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MOEDELING THE CURRENCY FORWARD RISK PREMIUM: THEORY

AND EVIDENCE

Abstract:

There is a huge literature on the existence of risk premia in the foreign exchange

market and its influence in explaining the divergence between the forward exchange

rate and the subsequently realised spot exchange rate. In this paper, we seek to model

directly the risk premium as a mean-reverting diffusion process. This is done by

making use of the spot-forward price relationship and assuming a geometric

Brownian process for the spot exchange rate. We are able to obtain a stochastic

differential equation system for the spot exchange rate, the forward exchange rate and

the risk premium which we estimate using Kalman filtering techniques. The model is

then applied to the French Franc/USD and Japanese Yen/USD exchange rates from 1

January 1990 to 31 December 1998. For both currencies our main findings show (i)

the persistence of substantial positive time variation in the forward risk premium and

its alternating regimes; and (ii) the presence of a term structure of the forward risk

premia.
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MODELING THE CURRENCY FORWARD RISK PREMIUM: THEORY

AND EVIDENCE

1. Introduction

This paper focuses on a topical and important area of finance theory and practice that

analyses risk premia in the foreign exchange market. The notion that the forward

exchange rate might be the optimal predictor of the future spot exchange rate has been

investigated by a number of researchers. This notion developed as a corollary to the

efficient market hypothesis. For market participants it is, therefore, an important issue

to monitor whether the forward exchange rate is an unbiased forecast of the future

spot exchange rate. This unbiasedness hypothesis has been the subject of several

research papers (Engel (1996)).

The typical starting point in these analyses is to consider the following regression of

the change in the log of the spot exchange rate on the forward premium:

( ) kttkttkt usfss ++ +-b+a=- , (1)

where ts is the log of the spot price (S) of foreign currency at time t, ktf ,  is the log of

the k-period forward price (F) at time t, and u is the regression error term. The null

hypothesis generally tested is that 1,0 =b=a  and the error term has a conditional

mean zero. Thus, under the null hypothesis the log of the forward rate is an unbiased

predictor of the log of the future spot exchange rate.

Several papers over the years have examined the regression (1) with various

improvements in econometric techniques employed and the overall results may be

described as mixed. For example, Wu and Zhang (1997) employ a non-parametric test

and not only reject the unbiasedness hypothesis but also conclude that the forward

premium either contains no information or wrong information about the future

currency depreciation. On the other hand, Bakshi and Naka (1997) derive an error

correction model under the assumption that the spot and the forward rates are

cointegrated and conclude using the generalised method of moments that the

unbiasedness hypothesis cannot be rejected. Phillips and McFarland (1997) develop a



4

robust test and reject the unbiasedness hypothesis but conclude that the forward rate

has an important role as a predictor of the future spot rate.

It has been suggested that the unbiasedness hypothesis may be failing empirical tests

due to the existence of a foreign exchange risk premium. This has led to a great deal

of research on the modelling of the risk premia in the forward exchange rate market.

However, models of risk premia have been unsuccessful in explaining the magnitude

of the failure of unbiasedness (Engel (1996), page 124).  Under rational expectations,

( ) kttktttkt ssEss +++ e+-=- (2)

where tE is the mathematical expectation conditional on information at t and kt+e is

uncorrelated with information at time t. We define the term ( )kttktt sEfrp +-º ,  as

the foreign exchange risk premium. Under risk-neutrality the market participants

would behave in such a way that ktf ,  equals ( )ktt sE +  and the expected profit from

forward market speculation would be zero.

This definition of risk premium is based on the rational expectations of the market

participants. Even then, the measures of trp may suffer from small sample biases. If

trp could be related to underlying economic variables then its theoretical foundation

would be firmly based upon economic theory. Several articles (see for example a

survey in Stulz (1994)) discuss the models of foreign exchange risk premium based

on optimising behaviour of international investors. However, alongside such

theoretical developments pure time series studies of trp assume a renewed

importance. In particular, they are useful in describing the behaviour of

( )kttkt sEf +-, , which models of foreign exchange risk premium that assume rational

expectations need to be able to explain. Examples of such studies include Backus et al

(1993) and Bekaert (1994).

Some researchers, Wolff (1987, 2000) and Chung (1993), have modelled this risk

premium as an unobserved component in state space form and estimated it using the

Kalman filter. The advantage of this signal extraction approach is that the researcher
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can empirically characterise the temporal behaviour of the premium using only data

on spot and forward exchange rates. This avoids the problem associated with

specifying a functional form of the underlying economic determinants of risk

premium and other strong assumptions of the regression based approach. At the same

time signal extraction methods do not offer much insight into the relationship between

the risk premium and other economic variables.

Wolff (1987) suggests a state space formulation where the risk premium and the

unexpected rate of exchange rate depreciation are assumed uncorrelated. Cheung

(1993) follows a framework similar to Wolff and treats the unobserved risk premium

as a low order ARMA process. In addition, the innovations in trp are allowed to be

correlated with ( )tktt sEs -- , the error from previous period’s forecast. Using

monthly data Cheung (1993) finds that the filtered estimate of trp exhibit a great deal

of persistence, high variability and negative correlation with ( )tktt sEs -- . Canova

(1991), Canova, and Ito (1991) also find high volatility in ( )kttkt sEf +-, . Canova

and Marrinan (1993) agree with these findings and further document high serial

correlation and volatility clustering in the time series of trp . One other common

feature of these studies is that the estimate of trp switches sign during the sample

periods investigated. For a given exchange rate, eg. USD/DEM, this would imply that

there are periods when U.S. dollar assets are considered much safer than DEM asset

and there are times when the reverse is the case.

An approach to test the hypothesis that the risk premium is a linear function of the

conditional variances and covariances as suggested by standard asset pricing theory is

based on a multivariate GARCH framework. Baillie and Bollerslev (1990) consider a

GARCH in the mean model using weekly data under the assumption of risk neutrality

and rational expectations. Tests of their model fail to find support for this theory.

They conclude a possible violation of forward market efficiency and this could be due

to inefficient information processing by market participants or the fact that other

theoretical models are required to deal with the time varying risk premium.



6

The risk premia models discussed above may be termed as partial equilibrium in

nature since the stochastic process of asset returns is given. Dumas (1993) points out

that a full general equilibrium model will relate this process to underlying exogenous

economic variables. A good starting point in this respect is the Lucas (1982) model.

Bekaert (1994) discusses some of the reasons why general equilibrium models cannot

adequately explain the behaviour of the risk premium.

The preceding analysis suggests that the empirical evidence on the role of the forward

rate as a predictor of the future spot rate is mixed, furthermore there seems to be an

important influence exerted by the risk premium or even a term structure of risk

premium. If the size of the risk premium is unknown and it is time varying then the

forward rate will be a poor forecaster of the future spot rate. It is in this context that

we attempt an alternative characterisation of the risk premium. We do this by seeking

to exploit the information about the risk premium implied in the no arbitrage

relationship between spot and forward exchange rates. We use Kalman filtering

techniques to extract this information. The theoretical background of our approach is

reviewed in Section 2, while a description of the model is given in Section 3. This is

followed by the presentation of the Kalman filter estimation procedure in Section 4

and the analysis of the empirical results in Section 5. Finally Section 6 concludes the

paper.

2. A New Framework for the Dynamics of Risk Premia

Although there is no unanimity of opinion, the preceding discussion points out the

existence of risk premia and its influence in explaining the divergence between the

forward exchange rate and subsequently realised spot exchange rate. In most cases the

tests rejecting the simple efficiency hypothesis argument are based on asymptotic

inferences. Even if the researchers use large data sets, to avoid data correlation

problems with overlapped samples, the effective sample size becomes much smaller.

For example, when spot exchange rates and one-month forward rates are used in the

tests the effective sample frequency becomes monthly. It thus seems to us that a large

amount of information in the intervening period are either missed or not utilised

effectively.
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We propose to adopt a somewhat different approach in this modelling exercise. We

start with the usual assumptions in the Black-Scholes option-pricing framework and

let the spot exchange rate follow a geometric diffusion process. The standard arbitrage

argument is then applied to relate the forward exchange rate to the spot exchange rate

through the contract period, and the related interest rates in the two countries. By

application of Ito’s lemma, we then express the dynamics of the forward price as

another stochastic differential equation.

It is clear that in this situation the asset underlying the forward contract is a traded

security. Therefore, as discussed in Hull (1997, chapter 13) in order to price the

forward contracts the investors may be considered risk-neutral under the equivalent

(risk neutral) measure. In operational terms this implies that under the historical

measure the expected return part of the underlying security may be replaced by

another term involving the risk-free rate, the market price of risk and the volatility of

the security. The market price of risk, however, is not observed in the market and has

to be inferred from other observable quantities. Hull (1997, page 296) explains why

an estimate of market price of risk is usually not needed to price derivative securities

when the underlying asset is a traded security.

In our case, however, since we are not pricing the forward contracts as such we

incorporate the market price of risk and treat this an unobserved state variable in the

system dynamics under the historical measure. Once we express the dynamics of the

market price of risk through a suitable stochastic differential equation, we then have a

partially observed system involving three variables, the spot exchange rate, the

forward exchange rate and the market price of risk. This system can be cast into a

state space form and estimated with the help of the Kalman filter after appropriate

discretisation. The advantage of this approach is that we get the filtered estimates of

the market price of risk, which can be used to form estimates of the risk premium. It

should be noted that we are modelling the dynamics of the market price of risk

through the discretisation period (e.g. trading day). Thus, there is no need to match the

dates for the spot exchange rates with those of the forward exchange rates. This

approach therefore has the benefit that we are able to utilise all of the information

generated through the trading dates, which is normally not possible in regression-

based approaches.
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For a suitable representation of the dynamics of the market price of risk, we note the

findings in Wolff (1987) and Cheung (1993). Both these authors report empirical

support for a low order ARMA process for the risk premium in a number of exchange

rates against the U.S. dollar. While Wolff (1987, p. 396) recognises that the economic

content of the risk premium may be based upon equilibrium models of international

asset pricing, it is not explicitly modeled. In this regard our approach compliments

Wolff (1987) and Cheung (1993) by providing an explicit modeling of the risk

premium with respect to the market price of risk under the no arbitrage condition. We

select a mean reverting form of the stochastic differential equation representing the

market price of risk. By suitable change of variable and discretisation, this mean

reverting form can also be represented as an AR (1) process. The parameters of the

stochastic differential equation representing the market price of risk are to be

estimated from the data as well. In the next section, we discuss the details of these

modelling issues.

3. The Proposed Model

The proposed model is a result of three main assumptions. Firstly, under the historical

probability measure Q (as opposed to the risk neutral probability measure used in

derivative security pricing) the spot exchange rate follows the geometric Brownian

process

( )tSdWSdtdS Ssm +=                                                                                                (3a)

where dS is the increment of the spot exchange rate, m is the expected return from the

spot rate, Ss  is the volatility of this return and dW(t) is the increment of a Wiener

process under the probability measure Q. The second main assumption is that in

efficient markets derivative instruments are priced in accordance with the principle of

no riskless arbitrage. An expression of this principle is that all derivatives on foreign

exchange such as forwards and options are priced such that their expected risk

adjusted excess return is constant across all instruments I and foreign exchange itself

and equal to the factor l, the market price of risk1:

                                                
1 See Ross et al (1998, pp. 387-388) for an exposition of the fundamental result that in an active,
competitive market the market price of risk must be the same for all the assets in the market.
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where the subscript I refers to the derivative instrument while r and rf are the riskfree

interest rates in the domestic country and the foreign country respectively.

Considering the foreign exchange itself we can write (3b) as

Sfrr lsm +-=

(3c)

which highlights the interpretation of l as the additional return required by investors

holding foreign currency for a unit increase in volatility Ss .

Substituting (3c) into (3a) allows us to re-express the dynamics of the exchange rate S

as

)()( tSdWSdtrrdS f sls ++-=                                                                               (3d)

We stress that the dynamics are still under the historical measure Q. The principle of

no riskless arbitrage also allows us to obtain between the forward exchange rate F(t,

T) and the spot exchange rate S(t) the relationship

))(()(),( tTrr fetSTtF --=                                                                                                (3e)

Using this, equation (3d) for the dynamics of S and Ito's lemma we are able to obtain

the dynamics of F under the historical measure Q.

The third assumption is that the market price of risk of foreign exchange risk follows

a mean-reverting stochastic differential equation. In Appendix A we show how these
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rate and the market price of risk as the stochastic dynamical system
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where:

S = spot exchange rate process

W(t) = standard Wiener process under the historical  probability measure

l = market price of  risk

),( ixtF = forward price ),(),( ii xttFxt +ºF  with maturity xi  ahead

),( xtp = the risk premium for the x- period ahead spot rate

r = domestic risk free interest rate

fr = risk-free interest rate in the country of the foreign currency

l = long-run equilibrium of market price of risk

k = the speed of adjustment of the process for l to its long run

equilibrium

Equations (4a), (4b) and (4c) are the stochastic processes describing the behavior of

the spot exchange rate, the market price of risk and the forward price respectively.

Equation (4d) is the risk premium expressed in term of the variables embedded in

Equations (4a), (4b) and (4c). As discussed in the introduction, assuming rational

expectations previous studies attributed the difference between the forward rate and

the subsequently realised spot exchange rate to a risk premium and some noise term

(eg Wolff (1987), Cheung (1993)). We are, however, able to characterise how the

market price of risk enters the expectation formation and thus determine the risk

premium. In fact, the noise terms identified in Wolff (1987) and Cheung (1993) can

now be explained in terms of an integral with respect to the Wiener increments [see

equations (A13) and (B4) in Appendices A and B respectively].

We would now like to compare the time variation of risk premia for different

maturities of forward contracts obtained from equation (4d) for different exchange

rates. As a result we will be able to examine the term structure of forward risk premia

present in the quoted forward exchange rates. To carry out these procedures we will

require estimates of the parameters describing the stochastic process for l  given by

equation (4b). In the next section, we briefly describe the state space formulation of
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the system and estimation of these parameters while a detailed technical exposition is

contained in Appendix C.

4. State Space Framework

Broadly speaking our empirical procedure involves the discretisation of the continous

sytem dynamics given by the equations (3a) through (3c). A number of discretisation

schemes for stochastic differential equations are discussed in Kloeden and Platen

(1992) and we choose to work with the Euler-Maruyama scheme. The next step is to

express the discretised system in state space form.

As it stands, the equations (4a) and (4c) suggest that the diffusion terms are dependent

on the state variables themselves and are thus stochastic in nature. By a simple

transformation of variables using the natural logarithm and application of Ito’s lemma

we can transform these to equations with constant diffusion terms. Using these

transformations and after discretisation of the equations (4a) through (4c) we obtain

for the time interval between k-1 and k:

kSSkSfkk tttrrss xssls
~

)5.0( 2
1 D+D+D--+=
+

         (5)

kSSkSfkk tttrr xsslsff
~

)5.0( 1
2

1 D+D+D--+=
--

          (6)

kkk ttt xslklkl
l

~
)1(1 D+D+D-=

+
          (7)

where s = lnS, f = lnF and kx
~

~ N(0,1)

The equations (5) – (7) describe the dynamics of the partially observed system and in

the state space framework it is generally referred to as the state transition equation.

Once the system is specified in state space form a recursive algorithm such as the

Kalman filter (see e.g. Harvey (1990)) can be applied to obtain the optimal estimate of

the state vector at time k based upon all the information available at that time. In this

sense the Kalman filter is forward looking. However, more efficient estimates of the

state vector and its error covariance matrix can be obtained if after the initial

estimation all the information up to the final observation is utilised in a sort of second
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pass process. The smoothing algorithm provides such a procedure (see Harvey (1990)

for details). In most applications in finance and economics, such as ours, all the

observations are already available. Therefore, the smoothing algorithm can be easily

applied and has been incorporated in the study of this paper.

Among other things, the Kalman filter provides exact finite sample forecasts. These

forecasts are used to form prediction errors at each time step which in turn are used to

form the log likelihood function from which maximum likelihood estimates of the

parameters of the system are obtained. A further by product of this estimation

procedure is the set of filtered estimates of the unobserved market price of risk l at

each time step, which is then used to form the filtered estimates of the risk premium

in equation (4c).

5. Data and Empirical Results:

We apply the methodology outlined in Section 4 to two exchange rates and three

different maturities for the forward rates. Specifically, we use JPY/USD and FF/USD

exchangerates and forward exchange rates of 1-month, 2-months and 3-months

maturities to investigate the variation of the risk premia over a nine year period from

January 1, 1990 to December 31, 1998. The exchange rate data reflects the daily 4PM

London quotation obtained from Datastreamä and the interest rate data are the daily

closing 3-month Treasury bill yield for the period from 1 January 1990 to 31

December 1998. Thus, the inputs to the Kalman filtering estimation consists of the

returns on the spot rate, forward rate for 1, 3, 6- month maturities, the bill rates in the

home country and the foreign country (r, fr ) and the volatility of the returns on the

spot rate, Ss , being fixed at sample values2. The outputs are the parameter estimates

l , 
l

s , k and the filtered estimates of l {l0 , l1 , …, lT} (where T is the number of

observations) which are then used to estimate the risk premium in equation (4d).

The results are shown in Tables 1, 2, 3 and graphed in Fig. 1, Fig. 2 and Fig. 3 from

which several observations and interpretations can be made.

                                                
2 In order to improve the stability of the estimation process the volatility of the return on the spot
exchange rate (see equation (4a)) is fixed at the values calculated as standard deviation from the
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With respect to the statistical significance of the parameter estimates (see Table 1), all

estimates are statistically significant apart from the equilibrium market price of risk of

the French Franc, l . The French Franc appears to have adjusted more slowly than the

Japanese Yen, which is also consistent with its lower level of volatility (see k and s in

Table 1). This may be attributed to the fact that since 1979 France has been part of the

European Monetary System whose purpose is to foster currency stability in Europe

while the Japanese Yen has been operating in a relatively free floating environment.

From a different point of view the relatively large fluctuations of the French Franc

risk premium (see Fig. 1 and Fig. 3) in the 1991-1993 period reflect the currency

turmoil in Europe which culminated in the currency crisis of 1992. The catalyst for

this volatile period was the deliberate attempt of the Bundesbank to tighten monetary

policy by raising interest rates to combat inflation (caused by the expansionary

policies to shore up the economy of East Germany) and to attract foreign capital to

finance the resulting budget deficits.

We also notice high values of 
l

s  for all three forward exchange rates (see Table 1)

and this is consistent with the finding of Canova and Ito (1991) who reported high

volatility in ( )kttkt sEf +-, . Furthermore, the diagnostic statistics to determine the

adequacy of the estimates of the model market price of risk, l (see Table 2) indicate

that the residuals are white noise.

Overall there is evidence supporting correct model identification with 5 out of the 6

parameter estimates being statistically significant (see Table 1) while the behavior of

the risk premium estimates of the French Franc (see Fig. 1) reflects the currency crisis

in Europe in the early 1990's.

Both currencies exhibit substantial maturity variation in their respective risk premium

(see Table 3) and also sign switching between positive and negative (see Fig. 1, Fig. 2

and Fig. 3). Thus, this finding convincingly rejects constancy of the mean of the risk

premium of both currencies particularly for the French Franc. While our modeling

approach is different, this result of positive serial correlation and alternating regimes

                                                                                                                                           
sample. These annualised values are 0.0146 and 0.0194 for the French Franc and Japanese yen
respectively.
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is consistent with previous evidence [ Engel (1996), Wolff (1987, 2000), Nijman et al

(1993)]. Furthermore, a 'whiteness' test (see Table 3) is also performed to investigate

the behavior of the demeaned risk premia and the statistics (Table 3) indicate the

fluctuations of the risk premia of both currencies around their respective means are

non-white, thus further reinforcing the persistence of the positive correlation of the

risk premia. This feature of the behavior of the forward risk premium is now

catalogued as one of the new facts in finance (see Cochrane (1999)). Lastly the

negative risk premia (see Table 3) for both currencies are feasible in the ex-ante sense

and consistent with recent research [(see Boudoukh, Richardson and Smith (1993),

Ostdiek (1998)] while  their changing values across maturities clearly indicate a term

structure of risk premia.

On balance our empirical results reaffirm the presence of the time varying property of

forward risk premia while our model provides an integrated framework where the risk

premium is tied to the market price of risk in the context of rational expectations and

no riskless arbitrage.

6. Conclusions:

In this paper we have presented a new approach to analyse the risk premium in

forward exchange rates. This involves exploiting the no arbitrage relationship that

links the spot exchange rate and the forward exchange rate through the market price

of risk under the historical probability measure. By directly modelling the market

price of risk as a mean reverting process we are able to show how the market price of

risk enters into expectation formation for a future spot exchange rate.

This methodology allows us to quantify the risk premium associated with a particular

forward exchange rate in terms of the parameters of the process describing the market

price of risk. We also demonstrate how these parameters can be estimated in a state

space framework by application of the Kalman filter. This procedure, in turn,

generates the filtered and the smoothed estimates the unobserved market price of risk.

We apply the procedure developed in the paper to French Franc/USD and JPY/USD

spot exchange rates and 1-month, 2-months and 3-months forward exchange rates.
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For both currencies the analysis of the results shows (i) the persistence of substantial

time variation in the forward risk premium on the positive side and its alternating

regimes; and (ii) the presence of a term structure of the forward risk premia.
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Table 1
Estimated Parameters of the Market Price of Risk

k l l
s

French Franc 25.22 -1.555 172.53
(5.81) (-1.13) (8.48)

Japanese yen 49.99 -0.372 325.5
(12.61) (-12.28) (12.88)

Numbers in parentheses are t-statistics computed from standard errors obtained using the
heteroscedasticity consistent covariance matrix at the point of convergence. The annualised volatility
of the spot exchange rate process is set to the sample values and these are 0.0146 and 0.0194 for
French Franc and Japanese Yen respectively.

Table 2
Diagnostic Tests of the Estimated Model Market Price of Risk (l)

1-Month Forward 2-Month Forward 3-Month Forward
French Franc

Q(10) 0.757 0.998 0.876
Q2(10) 0.999 0.999 0.999

Japanese Yen
Q(10) 0.141 0.539 0.602
Q2(10) 0.939 0.999 0.999

The entries in the table are p-values. Q(10) measures the Ljung-Box statistics (order 10) for serial
correlation in the respective residual series. Q2(10) is similar to Q(10) but computed with the squared
residual. The asymptotic distribution of both these statistics are Chi-squared with degrees of freedom
10.

Table 3
Descriptive Statistics of the Estimated Risk Premia (p )

1-Month Forward 2-Month Forward 3-Month Forward
French Franc

Mean -0.0013 -0.0031 -0.0050
Std. Dev. 0.0109 0.0122 0.0124
Q(10) 0.000 0.000 0.000

Japanese Yen
Mean -0.0010 -0.0015 -0.0020

Std. Dev. 0.0126 0.0128 0.0128
Q(10) 0.033 0.033 0.033

Descriptive statistics of the risk premia for the three different forward exchange rates computed from
the parameters estimates in Table 1 and the smoothed estimates of the market price of risk.
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Figure 1
Estimated Risk Premia in French Franc Forward Exchange Rates
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Figure 2
Estimated Risk Premia in Japanese Yen Forward Exchange Rates
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Figure 3
Estimated Risk Premia in 3-Month Forward Exchange Rates

French Franc and Japanese Yen (Selected Periods)
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Appendix A

Derivation of the Stochastic Dynamical System

While this paper essentially adopts the methodology of Bhar and Chiarella (2000), in

order to make it self-contained the basic elements of this methodology are

summarised in this appendix.

Let the spot exchange rate follow the one-dimensional geometric diffusion process,

( )tSdWSdtdS sm += (A1)

where m  is the expected return from the spot asset, s  is the volatility of this return,

both measured per unit of time and dW  is the increment of a Wiener process under

the historical probability measure Q . Let us define r  as the domestic risk-free

interest rate and fr  as the counter-part in the foreign currency. Since fr  can be

interpreted as a continuous dividend yield, the instantaneous expected return to an

investor holding foreign exchange is )( fr+m . Thus the relationship between the

excess return demanded and the market price of risk )(l should become

ls=-+m rr f )( , or

ls+-=m )( frr .           (A2)

Thus, equation (A1) can be rewritten as

)()( tSdWSdtrrdS f sls ++-= , under Q .           (A3)

Alternatively we may write

)(
~

)( tWSdSdtrrdS f s+-= , under Q
~

          (A4)
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where, ò+=
t

duutWtW
0

)()()(
~

l  andQ
~

is the risk neutral probability measure .

We recall that under the historical measure Q , the process )(
~

tW  is not a standard

Wiener process since 0)](
~

[ ¹= dttWdE l  in general. However, Girsanov’s theorem

allows us to obtain the equivalent risk neutral measure Q
~

 under which )(
~

tW does

become a standard Wiener process. The measures Q  and Q
~

 are related via the

Radon-Nikodym derivative details of which may be found in Kloeden and Platen

(1992).

Using standard arbitrage arguments for pricing derivative securities (see for example,

Hull (1997), chapter 13), the forward price at time t for a contract maturing at T (>t),

is

)(
~

),( Tt SETtF = .           (A5)

But from equation (A4), by Ito’s lemma,

)(
~

)(])([ )()( tWdetSetSd trrtrr ff ---- =s ,

so that under Q
~

, the quantity trr fetS )()( -- is a martingale from which it follows

immediately that

))((
)(

~ tTrr
tTt

feSSE
--

= , ie.

))((
),(

tTrr
t

feSTtF
--

= .           (A6)

If the maturity date of the contract is a constant period, x, ahead then (A6) may be

written as,

xrr
t

feSxttF
)(

),(
-

=+ .           (A7)
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Let ),(),( xttFxt +ºF  and ),(ln),( xttFxt +ºf , then from (A3), (A4) and (A7) and

by a trivial application of Ito’s lemma we obtain the stochastic differential equation

for F  under Q  and Q
~

. Thus, under Q
~

)(
~

),(),()(),( tWdxtdtxtrrxtd f F+F-=F s           (A8)

whilst under Q ,

)(),(),()(),( tdWxtdtxtrrxtd f F+F+-=F sls           (A9)

with, 
xrr feSx

)(
0),0(

-
=F .

We now propose, under Q  the historical measure, for the market price of risk,l , the

mean reverting stochastic process

( ) dWdtd
l

sllkl +-=                     (A10)

where l  is the long-term equilibrium market price risk, and k  defines the speed of

mean reversion. It should be pointed out here that when discretised the stochastic

differential equation (A10) would become a low order ARMA type process of the

kind reported in Wolff (1987) and Cheung (1993)3. The parameters in equation (A10)

may be estimated from the data using the Kalman filter.

Suppose we have n forward prices, ),(),...,(),,( 21 nxtxtxt FFF , then we have a system

of (n+2) stochastic differential equations. These are (under the historical measure Q ),

)()( tSdWSdtrrdS f sls ++-= ,        (A11a)
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( ) )(tdWdtd
l

sllkl +-=           (A11b)

)(),(),()(),( tdWxtdtxtrrxtd iifi F+F+-=F sls                 (A11c)

where, 0)0( SS = ,  0)0( l=l , if xrr
i eSx

)(
0),0(

-
=F , ni ,...2,1= .

It should be noted that the information contained in equations (A11c) is also

contained in the pricing relationships,

if xrr
ti eSxt

)(
),(

-
=F .         (A12)

To estimate the parameters in the filtering framework, however, we choose to work

with the equation (A11c).

From equation (A3), we can write the spot price at time xt +  as, using )(ln)( tSts = ,

as

ò ò
+ +

++--+=+
xt

t

xt

t

f dWdxrrtsxts )()()5.0()()( 2 tsttlss .                     (A13)

From equation (A13) we can write the expected value )( xts + as,

( )[ ] ( ) ú
û

ù
ê
ë

é
ò ttls+s--+=+
+xt

t
tftt dExrrsxtsE )(5.0 2 .         (A14)

The calculations outlined in Appendix B (see in particular equation (B5)) allow us to

then write,

( )[ ] ( )
ú
ú
û

ù

ê
ê
ë

é
l+

÷
÷

ø

ö

ç
ç

è

æ

k

-
l-ls+s--+=+

k-

x
e

txrrtsxtsE
x

ft
1

)()5.0()( 2 .         (A15)

                                                                                                                                           
3 As we have pointed out in Section 2, Wolff and Cheung report an ARMA type process for the risk
premium itself. However, we see from equation (4d) that p(t, x) and l(t) must follow the same type of
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The above equation may also be expressed (via use of equation (A7)) as,

( )[ ] ( ) .
1

)(5.0),( 2

ú
ú
û

ù

ê
ê
ë

é
l+

÷
÷

ø

ö

ç
ç

è

æ

k

-
l-ls+s-f=+

k-

x
e

txtxtsE
x

t         (A16)

Let ( ) )),()([(, xtxtsExt f-+ºp  represent the risk premium (under the historical

measure Q ) for the x period ahead spot rate, then from equation (A16),

( ) ( )
ú
ú
û

ù

ê
ê
ë

é
l+

÷
÷

ø

ö

ç
ç

è

æ

k

-
l-ls+s-=p

k-

x
e

txt
x1

)(5.0, 2 .         (A17)

                                                                                                                                           
stochastic process.
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Appendix B

Evaluation of Forward Expectations

The stochastic differential equation for l  (equation 3b, Section 3) can be expressed

as,

( ) )()( udWeeued uuu k

l

kk slkl += (B1)

Integrating (B1) from t to t (> t),

( ) ò+-=-
t

k

l

kktkkt slltl
t

utt udWeeetee )()()( , (B2)

from which

( ) )(1)()( )()()( udWeete
t

utt ò ------ +-+=
t

tk

l

tktk slltl . (B3)

Now integrating (B3) from t to t+x,

ò ò +tl=ttl
+ +

-tk-
xt

t

xt

t

t detd   )()( )(

                     ò +tl-l
+

-tk-
xt

t

t dex )(

                     ò ò
+

--

xt

t t

u dudWe ts

t

tk

l
)()( .

The first two integrals in the foregoing equation are readily evaluated. However, in

order to proceed the third integral needs to be expressed as a standard stochastic

integral, having the )(udW term in the outer integration. This is achieved by an
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application of Fubini’s theorem, (see Kloeden and Platen (1992)) which essentially

allows us to interchange the order of integration in the obvious way. Thus,

ò
+xt

t

dttl )( ( ) ò ò
+ +

--

-

÷÷
ø

ö
çç
è

æ
++÷÷

ø

ö
çç
è

æ -
-=

xt

t

xt

u

u
x

udWdex
e

t )(
1

)( )(
tsl

k
ll tk

l

k

( ) [ ]ò
+

-+-

-

-++÷÷
ø

ö
çç
è

æ -
-=

xt

t

uxt
x

udWex
e

t )(1
1

)( )(kl

k

k

s
l

k
ll .            (B4)

Thus, ú
û

ù
ê
ë

é
ò ttl
+xt

t
t dE )( = ( ) x

e
t

x
l+

÷
÷

ø

ö

ç
ç

è

æ

k

-
l-l

k-1
)( . (B5)
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Appendix C

State Space Framework and the Kalman Filter Updating Equations

For a particular maturity, the dynamics of the spot exchange rate, forward exchange

rate and the market price of risk are described by the equations (4a) through (4c) in

Section 3 of this paper. The key concept in understanding the state space formulation

is the separation of the noise driving the system dynamics and the observational noise.

What we observe in practice may not be the system variables directly and these may

be masked by measurement noise. Besides, we are dealing with a partially observed

system since the market price of risk is not observable.

The system dynamics given by the equations (4a) through (4c) in the paper (Section

3) are in continuous time and we usually measure in discrete intervals, so we need to

discretise the equations for the purposes of implementation and estimation. A number

of discretisation schemes for stochastic differential equations are discussed in

Kloeden and Platen (1992) and we choose to work with the Euler-Maruyama scheme.

As it stands, the equations (4a) and (4c) suggest that the diffusion terms are dependent

on the state variables themselves and are thus stochastic in nature. By a simple

transformation of variables using the natural logarithm and application of Ito’s lemma

we can transform these to equations with constant diffusion terms. Using these

transformations and after discretisation of the equations (4a) through (4c) (see

Section 3) we obtain for the time interval between k-1 and k:

kSSkSfkk tttrrss xssls
~

)5.0( 2
1 D+D+D--+=
+

         (C1)

kSSkSfkk tttrr xsslsff
~

)5.0( 1
2

1 D+D+D--+=
--

          (C2)

kkk ttt xslklkl
l

~
)1(1 D+D+D-=

+
          (C3)

where kx
~

~ N(0,1)
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The equations (C1) – (C3) describe the dynamics of the partially observed system and

in the state space framework it is generally referred to as the state transition equation.

In a multivariate situation it is convenient to express these in matrix notation and

following Harvey (1990) this turns out as follows:

kkkkkk RcaTa h++=
-1 ,            (C4)

where,

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ss
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=
ú
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ll 21
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trr
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a f
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k

and kh is a )12( ´ vector of noise sources that are serially uncorrelated, with expected

values zeros and the covariance matrix,

ú
û

ù
ê
ë

é

D

D
==h

t

t
QCov kk 0

0
).( .

The observations in our system are related to the state variables in an obvious way as,

kkkk aZy e+=            (C5)

where,

ú
û

ù
ê
ë

é

f
=

k

k
k

s
y ,  ú

û

ù
ê
ë

é
==eú

û

ù
ê
ë

é
=

h

h
HZ kk 0

0
)Cov.(  ,

010

001
k .

As described before the variance in measurement of the observables are represented

by h . Another assumption in this set up is that the noise sources in the state and the

measurement equations are independent of each other. The state space system requires
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specification of the initial state vector. As suggested in Harvey, Ruiz and Shepherd

(1994) the first observations can be used to initialise it if non-stationarity is suspected.

Once the system is specified in state space form a recursive algorithm such as the

Kalman filter can be applied to obtain the optimal estimate of the state vector at time

k based upon all the information available at that time. As the system given by

equation (C4) is conditionally Gaussian, by recursively calculating the first two

moments of the conditional distribution, the Kalman filter gives the minimum mean

square estimates of the state vector. Another advantage of the conditionally Gaussian

case is that the likelihood function can be precisely calculated from the prediction

error and its covariance. When this likelihood function is maximised with respect to

the unknown parameters of the model their estimates and the corresponding standard

errors are obtained. We can now write down the main updating equations of the

Kalman filter for this system. An intuitive explanation of the operation of the filter

can also be found in Bhar and Chiarella (1997).

 If 1ˆ
-ka is the optimal estimator of the state vector based upon the observation up to

and including 1-ky , and 1-kP is the covariance matrix of the estimation error then the

optimal estimator of the state vector at k is given by,

kkkkk caTa +=
-- 11| ˆˆ          (C6a)

and the covariance matrix of the estimation error is,

kkkkkkkk RQRTPTP ¢+¢=
-- 11| .          (C6b)

The equations (C6a) and (C6b) are the prediction equations. Once the observation at k

becomes available these estimates can be updated as follows:

)ˆ(ˆˆ 1|
1

1|1| -

-

--
-¢+= kkkkkkkkkkk aZyFZPaa ,          (C6c)

1_
1

1|1| -

-

--
¢-= kkkkkkkkkk PZFZPPP ,          (C6d)
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where,

kkkkkk HZPZF +¢=
-1| .         (C6e)

Given the starting values, 0a  and 0P , Kalman filter gives the optimal estimator of the

state vector, as each new observation becomes available. The prediction error at each

step and its covariance matrix can be used to construct the likelihood function, which

(without the constant term) for T observations is given by,

kk

T

k

T

k
kk FFL nå ån¢--= -

= =

1

1 1
5.0log5.0log            (C7)

where, 1|ˆ
-

-=n kkkkk aZy .

As we have seen, the filter algorithm provides the optimal estimates of the state

vector, kâ , based upon all the information up to time k.  However, in our application

we can also take into account of all the information up to T, once the maximum

likelihood estimates of the parameters are obtained. This is known as fixed interval

smoothing and we will be using these smoothed estimates of the market price of risk

to compute the risk premium. The smoothing algorithm consists of a set of recursions

starting at the final point and working backwards to the starting point. We summarise

these equations below and the details can be found in Harvey (1990, pp. 149-155) as

well as Jazwinski (1970, pp. 216-217):

)( 1|1
*

| kkTkkkTk aTaPaa
++

-+= ,          (C8a)

¢
-+=

++

*
|1|1

*
| )( kkkTkkkTk PPPPPP ,          (C8b)

1
|11

* -

++
¢= kkkkk PTPP , for k = T-1, T-2, …, 1.          (C8c)
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These recursions require final values of ka  and kP  for all k and initialisation as

TTTTTT PPaa == || , .
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