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Abstract

Volume Weighted Average Price (VWAP) for a stock is total traded
value divided by total traded volume. It is a simple quality of execu-
tion measurement popular with institutional traders to measure the
price impact of trading stock. This paper uses classic mean-variance
optimization to develop VWAP strategies that attempt to trade at
better than the market VWAP. These strategies exploit expected price
drift by optimally ‘front-loading’ or ‘back-loading’ traded volume away
from the minimum VWAP risk strategy.
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James.McCulloch@uts.edu.au

1



1 Introduction and Motivation

Volume Weighted Average Price (VWAP) trading is used by large (institu-
tional) traders to trade large orders in financial markets. Implicit in the
use of VWAP trading is the recognition that large orders traded in financial
markets may trade at an inferior price compared to smaller orders. This is
known as the liquidity impact cost or market impact cost of trading large
orders.

VWAP orders attempt to address this cost by bench-marking the price
of trading the large order against the volume weighted average price of all
trades over a specific period of time (generally 1 trading day). This allows any
liquidity impact costs associated with trading the large order to be quantified.
VWAP trading also recognizes that the key to minimizing these costs is to
breakup large orders up into a number of sub-orders executed over the VWAP
period in such a way as to minimize instantaneous liquidity demand.

The VWAP price as a quality of execution measurement was first de-
veloped by Berkowitz, Logue and Noser [4]. They argue (page 99) that ‘a
market impact measurement system requires a benchmark price that is an un-
biased estimate of prices that could be achieved in any relevant trading period
by any randomly selected trader’ and then define VWAP as an appropriate
benchmark that satisfies this criteria.

An important paper in modelling VWAP was written by Hizuru Konishi
[15] who developed a solution to the minimum risk VWAP trading strategy
for a price process modelled as Brownian motion without drift (dP = σtdWt).
In this paper the solution is generalized to a price process that is a continuous
semimartingale, Pt = At+Mt+P0, where At is price drift, Mt is a martingale
and P0 is the initial price. It is proved that price drift At does not contribute
to VWAP risk. The relative volume process Xt is also introduced, defined
as intra-day cumulative volume Vt divided by total final volume Xt = Vt/VT .
It is shown that VWAP is naturally defined using relative volume Xt rather
than cumulative volume Vt.

The minimum VWAP risk trading problem is generalized into the optimal
VWAP trading problem using a mean-variance framework. The optimal
VWAP trading strategy x?

t here becomes a function of a trader defined risk
aversion coefficient λ. This is relevant because VWAP trades are often large
institutional trades and the size of the VWAP trade itself may be price
sensitive information that the VWAP trader can exploit for the benefit of
his client. The optimal strategy is then obtained for VWAP trading which
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includes expected price drift E[At] over the VWAP trading period. This can
be expressed in following mean-variance optimization (subject to constraints
on strategy xt) where V(xt) is the difference between traded VWAP and
market VWAP as a function of the trading strategy xt:

x?
t = max

xt

[
E

[V(xt)
] − λ Var

[V(xt)
] ]

It is shown that for all feasible VWAP trade strategies xt there is al-
ways residual VWAP risk. This residual risk is shown to be proportional to
the price variance σ2 of the stock and variance the relative volume process
Var[Xt]. When the relative volume process variance is empirically examined
in section 3 it is found to be proportional to the inverse of stock final trade
count K raised to the power 0.44. This is of importance to VWAP traders
because it formalizes the intuition that traded VWAP risk is lower for high
turnover stocks.

min
xt

Var[V(xt)] ∝ σ2

∫ T

0

Var[Xt] dt ∝ σ2

K0.44

Finally, a practical VWAP trading strategy using trading bins is exam-
ined. The additional bin-based VWAP risk from using discrete volume bins
to trade VWAP is shown to be O(n−2) for a n bin approximation of the
optimal continuous VWAP trading strategy x?

t .

2 Modelling VWAP

The stochastic VWAP model is based on the filtered probability space with
the observed progressive filtration Ft, (Ω,F ,F = Ft≥0,P). The model also
defines a filtration Gt initially enlarged by knowledge of the final traded
volume of the VWAP stock Gt = Ft∨σ(VT ). The resultant filtered probability
space (Ω,F ,G = Gt≥0,P) is used to define VWAP using the relative volume
process Xt.
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2.1 A Stochastic Model of Price Pt

The price process Pt will be assumed to be a strictly positive, continuous
(special) semimartingale with Doob-Meyer decomposition:

Pt = P0 + At + Mt Pt > 0

Where At is price drift, Mt is a martingale and P0 is the initial price.

2.2 A Stochastic Model of Relative Volume Xt

Cumulative volume arrives in the market as discrete trades, this suggests
that the cumulative volume process Vt should be modelled as a marked point
process. A very general model of point process is the Cox1 point process (also
called the doubly stochastic Poisson point process, a simple (no co-occurring
points) point process with a general random intensity. The Cox process has
been used to model trade by trade market behaviour by a number of financial
market researchers including Engle and Russell [10], Engle and Lunde [10],
Gouriéroux, Jasiak and Le Fol [11] and Rydberg and Shephard [18].

If trade count Nt is modelled as a Cox process, then intra-day trade count
can be scaled to a relative trade count by the simple expedient of dividing
the intra-day count (Nt = atK) by the final trade count (NT = K). This
defines the relative trade count process Rt,K = Nt/NT = at. The resultant
point process is no longer the Cox process as this has been transformed into
a doubly stochastic binomial point process by knowledge of the final trade
count enlarging the observed filtration Ft ∨ σ(NT ) (McCulloch [16]).

But the object of interest when executing a VWAP trade is not relative
trade count Rt,K but the closely related relative volume Xt. This can be
modelled by a marked point process where each occurrence or point is as-
sociated with a random value (the mark) representing trade volume. Thus
each trade is specified by a pair of values on a product space, the time of
occurrence and a mark (integer) value specifying the volume of the trade
{ti, vi} ∈ R+ ⊗ Z+.

1Named a Cox process in recognition of David Cox’s 1955 [9] paper which he introduced
the doubly stochastic Poisson point process.
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Vt =
Nt∑
i=1

∆Vi

The relative volume Xt is then the ratio of a random sum specified by
the doubly stochastic binomial point process as the ‘ground process’ over the
non-random sum of all trade volumes.

Xt =
Vt

VT

=

∑Nt

i=1 ∆Vi∑K
i=1 ∆Vi

The relative volume process Xt is the cumulative volume process trans-
formed by knowledge of final volume (and thus final trade count) and is
adapted to Gt = Ft ∨ σ(VT ). Note Xt is a semimartingale with respect to Gt

because this filtration is enlarged by the sigma algebra generated by a ran-
dom variable, final volume VT , with a countable number of possible values
(corollary 2, page 373 Protter [17]).

2.3 A Stochastic Integral Model of VWAP

One the reasons for the popularity of VWAP as a measure of order execution
quality is the simplicity of it’s definition - the total value of all2 trades divided
by the total volume of all trades. If Pi and ∆Vi are the price and volume
respectively of the N trades in the VWAP period, then VWAP is readily
computed as:

vwap =
total traded value

total traded volume
=

∑N
i=1 Pi ∆Vi∑N

i=1 ∆Vi

Alternatively the definition of VWAP can be written in continuous time
notation. Let Vt be the cumulative volume traded at time t and Pt be the

2Not all trades are accepted as admissible in a VWAP calculation. Admissible trades
are determined by market convention and are generally on-market trades. Off-market
trades and crossings are generally excluded from the VWAP calculation because these
trades are often priced away from the current market and represent volume in which a
‘randomly selected trader’ [4] cannot participate.
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time varying price on a market that trades on the time interval t ∈ [0, T ].
Then VWAP is defined by the Riemann-Stieltjes integral.

vwap =
total traded value

total traded volume
=

1

VT

∫ T

0

Pt dVt (1)

Examining the integral above, it is intuitive that it relates to the relative
volume process Xt = Vt/VT . Using the theory of initial enlargement of
filtration (see Jeulin [14], Jacod [12], Yor [19] and Amendinger [2]) VWAP
can be expressed in terms of Xt:

vwap =

∫ T

0

Pt dXt (2)

Proof. The assertion that the vwap random variable is the same in equations
1 and 2 under filtrations Ft and Gt respectively is proved under the assump-
tion that the price process Pt is independent of the final volume random
variable, σ(Pt) ∩ σ(VT ) = ∅, ∀t ∈ [0, T ]. This implies that Pt is also a Gt

semimartingale with the same Doob-Meyer decomposition as Ft (theorem 2,
page 364, Protter [17]). Independence with VT implies that the price process
Pt is unchanged by the enlarged filtration Gt.

Cumulative volume Vt arrives in the market as discrete trades and is mod-
elled as a marked point process (see section 2.2 below). Noting that Vt as a
pure jump process has finite variation under filtration Ft and the enlarged
filtration Gt, it is readily shown that the Riemann-Stieltjes integrals of inte-
grand Price Pt (unchanged by the enlarged filtration) and integrator volume
Vt are equivalent with respect the filtration Ft and the enlarged filtration Gt.

Let τi, i = 1, . . . , Nt be the Nt jump times for the volume process Vt

on the interval [0,t] and ∆Vi be the corresponding jump magnitudes. Then
the Riemann-Stieltjes integrals with respect to the filtrations Ft and Gt are
equivalent to the same Riemann-Stieltjes sum because the volume jump times
and magnitudes ∆Vi are the same in both filtrations and the price process is
the same in both filtrations (by assumption).

∫ t

0

Ps dVs | Ft =
Nt∑
i=1

Pτi
∆Vi =

∫ t

0

Ps dVs | Gt
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Noting that the term (1/VT ) is adapted to G0.

1

VT

∫ t

0

Ps dVs | Ft =

∫ t

0

Ps
dVs

VT

| Gt =

∫ t

0

Ps dXs | Gt

This is a key insight, VWAP is naturally defined using relative volume
Xt rather than actual volume Vt. One implication of using relative volume
is that common relative intraday features in the daily trading of stocks with
different absolute turnovers can be exploited for VWAP trading. Also, the
difference between traded VWAP and market VWAP as a function of the
trading strategy V(xt) is conveniently defined using relative volume.

V(xt) =

∫ T

0

Pt dxt −
∫ T

0

Pt dXt =

∫ T

0

Pt d(xt −Xt)

Using integration by parts3, this integral can be transformed into a stochas-
tic integral and quadratic covariation.

V(xt) =

∫ T

0

Pt d(xt−Xt) = PT (xt−XT )−
∫ T

0

(xt − Xt−)dPt− [x−X, P ]T

Where [x−X, P ]t denotes the covariation process between xt−Xt and Pt.
Since the price process Pt is continuous, the relative volume Xt is assumed to
be a marked point (pure jump) process and xt is deterministic, the quadratic
covariation term is zero. Also noting that PT (xT −XT ) = 0 the integration
by parts equation simplifies to:

V(xt) =

∫ T

0

(Xt− − xt) dPt (3)

3The integrand of the stochastic integral Xt− is a left continuous (predictable) version
of the relative volume process Xt where for ∀t Xt− is defined as the left limit of Xt,
Xt− = lims↑t Xs.
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3 Empirical Properties of Relative Volume Xt

Relative volume as self-normalized trade counts was analyzed in McCul-
loch [16], where details of empirical data collection and analysis can be
found. Briefly, New York Stock Exchange (NYSE) trade data from the TAQ
database was used to collect relative trade volume data of all stocks that
traded from 1 June 2001 to 31 August 2001 (a total of 62 trading days4)
for a total of 203,158 relative trade volume sample paths for all stocks. The
relative trade volume data was collected in a 391× 253 2-D histogram with
time in minutes (390 minutes + 1 end-point) in the x-axis and relative vol-
ume (a prime number 251 to avoid bin boundaries, plus two end-points) in
the y-axis.

3.1 Expected Relative Volume E[Xt] is ‘S’ Shaped

All professional equity traders know that markets are, on average, busy on
market open and market close and less busy during the middle of the trading
day. This is the classic ‘U’ shape in trading intensity found in all major
equity markets5 and is, by definition, the derivative of the expectation of the
relative volume dE[Xt]/dt. Figure 1 plots the expected relative volume E[Xt]
for four groups of stocks with different ranges of trade counts on the NYSE.
The expectation of relative volume E[Xt] can be approximated with the the
following polynomial.

E
[
Xt

] ≈ 5t

3T
− 2t2

T 2
+

4t3

3T 3
, t ∈ [0, T ]. (4)

3.2 High Turnover Stocks have Lower Var[Xt]

The second feature of empirical data readily seen in Figure 2 is that the low
turnover stock (SUS) appears to have a higher volatility around the mean
relative volume (shown with red line) than the high turnover stock (TXN).

43 July 2001 (half day trading) and 8 June 2001 (NYSE computer malfunction delayed
market opening) were excluded from the analysis.

5For further discussion and explanations of the causes of the ‘U’ shaped intraday market
seasonality see Brock and Kleidon [5], Admati and Pfleiderer [1] and Coppejans, Domowitz
and Madhavan [8].
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NYSE Mean Relative Volume with Linear Trend Removed E [X(t)]-t/T
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Figure 1: The mean of the relative volume E
[
Xt

]
for stocks within different

average number of daily trades. Here the constant trade line has been sub-
tracted, E

[
Xt

]− t/T (so all means are monotonically increasing function of
time). The polynomial approximation (eqn 4) is shown as the black line.

This intuition is correct and is the second important insight into VWAP
trading - the volatility of the relative volume process Xt of low turnover
stocks is higher than high turnover stocks.

Figure 3 shows the empirical time indexed variance of the relative volume
process Var[Xt] for different ranges of number of daily trades. It has an
inverted ‘U’ shape where the variance is zero at t = 0 and t = T , similar to
the time indexed variance of a Brownian bridge. Stocks with a lower number
of daily trades have higher variance. The variances of the relative volume
process for stocks with a different final trade count K can be empirically
scaled to fit a single curve by multiplying them by final trade count raised
to the power 0.44 (K0.44). Figure 4 plots the scaled empirical variances.
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Figure 2: This graph shows typical relative volume trajectories for 3 stocks
representing low, medium and high turnover stocks. The red line is the
expected relative volume E[Xt] for all stocks trading more than 50 trades
a day on the NYSE over the data period. SUS is Storage USA, TXT is
Textron Incorporated and TXN is Texas Instruments. On 2 Jul 2001 these
stocks recorded 101, 946 and 2183 trades correspondingly.
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NYSE Unscaled Relative Volume Variance Var[X(t)]
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Figure 3: The inverse ‘U’ shaped time-indexed variance for relative volume
Var

[
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]
. Lower trade count stocks have a higher variance for Var
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.

NYSE Relative Volume Variance Var[X(t)] 

Scaled for Different Final Trade Counts by K0.44
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Figure 4: The scaled relative volume variances Var
[
Xt

]
K0.44 for stocks with

different ranges of final trade counts K.
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4 VWAP Trading Strategies

4.1 Feasible Trading Strategies

Any deterministic trading strategy xt is feasible only if it conforms to the first
constraint below. The second and third constraints are not strictly necessary
but enforce a uni-directional strategy where buy VWAP traders only buy
stocks and sellers only sell stocks.

1. Trader starts trading the VWAP strategy at t = 0 when x0 = 0 and
has traded the whole strategy at t = T when xT = 1.

2. The relative volume for the strategy must always be between zero
(nothing has been traded) and one, all order’s volume was traded,
0 ≤ xt ≤ 1, ∀t ∈ [0, T ].

3. The strategy must be monotonically non-decreasing, 0 ≤ xt ≤ xt+δ ≤ 1.

4.2 VWAP Trade Size

It is intuitive and true that the greater percentage of trading that the VWAP
trader controls, the easier it is to trade at the market VWAP price. In the
limit, the trader controls 100% of traded volume and exactly determines the
market VWAP irrespective of trading strategy. It seems clear that VWAP
risk is proportional to the traded volume that the VWAP trader does not
control and this intuition is quantified below. The relative volume process
of other market traders X̄t will be assumed to be independent of the trading
strategy xt adopted by the VWAP trader. Market relative volume process
Xt can be written as a weighted sum of the relative volume of other market
participants X̄t and the VWAP trader xt. If V̄t is the cumulative volume
process of that does not include VWAP trader volume, then the relative
volume of other market participants X̄t is defined:

X̄t =
V̄t

V̄T
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Similarly the relative volume strategy of the VWAP trader is simply the
trader final cumulative volume vT divided by cumulative volume at time t,
vt.

xt =
vt

vT

The proportion6 β of the total market traded by the VWAP trader can
be calculated.

β =
vt

V̄T + vT

The expected total relative volume (known in Gt) can be decomposed
into the relative volume process of other market participants X̄t and the
deterministic trading strategy of the VWAP trader.

Xt = (1− β)X̄t + βxt

Using the definitions above, V(xt) can be rewritten as:

V(xt) =

∫ T

0

(X̄t − xt) dPt = (1− β)

∫ T

0

(Xt − xt) dPt

In the following exposition it is assumed that β << 1 and all O(β) terms
are ignored.

4.3 The Risk of VWAP Strategies

The risk of traded VWAP with trading strategy xt is readily expressed using
equation 3.

Var
[V(xt)

]
= Var

[ ∫ T

0

(Xt− − xt) dPt

]

6Note that β is known under the enlarged filtration Gt = Ft ∨ σ(VT ) and a random
variable under Ft.
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Using the semimartingale generalization of Ito’s isometry this variance
can be written as:

Var

[ ∫ T

0

(Xt− − xt) dPt

]
= E

[ ∫ T

0

(Xt − xt)
2 d[P, P ]t

]

Since the price semimartingale Pt is assumed continuous, the drift term At

is continuous and it is proved below that the drift term does not contribute to
VWAP risk and that the VWAP risk can be written just using the martingale
component of the Doob-Meyer decomposition.

Pt = Mt + At + P0

Var

[ ∫ T

0

(Xt− − xt) dPt

]
= E

[ ∫ T

0

(Xt − xt)
2 d[M, M ]t

]
(5)

Proof. The integrands of eqn 5 are identical, so by the properties of the
Riemann-Stieltjes integral, the equality of eqn 5 is established if the two
integrating processes, the quadratic variations, are equal (a.e) [M,M ]t =
[P, P ]t. Using the polarization identity for quadratic covariation.

[A, M ]t =
1

2

(
[A + M, A + M ]t − [M, M ]t − [A,A]t

)

The drift process At is continuous by assumption and therefore the quadratic
covariation term is zero (Jacod and Shiryaev [13], page 52) [A,M ]t = 0. Also
the drift process At is predictable, continuous and of bounded variation so
the drift quadratic variation term is zero (Protter [17], theorem 22, page 66)
[A,A]t = 0 and the polarization identity simplifies to:

[P, P ]t = [A + M,A + M ]t = [M,M ]t
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Since the martingale term of the price process is continuous the martingale
representation theorem (Protter [17], theorem 43, page 188) can written as
follows for a continuous predictable process σt.

Mt =

∫ t

0

σs dWs

Using this representation, the VWAP variance of equation 5 can be fur-
ther simplified:

Var
[V(xt)

]
= E

[ ∫ T

0

(Xt−xt)
2 d[M, M ]t

]
= E

[ ∫ T

0

(Xt−xt)
2 σ2

t dt

]
(6)

4.4 Minimum Risk VWAP Strategy

It seems reasonable that an optimal trading strategy x?
t is a strategy that is

close to Xt without any knowledge of the actual outcome of Xt. Thus the
optimal trading strategy should be, by intuition, close to the expectation of
relative volume x?

t = E[Xt]. This is shown below. Following Konishi [15] the
equation can be decomposed as:

x?
t = min

0≤xt≤1
Var

[V(xt)
]

= min
0≤xt≤1

[ ∫ T

0

E
[(

X2
t − 2xtXt + x2

t

)
σ2

t

]
dt

]

= min
0≤xt≤1

[ ∫ T

0

x2
t E

[
σ2

t

] − 2 xt E
[
Xt σ2

t

]
dt

]

= min
0≤xt≤1

[ ∫ T

0

E[ σ2
t ]

(
x2

t − 2 xt
E[Xt σ

2
t ]

E[ σ2
t ]

+
E[Xt σ

2
t ]2

E[ σ2
t ]2

)
− E[Xt σ

2
t ]2

E[ σ2
t ]

dt

]

= min
0≤xt≤1

[ ∫ T

0

(
xt − E[Xt σ

2
t ]

E[ σ2
t ]

)2

dt

]
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This is minimized when:

xt =
E[Xt σ

2
t ]

E[ σ2
t ]

= E
[
Xt

]
+

Cov
[
Xt, σ

2
t

]

E[ σ2
t ]

Thus the constrained solution is:

x?
t =





if E
[
Xt

]
+

Cov
[
Xt, σ

2
t

]

E[ σ2
t ]

≥ 1, 1

if E
[
Xt

]
+

Cov
[
Xt, σ

2
t

]

E[ σ2
t ]

≤ 0, 0

E
[
Xt

]
+

Cov
[
Xt, σ

2
t

]

E[ σ2
t ]

, otherwise.

(7)

Where Cov
[
Xt, σ

2
t

]
is the covariance between relative volume Xt and stock

price variance σ2
t . In financial markets literature the positive relationship

between trading volume and volatility is a ‘stylized fact’, see Cont [7], Clark
[6] and Ané and Geman [3]. Therefore, since the expectation of relative
volume E[Xt] is monotonically increasing and the covariance between relative
volume and variance is non-negative Cov

[
Xt, σ

2
t

] ≥ 0, the minimum risk
solution (eqn 7) is feasible. Note that under the assumption that the relative
volume and stock price variance are independent or stock price variance is
a deterministic function then the covariance term is zero and the minimum
risk strategy reduces to the expectation of the relative volume x?

t = E
[
Xt

]
.

4.5 Non-removable residual risk of VWAP trading

Residual risk is the lower bound of VWAP risk that cannot be eliminated
by choosing a trading strategy xt. Substitution of eqn 7 into eqn 6 gives the
following bound on the residual VWAP variance:

min
xt

Var[V(xt)] =

∫ T

0

E[ X2
t σ2

t ]− E[Xt σ
2
t ]2

E[ σ2
t ]

dt
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If price volatility is assumed constant σ̂2 = σ2
t , then the expression above

simplifies to the following:

min
xt

Var[V(xt)] = σ̂2

∫ T

0

Var[Xt] dt

Using the scaling property of Var[Xt] found above in the NYSE data (see
section 3) then residual VWAP risk is proportional to the estimated stock
variance divided by the final trade count K to the power 0.44.

min
xt

Var[V(xt)] = Const
σ̂2

K0.44

So a stock with 100 times the trade count of another stock with similar
price variance has approximately one-tenth the residual VWAP risk.

4.6 Optimal VWAP Strategy with Expected Drift

In practise a trader may wish to ‘beat’ VWAP. This is reasonable because
the VWAP trader may have price sensitive information about a stock. A
broker can exploit this private information for the benefit of his client by
adopting a VWAP trading strategy xt that is riskier than minimum variance
strategy. This drift optimal strategy x?

t can be found using mean-variance
approach. For definiteness the VWAP order is assumed to be a buy order
in this paper. Thus ‘beating’ market is defined as a positive expectation
E[V(xt)] ≥ 0. Expanding the expectation and noting that the martingale
transform has zero expectation:

E[V(xt)] = E
[ ∫ T

0

(
Xt − xt

)
dAt

]
+ E

[ ∫ T

0

(
Xt− − xt

)
dMt

]

= E
[ ∫ T

0

(
Xt − xt

)
dAt

]

The quadratic covariation between the continuous price drift At and the
relative volume process is zero [X, A]t = 0 therefore without loss of generality
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the covariance between price drift and relative volume can be assumed to be
zero, Cov[At, Xt] = 0. Denoting µt ≡ E[At] , the expectation of the VWAP
return can be simplified to the following:

E[V(xt)] =

∫ T

0

(
E[Xt]− xt

)
µt dt (8)

In general, the optimal VWAP strategy is not the minimum VWAP risk
strategy of section 4.4 because this strategy does not include the expected
return of the VWAP trade. A strategy that includes expected return can be
specified as a classic mean-variance optimization using a trader specified risk
aversion constant λ.

x?
t = max

0≤xt≤1

[
E

[V(xt)
] − λ Var

[V(xt)
] ]

Solving for this optimization problem:

x?
t = max

0≤xt≤1
E

[ ∫ T

0

(Xt− − xt) dPt

]
− λ Var

[ ∫ T

0

(Xt− − xt) dPt

]

= min
0≤xt≤1

[
λ

∫ T

0

E
[
(Xt − xt)

2 σ2
t − (Xt − xt)

µt

λ

]
dt

]

= min
0≤xt≤1

[ ∫ T

0

(
xt −

{
E[Xt σ

2
t ]

E[ σ2
t ]

− µt

2λE[ σ2
t ]

})2

dt

]

The above is minimized when:

xt =
E[Xt σ

2
t ]

E[ σ2
t ]

− µt

2λE[ σ2
t ]

= E
[
Xt

]
+

Cov
[
Xt, σ

2
t

]

E[σ2
t ]

− µt

2λE[ σ2
t ]

(9)

The constrained solution to optimal VWAP strategy with drift:
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x?
t =





if E
[
Xt

]
+

Cov
[
Xt, σ

2
t

]

E[ σ2
t ]

− µt

2λE[ σ2
t ]

≥ 1, 1

if E
[
Xt

]
+

Cov
[
Xt, σ

2
t

]

E[ σ2
t ]

− µt

2λE[ σ2
t ]

≤ 0, 0

E
[
Xt

]
+

Cov
[
Xt, σ

2
t

]

E[ σ2
t ]

− µt

2λE[ σ2
t ]

, otherwise.

(10)

4.6.1 An Example of Drift Optimal VWAP Trading

A simple example of optimally ‘front-loading’ and ‘back-loading’ the VWAP
trading strategy to exploit expected price drift is illustrated by example op-
timizing strategies with both positive and negative expected price drift. In
these examples the VWAP period is one day T = 1. The expected drift E[At]
is assumed to be a simple linear function of time such that the stock has either
lost 2% or gained 2% by the end of the trading day µt = ± t 0.02. The stock
volatility (std dev.) is a constant 2% (σ2

t = σ̂2 = 0.022). Risk-aversion coef-
ficient λ = 17.5. With these assumptions the optimal drift trading policies
of eqn 10 are:

x?
t =





if E
[
Xt

] ± t

0.7
≥ 1, 1

if E
[
Xt

] ± t

0.7
≤ 0, 0

E
[
Xt

] ± t

0.7
, otherwise.

It is clear from the example above that the optimal strategies for drift
shift the optimal strategy upwards (‘front-loading’) for a positive expected
drift E[Xt] > 0 and downwards (‘back-loading’) for a negative expected drift
E[Xt] < 0.

These optimal strategies have discontinuities at t = 0 and t = 1 where
volume is instantly acquired. This is unrealistic because it assumes that
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the market can supply instant liquidity and eliminates the central virtue of
VWAP trading, distributing liquidity demand over the VWAP period in such
a way so as to minimize instantaneous liquidity demand.

4.6.2 Optimal VWAP Trading with Constrained Trading Rate

The solution is add an additional constraint to the optimization problem by
setting an upper bound to the instantaneous liquidity demand νmax

t . This
liquidity constraint can be specified as follows:

dxt

dt
≤ vmax

t

The optimal strategy here is constructed using the set D of feasible strate-
gies xt as a rectangular in (x, t) space with upper left point at (1, 0) and upper
right-point at (1, T ), see figure 5. The left xL

t and right xR
t boundaries for

region D are defined as integrals of the maximum trading rate vmax
t .

xL
t =

∫ t

0

vmax
s ds

xR
t = 1 −

∫ T

t

vmax
s ds

All points to the right of xR
t and to the left of xL

t are outside the feasible
region D. The optimal strategy is to trade following unconstrained strategy
(9) inside D until one of the boundaries of D is encountered and then trade
at the maximum allowable rate.

x?
t =





if E
[
Xt

]
+

Cov
[
Xt, σ

2
t

]

E[ σ2
t ]

− µt

2λE[ σ2
t ]

≥ xL
t , xL

t

if E
[
Xt

]
+

Cov
[
Xt, σ

2
t

]

E[ σ2
t ]

− µt

2λE[ σ2
t ]

≤ xR
t , xR

t

E
[
Xt

]
+

Cov
[
Xt, σ

2
t

]

E[ σ2
t ]

− µt

2λE[ σ2
t ]

, otherwise.

(11)
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Proof that (11) is the optimal strategy for VWAP trading problem with
constrained liquidity is given in appendix.

The example above is re-considered now for time-dependent constrained
liquidity, where the maximal rate of trading is assumed to be proportional to
the expectation of the trading rate of the market (time-derivative of E

[
Xt

]
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

0

1

t/T

xR
t

xL
t D

unconstrained 

trading strategy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

*xt

E[X ]t

Figure 5: The optimal back-loading VWAP strategy for liquidity constrained
trading in example.

vmax
t = 2

d

dt
E

[
Xt

]

The resultant optimal VWAP trading strategy ‘back-loads’ volume along
x?

t , shown in Figure 5.
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4.7 ‘Bins’ - VWAP Strategy Implementation

The optimal strategies x?
t discussed previously are continuous. That is, it is

assumed that the VWAP trader has complete control over trading trajectory
at any moment of time during trading. This is unrealistic, traders need time
to implement strategy and find trading counter-parties to provide liquidity.
In order to model VWAP with uncertain liquidity a weaker assumption is
adopted that trading can be divided into number of periods where trader
has control over the average trading rate during each period. That is, the
trader has sufficient control over trading to guarantee that the traded volume
at beginning and the end of every period is equal to x?

t . These periods are
called time ‘bins’. The actual trajectory x¦t is generated by a random liquidity
process and could deviate from x∗t inside the bin but will always coincide at
its boundaries.

4.7.1 The Cost of a Suboptimal VWAP Trading Strategy

The VWAP bin trajectory x¦t is suboptimal and the mean-variance ‘cost’ of
suboptimal VWAP trading strategies C(x¦t ) is formulated below.

C(x¦t ) =

(
E[V(x¦t )] + λVar[V(x¦t )]

)
−

(
E[V(x?

t )] + λVar[V(x?
t )]

)

= E
[ ∫ T

0

(x¦t − x?
t ) µt + λ

[
(Xt − x¦t )

2 − (Xt − x?
t )

2
]
σ2

t dt

]

=

∫ T

0

(x¦t − x?
t )( µt − 2λE[σ2

t Xt] + 2λE[σ2
t ] x

?
t ) + λ (x¦t − x?

t )
2 E[σ2

t ] dt

Noting that the when the actual trading trajectory coincides with uncon-
strained optimal solution with drift (eqn 9) then the first term in the integral
is eliminated and the cost of a suboptimal strategy is simplified.

C(x¦t ) = λ

∫ T

0

(x¦t − x?
t )

2 E[σ2
t ] dt (12)
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4.7.2 The Bounded Cost of a Bin Trading Strategy

Bins are designed by dividing the VWAP trading period [0, T ] into b time
periods with the bin boundary times for bin i denoted as τi−1 and τi.

0 = τ0 < τ1 < · · · < τi < τi+1 < · · · < τb = T

By construction x¦τi−1
= x∗τi

and x¦τi
= x∗τi

. Since x¦t and x∗t are non-decreasing
functions that are less than or equal to 1 the deviation between them is
bounded.

|x¦t − x∗t | ≤ x?
τi
− x?

τi−1
∀t ∈ [τi, τi−1] (13)

Using (13) we get from (12) the following bound of additional cost from bins

C(τ1, . . . , τb) ≤
b∑

i=1

(x?
τi
− x?

τi−1
)

∫ τi

τi−1

(µt − 2λ(E[σ2
t Xt] − E[σ2

t ] x
?
t ))dt

+
b∑

i=1

(x?
τi
− x?

τi−1
)2

∫ τi

τi−1

λE[σ2
t ] dt

(14)

4.7.3 Equal Volume Bins

Equal volume bins are often used by practitioners. They are defined as

x?(τi)− x?(τi−1) =
1

b
∀i ∈ {1, . . . , b}

The bin cost bound (14) for trading with unconstrained rate then takes the
form:

C(τ1, . . . , τb) ≤ 1

b2
λ

∫ T

0

E[σ2
t ] dt (15)
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Thus the additional VWAP risk from using discrete volume bins to trade
VWAP depends on the number of bins b as O(b−2).

4.7.4 Optimal VWAP Bin Strategy

The optimal bins are obtained by minimizing the bound (14) on vector in
bin boundary times τ . The first order condition of optimality is.

∂C(τ1, . . . , τb)

∂τk

= 0

Differentiating equation 14 with respect to the vector in bin boundary
times τ gives:

(2x?
τi
− x?

τi−1
− x?

τi+1
) (µτi

− 2λ(E[σ2
τi
Xτi

] − E[σ2
τi
]x?

τi
))

+
d

dτ
x?

τi

[ ∫ τi

τi−1

(µt − 2λ(E[σ2
t Xt] − E[σ2

t ] x
?
t )) dt

−
∫ τi+1

τi

(µt − 2λ(E[σ2
t Xt] − E[σ2

t ] x
?
t ))dt

]

+ λσ2
τi

[
x?

τi−1
(x?

τi−1
− 2x?

τi
)− x?

τi+1
(x?

τi+1
− 2x?

τi
)

]

+ 2λ
d

dτ
x?

τi

[
(x?

τi
− x?

τi−1
)

∫ τi

τi−1

E[σ2
t ] dt− (x?

τi+1
− x?

τi
)

∫ τi+1

τi

E[σ2
t ] dt

]
= 0

(16)

Solving this equation for τi can be viewed as a computational operation
which reduces bin-based additional cost by varying τi conditional on (as a
function of fixed) τi−1 and τi+1. It is applied recursively to the initial set of
bins’ times (eg equal-volume bins) until convergence to the optimal bins.
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The example in figure 5 plots the bin boundaries of 10 equal volume bins
for the liquidity-constrained VWAP strategy and 10 optimal bin boundaries
obtained by applying recursively improving operation are shown in Figure
6. The reduction in the additional bin-based risk from the use of optimal
instead of equal-volume bins is 4.65%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

t

optimal  bins

equal-volume  bins

continuous solution

Figure 6: The optimal strategy the example with constrained liquidity and
its corresponding 10 equal-volume bins and 10 optimal bins.
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5 Conclusion and Summary

This paper builds on the paper by Hizuru Konishi [15] by developing a so-
lution to an optimal minimum risk VWAP trading problem. The volume
process is assumed to be marked point process and the price process to be
a continuous semimartingale. It is shown that VWAP is naturally defined
using the relative volume process Xt which is intra-day cumulative volume
Vt divided by total final volume Xt = Vt/VT . The novel expression for the
risk of VWAP trading is derived. It is proven that this risk does not depend
on the price drift.

The minimum risk strategy of VWAP trading is generalized into a mean-
variance optimal strategy. This is useful when VWAP traders have price
sensitive information that can be exploited by a VWAP strategy. The cost
of exploiting price sensitive information is deviation from the minimum risk
VWAP trading strategy by ‘front-loading’ or ‘back-loading’ traded volume
to exploit the expected price movement.

It is shown that even with a minimum risk VWAP trading strategy is
implemented there is always a residual risk. This residual risk is shown to
be proportional to the price variance σ̂2 of the stock and the inverse of final
trade count K raised to the power 0.44. Higher trade count stocks have lower
residual VWAP risk because the variance of the relative volume process is
lower for these stocks.

A practical VWAP trading strategy using trading bins is constructed.
The additional VWAP risk from using discrete volume bins to trade VWAP
is estimated. It is shown that it depends on the number of bins b as O(b−2).
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A Optimal VWAP Trading Strategy with Con-

strained Trading Rate

Proof. That eqn 11 is the solution the the optimal VWAP trading problem
with liquidity constrained trading rate vt ≤ vmax

t .

min
xt,vt

[ ∫ T

0

(µtxt + λσ2
t (x

2
t − 2xtE[Xt])) dt

]
(17)

Subject to

dxt

dt
= vt, vt ≤ vmax

t , ∀t ∈ [0, T ], x0 = 0, xT = 1.

The case in Figure 7 is considered where the unconstrained trading strat-
egy of eqn 9 passes through the origin and intersects with the maximal trading
line xR

t at tR < T . The proof for other cases when the unconstrained strategy
ξt intersects with other the boundaries of D is identical.

x

xR

xL

D

t

*

t

t

t

xt

unconstrained 

trading strategy

t
R

Figure 7: The feasible set D defined by constraints on the rate of trading
and boundary conditions.

The adjoint variable Ψt, ∀t ∈ [0, T ] is calculated by solving following the
equation:

dΨt

dt
= −µt − 2λσ2(x?

t − 2λσ2
tE[Xt]), ΨtR = 0. (18)
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Using integration by parts:

−ΨT xT + Ψ0x0 +

∫ T

0

[
Ψtv

?
t +

dΨt

dt
x?

]
dt = 0.

After adding this identity’s left side to VWAP mean-variance cost and
dropping terms that depend on fixed x0 and xT the problem of eqn 17 is
transformed to the following:

min
xt,vt

[ ∫ T

0

(µtxt+λσ2
t (x

2
t−2xtE[Xt])) dt

]
= min

xt,vt

[ ∫ T

0

R(Ψt, xt, vt) dt

]
(19)

Where:

R(Ψt, xt, vt) = µtxt + λσ2
t (x

2
t − 2xtE[Xt]) + Ψtvt +

dΨt

dt
xt

Consider the left arc in x?
t , when v?

t = dx?
t /dt < vmax

t , and t ∈ (0, tR).
Here the rhs of equation in eqn 18 is zero and therefore Ψt = 0. It is easy to
check that:

∂R

∂xt

(Ψt, xt = x?
t , vt = v∗t ) = 0,

∂R

∂vt

(Ψt, xt = x?
t , vt = v∗t ) = 0, ∀t ∈ (0, tR).

Thus R has a minimum on xt ∈ Dt at xt = x∗t and on vt ∈ [0, vmax
t ] at

vt = v?
t < vmax

t everywhere along left arc of x?
t .

Consider the right arc of x?
t , when v?

t = vmax
t and t ∈ (tR, T ). Here x∗t is

higher than the unconstrained trading strategy ξt defined by eqn 9. After
decomposing x?

t = ξt + (x?
t − ξt) eqn 18 becomes:

dΨt

dt
=

[− µt − 2λσ2
t (ξt − E[Xt])

]− 2λσ2
t (x

?
t − ξt) = −2λσ2

t (x
?
t − ξt) < 0

Since ΨtR = 0, Ψt < 0, ∀t ∈ (tR, T ). It is easy to check that:
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∂R

∂xt

(Ψt, x = x?
t , v = v∗t ) = 0,

∂R

∂vt

(Ψt, x = x?
t , v = v∗t ) = Ψt < 0, ∀t ∈ (tR, T )

Thus R has minimum on xt ∈ Dt at xt = x?
t . By inspection the function

R is a linear function of vt, so on vt ∈ [0, vmax
t ] it has minimum on vt at

vt = v?
t = vmax

t everywhere along right arc of x?
t . Therefore x?

t defined by eqn
11 and v?

t = dx?
t /dt obey constraints in eqn 17 and minimize the integral of

the equivalent mean-variance cost criterion R on xt and vt at every moment
of time t ∈ [0, T ] and so is the optimal solution of eqn 17.
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