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Abstract  

We determine optimal consumption paths under a series of returns scenarios for 

charitable endowments with distinct tastes over investment risk and inter-temporal 

substitution. Charities typically prefer smooth consumption paths but are investment-

risk tolerant. Using a recursive, Kreps-Porteus utility function, we model the optimal  

disbursement from an infinitely-lived charitable trust, then, allowing a general form 

for the returns density, we apply stochastic dominance relations to estimate 

income/substitution effects whereby a change in future returns influences the current 

consumption rate. The elasticity of intertemporal substitution rather than risk aversion 

is key: optimal consumption rises or falls as the elasticity diverges from one.  
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1. Introduction 

The problem we wish to address is how to determine the optimal consumption 

rate for a charity1. Endowed institutions, foundations and charitable trusts in the UK 

include universities, schools, research institutions, and grant-making charities. The 

top 500 charitable trusts in the UK have assets in excess of £33 billion, and 

investment income of more than £4 billion per annum with a similar amount being 

raised by donation, and US endowments and foundations control more than $1300 

billion in assets (Brown, Garlappi and Tiu 2007). While there are a few studies of the 

US university endowment sector there is otherwise surprisingly little quantitative 

research published in this area2.  

The more general problem of an entity making spending and investment plans 

over a finite or infinite horizon, subject to uncertainty, has generated a huge literature. 

Models usually comprise time-additive von Neumann-Morgenstern utility and 

uncertainty generated by log-normal diffusions, with explicit solutions for 

consumption and asset portfolios possible in a limited number of cases. 3 Merton’s 

seminal model (Merton 1969) analyses an infinitely-lived entity with a constant 

relative risk aversion utility function. In the case where all asset returns are log-

normally distributed and some regularity conditions on the rate of discounting of 

future utility are satisfied, the optimal rate of consumption is constant, and optimal 

wealth is log-normal and bounded below. All calculations are done continuously 

                                                 
1 We shall use the terms foundations, endowments and charities interchangeably. 
2 Discussion of optimal spending and investment plans for university endowments originates with 
Tobin (1974), Litvack, Malkiel and Quandt (1974), Nichols (1974), but also features in Merton (1990) 
and more recently in Dybvig (1999), Woglom (2003) and Merton (2003). Empirical studies of the 
structure and investment performance of endowments include Brown (1999), Lerner, Schoar and Wong 
(2005), Brown, Garlappi and Tiu (2007) and Dimmock (2007). 
3 This literature mainly originates with Merton (1969, 1971). Campbell and Viceira (2002) is a standard 
work in the area. In chapter 6, they consider the case where the investor has labour income which could 
proxy for future endowment income or donations to a charity. See also Korn and Korn (2001).  
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rather than discretely. Although the key features of the Merton solution, a constant 

drawdown and strictly positive wealth, are interesting, and the solution is relatively 

easy to compute, it only partially addresses the problem at hand here. 

First, a continuous time framework is hardly an advantage in describing the 

decision-making of a charitable institution, whose trustees typically meet every six 

months. And since many charitable endowments are set up to provide funding 

perpetually, but work with particular clients or projects within quite short time-

frames, we define the problem in terms of choosing annual spending rates over an 

infinite horizon. Secondly, joint log-normality seems excessively restrictive, given the 

asset classes invested in by endowments, which include hedge funds and private 

equity (see Brown 1999, Wellcome 2005, Lerner, Schoar and Wong 2005, Dimmock 

2007 and Brown et al. 2007). Without making specific distributional assumptions, we 

derive the optimal spending plan for a charity earning risky investment returns, and go 

on to examine the way optimal drawdown responds when the density of investment 

returns is transformed. This is of particular importance to trustees because it allows 

them to carry out scenario analysis. By shifting probability mass from the lower to the 

upper tail of the returns density, and by working with mean-preserving spreads, we 

can examine analytically, and estimate numerically, the trade-off between income and 

substitution effects and the ensuing changes to disbursement rates. Consequently our 

analysis is more robust to the real-world peculiarities of financial data than existing 

models. 

Thirdly, charitable trusts and endowments invest large amounts of wealth in 

risky investment portfolios with volatile returns, but ‘consume’ by making 

disbursements to beneficiaries who value smooth funding streams. Models of the 
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drawdown of charities and endowments which apply the usual time-additive, von 

Neumann-Morgenstern expected utility functions limit the scope of analysis by 

restricting tastes over inter-temporal substitution and aversion to risk. In particular, 

the class of constant relative risk aversion (CRRA) utility functions constrains relative 

risk aversion to be the inverse of the elasticity of inter-temporal substitution, so that 

agents who have low risk aversion must also be willing to transfer consumption 

through time. However for charitable trusts, risk aversion and aversion to 

intertemporal substitution appear conceptually and practically distinct: charities 

tolerate considerable uncertainty over returns while aiming for fairly smooth 

payments to beneficiaries over time. 

Recursive or non-expected utility preferences as proposed by Kreps and 

Porteus (1978, 1979) allow a partial separation of tastes for risk and inter-temporal 

consumption. Whereas the von Neumann-Morgenstern agent is interested only in the 

conditional expectation of all future consumption (the timing of the resolution of 

uncertain outcomes does not matter), the Kreps-Porteus agent also cares how soon 

uncertainty over consumption will be resolved. If an entity is highly risk averse but 

relatively willing to redistribute consumption through time, then they prefer an early 

resolution of uncertainty, but if an entity is fairly tolerant of risk and, relatively 

speaking, dislikes transferring consumption through time, then later resolution is 

better. As Weil (1990) points out, this amounts to a trade-off between the safety and 

stability of utility, where safety is improved by early resolution of risk and stability by 

late resolution. Here we adapt Weil’s version of Kreps-Porteus preferences to the 

dynamic consumption problem of charitable trusts, and newly explore the properties 

of the model under scenario analysis. 
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We confirm Weil’s (1990) result that the optimal constant drawdown for a 

charity with Kreps-Porteus utility is set by the rule: 

(1 ) 1
(1 ) 1 ( ) ,m

ρ
α ρδϕ
−
−= −  

where  is the proportion of wealth spent each year, m δ is a parameter which is a 

component of time preference,4 α  is relative risk aversion, 1/ ρ  is the elasticity of 

intertemporal substitution and ϕ  is the expected value of 1Z α−% , where Z%  is the gross 

return to the charity’s portfolio. We also find the conditions for the convergence of 

the value function for this problem, a result which to our knowledge has not been 

derived previously.5

Given plausible parameter values and historical estimates of investment 

returns, optimal drawdown rates might lie between 1% and 3% of wealth per annum 

in real terms. In practice, some charities may be restricted by regulation to minimum 

disbursement quotas (rates of spending out of accumulated wealth). The Canada 

Revenue Agency (2007), for example, currently requires that 3.5% of average value 

of property owned by a charity but not used directly in activities or administration, be 

disbursed each year. At a current inflation rate of nearly 2%, this regulation enforces a 

real drawdown of at least 1.5%. Our analysis suggests that for some preference 

patterns, such regulations may be a binding constraint which reduces the welfare of 

                                                 
4 In a time additive utility modelδ   would simplify to the rate of time preference, but time preference is 
generally endogenous in non-expected utility settings. See Backus, Routledge and Zin (2004) for a 
general discussion of recursive preferences.  
5 Under constant relative risk aversion (CRRA) preferences, the drawdown rule simplifies to 

1

 1 ( )m αδϕ= − . Early analysis of a related problem in growth is due to Phelps (1962) and we do not set 
out the full derivation of this special case here but a direct proof involving explicit derivation of the 
value function is available from the authors on request. 
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the charitable trust.6 Further, while superficial intuition might predict that spending 

out of an endowment will be positively related to an optimistic investment outlook 

and negatively linked to pessimism, we show that this is true only for a sub-set of 

preferences and the reverse reaction can be optimal. Our estimation of these effects 

indicates that optimal consumption rates are remarkably sensitive to small changes in 

beliefs about future returns distributions. The direction of revisions to optimal 

consumption depends on whether the elasticity of intertemporal substitution is greater 

than or less than one, not on tastes for risk. We use stochastic dominance arguments 

to confirm, extend and illustrate analytical results sketched in Weil (1990) and 

Bhamra and Uppal (2006), which demonstrate the pivotal role of the elasticity of 

intertemporal substitution rather than risk aversion for consumption paths.  

2. Literature 

Studies of university endowment behaviour concentrate on finding a drawdown rule 

that satisfies ‘intergenerational equity’ while preserving capital over the long horizon. 

(See, for example, Tobin 1974, Litvack, Makiel and Quandt 1974, and Nichols 1974.) 

Most are not interested in deriving optimal portfolio allocations for endowments. 

Tobin’s (1974) main concern is to improve on arbitrary policies which limit 

consumption from an endowment to either annual cash income (dividends, interest 

and rent) or to annual cash income plus all capital gains. He sets out a more flexible, 

far-sighted drawdown rule that distinguishes between changes to the long-run rate of 

return on assets and temporary revaluation effects, and proposes consuming out of 

permanent income instead of exploiting temporary revaluation effects caused by 

changes in the discount rate. However Woglom (2003) shows that Tobin’s definition 
                                                 
6 We thank Mr Vincent Taubman of TD Asset Management for advice on this issue. 

 6



of intergenerational equity (fixed real consumption through time), implies a zero rate 

of inter-temporal substitution. For agents with CRRA utility functions this means 

infinite risk aversion, a hypothesis that is clearly contradicted by endowment 

investment patterns. Using a deterministic, continuous-time model, Woglom confirms 

that endowments should consume from recurrent capital gains, but he relaxes the 

intergenerational equity constraint to allow optimal real consumption to vary over 

time. Here we manage the fundamental tension between inter-generational equity and 

efficient wealth management by introducing Kreps-Porteus preferences, hence 

disentangling tastes for investment risk from tastes for inter-temporal consumption 

transfers. 

University spending and investment was readdressed in later papers by Merton 

(1990, 2003) who considers optimal consumption and portfolio allocation at the 

whole university, rather than the endowment, level. When income streams (gifts, 

bequests etc.) and the costs of university activities covary with investment returns, he 

argues that university portfolio managers can hedge against future cost changes and 

adjust to non-tradable income sources by employing replicating strategies. 

Dybvig (1995, 1999) views the inter-generational equity question differently, 

proposing that most endowments will want short-run spending certainty while 

maintaining long-run viability. In Dybvig’s set-up the endowment maximises CRRA 

utility over current spending subject to non-negative wealth, and non-negative, non-

decreasing spending, hence utility is still time-additive and separable conditioning on 

consumption never falling, and tastes for risk and inter-temporal substitution are 

linked. By moving a varying proportion of funds into the risk-free asset as the level of 

spending increases, the institution creates a riskless perpetuity matched to the current 
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minimum spending level while maintaining exposure to risky returns, and the 

resulting strategy is a dynamic generalisation of constant proportion portfolio 

insurance.7

While Dybvig’s proposal is an interesting financial engineering plan for 

endowments, his model takes a more rigid approach to preferences than seems 

necessary for charities in general, and so we build our analysis in a framework which 

allows more flexible inter-temporal consumption and investment plans. 

3. Defining the problem 

The standard problem for inter-temporal utility maximisation is to find the optimal 

functional form for consumption and the set of asset-allocations that maximise the 

expected multi-period utility of wealth functional through time. Indeed, in many 

cases, foundations state in their charter that they are endowed to provide some sort of 

support in perpetuity, but the needs of their clients, at least in a research context, may 

be very short-lived indeed. One large UK foundation, for example, offers funding to 

charity projects over a two to three year horizon subject to an option for either the 

charity or the beneficiary to withdraw at six months notice. Here we assume that 

charities are infinitely lived but make annual consumption plans, making calculations 

easier and rendering any finite-horizon bequest function irrelevant.  

3.1. Recursive utility 

Following Weil (1990) and Bhamra and Uppal (2006), we find the closed form 

solution for the optimal consumption path of an infinitely-lived entity which 
                                                 
7 Constant proportion portfolio insurance is the optimal investment strategy of an investor or 
endowment protecting a fixed minimum level of consumption, a result implicit in Merton (1971) and 
explicit in Kingston (1989). 
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maximises a discrete-time recursive utility function. The aggregator function for 

utility has two arguments, the first represents the value of current consumption and 

the second represents expected future utility over uncertain future consumption: 

1
1 (1 ) /(1 ) (1 ) /(1 )

1

[ , ]

{(1 ) [1 (1 )(1 ) ] } 1
(1 )(1 )

t t t t

t t t

L U C E L

C E Lρ ρδ δ δ α
δ α

+

− − −
+

=

− + + − −
≡

− −

α α ρ− − −  (1) 

where (0,1), 0,  and 0δ α ρ∈ > >  and where Ct is consumption in the form of 

payments to worthy causes and costs.8

The aggregator function represents time preference in (1), so that the 

derivative of U  with respect to expected future utility can be viewed as a 

subjective discount factor. If U  is convex with respect to expected future utility, 

the agent prefers early resolution of uncertainty, or safety over stability. If U is 

concave with respect to its second argument, then the agent prefers a stable certainty 

equivalent path of future consumption. As Weil points out, 

(.,.)

(.,.)

(.,.)

δ  is the subjective 

discount factor in the case of certainty and in the linear constant relative risk aversion 

(CRRA) case where α ρ= . 

Consider an agent who faces two lotteries offering consumption over three 

periods which differ only by the timing of the resolution of the lottery.  

[INSERT FIGURE 1 HERE] 

If we assume that the agent discounts risk according to C1 α− , that each branch 

of the consumption path is equally likely, and we fix 2α = , the certainty equivalent 

                                                 
8 We would like to thank Professor James Sefton for persuading us of the applicability of this approach. 
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of expected future utility at time t1 is 1.67 for lottery A and either 5 or 1 for lottery B 

depending on the branch selected by the lottery. Similarly, the conditional variance of 

lottery A at time t1 is non-zero (=4), but the conditional variance of lottery B is zero. 

If we stood at time t0 and computed the certainty equivalent of A and B, they would 

both be 8.21 and indistinguishable in terms of von Neumann-Morgenstern 

preferences. However, under Kreps-Porteus preferences, lottery A presents a more 

risky conditional path, but with less variation in certainty equivalent consumption 

over time, whereas B is a less risky conditional path with larger swings in certainty 

equivalent consumption. 

It is straightforward to show that the convexity or concavity of depends 

on the relative sizes of 

(.,.)U

α  and ρ , being convex when α ρ>  and concave when 

α ρ< . Convexity implies more rapidly increasing patience and concavity more 

slowly increasing patience as expected future utility rises. Agents who are more risk 

tolerant and value smoothness (α ρ< ) prefer late resolution (lottery A), and agents 

who dislike risk but tolerate larger swings in certainty equivalent utility (α ρ> ) 

prefer early resolution (Lottery B). 

Another way to view the parameters of the model is to recognise that the 

coefficient of relative risk aversion for timeless gambles is α  and the constant 

elasticity of inter-temporal substitution for deterministic consumption paths is  1/ ρ . 

If either parameter approaches unity, then preferences become logarithmic in that 

dimension, so that we get logarithmic risk preferences when 1α →  and logarithmic 

inter-temporal substitution preferences when 1.ρ →  Under the special case where 

α ρ= , the utility function represents the preferences of an individual with constant 
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relative risk-aversion (CRRA) and for whom the inverse of the risk aversion 

parameter is the elasticity of inter-temporal substitution.  

3.2. Wealth  

The amount of money available to the charity for investment, tI , is given by, 

     -  t t t tI W D C= + ,  (2) 

where  is the wealth at time t and  is the income from donations or bequests. If tW tD

tI  is invested in n assets, buying shares in the i,i tN th asset at a price , then, ,i tP

n

, ,
i=1

   t i t i tI N P= ∑ .  (3) 

If one defines the return to the ith asset as the random variable 

, , 1   /   i t i t i tz P P+= %% ,

, .

I

t

, (4) 

then it is possible to write an expression for the stochastic wealth of the charity at time 

t+1, 

1 ,
1

    
n

t t i t i t
i

W I w z+
=

= ∑ %  (5) 

where , represents the relative weights of the assets.  , , ,   /i t i t i t tw N P=

The charity consumes at the constant proportional rate t tC mW= ∀ , by 

spending on administration and providing funding to beneficiaries. Setting aside 
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questions of portfolio allocation, and assuming that no donation income is received, 

the budget constraint is 

1 ( )t t tW W C+ = − %
tZ  (6) 

where tZ%  is the random growth in investments from t to t+1. If  t tC mW= , 

1 (1 )tW m W+ = − %
t tZ

iZ

1tV −
%

. (7) 

This gives us a difference equation, 

1

0
0

0 1

(1 )

(1 )

t
t

t
i

t
t

W m W

m W V

−

=

−

= −

= −

∏ %

%

 (8) 

where  is the accumulated value of one unit of wealth invested at 

time 0 and held until time t; it is random and assumed non-negative.  

1

1
0

.
t

t i
i

V Z
−

−
=

=∏% %

Proposition 1. If iZ%  is positive i.i.d and 1
iZ α−% is a well defined random variable such 

that.  exists for 0ϕα =− )( 1
iZE α< < ∞ , it follows that  for all integer t 

> 0. 

t
tVE ϕα =−
− )( 1

10

Proof.  Since iZ%  is iid, 1
iZ α−%  is iid and 
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11
1

0 1
0

1
1

0

1
1

0
1

0

( )

( )

.

t

t i
i

t

i
i

t

i
i
t

t

i

E V E Z

E Z

E Z

α
α

α

α

ϕ ϕ

−−
−
−

=

−
−

=

−
−

=

−

=

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣

=

= =

∏

∏

∏

∏

% %

%

%

⎦  (9) 

3.3. Optimal consumption path 

Optimising (1) subject to (8) 9, and assuming that iZ%  is positive i.i.d, the drawdown 

rate is:  

1/ 1/(1 ) (1 ) /1 [ ]m ρ α ρ ρ  (10) δ ϕ − −= −

and the optimised value of (1) above is  

( )
1( ) 1 ,

(1 )(1 )
WL W

αψ
δ α

− −
=

− −
 (11) 

for 1/(1 )[(1 ) ] .m ρ ρψ δ − −= −  In the special case of CRRA utility, when α ρ= , the 

optimal drawdown simplifies to 
1

1 ( )m αδϕ= − . In the case of logarithmic risk 

preferences when 1α →  the rule is 1/1m ρδ= −  and in the case of logarithmic inter-

temporal substitution preferences when 1ρ → , 1m δ= −  for all values of α . Thus in 

either logarithmic case, the optimal drawdown 1m δ= −  or 1/1m ρδ= − is independent 

of our assumption about  0
1

t
t

E V
∞

1−
=
∑ % . This result is simple but not terribly useful, as it 

                                                 
9 Appendix A sets out an explicit derivation of  this  result originally reported in Weil (1990) but not 
explicitly derived there.  Bhamra and Uppal (2006) derive the related result for a finite horizon.  
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depends primarily on the unknown discount factor,  δ . The optimal drawdown is 

independent of asset allocation although the amount of wealth drawn down is not. 

However, as δ  increases m decreases; this means the charity values future utility 

more and the value of current consumption decreases. 

The dynamic spending plan in (10) is feasible (satisfying strictly positive 

wealth and consumption constraints) when the rate of drawdown is positive so that 

, or for the CRRA case, when (1 ) /(1 ) 1ρ αδϕ − − < 1δϕ < . Dynamic stability, such that the 

expected value of optimised utility is bounded at the infinite horizon, is also satisfied 

by 1δϕ <  in the CRRA case, but the conditions for feasibility and dynamic stability 

do not always coincide in the non-linear recursive utility case.10

Proposition 2. Under Newton’s generalised binomial theorem (Graham et al. 1994), 

the aggregator function 1[ , ]t t t tL U C E L +=  in (1) is sum of a convergent infinite series 

if 1
1

m
m
<

−
. 

Proof. Newton’s generalised binomial theorem states that for any  r∈ , if 1a <  

then  converges to . This results implies 
0

t
t

r
a

t≥

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ (1 )ra+

0 0
( ) (1r r t t t

t t

r r
)ry x y x a

t t
−

≥ ≥

⎛ ⎞ ⎛ ⎞
+ = = = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ a

                                                

, 

for . Using the aggregator function (1), and substituting the value function 

(11), 

/a x y=

 
10 Smith (1996) derives the feasibility and transversality condition for a related aggregator function in 
continuous time, but the model we work with here is different in significant ways and Smith’s result 
does not transfer directly. 
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( )

( ){ }

( )

(1 ) /(1 )(1 ) /(1 )(1 )1 1/(1 )
1

(1 ) /(1 )(1 ) /(1 )1 (1 )
1

(1 )(1 ) (1 )

(1 ) [(1 ) ] 1

(1 )(1 )

(1 ) [(1 ) ] 1

(1 )(1 )

(1 ) (1 ) 1

t t t

t

t t t

t t

C E m W
L

C m E W

m W m m W

α ρρ ααρ ρ ρ

α ρρ α
ρ ρ α

ρρ ρ ρ

δ δ δ

δ α

δ δ δ

δ α

δ δ δ

− −− −−− − −
+

− −− −
− − −

+

−− − −

⎧ ⎫⎡ ⎤− + − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭=
− −

⎡ ⎤− + − −⎣ ⎦
=

− −

− + − −
=
{ }(1 ) /(1 ) (1 ) /(1 )

(1 ) 1

(1 )(1 )

ρ α α ρ
ρ ϕ

δ α

− − − −
− −

− −
 (12) 

and (12) will be the sum of the generalised binomial expansion above if,  

( ) ( )

( ) ( )
( )
( )

1 1

1
1 1 1

(1 ) 1
(1 )

(1 ) (1 )

t

t

m Wxa
y m

m m W

ρ ρ

ρ
ρ ρ αρ

δ

δ δ ϕ

− −

−
− − −−

−
= = = <

−
− −

m  (13) 

and 1
1

r α
ρ

−
=

−
 is a real number. The generalised binomial expansion in this case is:  

0 0

( 1)( 2)...( 1)
! 1

t
t

t t

r r r r r t mz
t t m≥ ≥

⎛ ⎞ − − − + ⎛=⎜ ⎟ ⎜ −⎝ ⎠⎝ ⎠
∑ ∑ ⎞

⎟ . (14) 

Each period the summation  in (14) grows by a factor 1
1

r t m
t m

− + ⎛
⎜ −⎝ ⎠

⎞
⎟ , which in the 

limit goes to  

1 1lim lim
1 1t t

r t m r t m m
t m t t t m→∞ →∞

⎡ ⎤ ⎡ ⎤− + ⎛ ⎞ ⎛ ⎞ ⎛= − + = −⎜ ⎟ ⎜ ⎟ ⎜⎢ ⎥ ⎢ ⎥− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ 1 m
⎞
⎟−

, (15) 

confirming that for 1
1

m
m

⎛ ⎞ <⎜ ⎟−⎝ ⎠
 the sum converges to a finite value. 

 15



The convergence condition (13) applies where the discounted value of 

expected future utility (the second argument in the aggregator function) exceeds the 

value of current consumption (the first argument in the aggregator function), and 

amounts to the requirement that the optimal spending rate,  , be less than the saving 

rate, ( . If the reverse is true and the value of current consumption exceeds 

discounted expected utility, then the rate of spending needs to exceed the rate of 

saving to achieve dynamic stability. For most of the empirical applications to follow, 

we need the spending rate to be less than the saving rate. This condition is equivalent 

to m < ½. 

m

)

1−

t j

1 m−

3.3 Donation income 

We could also generalise the problem to the case where ‘income’ is included, by 

which we mean donations. Donations  are received during the period time t – 1 to t 

but invested at the end of the period. (Income received from donations during the 

period cannot be invested in this discrete time framework until the market opens in 

integer time.) This means that the wealth equation (2) needs to be adjusted to 

tD%

1 1(1 )t t t tW W m Z D− −= − +% % , (16) 

then 

1
1

0 1 1
0

(1 ) ( / )(1 )
t

t
t t j t j

j
W m W V D V V m

−
− −

− −
=

= − + −∑% % % % , (17) 

where  is assumed to equal one. 0V%
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It is apparent that no closed-form solution exists for additive income for 

general distributions. However, using the fact that donation income must be positive, 

we can use instead a multiplicative addition to wealth, thus we get, defining the 

cumulative growth in income from donations as a proportion of wealth  
1

1
0

,
t

t i
i

Y y
−

−
=

=∏% %

0 (1 ) .t
tW W m V Y− −= − % %

1 1t t  (18) 

In this case we can derive a solution exactly as for (10), but the new interpretation of 

ϕ  is  

( ) ( ) ( )
1 1 1 1

1 1 1 1 1 1( ) cov

,
t t t t t t

Z Y Y Z

E Z y E Z E y Z y

α α α α

α α α α α

μ μ σ− − − −

− − − − − −= +

= +

% % α%
 (19) 

where previously ϕ  was 1Z αμ − . 

This now allows us to include donations in our general model where the 

necessary assumptions are the same as before. We might expect the covariance term 

to be positive (as in the case studied by Merton 1990) but there may be reasons why it 

could be negative.11 An increase in financial market returns may be co-existent with a 

fall in donations as the population shifts from altruism to greed. 

3.4 Asset allocation 

                                                 
11 Dimmock (2007) offers some analysis of non-investment income to US university endowments. He 
reports low negative correlation between equity indices and non-endowment income which includes 
private donations.   
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Whilst in principle we could solve numerically for optimal asset allocation, we may 

not wish to do so.12  This is for two reasons: first, the analysis is complex and 

dependent on distributional assumptions, or, if based on sample data, dependent on 

making assumptions that the future will be similar to the past; and secondly, asset 

allocation is in practice determined by decentralised committees via consultation13. 

Portfolio optimisation tools are theoretically important but their practical application 

is restricted by significant parameter uncertainty and the complex management 

structures of institutions. 

For any given asset allocation, however determined, we can calculate the 

impact on the optimal drawdown of varying assumptions about the distribution of 

future returns, of changes in risk attitudes and changes in portfolio weights. We 

proceed to this scenario analysis in section 4 below. 

3.5. Empirical illustration 

To illustrate the explicit solution in (10), we create a representative portfolio for a 

charitable trust, simulate returns and compute optimal drawdown rates for some 

feasible parameter ranges. Here we design the portfolio of our artificial entity to 

approximate the publicly available asset allocation of an independent UK biomedical 

research-funding charity, the Wellcome Trust (Wellcome 2005). 

The Wellcome Trust Annual Report for 2005 states the principal investment 

objective as ‘total return in inflation-adjusted terms over the long term in order to 
                                                 
12 Giovannini and Jorion (1993) test the asset pricing implications of the model for the general non- 
i.i.d. case. Bhamra and Uppal (2006) set out the implicit portfolio optimality condition, and explicit 
optimal portfolio weights for  simple examples of constant and stochastic investment opportunity sets. 
13 See Brown et al. (2007) for a description of university endowment structure and their decentralised 
process of investment management. While university endowment boards or investment committees 
make high level investment policy, day to day decisions are often delegated to groups of fund managers 
or to sub-committees. 
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provide for real increases in annual expenditure while preserving at least the Trust’s 

capital base in real terms’. Consistent with the aim of maximising total returns, more 

than 90% of capital is held in public and private equity, hedge funds and property, 

with a small proportion in gilts and cash. Our returns data are constructed using an 

asset allocation similar to the Trust’s allocation set out in their 2005 annual report 

(Figure 2). If we aimed to analyse the Wellcome Trust as an entity we would want an 

historical return series that reflects changes to investment policy as well as changes to 

underlying returns over time, but it serves our purpose simply to fix portfolio weights 

close to the 2005 report levels and pass these back through the historical asset class 

data. 

[INSERT FIGURE 2 HERE] 

We calculate monthly real portfolio returns over the period January 1990 to 

June 2006, (198 observations) deriving individual asset class returns from standard 

indexes, and deflate using consumer prices and earnings data.14 It is reasonable to 

expect that wages are the majority of costs for most beneficiary projects, and deflation 

using consumer prices alone will overstate the real spending power of the charity, so 

we treat inflation as 50% consumer-price-driven and 50% purely due to wage 

increases.15  

The mean (log) real return to this portfolio is 4.75% annualised with volatility 

of 13%. Summary statistics in Table 1 show that the data are significantly non-

normal: negatively skewed and leptokurtic. However the autocorrelation structure of 

the de-meaned returns and squared de-meaned returns supports an assumption that 

                                                 
14 See Appendix B  for data sources and calculations. 
15 We use an arbitrary rule for deflation here, but most research into endowment spending (e.g., Tobin 
1974 and Woglom 2003) recognises the importance of an institution-specific deflation procedure, while 
Merton (1990) goes further and suggests hedging strategies for future cost changes. 
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real portfolio returns are i.i.d. Ljung-Box Q statistics, not reported here, are 

insignificant to at least 50 lags for the de-meaned returns. The squared residuals have 

one significant autocorrelation at lag ten. 

[INSERT TABLE 1 HERE] 

Equation (10) above is the optimal rate of drawdown for an infinitely-lived 

charity under a fixed asset allocation, given time preference parameter  δ , 

consumption smoothing parameter ρ , and relative risk aversion α . Another key 

determinant is the mean of the risk-aversion-scaled portfolio return,  1( )tE Z α ϕ− =% . To 

estimate ϕ , we bootstrap the monthly portfolio returns using 120,000 random draws 

from our historical sample, and sum to get 10,000 annual real (gross) returns. We then 

use these to compute the sample mean  

10,000
1

1

1ˆ
10,000 i

i

Z αϕ −

=

= ∑ % ,  (20) 

for 0.97δ =  and 0α > .  

The estimated optimal drawdown rate  is shown in Figure 3 for values of 

the inter-temporal substitution parameter 

m̂

ρ  between 0.2 and 5, and with risk aversion  

2.6α = , an estimated value we infer from the portfolio weights of the Wellcome 

Trust16. The fine grey curves give an approximate 95% error range for the estimate of 

                                                 

0⎤⎦

16 The condition for portfolio optimality for this model gives a vector of moment conditions in the 
scaled portfolio return and returns to individual assets given  a constant rate of consumption 

, where R is the return to the risk-free 

asset (see Bhamra and Uppal 2006 equation (17) under i.i.d. returns). We use this system of moment 
conditions and the portfolio returns data described above to estimate 

( )(1 ) / 1
1 1( ) ( )t it t itE m Z z R E Z z Rα αα ρ ρ − −− −
+ +

⎡ ⎤ ⎡− = − =⎣⎣ ⎦
% %

ˆ 2.6α =  by Generalised Method 
of Moments assuming that the real risk-free rate is zero. Estimation results are available from the 
authors on request. 
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m. Since under feasibility 
1/(1 )

(1 )ˆ0
ρρ

αδϕ
−
−

⎛ ⎞
< ⎜ ⎟⎜ ⎟
⎝ ⎠

1< , we can fit a beta distribution to 1000 

bootstrapped estimates of 
1/(1 )

(1 )ˆv̂
ρρ

α
α δϕ

−
−

⎛ ⎞
≡ ⎜ ⎟⎜ ⎟
⎝ ⎠

 by maximum likelihood, after filtering out 

values that do not meet the feasibility and boundary conditions. From the estimated 

beta parameters, we can back out ( )1
,0.025ˆ1 1 0.025v Fα

−− = −  and 

( )1
,0.975ˆ1 1 0.975v Fα

−− = −  as a guide to the accuracy of . Consistent with the 

solution for logarithmic inter-temporal substitution preferences, the optimal 

consumption rate is 3% per annum when 

m̂

1ρ = . As tolerance for consumption transfer 

through time decreases and rho increases, the disbursements falls from around 4.7% 

when 0.2ρ = , reaching 2.8% when 5ρ = .17

[INSERT FIGURE 3 HERE] 

The error range around m  widens rapidly as the elasticity of inter-temporal 

substitution (EIS) diverges from one in either direction. Figure 4 graphs the estimated 

beta distributions of the optimal drawdown at three indicative values of the inter-

temporal substitution parameter. When the EIS is relatively high at 1.33 ( 0.75ρ = ), 

the error distribution is more right-skewed and disbursed than when the EIS falls to 

0.8 ( 1.25ρ = ) where the distribution is more tightly packed around the 3% 

logarithmic drawdown. However as EIS moves away from one, falling to 0.2 ( 5ρ = ), 

the probability distribution becomes more right-skewed again, and uncertainty over 

                                                 
17 We choose parameters that are roughly consistent with the empirical estimates of tastes for risk and 
inter-temporal substitution made by Epstein and Zin (1991) who find that the elasticity of inter-
temporal substitution (EIS) is small and always less than one (implying that 1ρ > ) and that risk 
preferences are close to one, conditions which together imply a preference for the late resolution of 
uncertainty. Earlier studies find a low value for the EIS, but for a contrasting view see Gruber (2006).   
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the optimal spending rate increases. This pattern indicates the increasing importance 

of the stochastic risk-scaled returns parameter  ( )1E Z αϕ −=  to optimal consumption 

paths as the EIS diverges from one, since at 1ρ = , consumption depends only on the 

discount parameter δ , which is assumed to be known with certainty.  

Hence we conclude that a moderately risk averse charity will spend between 

5% and 2% of wealth each year, but that the uncertainty surrounding that optimal 

solution is very large and increasing as the EIS diverges from one. 

[INSERT FIGURE 4 HERE] 

4. Scenario analysis 

Trustees need a way of assessing whether their chosen drawdown rate is robust to 

changes in beliefs about future returns, an exercise usually called scenario analysis. A 

natural approach is to set past history as the benchmark and build optimistic or 

pessimistic outlooks relative to recent experience. In this section we set out a simple 

procedure to conduct scenario analysis that is not highly dependent on complicated 

assumptions about distributions of returns.  

The influence of the returns distribution on optimal spending rates for a 

charity is via the expectation of risk-scaled portfolio returns,  ( )1E Z αϕ −= % . To gauge 

the optimal spending response to optimistic and pessimistic investment scenarios, we 

consider changes in the expected risk-scaled portfolio return ϕ , where we keep tastes 

for risk, α , and inter-temporal substitution, ρ , fixed but vary distributional 
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parameters. The change in optimal drawdown as ϕ  varies depends on the relative size 

of α  and  ρ , 

( )
( )

( )
( )

11 1
11

.
1

m
ρ
α ρρ ρ

δ ϕ
ϕ α ρ

−
−

−−∂
= −

∂ −
 (21) 

Since ,  and δ ρ ϕ  are positive, the response of the optimal drawdown to an 

increase in ϕ  will be positive when  1 and 1ρ α> < , and when 1 and 1ρ α< > . If 

both α  and ρ  are greater than one or less than one, then the response of the optimal 

drawdown to an increase in ϕ  will be negative. However we need to account for the 

influence on ϕ  itself of changes in relative risk aversion. It turns out that this can be 

done using the properties of stochastic dominance. 

4.1 First order stochastic dominance 

Proposition 3. If iZ Δ  first order stochastic dominates (FSD) iZ , then ϕ  is increased if 

0 1α< <  and decreased if 1α > . 

Proof. Note that if iZ Δ  FSD iZ  then ( ) ( )F Z F ZΔ ≤  where  and  are the 

respective distribution functions. Denote expectations with respect to them by  

and  . First order stochastic dominance implies that 

( )F ZΔ ( )F Z

( )EΔ ⋅

( )E ⋅ [ ] [ ]( ) ( )E G Z E G ZΔ ≥  for 

, any increasing function.( )G ⋅ 18 If ( ) 1 , 0 1,G Z Z α α−= < <  then ( )G Z  is increasing 

                                                 
18 See Huang and Litzenberger (1988) for proof. 
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in Z, hence under  , ( )F ZΔ ϕ  is increased. If 1α >  we have ( )G ⋅  a decreasing 

function in Z and under the reverse happens, ( )F ZΔ ϕ  decreases.19

We now set out a method for reshaping the returns distribution to reflect 

optimistic and pessimistic scenarios for investment. For optimistic outlooks, our aim 

is to make extremely poor payoffs unlikely relative to the recent past by shifting tail 

mass from the left to the right tail of the distribution. For an arbitrary positive 

continuous density, pdf(x); we consider two points lx  and ux  and the probabilities 

 and  clearly  
0

( ) , ( )
l

u

x

l u
x

P pdf x dx P pdf x dx
∞

= =∫ ∫ ( ) ;
u

l

x

md
x

P pdf x dx= ∫ 1.u l mdP P P+ + =

We can construct a new density by the following shift,  

'

'

'

u u

l l

md md

P P

P P

P P

= + Δ

= −Δ

=

 (22) 

where 0  and  min( , ),u lP P< Δ <

'

'

( )'( )

( )

( ) 0

u
u

u

l

l
l

l

P pdf xpdf x x x
P

updf x x x x

P pdf x x x
P

= <

= ≤

= ≤

< ∞

≤

≤

 (23) 

It is easy to check that '( )pdf x  is still a well-defined density although no 

longer continuous at .l ux x or x x= =  Note that since we assumed a continuous density 

                                                 
19 Bhamra and Uppal (2006) derive expressions for the income and substitution effects of changes in 
the risk-free rate on consumption and portfolio choice in the finite horizon setting. 
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with zero probability mass at any point, the discontinuities induced by our 

transformation will not affect the existence of the integrals. Furthermore the above 

transformation can be called optimistic in that it transfers probability from the lower 

tail to the upper tail of the density while a pessimistic transformation does the reverse. 

Corollary. If  is a positive increasing function then ( )G x

0 0

( ) '( ) ( ) ( ) ( )G x pdf x dx G x pdf x dx
∞ ∞

> <∫ ∫  (24) 

for '( )pdf x  the result of an optimistic (pessimistic) transformation. An opposite 

result applies to positive decreasing functions. If we now apply the result for 

1( iE Z )αϕ −= % , we see that 1
iZ α−%  is positive increasing for 0 1α< <  hence ϕ ϕΔ > , and 

positive decreasing for 1α >  so that ϕ ϕΔ < , where Δ  is a positive transformation. 

We consider now the change in m under a FSD shift for each of four 

combinations of α  and  ρ .  

For 0 1ρ< < , 0 1α< < , 
0  increases under ( )

0  decreases under ( )

G F Z
Z
m m F

ϕ

ϕ

Δ

Δ

∂
> ⇒

∂
∂

< ⇒
∂

Z
 

For 0 1ρ< < , 1α > , 
0  decreases under ( )

0  decreases under ( )

G F Z
Z
m m F

ϕ

ϕ

Δ

Δ

∂
< ⇒

∂
∂

> ⇒
∂

Z
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For 1ρ > , 0 1α< < , 
0  increases under ( )

0  increases under ( )

G F Z
Z
m m F

ϕ

ϕ

Δ

Δ

∂
> ⇒

∂
∂

> ⇒
∂

Z
 

For 1ρ > , 1α > , 
0  decreases under ( )

0  increases under ( )

G F Z
Z
m m F

ϕ

ϕ

Δ

Δ

∂
< ⇒

∂
∂

< ⇒
∂

Z

1

 

So regardless of the size of the relative risk aversion parameter, transformations of the 

returns distribution that are described by first order stochastic dominance result in a 

decrease in the optimal rate of drawdown whenever 0 ρ< <  and an increase in the 

optimal rate of drawdown when 1ρ > . Weil (1990) showed this result for log-

normally distributed portfolio returns, but here we have generalised to the case of any 

well-behaved continuous returns distribution.  

The former case 0 1ρ< <  describes charities with high elasticities of inter-

temporal substitution, and the latter  1ρ > , agents with low elasticities of inter-

temporal substitution. For optimistic returns scenarios, and where  0 1ρ< < , the 

substitution effect dominates the income effect and the charity is willing to transfer a 

higher rate of consumption through time into the future and spending rates fall, 

whereas for 1ρ > , charities with low elasticities of intertemporal substitution find the 

prospect of good times now compelling, the income effect dominates the substitution 

effect, and they increase current spending rates. These effects are independent of 

tastes for risk. 

4.2. Empirical illustration  
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Figures 5 and 6 show the impact on optimal drawdown of a range of transformations 

of the distribution of  iZ% , the portfolio return.  The two panels in Figure 5 show 

graphs for optimal spending rate when 0.5α =  and 2.6, and ρ  ranges from 0.4 to 1. 

A positive rescaling of the returns distribution of size 0.02 shifts 2% of the total 

probability mass from the left to the right tail of the distribution and matches an 

optimistic outlook for investment returns. In the same way, a negative rescaling of 

0.02 shifts the same probability mass from the right to the left tail, when the 

investment outlook is bleak. Whenever 1ρ =  the optimal spending rate is 3% p.a., but 

as ρ  shrinks, EIS increases and spending rises with optimistic expectations and falls 

with pessimistic expectations. 20 For  0.8ρ =  and  0.5α = , the optimal spending rate 

based on historical returns is 2.6%. As optimism increases, and we shift probability 

mass towards the right tail spending declines so that when right tail returns are 4 

percentage points more probable, spending is down to 1.4% and to 0.05% when the 

right tail probability is 10 percentage points higher. Similarly spending rises to 3.8% 

when the left tail returns are 4 percentage points more probable and reaches 5.8% at 

10 percentage points. For  0.8ρ =  and  2.6α = , the pattern is very similar: beginning 

at  3.4%, as optimism increases the right tail by 4 percentage points , spending falls to 

1.9% and to 0.04% for a 10 percentage point shift. When the left tail returns are 4 

percentage points more probable, spending rises to 4.3% and reaches 6.3% at 10 

percentage points.  

                                                 
20 The slightly jagged shape to the surface is caused by the bootstrap process: a different set of random 
draws is made at each combination of ρ   and Δ . Edges of the surface are not smooth because the 
feasibility and boundary conditions are not met for some extreme values of ρ  and α . 
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We see that a very flexible foundation facing better prospects does best by 

decreasing current spending rates in favour of future consumption, with substitution 

effects dominating income effects. 

[INSERT FIGURE 5 HERE] 

For charities with low elasticities of inter-temporal substitution, where  1ρ > , 

optimistic transformations of the portfolio returns distribution increase the optimal 

drawdown, as the charity enjoys higher income in the current period rather than 

favouring future consumption. Figure 6 graphs changing spending rates as optimism 

increases and EIS decreases. When 2ρ =  (EIS = 0.5) and 2.6α = , optimal spending 

at the historical average return is 2.4% p.a. Reducing the probability of left tail returns 

by 4 percentage points more than doubles optimal spending to 5.2% p.a. The same 

shift in the direction of pessimism reduces spending to 0.5% p.a. As inter-temporal 

substitution becomes even less attractive at say 4ρ = , (EIS =0.25), a 4 percentage 

point positive shift raises spending from 2.1% to 6% and a 2 percentage point 

negative shift lowers spending to 0.4% p.a. When risk aversion is low, the same 

pattern of changes applies at higher overall consumption rates. 

[INSERT FIGURE 6 HERE] 

4.3. Second order stochastic dominance 

Our first discussion considered changes in the mean of the returns distribution. We 

now consider changes in risk while allowing the mean to stay constant.  
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Proposition 4. If iZω  second order stochastic dominates (SSD) iZ  then ϕ  is 

increased if 0 1α< <  and decreased if 1α > . 

Proof. Note that if iZω  SSD iZ  then 
0 0

( ) ( )
Z Z

F s ds F s dsω ≤∫ ∫  for all [0, ]Z ∈ ∞ where 

 and  are the respective distribution functions. Denote expectations with 

respect to them by  and 

( )F Zω ( )F Z

( )Eω ⋅ ( )E ⋅ . Second order stochastic dominance implies that 

[ ] [ ]( ) ( )E G Z E G Zω ≥  for , any increasing, concave function.( )G ⋅ 21 If 

 then ( ) 1 , 0 1,G Z Z α α−= < < ( )G Z  is increasing and concave in Z, hence under 

, ( )F ZΔ ϕ  is increased. If 1α >  we have ( )G ⋅  a decreasing and convex function in Z 

and under the reverse happens, ( )F ZΔ ϕ  decreases. 

Here we consider a mean-preserving spread of the distribution as a special 

case of SSD. For an arbitrary positive continuous density, pdf(x) where 

2,  ~  (0, )i x i ix iid εμ ε ε σ= +  where 2
εσ , we can construct a mean-preserving spread by 

the following transformation of ix ,  

' (1 ) ,  0<i x ix μ ω ε ω= + + < ∞  (25) 

We can see that the mean of both distributions is  

( ) ( ')i iE x E x xμ= = , (26) 

and that for 0<ω < ∞ , the variance of the transformed variable 'ix  is greater than the 

variance of ix , 

                                                 
21 For proof see Huang and Litzenberger (1988). 
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2 2 2var( ') (1 ) var( )ix ixε εω σ= + > =σ , (27) 

which are sufficient conditions for second order stochastic dominance of ( )pdf x  over 

'( )pdf x . 

We can also shrink the variance of ( )pdf x  by choosing an optimistic 

transformation such that -1< 0ω < . A pessimistic transformation can be defined as an 

increase in risk when 0<ω < ∞ .  

Corollary. If  is a positive increasing, concave function then ( )G x

0 0

( ) '( ) ( ) ( ) ( )G x pdf x dx G x pdf x dx
∞ ∞

> <∫ ∫  (28) 

for '( )pdf x  the result of an optimistic (pessimistic) transformation. An opposite 

result applies to positive decreasing, convex functions. If we again apply the result for 

1( iE Z )αϕ −= % , we see that 1
iZ α−%  is positive increasing and concave for 0 1α< <  hence 

ωϕ ϕ> , and positive decreasing and convex for 1α >  so that ωϕ ϕ< , where ω  is an 

optimistic transformation. 

We consider now the change in m for each of four combinations of α  and ρ .  

For 0 1ρ< < , 0 1α< < , 

2

20, 0  increases under ( )

0  decreases under ( )

G G F Z
Z Z
m m F Z

ω

ω

ϕ

ϕ

∂ ∂
> < ⇒

∂ ∂
∂

< ⇒
∂
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For 0 1ρ< < , 1α > , 

2

20, 0  decreases under ( )

0  decreases under ( )

G G F Z
Z Z
m m F Z

ω

ω

ϕ

ϕ

∂ ∂
< > ⇒

∂ ∂
∂

> ⇒
∂

 

For 1ρ > , 0 1α< < , 

2

20, 0  increases under ( )

0  increases under ( )

G G F Z
Z Z
m m F Z

ω

ω

ϕ

ϕ

∂ ∂
> < ⇒

∂ ∂
∂

> ⇒
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For 1ρ > , 1α > , 

2

20, 0  decreases under ( )

0  increases under ( )

G G F Z
Z Z
m m F Z

ω

ω

ϕ

ϕ

∂ ∂
< > ⇒

∂ ∂
∂

< ⇒
∂

 

If our transformation of iZ%  shrinks the variance, then our drawdown (m) 

decreases if 0 1ρ< < . If 1ρ >  , SSD implies the opposite effect where m increases as 

risk shrinks and decreases as risk rises (for a constant expected return). This result 

confirms the reasoning in Weil (1990) that responses to mean-preserving spreads of 

the returns distribution depend only on the value of ρ .  

4.4. Empirical illustration  

In Figures 7 and 8 we graph the optimal drawdown when the variance, but not 

the mean, of the distribution of iZ%  is increased or decreased. In Figure 7 we 

optimistically shrink the standard deviation from its historical value to almost zero 

(rescaling to -1), or pessimistically raise it to twice the historical size (rescaling to 1), 

while setting 0.5, 2.6α =  and allowing ρ  to range from 0.4 to 1. For 0.8ρ =  and 

0.5α = , the optimal spending rate based on historical returns is around 2.7% and 

shrinking the volatility by 50% causes a small decline in drawdown towards 2.6%, 
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while increasing risk by 50% increases drawdown by about the same amount. The 

historical benchmark spending level for 0.4ρ =  is around 1.2% p.a. and reducing 

volatility by 50% lowers this towards 0.8%, while a 50% increase moves spending 

towards 1.9%. When risk aversion is higher at 2.6 and  0.8ρ = , the benchmark 

spending rate is 3.1% p.a., and reducing(increasing) risk by 50% decreases (increases) 

drawdown to 2.7% (3.8%). These changes are small compared with the FSD 

scenarios, but support the analytical prediction that optimistic influences on the 

returns distribution decrease spending rates when the EIS is high.  

[INSERT FIGURE 7 HERE] 

For charities with low elasticities of inter-temporal substitution, when  1ρ > , 

increases in risk lower optimal spending rates with the effect becoming more dramatic 

as EIS shrinks. Figure 8 graphs changing spending rates as optimism over volatility 

increases and EIS decreases. When and EIS = 0.5 and 2.6α = , optimal spending at 

the historical average return is 2.8% p.a. increasing to 3.5% as volatility is halved, and 

falling to 1.3% as volatility rises by 50%. When  4ρ = , (EIS =0.25), the same 

experiment sees spending rise from 2.7% to 3.8% for a halving of volatility and fall to 

0.5% for a 50% increase in volatility. When the EIS is low but risk tolerance is high 

( 4ρ =  and 0.5α = ) benchmark spending is 3.9% p.a. If volatility is halved, spending 

rises to 4.1%, and falls to 3.5% for a 50% increase. 

[INSERT FIGURE 7 HERE] 

We conclude that lower current spending as a reaction to improved prospects 

is not necessarily irrational or irresponsible. On the contrary, such episodes could be 

evidence for high level of willingness to transfer disbursements into the future. 
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However if, as we expect, most charities favour smoother consumption, then 

unwillingness to shift consumption towards the future dominates and optimal 

spending rises and falls as the outlook brightens or blackens. Somewhat surprisingly, 

this is true whatever the charity’s attitude to risk. Preferences for early or late 

resolution of uncertainty do not determine the direction of response. While the 

benchmark level of spending, m, will be sensitive to both risk aversion and the inter-

temporal elasticity, whether spending decreases or increases from that level in 

response to scenario changes depends only on whether the elasticity of inter-temporal 

substitution is less than or greater than one. 

5. Conclusion 

Charities whose trust deeds specify a very long (infinite) horizon and who generate 

independent and identically distributed returns from investment portfolios can operate 

optimally using simple, constant drawdown policies. The ideal rate of spending for a 

charitable trust is a function of preferences for safety and smoothness in expected 

consumption, tastes which can be parameterised in a Kreps-Porteus utility framework.  

Our contribution is to investigate the responsiveness of these drawdown 

policies to changes in the shape of very general returns distributions and to tease out 

the empirical implications of such changes. We identify the effects of optimistic and 

pessimistic transformations of the returns distribution using the properties of 

stochastic dominance. Without assuming a specific functional form for the probability 

density, we derive the effects on optimal drawdown due to a transfer of probability 

mass from the lower to the upper tail (FSD), and vice versa, and the effects of mean-
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preserving spread (SSD). This allows us to incorporate, into both analysis and 

estimation, the important idiosyncratic features of actual returns distributions. 

While the optimal draw down rate depends on both tastes for risk and the 

charity’s elasticity of inter-temporal substitution, scenario analysis shows that the 

whether optimal spending rates increase or decrease in response to first and second 

order dominance changes in returns depends entirely on the EIS. Whenever the EIS is 

less than one, income effects dominate substitution effects and optimistic changes to 

returns (FDS and/or SSD) raise current spending. The reverse holds when the EIS is 

greater than one, and when the EIS is unitary, spending rates are immune to revision 

and depend only on time preference. 

While charitable trusts obviously make investment decisions, it is not clear 

that investment choices are always joint with choice over spending rates. By treating 

charities with different preferences as if they actually hold the same portfolio, we 

clarify the trade-off between income and substitution effects and demonstrate that an 

equivalent change in expectations can produce very different, but nevertheless equally 

optimal, reactions from trustees. 

 34



Appendix A 

The problem is to maximise utility defined by the aggregator function: 

1
1 (1 ) /(1 ) (1 ) /(1 )

1

[ , ]

{(1 ) [1 (1 )(1 ) ] } 1
(1 )(1 )

t t t t

t t t

L U C E L

C E Lρ ρδ δ δ α
δ α

+

− − −
+

=

− + + − −
≡

− −

α α ρ− − −

t tZ%

 (29) 

with respect to consumption  and subject to the wealth constraint  tC

1 (1 )tW m W+ = −% . (30)  

Following the well-known result for standard CRRA preferences, Weil 

proposes that  

( )1 1
( )

(1 )(1 )
W

L W
αψ

δ α

− −
=

− −
 (31) 

and that  where tC mW= t ψ  and  are to be determined m

Substituting (31) into (29) and using the expressions for consumption and the 

wealth constraint gives 

( )
1

1 1
1 11(1 )( ) (1 ) 1

(1 )(1 )

t t t t

t

mW E Z m W

L

α
ρ ρ

α αρδ δ ψ

δ α

−
− −

− −−
⎧ ⎫⎪ ⎪⎡ ⎤− + −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭=

− −

% −

 (32) 

Maximising (32) over  is the same as maximising over consumption, and 

gives the first order condition as a function of 

m

ψ : 
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( )( ) ( ) ( ) ( )
1

1 1 1 111 1 1 1 0t
t t t

L m W E Z m W
m

ρ
ρρ ρ ρ α ραρ δ ρ δψ

−
−− − − − −−∂

= − − − − − =
∂

%

 (33) 

Re-arranging (33) gives: 

( )
11

11
1 1 11

1 tm E Z
ρ ρ

ρ α αδ ψ
δ

−

−

− − −

⎧ ⎫
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⎩ ⎭

%

( )

If we follow Weil in setting  

then (34) becomes  

and rearranging confirms that  

or,  

m

. (34) 

1
11 m ρ ρψ δ − −⎡ ⎤= −⎣ ⎦ ,  (35) 
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11

11
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ρ ρ
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Appendix B  

Portfolio returns data are monthly from January 1990 to June 2006. A consistent series of returns to hedge funds are not available prior to 
January 1994, so from January 1990-December 1993, the allocation to each of U.K., Global, Emerging and Private Equity was increased by 
0.9% and Hedge Funds set to zero. Total portfolio return is the weighted sum of log changes in each returns index and the cash rate (expressed 

on a monthly basis), less the log change in the inflation rate: 
1 1

0.5ln( ) 0.5ln( )t t

t t

CPI Earningsp
CPI Earnings− −

= +& . 

Asset 
Class Data Source Portfolio weight  Notes 

UK Equity FTSE All 
Share returns 
index 

DataStream  
FTALLSH(RI) 
 

32.2% Capitalisation-weighted index, for London Stock 
Exchange representing at least 98% of eligible UK 
companies. 

Global 
Equity 

MSCI ex UK DataStream 
MSWFUK$(RI)~U$, 
translated to BPN using  
BBGBPSP(ER) 

32.0% The MSCI World Index is a free float-adjusted market 
capitalization index consisting of the 22 developed 
market country indices where the UK market is 
excluded.  

Overseas 
Equity 

MSCI 
Emerging 
Markets 

DataStream 
MSEMKF$(RI) ~U$, 
translated to BPN using  
BBGBPSP(ER) 
 

5.0% The MSCI Emerging Markets Index is a free float-
adjusted market capitalization index consisting of  25 
emerging market country indices. 

UK Gilts FTA  DataStream 
FTBGTTF(RI)~£ 
 

2.8% FTA British Government fixed 10-15 years total returns 
index 

Property IPD: Total 
return index 

DataStream 
UKIPDRI.F 
 

7.5% UK Investment Property Databank  
Index measures total returns to investment in 
commercial property investment. 
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Hedge 
Funds 

CSFB/Tremont  
hedge fund 
index, net asset 
value 
 

DataStream; CSFB/Tremont: 
www.hedgeindex.com
CSTHEDG~£ 
 

3.6% Credit Suisse/Tremont Hedge Fund Index is an asset-
weighted hedge fund index and includes only funds, as 
opposed to separate accounts. The Index uses the Credit 
Suisse/Tremont database, which track over 4500 funds, 
and consists only of funds with a minimum of US$50 
million under management, a 12-month track record, 
and audited financial statements. It is calculated and 
rebalanced on a monthly basis, and shown net of all 
performance fees and expenses. 

Private 
Equity 

UK-DS 
Investment 
Trusts Private 
Equity total 
returns index. 
 

DataStream 
ITVCAPT(RI)~£ 
 

11.5% The index is constructed by DataStream to measure the 
performance of all UK listed investment trusts in the 
private equity sector. 
 

Cash 3-month CD 
rate 

Bank of England 5.4% End month sterling certificate of deposit 3 month rate, 
mean of bid-offer. 

Inflation Average of 
CPI and 
Earnings 

DataStream 
CPI: UKCPHARMF 
Wages: UKWAGES.E 
 

 Equally weighted log change in UK CPI- Harmonised 
European Union basis, 2005=100 and UK average 
earnings index, whole economy, seasonally adjusted. 
 

38 

http://www.hedgeindex.com/


References 

Backus, D.K., Routledge, B.R., Zin S.E., 2004. Exotic preferences for 

macroeconomists. NBER Macroeconomics Annual, 321-390. 

Bhamra, H.S., Uppal, R., 2006. The effect of risk aversion and intertemporal 

substitution on dynamic consumption and portfolio rules with recursive utility. 

Journal of Economic Dynamics and Control 30, 967-999. 

Brown, K.C., Garlappi, L., Tiu, C., 2007. The Troves of Academe: Asset Allocation, 

Risk Budgeting and the Investment Performance of University Endowment 

Funds. Working Paper, McCombs School of Business, University of Texas at 

Austin. 

Brown, W.O., 1999. University Endowments: Investment Strategies and Performance, 

Financial Practice and Education Fall/Winter, 61-69. 

Campbell, J., Viceira, J., 2002. Strategic Asset Allocation. Oxford University Press, 

New York, NY. 

Canada Revenue Agency 2007. Completing the Registered Charity Information 

Return, Government of Canada. 

URL: www.cra-arc.gc.ca/E/pub/tg/t4033a/t4033a-06e.pdf 

Dimmock, S.G., 2007. Portfolio choice, background risk and university endowment 

funds. Working Paper, Department of Finance, Michigan State University. 

 39



Dybvig, P.H., 1995. Dusenberry's ratcheting of consumption: optimal dynamic 

consumption and investment given intolerance for any decline in standard of 

living. Review of Economic Studies 62, 287-213. 

Dybvig, P.H., 1999. Using asset allocation to protect spending. Financial Analysts 

Journal 55, 49-60. 

Epstein, L.G., Zin, S.E., 1991. Substitution, risk aversion and the temporal behavior 

of consumption and asset returns: an empirical analysis. Journal of Political 

Economy 99, 263-286. 

Giovannini, A., Jorion, P., 1993. Time series tests of a non-expected-utility model of 

asset pricing. European Economic Review 37, 1083-1100. 

Graham, R.L., Knuth, D.E., Patahnik, O., 1994. Concrete Mathematics: A Foundation 

for Computer Science. Addison-Wesley, Reading MA. 

Gruber, J., 2006. A tax-based estimate of the elasticity of inter-temporal substitution. 

National Bureau of Economic Research Working Paper 11945, NBER 

Cambridge, M.A. 

Huang, C-F., Litzenberger, R.H., 1988. Foundations for Financial Economics. North-

Holland, New York. 

Kingston, G., 1989. Theoretical foundations of constant proportion portfolio 

insurance. Economics Letters 29, 345-347. 

Korn, R., Korn E., 2001. Option Pricing and Portfolio Optimisation. American 

Mathematical Society. 

 40



Kreps, D.M., Porteus E.L., 1978. Temporal resolution of uncertainty and dynamic 

choice theory. Econometrica 46, 185-200. 

Kreps, D.M., Porteus E.L., 1979. Dynamic choice theory and dynamic programming. 

Econometrica 47, 91-100. 

Lerner, J., Schoar, A., Wong, W., 2005. Smart institutions, foolish choices? The 

limited partner performance puzzle. NBER Working Paper 11136, National 

Bureau of Economic Research, Cambridge M.A., 

Litvack, J.M., Malkiel, B.G., Quandt R.E., 1974. A plan for the definition of 

endowment income. American Economic Review 64, 433-437. 

Merton, R.C., 1969. Lifetime portfolio selection under uncertainty; the continuous-

time case. Review of Economics and Statistics 51, 247-257. 

Merton, R.C., 1971. Optimum consumption and portfolio rules in a continuous-time 

model. Journal of Economic Theory 3, 373-413. 

Merton, R. C., 1990. Continuous Time Finance. Blackwell Publishing Ltd, Malden. 

Merton, R.C., 2003. Thoughts on the future: theory and practice in investment 

management. Financial Analysts Journal 59, 17-23. 

Nichols, D.A., 1974. The investment income formula of the American Economic 

Association. American Economic Review 64, 420-426. 

Phelps, E.S., 1962. The accumulation of risky capital: a sequential utility analysis. 

Econometrica 30, 729-743. 

 41



Smith, W.T., 1996. Feasibility and transversality conditions for models of portfolio 

choice with non-expected utility in continuous time. Economics Letters 53, 

123-131. 

Tobin, J., 1974. What is permanent endowment income? American Economic Review 

64, 427-432. 

Weil, P., 1990. Nonexpected utility in macroeconomics. Quarterly Journal of 

Economics 105, 29-42. 

Wellcome Trust 2005. Annual Report and Financial Statements 2005. The Wellcome 

Trust, 215 Euston Road London NW1 2BE, U.K. 

Woglom, G., 2003. Endowment spending rates, intergenerational equity and the 

sources of capital gains. Economics of Education Review 22, 591-601. 

 42



Figure 1: Timing of resolution of uncertainty. 

 

       

                                                                                                        

   

 

  5 

 1 

 5 

  5 
 
Lottery A – Late Resolution 

t0   t1   t2        

       

                                                            

        1  5 

 5  5 

  5 
 
Lottery B – Early Resolution 
 

 

 43



Figure 2. Asset allocation of simulated charity 
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This figure shows the proportions of total funds invested in each asset class for simulated portfolio 

returns. Weights are fixed for the whole sample period. A consistent series of returns to hedge funds 

are not available prior to January 1994, so from January 1990-December 1993, the allocation to each of 

U.K., Global, Emerging and Private Equity was increased by 0.9% and Hedge Funds set to zero. 

Appendix B  lists data sources for each returns series. 
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Table 1: Summary statistics, real annualised portfolio returns 

 

Mean 4.75% 

Standard Deviation 13.02% 

Skewness -0.69 

Kurtosis 3.88 

Jarque-Bera 

(p-value) 

21.87 

(0.000) 
 

This table shows summary statistics for monthly log returns to the portfolio constructed using weights 

and asset classes from Figure 1. Portfolio returns are the weighted sum of the log changes in indexes 

for each asset class, less the log change in inflation. See Appendix B  for a complete description of data 

sources. Data are monthly from January 1990 to June 2006: 198 observations. 
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Figure 3: Optimal drawdown rate and error range 
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This Figure graphs the estimated optimal rate of drawdown for a charity with assets invested as for 
Figure 1 and assuming that relative risk aversion, 2.6α = , where the optimal drawdown is given by 

1/(1 )
(1 )ˆ 1 ˆm

ρρ
αδϕ
−
−= −

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

, 
10,000

1

1

1ˆ
10,000 i

i

Z αϕ −

=

= ∑ %  where the gross portfolio returns iZ%  are computed 

using 10,000 random draws from the historical portfolio returns series, the rate of time preference is 
0.97δ =  and 0.2 5ρ< <  The fine grey lines represent beta distribution approximations to a 95% 

error range for . m̂
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Figure 4: Drawdown error distribution 
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rho =  0.75
rho = 1.25
rho = 5

  

This figure graphs the estimated beta distributions of 

1/(1 )
(1 )ˆ 1 ˆm

ρρ
αδϕ
−
−= −

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

when relative risk 

aversion, 2.6α =  and 0.75,  1.25,  5.0ρ = . The simulated values of the optimal drawdown are 
computed as for Figure 3. 
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Figure 5: Optimal drawdown under transformations of the portfolio returns 
distribution, 0 1ρ< ≤ . 
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This Figure shows optimal rates of drawdown, m, when the distribution of portfolio returns is re-weighted by the 
factor , relative risk aversion Δ 2.6,0.5α = , and 0 1ρ< ≤ . We sort the original 198 real returns into 
percentiles and divide the dataset into three sections: d1 = 40 lowest observations representing the 1-20th 
percentiles, d2 = 118 observations representing the middle 20-80th percentiles, and d3=40 observations 
representing the 80-100th percentiles. We rescale the probability of low (high) returns by increasing the probability 

of an extreme event so that , ' , 'i
i u u l

j
j

dP P P P P
d

= = + Δ =
∑ l −Δ and the probability of draws from the 

middle stays constant. We draw returns from the low, middle and high range randomly with replacement and in 

proportion to the assigned probability, and compute 1
iZ α−% , ϕΔ , and m.  
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Figure 6: Optimal drawdown under transformations of the portfolio returns 
distribution, 1 5ρ≤ ≤ . 
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This Figure shows optimal rates of drawdown, m, when the distribution of portfolio returns is re-weighted by the 
factor , relative risk aversion is equal to 0.5 or 2.6, and 1Δ 5ρ≤ ≤ . We sort the original 198 real returns into 
percentiles and divide the dataset into three sections: d1 = 40 lowest observations representing the 1-20th 
percentiles, d2 = 118 observations representing the middle 20-80th percentiles, and d3=40 observations 
representing the 80-100th percentiles. We rescale the probability of low (high) returns by increasing the probability 

of an extreme event so that , ' , 'i
i u u l

j
j

dp p p p p
d

= = + Δ =
∑ l −Δ and the probability of draws from the 

middle stays constant. We draw returns from the low, middle and high range randomly with replacement and in 

proportion to the assigned probability, and compute 1
iZ α−% , ϕΔ , and m. 
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Figure 7: Optimal drawdown under mean-preserving spread transformations of the 
portfolio returns distribution,  0 1ρ≤ ≤ . 
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This Figure shows optimal rates of drawdown, m, when the variance of the distribution of portfolio returns is re-

weighted by the factor ω , relative risk aversion is 2.6 or 0.5, 0 1ρ≤ ≤ . We draw 120,000 of the original 198 

real returns with replacement to compute 10,000 annual gross portfolio returns iZ% . We then compute the mean-

zero errors (i i )Z Zε = − , resample these without replacement and compute ( )11 ' (1 )i iZ Z
αα ω ε
−− = + +%  

for 1 1ω− ≤ ≤ , ϕΔ , and m, for 0 1ρ≤ ≤ . 
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Figure 8: Optimal drawdown under mean-preserving spread transformations of the 
portfolio returns distribution, 1 5ρ≤ ≤  
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This Figure shows optimal rates of drawdown, m, when the variance of the distribution of portfolio returns is re-
weighted by the factor ω , and relative risk aversion is 0.5 or  2.6, 1 5ρ≤ ≤ . We draw 120,000 of the original 

198 real returns with replacement to compute 10,000 annual gross portfolio returns iZ% . We then compute the 

mean-zero errors ( )i iZ Zε = − , resample these without replacement and and compute 

( )11 ' (1 )i i
α

Z Zα ω ε
−− = + +% 1 for 1ω− ≤ , ϕΔ , and m, for1 5ρ≤ ≤ .  ≤
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