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1 Introduction

Despite the rich literature that exists on continuous time financial market model-
ing there is still no single model that has been widely accepted. For some recent
accounts one can refer to Merton (1992), Duffie (1996), Rebonato (1998), Musiela
& Rutkowski (1997) and Björk (1998). Further, a substantial body of empirical
evidence has been accumulated on the dynamics of market indices, see, for in-
stance, Cont & da Fonseca (2002). These empirical findings suggest that at least
a two-factor model is required to characterize an index.

In this paper we consider a diversified world stock portfolio, which covers the
entire world stock market and address the key issue of how volatility should be
modeled. By application of a limit theorem on diversified portfolios, see Platen
(2003), the world stock portfolio will be shown to approximate the growth optimal
portfolio (GOP), see Kelly (1956) and Long (1990). The total market price for
risk determines the volatility of the GOP. It is the most important factor that
drives the world stock index. A natural choice for the second factor is the short
rate.

By using the discounted GOP drift we will show that the discounted GOP always
displays the dynamics of a time transformed squared Bessel process of dimension
four, see Platen (2002). In this framework it turns out that the corresponding
time transformation does not fluctuate greatly. In addition, the inverse of the
squared volatility for the discounted GOP is shown to be a time transformed
square root process of dimension four. It will be demonstrated that the resulting
model, where the discounted GOP drift increases on average according to the net
growth rate of the market, captures some of the key empirical features observed
for the world stock index. This occurs under the simple assumption of constant
parameters.

Section 2 describes the benchmark approach and shows that the diversified world
stock portfolio approximates the GOP. In Section 3 the world stock index is
modeled and its volatility is analyzed in Section 4.

2 Benchmark Model

2.1 Primary Securities

Let us consider a continuous financial market model with d + 1 primary secu-
rity account processes S(0), S(1), . . ., S(d), d ∈ {1, 2, . . .}. These are the value
processes of share accounts and savings accounts. It is assumed that for a pri-
mary security account the accrued income is always reinvested. The value of the
jth primary security account at time t is denoted by S(j)(t) for t ∈ [0, T ] and
j ∈ {0, 1, . . . , d}. We also assume that S(j)(t) is the unique strong solution of the
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stochastic differential equation (SDE)

dS(j)(t) = S(j)(t)

{
aj(t) dt +

d∑

k=1

bj,k(t) dW k(t)

}
(2.1)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d} with S(j)(0) > 0 and S(0)(0) = 1. Here
the uncertainty is modeled by d independent standard Wiener processes W k =
{W k(t), t ∈ [0, T ]}, k ∈ {1, 2, . . . , d}, which are defined on a filtered probability
space (Ω,AT ,A, P ) with finite time horizon T ∈ (0,∞), fulfilling the usual con-
ditions, see Protter (1990). The filtration A = (At)t∈[0,T ] models the evolution of
market information over time. Here At denotes the information available at time
t ∈ [0, T ].

The jth appreciation rate aj = {aj(t), t ∈ [0, T ]} and (j, k)th volatility bj,k =
{bj,k(t), t ∈ [0, T ]} are predictable stochastic processes such that

∫ T

0

(|aj(s)|+ (bj,k(s))2
)
ds < ∞ (2.2)

for j, k ∈ {1, 2, . . . , d}, see Protter (1990). For convenience, we set

b0,k(t) = 0 (2.3)

for k ∈ {1, 2, . . . , d} such that S(0) denotes the savings account with short rate

r(t) = a0(t) (2.4)

at time t. Furthermore, the volatility matrix b(t) = [bj,k(t)]dj,k=1 is for Lebesgue-
almost-every t ∈ [0, T ] assumed to be invertible. This ensures that the uncertainty
that is modeled by the Wiener processes W 1, . . . , W d uniquely determines security
prices and vice versa.

Let S = {S(t) = (S(0)(t), . . . , S(d)(t))>, t ∈ [0, T ]} denote the vector of primary
security accounts. Here A> is the transpose of a vector or matrix A. By using
the appreciation rate vector a(t) = (a1(t), a2(t), . . . , ad(t))> and the unit vector
1 = (1, 1, . . . , 1)>, we introduce the market price for risk vector

θ(t) = (θ1(t), θ2(t), . . . , θd(t))>

= b−1(t) [a(t)− r(t)1] (2.5)

for t ∈ [0, T ]. The market price for risk (2.5) allows us to rewrite the SDE (2.1)
in the form

dS(j)(t) = S(j)(t)

{
r(t) dt +

d∑

k=1

bj,k(t) [θk(t) dt + dW k(t)]

}
(2.6)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}.
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2.2 Strategies and Portfolios

We say that a predictable stochastic process δ = {δ(t) = (δ(0)(t), δ(1)(t), . . .,
δ(d)(t))>, t ∈ [0, T ]} is a strategy if δ is S-integrable, see Protter (1990). The jth
component δ(j)(t) ∈ (−∞,∞) of the strategy δ denotes the number of units of the
jth primary security account that are held at time t ∈ [0, T ] in the corresponding
portfolio, j ∈ {0, 1, . . . , d}. For a given strategy δ let S(δ)(t) be the value of the
corresponding portfolio at time t. This means that

S(δ)(t) =
d∑

j=0

δ(j)(t) S(j)(t) (2.7)

for t ∈ [0, T ]. A portfolio process S(δ) and the corresponding strategy δ are called
self-financing if

dS(δ)(t) =
d∑

j=0

δ(j)(t) dS(j)(t) (2.8)

for all t ∈ [0, T ]. Thus, all changes in the value of a self-financing portfolio are
due to corresponding gains from trade in the primary security accounts. Since
we will consider in the following only self-financing strategies and corresponding
self-financing portfolios, we omit from now on the word “self-financing”.

For a given strategy δ we introduce the jth proportion π
(j)
δ (t) of the value of the

jth primary security account held at time t in a strictly positive portfolio S(δ)(t),
given by

π
(j)
δ (t) = δj(t)

S(j)(t)

S(δ)(t)
(2.9)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}. Of course, the sum of the proportions always
equals one, that is

d∑
j=0

π
(j)
δ (t) = 1 (2.10)

for all t ∈ [0, T ]. A strictly positive portfolio value S(δ)(t) satisfies, according to
(2.8) and (2.6), the SDE

dS(δ)(t) = S(δ)(t) r(t) dt +
d∑

k=1

βk
δ (t) (θk(t) dt + dW k(t)) (2.11)

with kth portfolio volatility

βk
δ (t) =

d∑
j=0

π
(j)
δ (t) bj,k(t) (2.12)
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for t ∈ [0, T ]. By application of the Itô formula, it follows from (2.11) that the
logarithm of a strictly positive portfolio S(δ)(t) satisfies the SDE

d log
(
Sδ(t)

)
= (r(t) + gδ(t)) dt +

d∑

k=1

βk
δ (t) dW k(t) (2.13)

with portfolio net growth rate

gδ(t) =
d∑

k=1

βk
δ (t)

(
θk(t)− 1

2
βk

δ (t)

)
(2.14)

for t ∈ [0, T ]. Here the portfolio volatility βk
δ (t), given in (2.12), depends on the

proportions.

2.3 Growth Optimal Portfolio

In a financial market model one has the freedom to choose a numeraire or bench-
mark. We choose as our benchmark the growth optimal portfolio (GOP), see
Kelly (1956), Long (1990), Karatzas & Shreve (1998) or Platen (2002), and de-
note its value at time t ∈ [0, T ] by S(δ∗)(t). The GOP is the portfolio that max-
imizes the portfolio net growth rate gδ(t), see (2.14). The optimal proportions

π(δ∗) = {π(δ∗)(t) = (π
(1)
δ∗ (t), . . . , π

(δ)
δ∗ (t))>, t ∈ [0, T ]} follow directly by solving the

first order equations for the corresponding quadratic maximization problem for
the portfolio net growth rate gδ(t) and are given by

π(δ∗)(t) = (b−1(t))> θ(t) (2.15)

for t ∈ [0, T ], see (2.5). The GOP then satisfies by (2.11) and (2.15) the SDE

dS(δ∗)(t) = S(δ∗)(t)

[
r(t) dt +

d∑

k=1

θk(t) (θk(t) dt + dW k(t))

]
(2.16)

for t ∈ [0, T ], see also Karatzas & Shreve (1998), where we assume that S(δ∗)(0) >
0.

From (2.16) and (2.5) it follows that the GOP volatilities θk(t), k ∈ {1, 2, . . . , d},
are the corresponding market prices for risk. Note that the risk premium of the
GOP appearing in (2.16) equals the square |θ(t)|2 of the total market price for
risk

|θ(t)| =
√√√√

d∑

k=1

(θk(t))2 (2.17)

for t ∈ [0, T ]. The risk premium of the portfolio in (2.11) is given by the cor-
relation of the returns of the portfolio with the returns of the GOP. This is
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consistent with the capital asset pricing model, see Merton (1973), if one inter-
prets the market portfolio as GOP or as a proxy for the GOP. We call the above
model a benchmark model. For practical applications of a benchmark model it is
important to find a good approximation for the GOP. We address this problem
in the following section which presents a limit theorem for diversified portfolios.

2.4 Approximate Growth Optimal Portfolios

In order to approximate the GOP using diversified portfolios, we formulate the
following definitions.

Definition 2.1 A strictly positive portfolio process S(δ) is called a diversified
portfolio (DP) if finite constants K1 > 0, K2 > 0 and K3 ∈ {1, 2, . . .} exist,
independent of d, such that

|π(j)
δ (t)| ≤ K1

d
1
2
+K2

(2.18)

almost surely for all j ∈ {0, 1, . . . , d}, d ∈ {K3, K3 + 1, . . .} and t ∈ [0, T ].

This means that the proportion π
(j)
δ (t) of the value of a DP, which is invested

in the jth primary security account, need to decrease slightly faster than d−
1
2 as

d →∞. This is, for instance, the case if equal proportions are used.

When we express a given portfolio S(δ)(t) in units of the GOP, then we call the
ratio

Ŝ(δ)(t) =
S(δ)(t)

S(δ∗)(t)
(2.19)

the corresponding benchmarked portfolio. By application of the Itô formula and
using (2.19), (2.11), (2.12) and (2.16) it follows that the benchmarked portfolio
Ŝ(δ)(t) satisfies the SDE

dŜ(δ)(t) = −Ŝ(δ)(t)
d∑

k=1

d∑
j=0

π
(j)
δ (t) σj,k(t) dW k(t) (2.20)

with jth specific volatility

σj,k(t) = bj,k(t)− θk(t) (2.21)

for t ∈ [0, T ], j ∈ {0, 1, . . . , d} and k ∈ {1, 2, . . . , d}. This allows us to introduce
the kth total specific volatility

σ̂k(t) =
d∑

j=0

|σj,k(t)| (2.22)

for t ∈ [0, T ] and k ∈ {1, 2, . . . , d}.
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Definition 2.2 A benchmark model is called regular if there exist finite con-
stants K3 and K4, independent of d, such that

E
((

σ̂k(t)
)2

)
≤ K4 (2.23)

for all t ∈ [0, T ], k ∈ {1, 2, . . . , d} and d ∈ {K3, K3 + 1, . . .}.

This is a property that arguably can be assumed for the world stock market
consisting of all stocks traded on the existing exchanges. By (2.13) and (2.14)
the difference between the logarithms of the GOP S(δ∗)(t) and a given strictly
positive portfolio S(δ)(t) satisfies the SDE

d(log(S(δ∗)(t))− log(S(δ)(t))) =
1

2
Rd

δ(t) dt−
d∑

k=1

d∑
j=0

π
(j)
δ (t) σj,k(t) dW k(t) (2.24)

with tracking rate

Rd
δ(t) =

d∑

k=1

(
d∑

j=0

π
(j)
δ (t) σj,k(t)

)2

(2.25)

for t ∈ [0, T ]. Note that the tracking rate equals the squared diffusion coefficient
of the SDE (2.24). It can be interpreted as a measure of the distance between a
given portfolio S(δ)(t) and the GOP S(δ∗)(t) at time t ∈ [0, T ].

Definition 2.3 For an increasing number d of risky primary security accounts
we call a strictly positive portfolio S(δ) an approximate GOP if the corresponding
sequence of tracking rates (Rd

δ(t))d∈{1,2,...} vanishes in probability, that is for each
ε > 0 we have

lim
d→∞

P
(
Rd

δ(t) > ε
)

= 0 (2.26)

for all t ∈ [0, T ].

Under the above assumptions the following limit theorem is proved in Appendix
A, see also Platen (2003).

Proposition 2.4 For a regular benchmark model a diversified portfolio is an
approximate GOP.

This result allows us to conclude that a world stock portfolio that is a DP ap-
proximates the GOP. An obvious approximate GOP is the market capitalization
weighted MSCI Growth World Stock Index (MSCI). In Figure 1 we plot for the
period from 1970 until 2003 the MSCI when discounted by a US Dollar savings
account. We use the daily MSCI data and short rates as provided by Thomson
Financial. Because of Proposition 2.4 we interpret the MSCI as the GOP and
use in the following both names interchangeably.
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Figure 1: Discounted MSCI.

3 Modeling a World Stock Index

3.1 Discounted GOP

Let us discount the GOP S(δ∗)(t) given in (2.16) by the savings account S(0)(t),
see (2.1) - (2.4). The discounted GOP

S̄(δ∗)(t) =
S(δ∗)(t)

S(0)(t)
(3.1)

satisfies by application of the Itô formula using (2.16) and (2.1) - (2.4) the SDE

dS̄(δ∗)(t) = S̄(δ∗)(t) |θ(t)| (|θ(t)| dt + dŴ (t)) (3.2)

for t ∈ [0, T ]. The standard Wiener process Ŵ = {Ŵ (t), t ∈ [0, T ]} in (3.2) is
characterized by the stochastic differential

dŴ (t) =
1

|θ(t)|
d∑

k=1

θk(t) dW k(t), (3.3)

for t ∈ [0, T ]. By discounting the GOP we separate the impact of the short rate
from that of the GOP volatility, see (2.16). Recall that Figure 1 displayed the
discounted MSCI, which was interpreted as the discounted GOP for the world
stock market.

Noting the form of (3.2) we introduce as a parameter process α = {α(t), t ∈
[0, T ]}, which is set equal to the drift of the discounted GOP. We refer to it as
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the discounted GOP drift, where

α(t) = S̄(δ∗)(t) |θ(t)|2 (3.4)

for t ∈ [0, T ]. This parametrization leads to a GOP volatility of the form

|θ(t)| =
√

α(t)

S̄(δ∗)(t)
. (3.5)

Thus, by (3.2), (3.4) and (3.5) we obtain for the discounted GOP the SDE

dS̄(δ∗)(t) = α(t) dt +
√

α(t) S̄(δ∗)(t) dŴ (t) (3.6)

for t ∈ [0, T ]. Since α(t) appears in the drift and
√

α(t) in the diffusion coefficient
of the SDE (3.6) it is natural to introduce the GOP time ϕ = {ϕ(t), t ∈ [0, T ]}
with

ϕ(t) =
1

4

∫ t

0

α(s) ds (3.7)

for t ∈ [0, T ]. Note that the GOP time is, in general, random. For the discounted
GOP process X = {X(ϕ), ϕ ∈ [0, ϕ(T )]} considered in GOP time with

X(ϕ(t)) = S̄(δ∗)(t) (3.8)

we obtain by (3.6) the SDE

dX(ϕ) = 4 dϕ +
√

4 X(ϕ) dŴϕ (3.9)

for ϕ ∈ [0, ϕ(T )] with X(0) = S̄(δ∗)(0), where

dŴϕ(t) =

√
α(t)

4
dŴ (t) (3.10)

for t ∈ [0, T ]. It follows from (3.9) that X is in GOP time a squared Bessel
process of dimension four, see Revuz & Yor (1999). Therefore, the process S̄(δ∗) =
{S̄(δ∗)(t), t ∈ [0, T ]} in (3.6) is a time transformed squared Bessel process of
dimension four using the above GOP time as the natural choice for an intrinsic
time transformation.

3.2 Expected Discounted GOP

By application of the Itô formula it follows from (3.9) that the square root
√

X(ϕ)
of the discounted GOP, when expressed in GOP time ϕ, satisfies the SDE

d
√

X(ϕ) =
3

2
√

X(ϕ)
dϕ + dŴϕ (3.11)
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for ϕ ∈ [0, ϕ(T )]. Note that the diffusion term in (3.11) is simply a standard
Wiener process in GOP time.

For a given sequence of observation times t0 < t1 < . . . with maximum time step
size h ≥ ti − ti−1 > 0, i ∈ {1, 2, . . .}, let us introduce for t ∈ [0, T ] the integer

it = max{` ∈ {0, 1, . . .} : t` ≤ t} (3.12)

as the largest index ` of observation times t` not greater than t.

The quadratic variation 〈L〉 = {〈L〉t, t ∈ [0, T ]} of a continuous stochastic process
L = {L(t), t ∈ [0, T ]} is for each t ∈ [0, T ] defined as the limit in probability

〈L〉t P
= lim

h→0
〈L〉h,t, (3.13)

where 〈L〉h,t is the approximate quadratic variation

〈L〉h,t =
it∑

i=1

(L(ti)− L(ti−1))
2. (3.14)

The quadratic variation of a solution of an SDE, with a standard Wiener process
as the diffusion term as in (3.11), is time itself. It therefore follows from (3.7),

(3.8) and (3.11) that the quadratic variation of
√

S̄(δ∗) is the GOP time, that is
〈√

S̄(δ∗)
〉

t
=

〈√
X

〉
ϕ(t)

= ϕ(t) (3.15)

for all t ∈ [0, T ]. Figure 2 shows the approximate quadratic variation of the
square root of the discounted MSCI for the period from 1970 until 2003. This
is a proxy for the GOP time ϕ(t) by (3.15). One notes that the GOP time is
monotonically increasing and does not appear to fluctuate greatly. By (3.7) and
(3.15) it follows that the discounted GOP drift, see (3.5), is proportional to the
slope of the GOP time. This allows us to formulate the following result.

Corollary 3.1 The discounted GOP drift is equal to four times the slope of
the quadratic variation of the square root of the discounted GOP, that is

α(t) = 4
d

dt

〈√
S̄(δ∗)

〉
t

(3.16)

for t ∈ [0, T ].

This is a fundamental relationship that links the market trend with the overall
market fluctuations. Note that we have not made any major assumptions on the
dynamics of the market. We have merely parameterized the GOP dynamics by
using the discounted GOP drift. As a consequence of Corollary 3.1 and (3.6) it
follows that the increase in the expected discounted GOP must equal four times
that of the expected increase of the GOP time. More precisely, we obtain the
following result, where we refer to (3.7) and (3.15) with respect to the GOP time
ϕ(t).
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Figure 2: Approximate quadratic variation 〈
√

S̄(δ∗)〉h,t.

Corollary 3.2 Under the assumption that the driftless process M = {M(t) =
S̄(δ∗)(t)− 4 ϕ(t), t ∈ [0, T ]} is an (A, P )-martingale we have the relation

E
(
S̄(δ∗)(s)

∣∣At

)
= S̄(δ∗)(t) + 4

{
E(ϕ(s)

∣∣At)− ϕ(t)
}

(3.17)

for t ∈ [0, T ].

The martingale assumption on M is a rather modest requirement and is likely
to be satisfied for real markets. Corollary 3.2 can be interpreted as a law for
the conditional expected future value of the discounted world stock index. To
illustrate this we plot in Figure 3 the logarithm of the discounted MSCI, that
is log(S̄(δ∗)(t)), together with the logarithm of the sum of the initial discounted

MSCI plus four times the observed GOP time, that is log(S̄(δ∗)(0) + 4 〈
√

S̄(δ∗)〉t).
Based on this figure and analysis the market was probably undervalued from
about 1974 until 1986. Market prices seem to have been almost right during
the following nine years but were overvalued from 1995 until about 2000 when
the new technology bubble burst and global recessionary forces emerged. It is
interesting to note that the overall market now seems to have become slightly
undervalued in the first part of 2003.

Corollary 3.2 provides a fundamental relationship that permits us to quantify the
expected evolution of the world stock index if one assumes that the GOP time
would behave in a similar manner to what it did in the past. One must emphasize
that this general relationship is simply a consequence of the structure of the
discounted GOP and does not require any further assumptions or conditions.
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Figure 3: Logarithm of discounted and expected MSCI.

3.3 Normalized GOP

As shown in Figure 2 the GOP time ϕ(t) appears to be fairly smooth and does not
fluctuate greatly. For this reason we further parameterize the discounted GOP
drift α(t) in the form

α(t) = α0 exp

{
η

∫ t

0

m(s) ds

}
m(t) (3.18)

for t ∈ [0, T ], α0 > 0. Here η is the net growth rate of the market. For simplicity,
we assume that it is a constant. The net growth rate captures the average growth
of the discounted GOP drift. In addition, we call the factor m(t) appearing
in (3.18) the market activity at time t, which can be modeled by an adapted
stochastic process that fluctuates around the value one.

Furthermore, we introduce the normalized GOP Y (t) at time t, which is set
equal to the discounted GOP expressed in units of the discounted GOP drift, but
without the market activity m(t). That is we define

Y (t) =
S̄(δ∗)(t)

α0

exp

(
−η

∫ t

0

m(s) ds

)
(3.19)

for t ∈ [0, T ]. It is straightforward to see by application of the Itô formula and
using (3.19) and (3.6) that Y (t) satisfies the SDE

dY (t) = η

(
1

η
− Y (t)

)
m(t) dt +

√
Y (t) m(t) dŴ (t) (3.20)

12



for t ∈ [0, T ] with initial value

Y (0) =
S̄(δ∗)(0)

α0

. (3.21)

The normalized GOP is a square root process, which inherits the dimension four
from the squared Bessel process S̄(δ∗). The process Y is determined by its initial
value Y (0), the net growth rate η and the market activity m(t) for t ∈ [0, T ]. The
square root of this process satisfies by application of the Itô formula and (3.20)
the SDE

d
(√

Y (t)
)

=

(
3

8
√

Y (t)
− η

2

√
Y (t)

)
m(t) dt +

√
m(t)

2
dŴ (t) (3.22)

for t ∈ [0, T ]. Since the diffusion coefficient in (3.22) equals 1
2

√
m(t), we obtain

the following representation for the market activity

m(t) = 4
d

dt

〈√
Y

〉
t

(3.23)

for t ∈ [0, T ]. Equation (3.23) is evidently a powerful relationship that allows us
to observe and calibrate the market activity through the quadratic variation of√

Y (t).

4 Volatility of the World Stock Index

In the following let us check whether the MSCI can be reasonably calibrated
by using the previously introduced parametrization. For simplicity, we assume
constant market activity m(t) = 1. From equation (3.16) it follows by (3.18) that

α0 = 4
d

dt

〈√
S̄(δ∗)

〉
0
. (4.1)

The estimated value of α0 = 10.5 is obtained from the slope of the curve shown in
Figure 2. Let us also estimate the value of the net growth rate η. By application of
the Itô formula we obtain from (3.6) and (3.5) for the logarithm of the discounted
GOP the SDE

d log(S̄(δ∗)(t)) =
1

2
|θ(t)|2 dt + |θ(t)| dŴ (t) (4.2)

for t ∈ [0, T ]. Thus, for the period [t, s], we get from (4.2) and (3.5) for the
discounted GOP the growth rate

ḡδ∗
t,s =

1

s− t
E

(
log

(
S̄(δ∗)(s)

S̄(δ∗)(t)

) ∣∣∣∣At

)
=

1

2 (s− t)

∫ s

t

E
(
|θ(z)|2

∣∣∣At

)
dz (4.3)

for t ∈ [0, T ] and s ∈ [t, T ]. The explicitly known transition density for the
squared Bessel process X of dimension four can now be employed to compute the
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expectation of the squared GOP volatility |θ(t)|2 = α(t)
X (ϕ(t))

, see (3.5). We then

obtain from (4.3), as shown in Appendix B, the limit

lim
ε→∞

ḡδ∗
t,t+ε = η. (4.4)

Thus, it follows from (4.4) for m(t) = 1 that the net growth rate η equals the
long-term average growth rate of the discounted GOP.

The long-term history from 1900 until 2000 of an inflation adjusted market cap-
italization weighted world stock index was reconstructed in Dimson, Marsh &
Staunton (2002) and provided a net growth rate estimate of about η = 0.048.
With this parameter estimate and the previously obtained parameter α0 = 10.5
we can now calculate the corresponding trajectory of the normalized MSCI Y (t),
see (3.19), which is shown in Figure 4.
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Figure 4: The normalized MSCI Y (t).

One notes that the normalized MSCI behaves in a similar manner to the dis-
counted MSCI plotted in Figure 1, but the long-term exponential growth is no
longer present. From the estimated value of the net growth rate and the SDE
(3.20) it is clear that the long-term average value of the normalized GOP Y (t)
is about 1

η
= 20.8. It can be seen that this level was approximately attained for

the years 1996 and 2001. Note that the speed of adjustment parameter η = 0.048
is rather low. Consequently, the expected half-life of a shock on the normalized
MSCI Y is about log(2)

η
= 14.4 years. This finding is supported by the trajectory

displayed in Figure 4. For the constant parameter settings considered here, the
volatility |θ(t)| of the discounted GOP equals, according to relations (3.5) and
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(3.19), the inverse of the square root of the normalized GOP, that is

|θ(t)| =
√

1

Y (t)
. (4.5)

Consequently, according to this analysis, the volatility is a very slowly mean-
reverting process. For the period 1970 until 2003 the volatility of the MSCI
is shown in Figure 5. Inspection of this plot indicates that the volatilities are
contained within the interval [0.15, 0.45].
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0.4

0.45

1970 1980 1990 2000

time

Figure 5: Volatility |θ(t)| of MSCI.

A comparison of the volatility shown in Figure 5 with that of the discounted
GOP shown in Figure 1 reveals a strong negative correlation, which is due to the
fact that the squared volatility is proportional to the inverse of the normalized
MSCI. This feature reflects the well-known leverage effect, see Black (1976), that
is characteristic of stock market indices.

The approximate quadratic variation of the square root of the normalized MSCI√
Y (t) is displayed in Figure 6. The quadratic variation shown is quite linear

with an approximate slope of 1
4
. This corresponds to the average slope suggested

in (3.7). One could now model the market activity process m = {m(t), t ∈ [0, T ]}
to obtain greater modeling precision. The exponential of an Ornstein-Uhlenbeck
process with strong mean reversion and some superimposed seasonal pattern is a
good candidate for a model of the market activity. However, it is apparent that
even for constant parameters the above described benchmark model reflects quite
well the overall market behaviour.

The approximate linearity of 〈√Y 〉t with slope 1
4

indicates by application of Lévy’s
theorem, see Karatzas & Shreve (1991), that the diffusion term of the square root
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of the normalized GOP is approximately one-half of a standard Wiener process.
This is an important empirical fact. It suggests that the volatility of the GOP is
in reality close to the inverse of the square root of a four dimensional square root
process, see (4.5) and (3.20). This kind of stochastic volatility is significantly
different from a deterministic function of time, as used by the standard Black-
Scholes model.
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Figure 6: Quadratic variation 〈√Y 〉h,t of square root of normalized MSCI for
constant parameters.

An important fact to consider here is that we have modeled and calibrated the
evolution of the discounted GOP, see (3.1), in units of a US Dollar savings account.
This provides us with information about the evolution of the value of the US
Dollar savings account relative to the world stock index. Of course, it is possible
to apply the above analysis for any other primary security account and portfolio.
This results in a characterization of the evolution of the value of securities with
respect to the world stock index, which will be described in a forthcoming paper.
In particular, the seasonal and stochastic components in the market activity will
be identified and modeled using intraday data.

Conclusion

The paper derives a general relationship between the expected value of a dis-
counted world index and the quadratic variation of its square root. The volatility
of the world index is modeled by the inverse of a square root process of dimension
four. The approach can be generalized by using a stochastic market activity. This
analysis applies to all denominations of a diversified world index. Future research
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will focus on modeling stochastic market activity and the incorporation of jumps
in primary security accounts.

A Appendix

Proof of Proposition 2.4:

We estimate by using (2.25), (2.18) and (2.23) for a DP S(δ) in a regular bench-
mark model its expected tracking rate. That is

ed
δ(t) = E

(
Rd

δ(t)
) ≤

d∑

k=1

E




(
d∑

j=0

|π(j)
δ (t)| |σj,k(t)|

)2



≤
d∑

k=1

(
(K1)

2

d1+2K2
K4

)

≤ (K1)
2 K4 d−2K2

for t ∈ [0, T ], where d ∈ {K3, K3 + 1, . . .}. Consequently, since K2 > 0 it follows
by the Markov inequality for any given ε > 0 that

lim
d→∞

P
(
Rd

δ(t) > ε
) ≤ lim

d→∞
1

ε
ed

δ(t) = 0

for all t ∈ [0, T ]. This proves by Definition 2.3 the Proposition 2.4. ¤

B Appendix

Proof of relation (4.4):

By application of the transition density for a squared Bessel process, see Revuz
& Yor (1999), we obtain

E(X(ϕ)−1) = X(0)−1

(
1− exp

(−X(0)

2 ϕ

))
.

Thus with ϕ(t) = 1
4

∫ t

0
α0 exp(−η s)ds and Y (t) = X(ϕ(t))

α0 exp(ηt)
we get

E
(
(Y (t))−1

)
= (Y (0))−1 exp(−η t)

(
1− exp

(
−Y (0) α0

2 ϕ(t)

))
.

Therefore
lim
t→∞

E
(|θ(t)|2) = lim

t→∞
E

(
(Y (t))−1

)
= 2 η

proves the limit condition (4.4). ¤
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