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Abstract

In a context of complete Þnancial markets where asset prices follow Ito�s processes, we

characterize the set of consumption processes which are optimal for a given stochastic

differential utility (e.g. Duffie and Epstein (1992)) when beliefs are unknown. Necessary

and sufficient conditions for the efficiency of a consumption process, consists of the

existence of a solution to a quadratic backward stochastic differential equation and

a martingale condition. We study the efficiency condition in the case of a class of

homothetic stochastic differential utilities and derive some results for those particular

cases. In a Markovian context, this efficiency condition becomes a partial differential

equation.
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1 Introduction

In this paper we consider the following �invertibility� problem: in a continuous time setting, we

observe the optimal intertemporal contingent consumption plan of a single agent who also invests

in a Þnancial market. This agent that has recursive utility of the type modeled in Duffie and Ep-

stein (1992) (that they call Stochastic Differential Utility or SDU) and that offers some modeling

ßexibility in the separation between the concepts of risk aversion, intertemporal substitution and

preference for early or late resolution of uncertainty.1 However, we do not know neither the prefer-

ences of the agent nor the �beliefs� of the agent (by beliefs we mean, out of all probability spaces

that can explain the dynamics of securities prices, which one the agent uses). Our problem is then

to: 1) check if an observed consumption is consistent with preference maximization for some un-

known beliefs (testability) and, 2) when it is possible, recover the set of fundamentals (preferences

and beliefs) that are consistent with the observed consumption (identiÞability).

At the multiple agents and general equilibrium level, this invertibility problem has historically

attracted the interest of many economists (see Chiappori et al. (1999) for some recent advances in

this Þeld and for references). Our approach may be seen as a single agent version of the invertibility

literature in a partial equilibrium environment where the agent�s intertemporal consumption is

the outcome of trading risky Þnancial assets in continuous time. However, instead of assuming

knowledge of the equilibrium price manifold, (Chiappori et al. (1999)), we suppose that we know

the individual intertemporal contingent consumption as a function of intertemporal contingent

Arrow Debreu prices.2 Therefore, our approach is similar to Mas-Colell (1977) who identiÞes the

preferences of an individual from demand behavior as commodities prices and income vary in an

atemporal and riskless environment. We attempt to address the Mas-Colell (1977) question for

a consumer who is trading in an intertemporal and uncertain Þnancial market. Initial wealth is

known and given.3 We observe intertemporal consumption and the parameters of its stochastic

dynamics (the trend and the volatility) for both realized and unrealized states.

Furthermore, since we are in a risky environment, we introduce a new component in the in-

vertibility problem by incorporating non-observability of the consumer�s beliefs about future asset

returns. We take the cue from Kraus and Sick (1980). We ask, for instance, whether low consump-

tion rate is the result of pessimism about the general business conditions or it reßects increases

in risk aversion, changes in intertemporal substitution possibilities or even increases in the rate of

1We recall that expected utility implies that the investor is indifferent to the timing of resolution of uncertainty

(see Duffie and Epstein (1992) and their references). In the SDU case, the model offers the ßexibility to model both

preference for early resolution of uncertainty (a form of anxiety) and preference for late resolution of uncertainty (a

form of optimism). For instance in the homothetic subclass of SDU (a continuous time version of the Kreps-Porteus

recursive utility), we have a scalar parameter whose value determines if the decision maker exhibits preference for

late or early resolution of uncertainty.
2Note that the relationship between demand and prices is expressed in term of a system of stochastic differential

equations where the uncertainty is driven the Brownian shocks.
3Mas-Colell (1977) uses the responses to changes in wealth as a source of information to infer the utility of the

agent.
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preference for early resolution of uncertainty.

Finally we point out that, for a representative agent holding the market portfolio of a complete

markets, pure exchange economy, our results extend to the stochastic differential utility case the

strand of the Þnance literature that seeks to verify if a stochastic process for the market portfolio

is consistent with equilibrium (See Bick (1987, 1990) and He and Leland (1993)).

Our Þrst result (Theorem 2) concerns a class of non parametric utilities and is methodological.

In order to obtain it, we use some recent results in the theory of Backward Stochastic Differen-

tial Equations (or BSDE) in El Karoui, Peng and Quenez (1997, 1999) and Schroder and Skiadas

(1999). We characterize the set of preferences (within the class of recursive preferences) and beliefs

that would be consistent with the observed consumption. This characterization consists of a mar-

tingale condition (a restriction on the stochastic process that represents consumption) jointly with

an existence requirement on a quadratic BSDE.4 When the utility is time additive, this quadratic

BSDE becomes a standard linear BSDE whose existence is automatically guaranteed in our frame-

work. Consequently, we extend Cuoco and Zapatero (2000) to the SDU case and Þnd that a given

consumption process is not compatible with any parameterization of preferences, even if we do not

know the beliefs and we allow them to adjust so as to make that consumption optimal for the given

parameterization of preferences.

In the parametric case, we obtain a more constructive result. For a class of homothetic SDU

considered by Schroder and Skiadas (1999), that we call the logarithm SDU class, and that reduces

to the standard logarithm expected utility in the time additive case, testability obtains. We provide

a preference-free necessary and sufficient condition for a given consumption process5 to be optimal

and, consequently, we characterize the set of efficient consumption plans (those consumption plans

that are optimal for some hypothetical consumer who maximizes a SDU in the logarithm SDU

class and whose beliefs about future returns are unknown). However, identiÞability does not obtain

because the fundamentals (preferences and beliefs) that are consistent with the given consumption

processes are never unique, when they exist. We interpret this result as an observational equivalence

between logarithm SDU and logarithm time additive utility when beliefs are unknown. In fact, our

result shows that, given any consumption process which is optimal for logarithm time additive

utility under some beliefs, there are always beliefs that will make it optimal for any logarithm

SDU. In other terms, our result states that without information on consumer beliefs about future

asset returns, the set of efficient consumption plans is identical for logarithm SDU and logarithm

time additive utility. In particular, we prove that observing contingent consumption alone does not

allow to assert that the consumer exhibits preference for early resolution of uncertainty, preference

4Quadratic BSDE�s existence is not covered by the standard theory on BSDE�s (Pardoux and Peng (1990)) because

the intertemporal aggregator (deÞned in Section 2) is not a Lipschitz function of its arguments. Kobylanski (2000)

has a systematic study of the quadratic BSDE�s. In the speciÞc parametric case under consideration, we use some

mathematical results from Schroder and Skiadas (1999) to prove that, in fact, the quadratic BSDE exists and hence

our martingale condition requirement is sufficient for testability to hold.
5Those restrictions may be seen as a stochastic equivalent to the Slutsky equations in our continuous time envi-

ronment.

3



for late resolution of uncertainty or indifference for the timing of resolution of uncertainty.

We conduct a similar analysis for another class of homothetic SDU considered by Schroder and

Skiadas (1999), the power SDU that reduces to constant relative risk aversion expected utility in the

time additive case. Although a preference dependant characterization of efficiency is obtained, we

discuss how this condition can provide some efficiency veriÞcation tools. Moreover, when the effi-

ciency condition is satisÞed, the associated beliefs are directly obtained from preference parameters

and consumption dynamics parameters.

Finally, we also extend the result of Cuoco and Zapatero (2000) related to the recoverability

of preferences and beliefs in a Markovian setting. We state a veriÞcation result that allows to

determine if a consumption process is optimal for a given parameterization of preferences and, if

that is the case, what would be the beliefs of the individual. This result extends the recoverability

literature in Þnance (See Décamps and Lazrak (2000) for some recent results and references) to the

SDU case.

The paper is organized as follows. In section 2 we describe in detail the setting. In section 3

we formally characterize the problem. In section 4 we derive the main result and we apply it to

two particular cases, logarithmic utilities and power utilities. In section 5 we consider the problem

of recoverability in a Markovian setting. We close the paper with some conclusions.

2 The model

We start with a complete probability space (Ω,F , P ) equipped with the augmented Þltration F(.) =

{Ft, 0 ≤ t ≤ T} of a standard Rn-valued Brownian motion (Wt = (W1,t,W2,t, ...,Wn,t), 0 ≤ t ≤ T ).
The terminal time T <∞ is Þxed constant and we assume that F = FT . All stochastic processes
introduced in the paper are assumed progressively measurable with respect to the Þltration F(.).

The conditional expectation E(. | Ft) will be abbreviated to Et throughout.
We shall denote by P the set of predictable σ−Þeld and for each integer d, we deÞne H2(Rd) =

{ϕ : Ω× [0, T ] −→ Rd/ϕ ∈ P and ||ϕ||2 = E R T
0 |ϕt|2dt <∞}.

Consumption Set. The set C of consumption processes is formed by any strictly positive process
c : Ω× [0, T ] −→ R+ such that c ∈ H2(R), with ct representing a time-t consumption rate in terms
of a single numéraire good. To simplify the exposition, we avoid terminal consumption although

our analysis extends easily to that case.

Density generators of beliefs. We deÞne Υ, the set of possible �beliefs� as the set of progressively

measurable processes γ : Ω× [0, T ] −→ Rn the integrability condition

E

·
exp

½
−1
2

Z t

0
|γs|2ds−

Z t

0
γs
∗ · dWs

¾¸
= 1, ∀t ∈ [0, T ].

where ∗ represents �transpose." In fact, each γ ∈ Υ characterizes a possible belief represented by a
probability measure P γ on (Ω,F) equivalent to P, with a Radon Nikodym derivative of the form

dP γ

dP
= ξγT ,
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where (ξγt , 0 ≤ t ≤ T ) is the martingale,

ξγt = exp

½
−1
2

Z t

0
|γs|2ds−

Z t

0
γs
∗ · dWs

¾
, 0 ≤ t ≤ T.

Note that, by Girsanov Theorem, the process W γ
t =Wt +

R t
0 γsds is a Brownian motion under the

measure P γ. Finally, note that since the beliefs of consumers shall be unknown in our context, the

measure P is part of the description of the environment only because it deÞnes the null sets. In

the inverse problem of section 3 we will state the optimality conditions under the probability P ,

but any other equivalent probability could be used.

Preferences. An intertemporal aggregator is a deterministic function f mapping R+ ×R onto

R that satisÞes that there exists some constants k1, k2 such that, ∀c ∈ R+, | f(c, 0) |≤ k1 + k2c
p,

for some constant 0 < p < 1.6) We now introduce some assumptions that we will use in different

parts of the paper.

(A1) Lipschitz. There exists a constant K ≥ 0 such that

| f(c, y)− f(c, y0) |≤ K | y − y0 |, ∀c ∈ R+, ∀(y, y0) ∈ R×R.

(A2) Concavity and monotonicity. f is concave with respect to (c, y) and increasing with

respect to c.

(A3) Differentiability. f is three times continuously differentiable with respect to (c, y), and fc
and fy are bounded.

(A4) Inada condition. For each y, limc↓0 fc(c, y) = +∞.
(A5) Logarithmic. The intertemporal aggregator takes the following form

f(c, y) = (1 + αy)

·
log(c)− β

α
log(1 + αy)

¸
,

with parameter restrictions: β ≥Max(0, α).
(A6) Power. The intertemporal aggregator takes the following form

f(c, y) = (1 + a)

·
cν

ν
| y | a

1+a −βy
¸
,

with parameter restrictions: β ≥ 0, a ∈ (−1, 1), ν < Min(1, 1/(1 + a)) and ν 6= 0.
We denote by I the set of intertemporal aggregators deÞned as I = I1∪Ip∪I l. Here I1 is the

set of intertemporal aggregators that satisÞes the non parametric Assumptions A1 − A4, and Il
(resp. Ip) is the set of logarithmic (resp. power) intertemporal aggregators that satisfy Assumption
A5 (resp. A6).

Assumptions A1, A5 and A6 are mutually exclusive. Assumption A1 is required to deÞne the

non parametric SDU of Duffie and Epstein (1992). The concavity part of assumption A2 is required

6Since c ∈ H2(R), The Condition | f(c, 0) |≤ k1 + k2c
p implies that (f(ct, 0), 0 ≤ t ≤ T ) ∈ H2/p(R) ⊂ H2(R). The

fact that (f(ct, 0), 0 ≤ t ≤ T ) ∈ H2(R) is required to prove the existence of the SDU deÞned further (e.g. Pardoux

and Peng (1992) and El Karoui, Peng and Quenez (1997)).
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for the existence of an optimal utility and allows us to deÞne (under assumption A3) the inverse of

fc, that is the function I(., .) deÞned by, I(c, f(c, y)) = y; whereas the increasing part of assumption

A2 implies that the utility function is an increasing functional of consumption. Assumption A3 is

a technical regularity that allows us to expand Itô�s rules and to formulate optimality conditions

with the help of the partial derivatives of the intertemporal aggregator. The purpose of assumption

A4 is to simplify the optimality conditions.

The speciÞcations of the intertemporal aggregators given in Assumptions A5 and A6 are pro-

posed by Schroder and Skiadas (1999) to deÞne a parametric homothetic class of SDU. Assumption

A5 deÞnes the logarithm SDU. For this speciÞcation, the parameter α has no impact on the ordinal

ranking of deterministic consumption plans. However, a negative α indicates preference for early

resolution of uncertainty, and a positive α indicates preference for late resolution of uncertainty

(See Schroder and Skiadas (1999)). Assumption A6 deÞnes the power SDU and, again the para-

meter a has no impact on the ordinal ranking of deterministic consumption plans. When ν > 0

(resp. ν < 0), a negative a indicates preference for early (resp. late) resolution of uncertainty, and

a positive a indicates preference for late (resp. early) resolution of uncertainty (See Schroder and

Skiadas (1999)).

Given an intertemporal consumption process c ∈ C, consumer preferences are represented by
a SDU (Duffie and Epstein (1992) under Assumptions A1−A4 and Schroder and Skiadas (1999)
under Assumption A5 or Assumption A6) Y deÞned by

Y ct = E
γ
t

·Z T

t
f(cs, Y

c
s )ds

¸
, (1)

where Eγt represents Ft−conditional expectation under the subjective beliefs P γ associated to the
density generator γ ∈ Υ. Alternatively, the utility represented by (1) may as well be characterized
by the BSDE (see Pardoux and Peng (1992) and El Karoui, Peng and Quenez (1997)),

−dY ct = f(ct, Y ct )dt− Zc∗t · dW γ
t , Y cT = 0, (2)

where the intensity process Zc ∈ H2(Rn) is part of the solution of the BSDE.
Existence and uniqueness of recursive utility is studied by Duffie and Epstein (1992) when the

intertemporal aggregator satisÞes assumption A1. Schroder and Skiadas (1999) proves the existence

of the associated homothetic SDU when the intertemporal aggregator satisÞes either assumption

A4 or assumption A5.

Financial markets We assume that Þnancial markets are complete and the parameters that

deÞne the dynamics of the securities are summarized in the following state price density that we

take as a primitive

Ht = exp

½
−1
2

Z t

0
rsds

¾
exp

½
−1
2

Z t

0
|ηs|2ds−

Z t

0
η∗s · dWs

¾
, 0 ≤ t ≤ T,

where
R T

0 (|rt|+ |ηs|2)dt <∞ a.s.. The process r is the short-rate process and the process η is the

market price of risk process. The process (Ht, 0 ≤ t ≤ T ) represents the intertemporal contingent
Arrow Debreu prices.
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We are now ready to formalize the consumption optimization problem of the consumer when

the intertemporal aggregator is given by f ∈ I1∪Ip∪Il and when beliefs are given by the density
generator γ ∈ Υ, as

Pf,γ
(

supc∈C Y c0
s.t. E

hR T
0 Htctdt

i
≤ w0,

where w0 is a nonnegative scalar representing initial wealth7 and Y c0 is the initial value of the

solution Y of the BSDE (2).

3 An inverse problem

3.1 Characterization of optimality

By Girsanov Theorem, it is clear that, given any γ∗ ∈ Υ the solution (Y c, Zc) of the BSDE (1)

solves also the following BSDE

−dY ct = (f(ct, Y ct )− γ∗t .Zct )dt− Zc∗t · dWt, Y cT = 0,

and admits the representation

Y ct = Et

·Z T

t
(f(cs, Y

c
s )− γ∗s · Zcs)ds

¸
. (3)

Therefore, we can ignore the measure P γ and consider (Y c, Zc) as a generalized SDU (see Lazrak

and Quenez (1999) and see also a related model in Chen and Epstein (1999)) under the benchmark

measure P with a stochastic intertemporal aggregator of the form

g(t, c, y, z) = f(c, z)− γ∗t · z, ∀(t, c, y, z) ∈ [0, T ]×R+ ×R×Rn.

This remark allows us to apply directly the optimality characterization result of El Karoui, Peng

and Quenez (1999) (see also Duffie and Skiadas (1994) and Schroder and Skiadas (1999)).

Theorem 1 Suppose that assumptions A2, A3 and A4 are satisÞed and that either of assumptions
A1, A5 or A6 holds. Then, for each γ ∈ Υ, the consumption process (ct, 0 ≤ t ≤ T ) ∈ C is optimal
under the beliefs given by γ if and only if

ct = I(e
At , Yt), dP ⊗ dt a.s., (4)

where the pair (A; (Y, Z)) solves a Forward-backward system that has a forward component,(
dAt = −(rt + fy(I(eAt , Yt), Yt) + 1

2(|ηt|2 − |γt|2))dt− (ηt − γt)∗dWt,

A0 = log(λ),
(5)

7Notice that the initial wealth w0 > 0 is Þxed for the rest of the paper.
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and a backward component

−dYt = (f(I(eAt , Yt), Yt)− γ∗t · Zt)dt− Z∗t dWt, YT = 0, (6)

for some constant λ > 0 which is Þxed in a such way that E
hR T

0 HtI(e
At , Yt)dt

i
= w0.

Proof: In the context of assumption A1, this Theorem is a specialization of Theorem 6.1 of

El Karoui, Peng and Quenez (1999) to the case of linear wealth and an intertemporal aggregator

which is linear with respect to z. For the optimality Þrst order conditions of the homothetic SDU

implied by either assumption A5 or assumption A6, we refer to Schroder and Skiadas (1999). ¦

3.2 The problem

The main problem considered in this paper is that of an observer (a �Þnancial economist�) who

tries to verify whether a given consumption process is optimal for some combination of tastes and

beliefs. Formally, this question translates into the problem of characterizing for each consumption

process (ct, 0 ≤ t ≤ T ) ∈ C, the set

Ic =
n
(f, γ) ∈ I×Υ / c solves Pf,γ

o
.

The optimality Þrst order conditions (4)-(6) imply that each optimal consumption process

should be indistinguishable from an Itô process of the form

dct
ct
= µtdt+ ρ

∗
tdWt, c0 > 0, (7)

for some processes (µt, 0 ≤ t ≤ T ) ∈ H2(R) and (ρt, 0 ≤ t ≤ T ) ∈ H2(Rn). Therefore, we shall
restrict our attention to the set of consumption processes of the form (7) and for each consumption

process, we shall express the characterization of the set Ic in terms of µ and ρ. Finally, we point
out that as a byproduct of this characterization, we shall be able to identify the beliefs that support

each optimal consumption given an intertemporal aggregator.

4 Viable consumption plans, quadratic BSDE and martingale re-
strictions

4.1 Characterization of viable consumption plans

Theorem 2 A consumption process c ∈ C that satisÞes the dynamics (7) is optimal for a Þxed
intertemporal aggregator f ∈ I if and only if the process ξ deÞned below is a martingale,

(ξt :=
Hte

− R t
0 fy(cs,Ys)ds

fc(ct, Yt)
, 0 ≤ t ≤ T ), (8)

where Y is the Þrst element of a pair (Y, Z) that solves the quadratic BSDE,

−dYt = (f(ct, Yt)− (ηt + ct
fcc(ct, Yt)

fc(ct, Yt)
ρt +

fcy(ct, Yt)

fc(ct, Yt)
Zt)

∗ · Zt)dt− Z∗t dWt, YT = 0. (9)
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Moreover, if the above conditions are satisÞed then c solves Pf,γ for the beliefs density generator
γ given by

γt = ηt + ct
fcc(ct, Yt)

fc(ct, Yt)
ρt +

fcy(ct, Yt)

fc(ct, Yt)
Zt, (10)

and the optimal level of utility is given by the solution to (9).

Proof: Necessity. If c is optimal for f ∈ I and γ ∈ Υ, from Theorem 1 the Þrst order conditions
(4)-(6) have to be satisÞed. Integrating (5), taking exponential and using (4) yields

Hte
− R t

0 fy(cs,Ys)ds

fc(ct, Yt)
=
1

λ
exp

½
−1
2

Z t

0
|γs|2ds−

Z t

0
γs
∗ · dWs

¾
. (11)

Then, applying Itô�s Lemma to the right and left hand side of this last equality results (10) that we

substitute into the BSDE (6) to obtain that in fact, (Y, Z) solves the quadratic BSDE (9). Finally,

since γ ∈ Υ, the process (ξt, 0 ≤ t ≤ T ) deÞned in (8) and identiÞed in (11) is a martingale.
Sufficiency. Applying Itô�s Lemma to (8) we get

dξt = −ξtγ∗t · dWt,

where γ is given by (10). Now letting At := log(Hte−
R t

0 fy(cs,Ys)ds/ξt) we obtain, by construction,

(4) and (5). Additionally, (6) is easily obtained after substituting (10) into (9). ¦
Theorem 2 extends Cuoco and Zapatero (2000) (that only consider additively separable ex-

pected utility) to the SDU case. As in Cuoco and Zapatero (2000), Theorem 2 shows that a given

consumption plan is not necessarily optimal for some intertemporal aggregator, even if we allow

beliefs to adjust. Beliefs are part of the optimality condition, but even if we use them as an addi-

tional degree of freedom, a given consumption plan might not be consistent with that optimality

condition in general (we will see at least one case in which this degree of freedom guarantees that

any consumption process of a very large set will be compatible with the optimality condition). The

problem we consider here is that of �testability� rather than �identiÞability� or �recoverability,�

as deÞned in the introduction. Therefore, the result in Cuoco and Zapatero (2000) is robust to the

generalization to the SDU case. Furthermore, an analysis of the optimality conditions of Theorem

2 shows that for a given consumption process to be optimal for a pair of preferences and beliefs in

a SDU setting, two conditions have to be satisÞed.

The Þrst condition is the existence of a solution to the quadratic BSDE (9) that has no equivalent

in the additively separable case. In fact, when the utility is additive, the intertemporal aggregator

takes the form f(c, y) = u(c) − βy, for some constant β and some increasing and concave u, and
the quadratic BSDE (9) becomes the linear BSDE

−dYt = (u(ct)− βYt − (ηt + ct
u00(ct)
u0(ct)

ρt)
∗ · Zt)dt− Z∗t dWt, YT = 0,

which has the following explicit and unique solution

Yt = Et

·Z T

t
u(cs)e

−β(s−t) exp
½
−1
2

Z t

0
|ηs + cs

u00(cs)
u0(cs)

ρs|2ds−
Z t

0
(ηs + cs

u00(cs)
u0(cs)

ρs)
∗dWs

¾¸
.
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Also, when beliefs are objective, the Brownian motion W γ
t coincides with the Brownian motion

W and therefore, the BSDE (9) takes the standard form (2) and existence and uniqueness are

guaranteed under our assumptions on I. Informally, this additional restriction would seem to make
the separation between beliefs and tastes more likely in the SDU case. Note also, that only the

volatility (ρ) of the consumption process is involved in this restriction.

The second condition is a result of requiring the process deÞned by (8) to be a martingale (in

fact this process may be seen as a component of the quadratic BSDE (9)) and amounts to a joint

restriction on the drift (µ) and the volatility (ρ) of the consumption process (in the additive case

this joint restriction is the optimality restriction given in Cuoco and Zapatero (2000)).

Corollary 1 Let c ∈ C be a consumption process of the form (7) and let f ∈ I be a Þxed in-
tertemporal aggregator. Suppose that the quadratic BSDE (9) has a solution (Y,Z) that satisÞes

the integrability condition

E

·
exp

½
−1
2

Z t

0
|ηt + ct

fcc(ct, Yt)

fc(ct, Yt)
ρt +

fcy(ct, Yt)

fc(ct, Yt)
Zt|2ds−

Z t

0
(ηt + ct

fcc(ct, Yt)

fc(ct, Yt)
ρt +

fcy(ct, Yt)

fc(ct, Yt)
Zt)

∗dWs

¾¸
= 1,

(12)

for all t ∈ [0, T ]. Then, there exists some beliefs generator γ ∈ Υ, such that c is optimal for Pγ if
and only if the following equality,

0 = rt − ctfcc(ct, Yt)
fc(ct, Yt)

(ρ∗tηt − µt) + fy(ct, Yt) + ρ2
t

Ã
1

2

c2t fccc(ct, Yt)

fc(ct, Yt)
−

µ
ctfcc(ct, Yt)

fc(ct, Yt)

¶2
!

+
1

2

fcyy(ct, Yt)

fc(ct, Yt)
|Zt|2 − fcy(ct, Yt)

fc(ct, Yt)

µ
f(ct, Yt) +

ctfcc(ct, Yt)

fc(ct, Yt)
ρ∗tZt

¶
+
ctfccy(ct, Yt)

fc(ct, Yt)
ρ∗tZt (13)

holds dP ⊗ dt a.s.
Moreover, if (13) holds, the beliefs density generator is given by (10)

Proof: Necessity is immediate by Itô�s Lemma. Conversely, if (13) is satisÞed, the integrability
condition (12) says that the process deÞned in (8) is a martingale and the result follows from

Theorem 2. ¦
Therefore, equation (13) combined with (10) characterize the set Ic, under the assumption that

the BSDE (9) admits a solution that satisÞes (12). This restriction on the drift (µ) and volatility (ρ)

of the consumption process depends on the intertemporal aggregator. This relationship between

µ and ρ is difficult to interpret since (13) involves the variables (Y,Z) which depend on (c, ρ)

in an abstract way via the quadratic BSDE (9). Therefore, it is useful to analyze our inverse

problem in the context of some parametric intertemporal aggregator and that is the objective of

the next two subsections. The existence of these parametric utilities as well as the existence of an

optimal consumption plan is shown in Schroder and Skiadas (1999) for the case of objective beliefs

under some appropriate technical conditions. We also have to adapt these technical conditions

to our context and, more speciÞcally, we need to restrict our attention to the set of consumption

10



processes:

D =
½
c ∈ C : E

Z T

0
ct
ldt <∞, ∀l ∈ R

¾
.

Finally, we need to make the following relatively weak assumption on consumption processes c of

the form given by (7):

(A7) There exists some scalar k ≤ 1 such that the processes ξδk and ξ−δk , deÞned as the unique
local martingales that satisfy

dξδ
k

t = −ξδkt δk∗t dWt, ξδ
k

0 = 1, (14)

and

dξ−δ
k

t = ξδ
k

t δ
k∗
t dWt, ξδ

k

0 = 1,

with δkt := ηt − kρt, are square integrable martingales.
The processes ξ are the Radon-Nikodym derivative of the reference probability measure with

respect to an alternative probability measure (or beliefs). More about it in the Appendix. Assump-

tion A7 will hold for example if both η and ρ are bounded.

4.2 The logarithm SDU and an observational equivalence result

The following lemma shows that, under some technical requirements, the quadratic BSDE (9) has

a unique solution (in a sense made more precise in the Appendix) for a logarithmic intertemporal

aggregator.

Lemma 1 Suppose that the intertemporal aggregator satisÞes assumption A5 and the consumption
process c ∈ D is of the form (7) and satisÞes A7 with k = 1. Then, the quadratic BSDE (9), which

takes the specialized form

−dYt = ( (1+αYt)(log(ct)− β
α
log(1+αYt))− (ηt−ρt+

α

1 + αYt
Zt)

∗ ·Zt )dt−Z∗t dWt, YT = 0,

(15)

has a unique solution that satisÞes 1 + αYt > 0, dP ⊗ dt a.s., and the integrability condition

E

·
exp

½
−1
2

Z t

0
|ηs − ρs +

α

1 + αYs
Zs|2ds−

Z t

0
(ηs − ρs +

α

1 + αYs
Zs)

∗ · dWs

¾¸
= 1, (16)

for all t ∈ [0, T ].

Proof: See Appendix. ¦
Lemma 1 shows that under proper technical restrictions (that are preference free) on c, the Þrst

optimality condition of Theorem 2 (existence of a solution to a quadratic BSDE) is always satisÞed

in the logarithmic case. Optimality is then characterized by (13) alone, as the following proposition

shows.

11



Proposition 1 Suppose that c ∈ D is a consumption process of the form (7) that satisÞes assump-
tion A7 with k = 1 and f ∈ Il is a logarithmic intertemporal aggregator that satisÞes assumption
A5. There exists a beliefs generator γ ∈ Υ, such that c is optimal for Pγ if and only if

µt − ρ∗tηt = rt − β, dP ⊗ dt a.s. (17)

Moreover, if (17) is satisÞed, the beliefs density generator is given by

γt = ηt − ρt +
α

1 + αYt
Zt,

where (Y, Z) is the solution of (15).

Proof: This is an immediate consequence of Corollary 1, Lemma 1 and (17). ¦
The characterization (17) provides an easy way to check if a consumption plan may be optimal

for some logarithm SDU and some unknown beliefs: one should just check if the process (rt−µt+
ρ∗tηt, 0 ≤ t ≤ T ) is deterministic, time invariant and non negative.

For instance, if we assume lognormal dynamics for asset prices and a constant interest rate, η

and r will be deterministic and time invariant, and therefore, any lognormal consumption process

(µ and ρ are constants) should satisfy (17) as long as µ is not too large.

In summary, testability, as deÞned in the introduction, obtains in this model. However, identiÞ-

ability does not obtain in the sense that, if the above test is positive, we can Þnd a supporting beliefs

generator for each intertemporal aggregator in the class Il with a discount factor β that satisÞes
the Equality (17).We conclude that, in the context of the logarithmic intertemporal aggregator, it

is not possible to disentangle beliefs from tastes (represented by the parameter α that determines

both risk aversion and information seeking/aversion) by only observing the optimal consumption

process. In particular, we have shown that observing contingent consumption alone does not allow

to assert that the consumer exhibits preference for early resolution of uncertainty, preference for

late resolution of uncertainty or indifference for the timing of resolution of uncertainty. We interpret

this as an observational equivalence result.

4.3 The power intertemporal aggregator

We now turn to the case of a power intertemporal aggregator that satisÞes assumption A6. As

in the logarithmic case, the following lemma shows that in the quadratic BSDE (9) has a unique

solution (in a sense made more precise in the Appendix) when the consumption process satisÞes

some technical requirements.

Lemma 2 Suppose that the intertemporal aggregator satisÞes assumption A6 and the consumption
process c ∈ D is of the form (7) and satisÞes assumption A7 with k = α. Then, the quadratic BSDE
(9), which takes the specialized form

−dYt = ( (1+a)(c
ν
t

ν
Y
a/(1+a)
t −βYt)− (ηt− (1−ν)ρt+

a

1 + a
Y −1
t Zt)

∗ ·Zt )dt−Z∗t dWt, YT = 0,

(18)

12



has a unique solution that satisÞes Yt > 0, dP ⊗ dt a.s.

Proof: See the Appendix. ¦
Lemma 2 shows that, as in the logarithmic case, under proper technical restrictions on c, (9)

always has a solution and we can characterize optimality via (13). The following proposition

specializes (13) to the power case when the integrability condition

E

·
exp

½
−1
2

Z t

0
|ηs − (1− ν)ρs +

a

1 + a
Y −1
s Zs|2ds−

Z t

0
(ηs − (1− ν)ρs +

a

1 + a
Y −1
s Zs)

∗ · dWs

¾¸
= 1,

(19)

holds.

Proposition 2 Suppose that c ∈ D is a consumption process of the form (7) that satisÞes assump-
tion A7 with k = α and f ∈ Ip is a power intertemporal aggregator that satisÞes assumption A6.
Suppose also that (Y,Z), the solution of the BSDE (18) satisÞes the integrability condition (19).

Then there exists a beliefs generator γ ∈ Υ, such that c is optimal for Pγ if and only if

(1− ν)(µt − ρ∗tηt) = rt − β +
1

2
ν(1− ν) | ρt |2 −

1

2

a

(1 + a)2
Y −2
t Z2

t , dP ⊗ dt a.s. (20)

Moreover, the beliefs density generator is given by

γt = ηt − (1− ν)ρt + sgn(a)
p
2 | a |

r
(rt − β)− (1− ν)(µt − ρ∗t ηt −

1

2
ν | ρt |2),

where sgn(x) = x/ | x | if x ∈ R∗ and sgn(0) = 0.

Proof: This is an immediate consequence of Corollary 1, Lemma 2 and (13). ¦
Note that, unlike in the logarithmic case, the optimality condition (20) for power utilities

depends on the utility parameters a and ν. Therefore, we need to know the preference parameters a

and ν in order to check efficiency. Nevertheless, (20) maybe useful even if we do not know the utility

parameters in order to exclude some consumption policies. For instance one necessary condition of

efficiency that is derived from is (20) is that the process ((1− ν)(µt − ρ∗t ηt)− rt + β − 1
2ν(1− ν) |

ρt |2, 0 ≤ t ≤ T ) should be either nonnegative or nonpositive.

Example 1 Assume lognormal dynamics for asset prices and constant interest rate -η and r will be
deterministic and time invariant- and let us consider a consumption process of the form ct = exp[εt]

where εt is a mean reverting Ornstein Uhlenbeck process of the form dεt = (εt − θ)dt+ dW1,t with

θ a given constant. Then, by Itô�s Lemma, it is clear that ρ∗t = (1, 0, ..., 0) and, on the other hand,
µt = (εt − θ + 1/2) is a Gaussian process and, as such, cannot have an invariant sign. Therefore,
the consumption process ct = exp[εt] will never be optimal for a power SDU.

13



5 Optimal PDE in a Markovian environment

In this section we intend to elucidate the implication of the former results in a Markovian context.

With this purpose, consider an intertemporal aggregator f ∈ I and suppose that the consumption
process follows a Markovian diffusion of the form

dct
ct
= µ(t, ct)dt+ ρ(t, ct)

∗dWt, c0 > 0, (21)

where the functions µ : [0, T ] × (0,∞)−→R, and ρ : [0, T ] × (0,∞)−→Rn are such that a unique
(strong) positive solution of (21) exists (e.g. Karatzas and Shreve (1997)). Let us also assume

that rt = r(t, ct), and ηt = η(t, ct) for some measurable functions r : [0, T ] × (0,∞)−→R and

η : [0, T ]× (0,∞)−→Rn.
Now, observe that in this Markovian context the quadratic BSDE (9) amounts to the partial

differential equation (PDE)(
φt(t, c) + Lφ(t, c) = p(t, c, φ(t, c), cρ(t, c)φc(t, c) ), ∀(t, c) ∈ [0, T )× (0,∞),
φ(T, c) = 0,

(22)

where the operator L is deÞned for u ∈ C([0, T ]× (0,∞)) ∩C1,2([0, T )× (0,∞)) as

Lu(t, c) = cµ(t, c)uc(t, c) + 1
2
| ρ(t, c) |2 c2ucc(t, c),

and where the function p is given by

p(t, c, y, z) = −f(c, y) +
·
η(t, c) +

cfcc(c, y)

fc(c, y)
ρ(t, c) +

fcy(c, y)

fc(c, y)
z

¸∗
z, (23)

for all (t, c, y, z) ∈ [0, T ]× (0,∞)×R×Rn.
To be more explicit, one can verify easily by Itô�s Lemma that if a function φ ∈ C([0, T ] ×

(0,∞)) ∩C1,2([0, T )× (0,∞)) satisÞes the PDE (22), then,

Yt := φ(t, ct), andZt := ct ρ(t, ct) φc(t, ct),

solves the quadratic BSDE (9).

The following proposition characterizes the set of tastes and beliefs (f, γ) ∈ I×Υ that guarantee
optimality of the consumption process deÞned in (21), under the assumption that the PDE (22)

has a solution.

Proposition 3 Consider a consumption process c that satisÞes (21), and f ∈ I and suppose that
the function φ solves the PDE (22). There exist beliefs γ ∈ Υ such that c is optimal for Pγ if and
only if the function k : [0, T ]× (0,∞)→ R deÞned as

k(t, c) := log (fc(c, φ(t, c))) (24)

satisÞes,
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i) the PDE(
kt(t, c) +Mk(t, c)− 1

2 | ρ(t, c) |2 c2k2
c (t, c) = −r(t, c)− fy(c, φ(t, c)), ∀(t, c) ∈ [0, T )× (0,∞),

k(T, c) = log (fc(c, 0)) ,

(25)

where the operatorM is deÞned for u ∈ C([0, T ]× (0,∞)) ∩C1,2([0, T )× (0,∞)) by

Mu(t, c) = c(µ(t, c)− η∗(t, c)ρ(t, c))uc(t, c) + 1
2
| ρ(t, c) |2 c2ucc(t, c),

ii) and the integrability condition

E

·
exp

½
−1
2

Z t

0
|η(t, ct) + ctkc(t, ct)ρ(t, ct)|2ds−

Z t

0
(η(t, ct) + ctkc(t, ct)ρ(t, ct))

∗dWs

¾¸
= 1, (26)

for all t ∈ [0, T ].
Moreover, if the above conditions hold, the beliefs generator is given by γt ≡ γ(t, ct) where the

measurable function γ : [0, T ]× (0,∞)−→Rn is deÞned as

γ(t, c) = η(t, c) + ckc(t, c)ρ(t, c), ∀(t, c) ∈ [0, T )× (0,∞).

Proof: Suppose that the function k deÞned in (24) satisÞes (25) and (26).Making Yt := φ(t, ct),
and Zt := ct ρ(t, ct) φc(t, ct), it is easy to see by applying Itô�s Lemma that (Y,Z) solve the quadratic

BSDE (9). Now, again by Itô�s Lemma, the process

ξt :=
Hte

− R t
0 fy(cs,Ys)ds

fc(ct, Yt)
≡ Hte−

R t
0 fy(cs,Ys)ds−k(t,ct),

satisÞes the stochastic differential equation,

dξt
ξt

= −(kt(t, ct) +Mk(t, ct)− 1
2
| ρ(t, ct) |2 c2tk2

c (t, ct) + r(t, ct) + fy(ct, Yt))dt

−(η(t, ct) + ctkc(t, ct)ρ(t, ct))∗ · dWt

= − [η(t, ct) + ctkc(t, ct)ρ(t, ct)]∗ · dWt,

where the second equality follows from (25). Therefore, by the integrability condition (26), the

process (ξt, 0 ≤ t ≤ T ) is a martingale and the result follows from Theorem 2.

The proof of necessity is similar. ¦
When the utility is time-additive, the intertemporal aggregator takes the form f(c, y) = u(c)−

βy, for some constant β and some increasing and concave u. In that case the function k deÞned in

(24) takes the form k(t, c) = log(u0(c)) which is time independent and independent of the function
φ. Therefore, the PDE (22) is not restrictive for the inverse problem.

More importantly, in the additive utility case the optimality restriction (25) becomes

c(µ(t, c)− η∗(t, c)ρ(t, c))kc(c) + 1
2
| ρ(t, c) |2 c2kcc(c)− 1

2
| ρ(t, c) |2 c2k2

c (c) = −r(t, c)− β. (27)

15



This is �preference free� since it may be seen as a differential equation with k as an unknown

function, that has to be satisÞed for each t ∈ [0, T ]. For instance, when the functions µ, η, ρ and
r are time independent, Cuoco and Zapatero (2000) show that this equation reduces to a Ricatti

ordinary differential equation that, under mild conditions exhibits existence and uniqueness of

the solutions. Cuoco and Zapatero (2000) use this approach to solve the recoverability problem

(see Bick (1987, 1990) He and Leland (1996) and Decamps and Lazrak (2000)) in a continuous

time, complete market, representative agent and Markovian aggregate consumption pure exchange

economy.

Now, it appears that the restrictions that we obtain in the SDU (when the intertemporal

aggregator is nonlinear with respect to y) are not preference free since (25) involves the knowledge

of the function fy as well as the function φ (which depends on the intertemporal aggregator f

via (23)). Note also that this result holds when the beliefs are objective. The restriction in (25)

becomes a tool for veriÞcation of the compatibility of a given intertemporal aggregator f and a

given consumption process of the form (21), rather than a way to recover preferences and beliefs

from a given consumption process. Of course, we cannot rule out the existence of a transformation

that would allow recoverability of preferences and beliefs (maybe with additional restrictions to our

Markovian setting). The existence of such a rule is not obvious, however.

6 Conclusions

We consider an inverse problem with unknown beliefs for an agent that has recursive utilities. We

use some recent results in the theory of BSDE (in El Karoui, Peng and Quenez (1997, 1999) and

Schroder and Skiadas (1999)) and show that a given consumption process might not be optimal for

any parameterization of preferences, even if we allow beliefs to adjust. For logarithmic SDU, we

show that a consumption process that satisÞes some technical requirements might can be optimal

for an inÞnite number of pairs of a speciÞc parameterization of the logarithmic SDU and beliefs. We

also derive a recoverability result in a Markovian setting. Some technical questions remain open.

Namely, the main result of the paper involves the existence of a solution to a quadratic BSDE.

The existence (and uniqueness) of a solution of this quadratic BSDE is established in the case of

logarithmic or power SDU. However, in the case of non parametric intertemporal aggregator, it is

not clear whether such a solution is guaranteed by some technical conditions or if it is an additional

restriction (that does not seem to have a counterpart in the additive separable case).

7 Appendix

We now prove Lemma 1 and Lemma 2. The proofs rely heavily on ideas of Appendix A of Schroder

and Skiadas (1999). First, we denote by L2(Rn) the set of n−dimensional progressively measurable
processes X such that

R T
0 |Xt|2dt <∞, a.s. Furthermore, the following subsets of H2(R) (deÞned
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in Section 2) will be used:

D0 =

½
X ∈ H2(R) : Eess sup

t
|Xt|l <∞, ∀l ∈ R

¾
,

D1 =

½
X ∈ H2(R) : E

Z T

0
|Xt|ldt <∞, ∀l > 0

¾
,

Dexp
0 =

½
X ∈ H2(R) : E(exp(ess sup

t
l|Xt|l) <∞, ∀l ∈ R

¾
,

Dexp
1 =

½
X ∈ H2(R) : E(exp(l

Z T

0
|Xt|dt) <∞, ∀l ∈ R

¾
.

For each set S ⊂ H2(R), we deÞne S++ = S ∩H2++(R), where H2++(R) is the strictly positive
cone of H2(R), that is H2++(R) =

©
X ∈ H2(R) : Xt > 0, dP ⊗ dt a.s.

ª
.

Proposition 4 (Schroder and Skiadas (1999)) Suppose that U ∈ Dexp
1 and β > 0. Then, there

exists a unique pair (Y, Z) ∈ Dexp
0 ×H2(Rn) that solves the quadratic BSDE

−dYt =
µ
Ut − βYt + 1

2
| Zt |2

¶
dt− Z∗t dWt, YT = 0.

Proposition 5 (Schroder and Skiadas (1999)) Suppose that U ∈ D++
1 and m > −1. Then, there

exists a unique pair (Y, Z) ∈ D++
0 ×L2(Rn) that solves the quadratic BSDE

−dYt =
µ
Ut +

m

2

| Zt |2
Yt

¶
dt− Z∗t dWt, YT = 0.

It will be convenient, for each consumption process c ∈ D of the form (7) that satisÞes as-

sumption A7, to express the BSDE in terms of the probability measures Pk, deÞned by the Radon

Nikodym derivative
dPk
dP

= ξδ
k

T ,

where the process ξδ
k
is deÞned in (14) and δkt := ηt − kρt. Note that by the Girsanov Theorem,

the process W δk
t =Wt+

R t
0 δ

k
sds is a Brownian motion under the probability Pk.

Proof of Lemma 1: Given any c ∈ D that satisÞes assumption A7, we deÞne the process

Ut = −α log(ct). Now, for each l ∈ R, we haveµ
EP1

µ
exp(l

Z T

0
|Ut|dt)

¶¶2

=

µ
E

µ
ξδ

1

T exp(l

Z T

0
|Ut|dt)

¶¶2

≤ E
³
ξδ

1

T

´2
E

µ
exp

µ
1

T

Z T

0
| log(c2αlTt )|dt

¶¶
≤ E

³
ξδ

1

T

´2 1

T
E

µZ T

0
exp | log(c2αlTt )|dt

¶
≤ E

³
ξδ

1

T

´2 1

T
E

µZ T

0

³
c2αlTt + c−2αlT

t

´
dt

¶
<∞,
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where we have used the Cauchy Schwarz inequality, the Jensen inequality, the inequality exp(| x |
) ≤ exp(x) + exp(−x) and the fact that c ∈ D. It follows that U ∈ Dexp,1

1 and therefore, it follows

from Proposition 4 that the BSDE8

−dY1,t = (Ut − βY1,t +
1

2
Z∗1,t · Z1,t )dt− Z∗1,tdW δ1

t , Y1,T = 0, (28)

has a unique solution (Y1, Z1) ∈ Dexp,1
0 ×H2,1(Rn). Now, by Itô�s Lemma it is easy to show that

the process Yt :=
exp(−Y1,t)−1

α solves the BSDE (15) with the intensity Zt := −1+αY
α Z1,t.

Now, in order to establish the integrability condition (16), we deÞne the process M1,t = 1 +R t
0 M1,sZ

∗
1,sdW

δ1

s . The process M1 is a local martingale under the probability P1, and therefore

there exists an increasing sequence of stopping times {τ(n)} that converges to T, such that the
stopped process {M1,t∧τ(n), 0 ≤ t ≤ T} is a martingale, for every n. Following Schroder and
Skiadas (1999, Lemma A1), we integrate (28) between any 0 ≤ t ≤ u ≤ T and take the exponential
to obtain

M1,u

M1,t
exp(Y1,t) = exp

µ
Y1,u +

Z u

t
(Us − βY1,s)ds

¶
. (29)

Now, by the optional sampling theorem, M1,t = E
P1
t (M1,t∧τ(n)), and therefore, when u = τ(n), the

identity (29) leads to

exp(Y1,t) = E
P1
t

Ã
exp

Ã
Y1,τ(n) +

Z τ(n)

t
(Us − βY1,s)ds

!!
, (30)

on the event {τ (n) ≥ t}. Letting n → ∞ in (30), the dominated convergence theorem (made

possible by the fact that Y1 ∈ Dexp,1
0 and U ∈ Dexp,1

1 ) yields

exp(Y1,t) = E
P1
t

µ
exp

µZ T

t
(Us − βY1,s)ds

¶¶
,

which, in conjunction with (29) when u = T, implies thatM1,t = E
P1
t (M1,T ) and, hence,M1 is after

all a true martingale under the probability P1. Therefore, from Bayes rule (Karatzas and Shreve

(1988), Lemma 5.3, page 193), the process Mt := ξ
δ1

t M1,t is a martingale under the probability P

and, since by Itô�s Lemma,

dMt = −Mt(δ
1
t − Z1,t)

∗dWt ≡ −Mt(ηt − ρt +
α

1 + αYt
Zt)

∗dWt,

the integrability condition (16) holds. ¦
Proof of Lemma 2: Letting Ut =

cνt
ν e

−βt, it follows from Proposition 5, that if a < 1 (this is

satisÞed under A6) the BSDE

−dYa,ν,t = ( Ut − 1
2
aY −1

a,ν,tZa,ν,t
∗Za,ν,t )dt− Z∗a,ν,tdW δ1−ν

t , Ya,ν,T = 0,

8Here, the sets Dexp,1
1 and Dexp,1

0 as well as the set H2,1(Rn) are deÞned with respect to the probability P1 instead

of the probability P.
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has a unique solution in (Ya,ν , Za,ν) ∈ D++
0 × L2(Rn).9 Now, by Itô�s Lemma, it is easy to

show that the process Yt := Y 1+a
a,ν,te

(1+a)βt solves the BSDE (18) with the intensity Zt := (1 +

a)e(1+a)βtY aa,ν,tZa,ν,t. ¦
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