially affect the realized tracking error. Perhaps surprisingly, there is very little variation
in ex post tracking error when rebalancing of the active portfolio occurs more or less

frequently. Short selling constrained active portfolio management generates tracking errors
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that stay within the target tracking error. Unconstrained active portfolio management
generates tracking errors well in excess of the target.

Table 2b gives ex post tracking error for a range of tracking error targets (VZ=1%,
0 ,20%). We observe that the ex post short selling constrained tracking error marginally
exceeds (is substantially less than) the ex ante tracking error for targets below (above) 5% per
annum. Ex post unconstrained tracking error, however, generally exceeds the ex ante tracking
error at an increasing rate with increasing target tracking error.

Table 2c suggests the source of the bias in ex ante tracking error expectations. It gives ex
post tracking errors for a range of EWMA decay factors (4=0.85, O ,0.99). For this
(admittedly limited in scope) experiment, we find that at A=0.97, the bias is minimized. We
suspect that individual optimisation of the A parameter for each and every element in the
variance-covariance matrix would allow an even better outcome.

We also experimented with the serial correlation in stock returns by varying the
smoothing parameter @in (1). This did not affect the bias in ex ante tracking error. It does, of
course, affect the location of the excess return distribution, but not the scale!

Bringing the two results (time-variation in weights and ex post performance) together
suggests that the typical short selling constraint acts as a safeguard on ex post tracking error
while simultaneously reducing the cost of rebalancing. A short selling constraint effectively
turns active portfolio management into something very close to passive portfolio
management. So why do we not observe the matching reduction in active returns? Simply
because we made no real attempt to actively forecast stock returns. In fact, we have taken a
rather &assivei approach when generating the input list’. We can imagine that stock analysts
(or sophisticated econometriciansi models for that matter) are able to manipulate these active
performance distributions to their benefit and hence change the location of the active return

distributions in Figure 8 accordingly.

S. Conclusions

Although straightforward in content, proper implementation of portfolio optimization theory
can be notoriously complicated. Choices have to be made with regard to the input list,
constraints, estimation procedure, and implied actions. This paper gives a flavour of some of

the many issues that have to be dealt with by portfolio managers. The main advantage of our

’ We use a mechanistic rule fi as in equation (2) fi to generate expected returns. Our choice of the smoothing
parameter @is not based on proper model selection criteria, since this was not the main focus of our paper.
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procedure is its transparent nature which considerably facilitates communication with an ever
more sophisticated clientele.

Jorionis (2002) main contribution is the visualization of the iactive investment
opportunity space.i We illustrate that the introduction of a short selling constraint eliminates
most of this opportunity set fi partly driven by persistent bear market conditions during our
sample period. However, as an investment advice tool, successive introduction of investment
constraints clearly identifies the location of (and the reduction in) the relevant investment
opportunity set. The methodology also highlights the tradeoff between risk penalty and
excess return gain when violating the investment constraints. From this perspective, Jorionis
methodology is an invaluable contribution to the practical investment literature.

We find (as do many others, see e.g., Plaxco and Arnott, 2002) that frequent rebalancing
is an absolute necessity to keep some control over total risk (though not necessarily tracking
error risk) when actively managing portfolios. Larsen and Resnick (2001) consider a range of
optimization and holding periods, but do not consider transaction cost constraints. Clearly,
the costs of rebalancing have to be offset against the gains in risk control, but it seems to us
that certain (threshold) levels of risk will simply be unacceptable. The issue, of course, is how
to optimally rebalance so as to minimize the control costs.

Not surprisingly, we also find that ex ante tracking error expectations do not match ex
post realizations, see also Rohweder (1998). Satchell and Hwang (2001) show that we can
reasonably expect a worse ex post tracking error outcome due to the stochastic nature of
portfolio weights. They report that this upward bias is not restricted to active portfolios, but
can also be found in passive portfolios where the weights are not stochastic (due to
rebalancing). A similar upward bias in ex post tracking error (but due to a different source) is
caused by the apparent serial correlation, not just in the underlying stock returns, but also in
the excess returns and squared excess returns. Frino and Gallagher (2001), e.g., find evidence
of seasonality in tracking error (partly driven by seasonality in dividend payments on the
benchmark). Pope and Yadavis (1994) results indicate that this will lead to a biased ex ante
estimate of tracking error.

Where to from here? There is plenty of scope to improve the selection of optimal
observation period and forecast period duration. Ultimately, this is an empirical matter. We
hinted at the possibility (and Table 2b underlines its importance) to individualize the
stochastic processes for every element of the variance-covariance matrix. A trade-off will

then have to be made between the improvement in goodness-of-fit and the increased
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computational burden of such an exercise. Despite this, we argue that there is no urgent need
to resort to computationally burdensome multivariate GARCH specifications.

Another constraint worth investigating is a cap on the number of stocks in the managed
portfolio or the minimum number of stocks in an active portfolio. Jansen and van Dijk (2002)
illustrate the small portfolio constraint for a passive tracking portfolio. Ammann and
Zimmermann (2001) investigate admissible active weight ranges, which would guarantee a
limit on individual stock weights. Alternatively, we could investigate a cap on the number of
stocks in which the portfolio manager takes active positions, while taking neutral positions in
the remaining benchmark component stocks. Yet another approach could be a factor-
neutrality constraint as in Clarke et al. (2002), which would fit typical style-type portfolio
constraints. It is quite possible that some of these constraints are internally conflicting. The
long-only constraint, e.g., tends to favour small capitalization active stock weights, which
would obviously clash with a large capitalization style constraint.

Another issue is the composition of the benchmark. Fund managers can frequently
choose their benchmarks (within reasonable boundaries, i.e., among a peer group). Small cap
fund managers would typically choose a representative small cap benchmark, like the ASX
Small Ords. As shown in Larsen and Resnick (1998), the market capitalization of component
stocks in the benchmark index has a non-trivial impact on the tracking performance of
enhanced benchmark portfolios. Though their analysis quantifies the impact, they are not
explicit on the source. It could be a liquidity constraint, or perhaps the (related) excessive
non-normality of the returns of these stocks.

A few papers have recently focused on tracking error measurement that better reflects the
incentive structure of the portfolio manager, see e.g., Kritzman (1987) and Rudolf et al.
(1999). Roll (1992) suggests that diversification of an investoris portfolio across managers
reduces the impact of excessively risky active portfolios. Jorion (2002) shows that this is not
a satisfactory solution and instead favours additional constraints on total risk to better control
for the free option provided to portfolio managers who are only constrained by active risk (or
tracking error). A closer look at investorsi utility functions and better integration of these
utility functions with constrained portfolio optimizations seems a worthwhile extension of
this paper.

Perhaps most importantly, there needs to be more research towards proper integration of
return and risk forecasts. Though it seems obvious that stock analysts do make risk
assessments when computing forecast returns, it is much less obvious to extract and combine

these risk assessments into a justifiable risk measure.
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