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Abstract

Variable annuities (VAs) represent a marked change from earlier life

products in the guarantees that they offer and it is no longer possible

to manage the risks of these liabilities using traditional actuarial meth-

ods. Thinking about guarantees as options suggests applying risk neutral

pricing in order to value the embedded guarantees, such as guaranteed

minimum death benefits (GMDBs). However, due to the long maturities

of contracts, stochastic volatility and many other reasons, VA markets are

incomplete. In this paper we propose a methodology for pricing GMDBs

under a benchmark approach which does not require the existence of a

risk neutral probability measure. We assume that the insurance company

invests in the growth optimal portfolio of its investment universe and ap-

ply real world pricing rather than risk neutral pricing. In particular, we

consider the minimal market model and conclude that in this setup the

fair price of a roll-up GMDB is lower than the price obtained by applying

standard risk neutral pricing. Moreover, we take into account rational as

well as irrational lapsation of the policyholder.
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1 Introduction

Variable annuities are insurance contracts which are designed to provide pay-
ments to the policyholder, usually after some specified deferment period. Unlike
the traditional fixed annuities, variable annuities are fund-linked, i.e. their ben-
efits are based on the performance of a portfolio of securities, which usually
consists of equities and bonds.

Variable annuities are appealing to policyholders, not only because they
are tax-deferred, but in particular because usually insurers include different
types of guarantees and thus provide some protection against the downside
movements in the market. Until the beginning of the 1990’s these guarantees
were simple guaranteed minimum death benefits (GMDB), meaning a return of
the maximum of the account value and the invested premiums. However, due to
the strong bullish market at that time, insurance companies started to design
GMDBs with special features, such as roll-ups (original investment accrued at
a pre-defined interest rate) or ratchets (death benefit based upon the highest
anniversary - usual annual - account value). Therefore, no longer is it just the
behaviour of the policyholder that the insurance company must worry about,
but the behaviour of the implied options within VAs, and modern techniques
have to be used to build advanced financial models of the embedded options.
Particularly, insurers are faced with the challenging task of hedging against
market downturn (and simultaneous occurance of death).

As the GMDB can be viewed as a put, floating put and/or look-back put op-
tion, respectively, risk managers apply option pricing theory to price and hedge
the embedded guarantees in variable annuities ([3]). Provided that the number
of policyholders is large enough, it is assumed that the market is complete under
mortality risk and the option price is equal to the expected value of the payoff
with respect to a risk neutral probability measure. However, as soon as one al-
lows for e.g. stochastic volatility, the financial market becomes incomplete and
a unique equivalent martingale measure for the equity price does not necessarily
exist. Consequently, there is no obvious best choice when trying to find a price
of the option.

In general, one problem that one often encounters when modeling life in-
surance contracts are the long maturities of these contracts. Furthermore, the
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choice of the dynamics of the underlying makes substantial differences in prices
of contracts. In this paper we assume that the market is complete under mor-
tality risk (enough policies were sold), but incomplete under financial risk, e.g.
due to discrete hedging (as a consequence of high transaction costs), stochastic
volatility and/or the non-existence of a continuum of standard options as liquid
hedge instruments.

Since there might not exist a unique equivalent risk neutral probability mea-
sure, in this paper we study the pricing and hedging of GMDB options under a
benchmark approach as described in [9]. The pricing and hedging of derivatives
under this approach does not require the existence of an equivalent risk neutral
probability measure, but leads to a unique fair price, namely the minimal price,
which is calculated by using real world expectations. We will show that for con-
tingent claims with long term to maturity this may provide significantly lower
prices than suggested under the classical approach. For insurance and finance
a discrete time version of this benchmark approach has been considered in [1].

Applying the benchmark approach we work with local volatility models.
This means that volatility is allowed to change as a function of the underlying
security and time. One particular local volatility model we focus on is the
minimal market model (MMM) described in [9]. Here the index dynamics follow
a time-transformed squared Bessel process.

While it is possible to assume that the holder of an option in the financial
markets will react rationally to its changing value, the same cannot always be
said of the behaviour of policyholders towards the value of the options embedded
in their variable annuity (VA) policies. The assumption of full and unconditional
rationality in the behaviour of option investors cannot be transferred directly to
the insurance market. Consequently, like with conventional insurance products
one needs to make policyholder behaviour forecasts based on historical data.
However, data of VA contracts on which to make forecasts with any certainty
is very limited and moreover, lapsation rates will be sensitive to a wide range
of market factors. We will show how in our financial model one can take into
account rational but also irrational lapsation.

This paper focuses on the pricing and hedging of GMDBs with a roll-up
feature. Guaranteed minimum living benefits, such as guaranteed minimum
accumulation benefits (GMAB), guaranteed minimum income benefits (GMIB)
and the rather complex guaranteed minimum withdrawal benefits (GMWB) will
be considered in forthcoming work.

The article is organized as follows. In Section 2 we introduce the roll-up
GMDB product we are going to price later. Then in Section 3 we introduce
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the financial market under the benchmark approach. In particular, we define
the growth optimal portfolio (GOP), local volatility models and as a special
case discuss the MMM in further detail. Since for the MMM an equivalent risk
neutral probability measure does not exist, we cannot apply risk neutral pricing.
Therefore, in Section 4 we consider real world pricing under the benchmark
approach and derive fair prices which are minimal prices, as well. Finally, in
Section 5 we show how the roll-up GMDB of Section 2 can be priced in a fair
way taking into consideration rational as well as irrational lapsation.

2 The Product

The VA product we consider in this paper contains a GMDB that guarantees
a return of at least the original invested premium compounded at some annual
growth rate g, i.e. the payout to the policyholder is

max(egτAV0, AVτ ). (2.1)

Here the time of death τ is a random variable, g ≥ 0 is the guaranteed instan-
taneous growth rate, AV0 is the initial account value, i.e. the invested principal
and AVτ is the value of the policyholder’s account at the time of death τ .

At time t = 0 the insurance company invests the premium AV0 in a fund V0

and we suppose that the insurer continuously deducts insurance charges ξ ≥ 0
from the fund V , i.e. at time t ≥ 0 the policyholder’s account value satisfies
AVt = e−ξtVt and thus we have

max(egτAV0, AVτ ) = max(egτV0, e
−ξτVτ )

= e−ξτ max(e(g+ξ)τV0, Vτ ).

In practice typical values for ξ are about 2%.
Note that rational investors will lapse when the embedded put-options are

out of the money (OTM), but have to pay surrender charges.
Moreover, unlike standard financial options, GMDBs have stochastic matu-

rity but are exercised involuntarily, i.e. they are triggered by involuntary death.
This is the reason why in the literature they are refered to as Titanic options
(see [8] ).

Thus, the payoff Ht at time t of a variable annuity contract containing a
roll-up GMDB option as above can be described as

Ht =

(1− βt)AVt, if lapsed at time t,

max(egτAV0, AVτ ), if death occurs at time t = τ.
(2.2)
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Here βt is the surrender charge at time t. Usually, the surrender charge is a
piecewise step function, e.g.

βt =

(8− dte)%, t ≤ 7,

0, t > 7,

where dxe = min{n ∈ Z |x ≤ n} is the ceiling function which returns the
smallest integer not less than x.

We remark that in this paper we do not consider credit risk and assume that
there is no accumulation phase.

3 The Financial Model

We work on a filtered probability space (Ω,AT ,A, P ) with filtration A =
(At)t∈[0,T ], satisfying the usual conditions, where At denotes the market in-
formation that is available at time t ∈ [0, T ] and P denotes the real world prob-
ability measure. Here T ∈ [0,∞) is some final time point, e.g. the maximum
term of the insurance contract.

For simplicity, we consider a market that contains only one underlying risky
security with price process S = {St}t∈[0,T ] which satisfies the stochastic differ-
ential equation (SDE)

dSt = (µt − γ)Stdt + σtSt dWt, t ∈ [0, T ], (3.3)

with S0 > 0. Here µt is the drift, σt is the volatility, W = {Wt}t∈[0,T ] is a stan-
dard Brownian motion and γ ≥ 0 models the management fee rates deducted
from the underlying St on a continuous basis. Hence a payment γ St flows to
the insurer per unit of continuous time.

Furthermore, we model the riskless savings account process B = {Bt}t∈[0,T ]

by
dBt = rtBt dt, t ∈ [0, T ], (3.4)

where B0 = 1 and r = {rt}t∈[0,T ] is the (adapted) short rate process.
Now, introducing the so-called market price of risk

θt =
µt − γ − rt

σt
,

the SDE of the risky asset can be rewritten as

dSt

St
= rt dt + σtθt dt + σt dWt.

We consider in our financial market only strategies that are self-financing.
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Definition 1 A financial strategy δ = {δt = (δ0
t , δ1

t )>}t∈[0,T ] is called a self-

financing strategy if δ is predictable,
t∫
0

δ0
s dBs < ∞,

t∫
0

δ1
s dSs < ∞ a.s. and for

all t ∈ [0, T ]
dVt = δ0

t dBt + δ1
t dSt, (3.5)

where
Vt = δ0

t Bt + δ1
t St, t ∈ [0, T ]

is the portfolio value.

Then, investing δ0
t units in the riskless savings account at time t and δ1

t units
in the underlying security, we can define the corresponding fractions

π0
t = δ0

t

Bt

Vt
, π1

t = δ1
t

St

Vt
.

Obviously, these fractions add up to one, i.e.

π0
t + π1

t = 1

and the instantaneous portfolio return satisfies

dVt

Vt
=

1
Vt

(
δ0
t dBt + δ1

t dSt

)
= π0

t

dBt

Bt
+ π1

t

dSt

St

= (1− π1
t )rt dt + π1

t rt dt + π1
t (σtθt dt + σt dWt)

= rt dt + π1
t σt(θt dt + dWt).

Now, denote by V the set of all nonnegative portfolios and by V+ the set
of all strictly positive portfolios V . The growth optimal portfolio (GOP) V ∗

is said to be the portfolio which maximizes expected log-utility from terminal
wealth, i.e. V ∗ = max

V ∈V+
E(log VT ) for all strictly positive portfolios V ∈ V+. An

application of Itô’s formula gives

d log Vt = Gt dt + π1
t σt dWt

with growth rate

Gt = rt + π1
t (µt − γ − rt)−

1
2
(π1

t )2σ2
t , t ∈ [0, T ].

Then in the sense of Platen ([9]) we have the following definition.
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Definition 2 V ∗ ∈ V+ is a GOP if for all t ∈ [0, T ] and V ∈ V+

G∗t ≥ Gt a.s.

The proof of the following proposition can be found in Platen ([9]), p. 373.

Proposition 3 The GOP V ∗ is uniquely determined up to the initial value
V ∗0 > 0. The optimal fractions are

π1∗
t =

µt − γ − rt

σ2
t

=
θt

σt
, π0∗

t = 1− π1∗
t .

Therefore, the optimal growth rate is G∗t = rt + 1
2θ2

t ≥ Gt and the GOP satisfies
the SDE

dV ∗t
V ∗t

= rt dt + θt(θt dt + dWt), t ∈ [0, T ]

with V ∗0 > 0.

Remark 4 (i) The GOP is defined in a pathwise sense and does not require
any conditional expectation. In particular, the existence of an equiva-
lent risk neutral probability measure, as needed under the risk neutral
approach, is not required.

(ii) The growth rate characterizes the long term behaviour of a portfolio in
the sense that

lim
T→∞

1
T

log VT −
T∫

0

Gt dt

 = 0 a.s.

(iii) The GOP is the best performing portfolio in the sense that a.s.

lim sup
T→∞

1
T

log
(

V ∗T
V ∗0

)
≥ lim sup

T→∞

1
T

log
(

VT

V0

)
, ∀V ∈ V+,

where lim sup
T→∞

1
T log

(
VT

V0

)
is the long term growth rate of V . This means

that no strictly positive portfolio outperforms pathwise in the long run
the growth optimal portfolio, that is, after sufficiently long time.

We refer to Platen ([9], Theorem 10.5.1) for a proof.

The GOP plays the central role in real world pricing under the benchmark
approach. In the following section we will consider this pricing approach in
further detail.
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4 Real World Pricing

At time t, we call a price Ut that is expressed in units of the GOP, i.e. Ût = Ut

V ∗
t

a
benchmarked price. It is important to note that under the benchmark approach
all nonnegative benchmarked porfolios are (A, P )-supermartingales (see [9]),
which means they have zero or negative trends.

This supermartingale property guarantees the absence of arbitrage in the
following sense (see [9], Chapter 10).

Definition 5 (Arbitrage) A nonnegative portfolio V ∈ V is an arbitrage if

V0 = 0 a.s. and P (Vτ > 0) > 0

at a later bounded stopping time τ > 0.

In particular, Platen’s no-arbitrage criterion is weaker than the usual NFLVR
criterion (see [2]). Hence, some financial market models that exclude arbitrage
in the sense of Platen may not admit the existence of an equivalent risk neutral
probability measure. We will see that this holds true for the minimal market
model.

Definition 6 Benchmarked securities that form martingales are called fair.

This means that we call a price process fair, when its current benchmarked
value is the best forecast of its future benchmarked values.

Remark 7 (Fair prices are minimal prices) Consider a nonnegative
fair portfolio V ∈ V and let V ′ ∈ V be a second nonnegative portfolio such
that Vτ = V ′τ a.s. at some bounded stopping time τ . Then it follows by the
supermartingale property of benchmarked nonnegative portfolios that for all
t ∈ [0, T ]

Vt∧τ ≤ V ′t∧τ a.s.

Hence, even if there are other portfolios that generate the same future payoff,
they will have an initial value above that of the fair portfolio.

Since nonnegative portfolios when expressed in units of the GOP are super-
martingales, the GOP is strongly related to the so-called numeraire portfolio
which was originally introduced by Long ([7]).

Remark 8 (Relation between numeraire portfolio and GOP)
The numeraire portfolio (see [7]) is defined to be the strictly positive portfolio
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which generates a wealth process V δ which makes the relative wealth processes
Vt

V δ
t

of all other nonnegative portfolios denominated in units of it supermartin-
gales under the real world probability measure P . In particular, if the nu-
meraire portfolio exists, then it is growth-optimal in the sense that it maximises
the growth rate of all non-negative portfolios, i.e. in this case the numeraire
portfolio and the GOP are the same.

We will now consider the pricing of contingent claims under the real world
probability measure P . In particular, we introduce the following real world
pricing.

Definition 9 Let Hτ be a nonnegative payoff of a contingent claim with matu-
rity τ ∈ [0, T ], where

E

[
Hτ

V ∗τ
| At

]
< ∞

for all t ∈ [0, τ ]. Then the fair price UH(t) of Hτ at time t ∈ [0, τ ] is

UH(t) = V ∗t E

[
Hτ

V ∗τ
| At

]
, t ∈ [0, τ ]. (4.6)

Note that here the conditional expectation is taken under the real world prob-
ability measure P and the GOP is the numeraire. No change of probability
measure is necessary.

It is shown in [9] that for the fair benchmarked price ÛH(t) = UH(t)/V ∗t in
a complete market a corresponding self-financing hedge portfolio can be con-
structed which perfectly replicates the contingent claim. By Remark 7 it turns
out that the fair portfolio that matches the contingent claim at maturity is the
minimal replicating portfolio.

A natural question that arises is how real world and risk neutral pricing
are related. In order to answer this question we need the following propostion
which can be found in e.g. [4]. We denote by a numeraire any strictly positive,
non-dividend paying asset.

Proposition 10 Assume V ∗ is a numeraire under the measure P such that
the price of any benchmarked payoff H/V ∗τ is a martingale under P , i.e. is the
fair price. Let D be an arbitrary numeraire such that when D is benchmarked
it forms a martingale. Then there exists a probability measure QD such that
any payoff normalized by D is a martingale under QD. The Radon-Nikodym
derivative defining the measure QD is given by

dQD

dP

∣∣∣∣
Aτ

=
DτV ∗0
D0V ∗τ

.
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In standard risk neutral pricing the numeraire is the riskless savings account,
i.e. Dt = Bt, the market is complete and the benchmarked savings account is
assumed to be a martingale. Hence, the candidate Radon-Nikodym derivative
process Λ = {Λt}t∈[0,T ] for risk neutral pricing is given by

Λt =
dQ

dP

∣∣∣∣
At

=
BtV

∗
0

B0V ∗t
.

Since in general, the benchmarked savings account is only an (A, P )-super-
martingale, we have

1 = Λ0 ≥ E[Λτ | A0]. (4.7)

Using this inequality we obtain from the real world pricing formula

UH(0) = E

[
V ∗0
V ∗τ

Hτ | A0

]

= E

[
Λτ

B0

Bτ
Hτ | A0

]
≤

E
[
Λτ

B0
Bτ

Hτ | A0

]
E[Λτ | A0]

.

In the special case when Λτ is a martingale, then E[Λτ | A0] = 1 and by Bayes’
rule

UH(0) = EQ

[
B0

Bτ
H | A0

]
,

which is the risk neutral pricing formula with conditional expectation under
the risk neutral probability measure Q. Consequently, if the Radon-Nikodym
derivative Λt = dQ

dP

∣∣∣
At

= BtV
∗
0

B0V ∗
t

is an (A, P )-martingale, then the risk neutral

price equals the fair price. Thus, the concept of fair pricing generalizes that of
risk neutral pricing, however, only when the benchmarked savings account is a
martingale under P .

Example 11 Assuming a deterministic short rate {rt}t∈[0,T ], the fair price at
time t of a zero coupon bond with maturity T is

P (t, T ) = V ∗t E

[
1

V ∗T
| At

]
= exp

−
T∫

t

rs ds

E

[
V̄ ∗t
V̄ ∗T

| At

]
, (4.8)

where V̄ ∗ denotes the discounted GOP. Obviously, the benchmarked zero coupon
bond price

P̂ (t, T ) =
P (t, T )

V ∗t
= E

[
1

V ∗T
| At

]
is an (A, P )-martingale.
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Recall from Proposition 3 that

V ∗t = V ∗0 exp


t∫

0

(
rs +

θ2
s

2

)
ds +

t∫
0

θs dWs

 .

Therefore,

P (t, T ) = exp

−
T∫

t

rs ds

E

exp

−
T∫

t

θ2
s

2
ds−

T∫
t

θs dWs

 | At

 .

In particualar, this shows that if the candidate Radon-Nikodym derivative is a
strict supermartingale then

P (t, T ) < exp

−
T∫

t

rs ds

 =
Bt

BT
.

The concept of real world pricing does not only generalize risk neutral pricing
but also actuarial pricing, as the following remark shows.

Remark 12 In the important case when the contingent claim Hτ is indepen-
dent of V ∗τ and τ = T is fixed, i.e. Hτ = HT = H, one obtains from the real
world pricing formula (4.6) the actuarial pricing formula

UH(t) = P (t, T )E[H | At], t ∈ [0, T ]

with the zero coupon bond P (t, T ) = V ∗t E
[

1
V ∗

T
| At

]
. This provides a bridge

between actuarial and real word pricing.

From now on, in this paper it is assumed that the underlying risky asset
S is a diversified accumulation index that approximates the GOP V ∗. This
assumption is supported by a result in [9], where it is shown that the GOP
is approximated by any well-diversified accumulation index. For example in
the case of the world stock market one can use the MSCI accumulation world
stock index as proxy for the GOP. Therefore, we interpret the GOP V ∗ as the
accumulation index of the market.

Moreover, for the remainder of this paper we assume that the time t value
of the GOP V ∗t follows a local volatility (LV) model, i.e. it satisfies an SDE of
the form

dV ∗t
V ∗t

= (rt + σ2(t, V ∗t )) dt + σ(t, V ∗t ) dWt, t ∈ [0, T ] (4.9)
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for fixed initial value V ∗0 > 0. This is equivalent to assuming

θt = σ(t, V ∗t ) > 0

for the market price of risk.
Note that we suppose that the local volatility function σ : [0, T ]× (0,∞) →

(0,∞) is such that a unique strong solution of the SDE (4.9) exists.

Example 13 If
σ(t, V ∗t ) = (V ∗t )α−1ϕ

for some constant α < 1 and scaling parameter ϕ > 0, then the resulting LV
model is the modified CEV model considered in [6]. It is well-known that the
modified CEV model does not allow for an equivalent risk neutral probability
measure and thus risk neutral pricing is not applicable.

The LV model we are going to work with within this paper is the so-called
minimal market model (MMM), described in [9]. The MMM interpretes the
GOP as the accumulation index of the market and hence supposes that the
drift of the GOP provides a link to the long term growth of the macro economy.

Now, introducing the discounted GOP

V̄ ∗t =
V ∗t
Bt

, t ∈ [0, T ]

and applying Itô’s rule one obtains that its value satisfies

dV̄ ∗t
V̄ ∗t

= θt (θt dt + dWt) , t ∈ [0, T ].

The drift of the discounted GOP equals, therefore, α∗t := V̄ ∗t θ2
t and its

volatility is

θt =

√
α∗t
V̄ ∗t

, t ∈ [0, T ].

Thus, if the index increases, then the volatility decreases. This provides a
natural explanation for the leverage effect (negative correlation between index
value and volatility), which is often encountered in practice.

Since historical records suggest that the world economy (in a long-term
sense) has been growing exponentially, we assume that the discounted GOP
drift is an exponentially growing function of time and model α∗t as

α∗t = α0 exp{ηt}, t ∈ [0, T ], (4.10)

with scaling parameter α0 > 0 and net growth rate η > 0.
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Now, the next step is to introduce the normalised GOP

Yt =
V̄ ∗t
α∗t

, t ∈ [0, T ].

Then applying the Itô formula again, it follows

dYt = (1− ηYt) dt +
√

Yt dWt, Y0 =
V̄ ∗0
α0

. (4.11)

Hence, for working with the MMM, one only needs to specify initial values V̄ ∗0 ,
α0 and η > 0. Furthermore, in the MMM the discounted GOP is the product
of a square root process and an exponential function.

Remark 14 For the transformed time (see [9] for details), given by

ϕ(t) =
1
4

t∫
0

α∗s ds =
α0

4η

(
eηt − 1

)
, t ∈ [0, T ],

it can be shown that

ϕ(t)− ϕ(0) =
[√

V̄ ∗
]

t
, t ∈ [0, T ].

Since the quadratic variation of the square root of the GOP is an observable
quantity, the transformed time is observable. This result can be used for cali-
bration of α0 and η if we take a world stock index as a proxy for the GOP.

Remark 15 Note that

σ(t, V ∗t ) =
1√
Yt

, t ∈ [0, T ]. (4.12)

Consequently, the volatility of the GOP is propotional to the inverse square root
of a square root process. Therefore, the MMM is characterized by a volatility
that has a stationary density. This is a particular feature of the MMM, which
most other local volatility models do not share. For instance, for the CEV model
the volatility is a fixed function of the index and thus - similar to the index -
changes its average value over long periods of time drastically.

Figure 1 displays a trajectory of a simulated GOP under the MMM for
η = 0.05, α0 = 0.05, constant r = 0.05 and Y0 = 20. To visualize the negative
correlation of the GOP with its volatility, i.e. the leverage effect, we also plot
the corresponding local volatility σ(t, V ∗t ).
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Figure 1: Simulated trajectory of volatility and the corresponding GOP under the MMM for

η = 0.05, α0 = 0.05, r = 0.05 and Y0 = 20.

Example 16 (Zero coupon bond under the MMM) For simplicity, we as-
sume in this example that the short rate rt is again deterministic and the net
growth rate η is constant. Since it can be shown, see [9], that the first negative
moment of a squared Bessel process of dimension δ = 4 has the form

E
[
(V̄ ∗T )−1 | At

]
= (V̄ ∗t )−1

(
1− exp

{
− V̄ ∗t

2(ϕ(T )− ϕ(t))

})
,

we obtain under the MMM by (4.8) the price of the fair zero coupon bond as

P (t, T ) = exp

−
T∫

t

rs ds


(

1− exp
{
− V̄ ∗t

2(ϕ(T )− ϕ(t))

})
(4.13)

for t ∈ [0, T ). Hence, P (t, T ) < Bt

BT
which means that for the MMM the fair zero

coupon bond has a lower price than the savings bond Bt

BT
. This demonstrates that

the MMM does not have an equivalent risk neutral probability measure and the
candidate Radon-Nikodym derivative Λ is here a strict (A, P )-supermartingale.

Since we have just seen that an equivalent risk neutral probability measure
does not exist for the MMM, we shall apply the real world pricing formula to
obtain derivative prices and do not rely on risk neutral pricing.

Using the results above, the fair price p(t, V ∗t , τ, K, r) of a European put
option with strike K and maturity τ ∈ [0, T ] at time t, assuming a constant
short rate r is given by

p(t, V ∗t , τ, K, r) = V ∗t E

[
(K − V ∗τ )+

V ∗τ
| At

]
.
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It is furthermore shown in [9], p. 502, that this put price can be calculated
explicitly via the formula

p(t, V ∗t , τ, K, r) = −V ∗t χ2(d1; 4, l2) + Ke−r(T−t)
(
χ2(d1; 0, l2)− exp {−l2/2}

)
,

(4.14)
with

d1 =
4ηK exp{−r(T − t)}

Btα∗t (exp{η(T − t)} − 1)

and
l2 =

4ηV ∗t
Btα∗t (exp{η(T − t)} − 1)

,

where χ2(x;n, l) is the non-central chi-square distribution function with n ≥ 0
degrees of freedom and non-centrality paramter l > 0, i.e.

χ2(x;n, l) =
∞∑

k=0

exp
{
− l

2

} (
l
2

)k
k!

(
1−

Γ
(

x
2 ; n+2k

2

)
Γ
(

n+2k
2

) ) .

In comparison the put price according to formal application of the risk neu-
tral pricing rule would be of the form

p(t, V ∗t , τ, K, r) + Ke−r(T−t) exp
{
− V̄ ∗t

2(ϕ(T )− ϕ(t))

}
, (4.15)

since the discounted GOP is under the hypothetical risk neutral probability
measure Q a squared Bessel process of dimension zero. This process is absorbed
with strictly positive risk neutral probability until time T . Since the discounted
GOP follows under the real world probability measure P a squared Bessel pro-
cess of dimension four the real world probability to become absorbed until time
T is zero. This demonstrates that events that have probability zero are differ-
ent under P and Q and these probability measures are not equivalent. This
means there does not exist an equivalent risk neutral probability measure. Note
that the exponential in formula (4.15) represents the risk neutral probability to
become absorbed at zero until time T .

Remark 17 It can be seen from (4.14) that when the GOP becomes very small,
the put value also becomes small. In particular, a put price derived under the
standard risk neutral pricing rule (4.15) would be larger than the fair put price
and would under the MMM not become very small when the GOP becomes
small.
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5 Pricing a Roll-up GMDB

We shall now apply the theoretical results of the previous sections in order to
price a roll-up GMDB. For simplicity, we first assume a deterministic life time
τ = T of the policyholder. Recall from Section 2 that the payoff of a roll-up
GMDB with annual growth rate g is given by

GMDBT = max(egT AV0, AVT )

= (egT AV0 −AVT )+ + AVT , .

where AVt denotes the policyholder’s account value at time t. Here we note that
(egT AV0 − AVT )+ is nothing but a weighted European put option with strike
K = egT AV0 and underlying asset AVT , i.e. the effective exercise price of the
put option increases at a rate g for increasing T .

Now, recall that AVt = e−ξtVt, where ξ models the insurance charges which
are deducted from the fund value Vt at time t.

We suppose that the insurance company invests the entire fund value V in
the GOP of its investment universe, i.e. Vt = eξtAVt = V ∗t and thus

GMDBT = e−ξT
[
(e(g+ξ)T V ∗0 − V ∗T )+ + V ∗T

]
. (5.16)

Therefore, the fair present value GMDB0 of the total claim at time zero that
the policyholder has on the insurance company equals, according to the real
world pricing formula (4.6),

GMDB0 = V ∗0 E

[
GMDBT

V ∗T
| A0

]
. (5.17)

We emphasize again that expectation is taken under the real world probability
measure P . Consequently, under the MMM,

GMDB0 = e−ξT V ∗0

(
E

[
(e(g+ξ)T V ∗0 − V ∗T )+

V ∗T

]
+ 1
)

= e−ξT
[
p(0, V ∗0 , T, e(g+ξ)T V ∗0 , r) + V ∗0

]
, (5.18)

where p(0, V ∗0 , T, e(g+ξ)T V ∗0 , r) is given in (4.14) with K = e(g+ξ)T V ∗0 .
Figure 2 shows a comparison of the present value of a roll-up GMDB under

real world and risk neutral pricing as a function of the time to maturity and
for the growth rates g = 0 and g = 0.025, where ξ = 0.01. Obviously, the
guaranteed growth rate g increases the value of the GMDB option. Moreover,
we would like to stress that under the MMM the fair price (4.14) is always lower
than the price obtained by using the standard risk neutral pricing formula (4.15)

16



0 5 10 15 20 25 30
0.8

0.85

0.9

0.95

1

1.05

1.1

MMM

T

G
M

D
B

0

0 5 10 15 20 25 30
0.8

0.85

0.9

0.95

1

1.05

1.1

risk neutral

T

G
M

D
B

0

0 5 10 15 20 25 30
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15
Black Scholes

T

G
M

D
B

0

0 5 10 15 20 25 30
0.9

0.95

1

1.05

1.1

1.15
MMM

T

G
M

D
B

0

0 5 10 15 20 25 30
0.9

0.95

1

1.05

1.1

1.15
risk neutral

T

G
M

D
B

0

0 5 10 15 20 25 30
0.9

0.95

1

1.05

1.1

1.15
Black Scholes

T

G
M

D
B

0g=0.025

g=0

g=0.025
g=0.025

g=0
g=0

Figure 2: Present value of the GMDB under the real world pricing formula (left), the risk

neutral pricing formula (middle) and the Black Scholes formula (right) for η = 0.05, α0 = 0.05,

r = 0.05, ξ = 0.01 and Y0 = 20.

for a European put. Additionally, we show in Figure 2 also those prices obtained
under the Black and Scholes model, when the volatility is simply set to 1√

Y0
.

We note that in the long term the MMM prices are also here again lower than
comparable prices under the Black Scholes model.

Now, we assume that the lifetime τ is stochastic and independent of V ∗t .
Denote by Fτ = A0∪Gτ the joint σ-algebra generated byA0 and the information
Gτ about the outcome for the stopping time τ . Then the fair value of the GMDB
at time t = 0 is given by

GMDB0 = V ∗0 Eτ

[
E

[
GMDBτ

V ∗τ

∣∣∣∣ Fτ

] ∣∣∣∣ A0

]
. (5.19)

Here the second conditional expectation is taken with respect to A0∪Gτ , which
practically means that τ is known under this σ-algebra. Consequently, the
present value of the stochastic maturity GMDB is given by

GMDB0 =

T∫
0

(p(0, V ∗0 , t, e(g+ξ)tV ∗0 , r) + V ∗0 )e−ξtfτ (t) dt, (5.20)

where T denotes the maximum term of the contract and fτ (·) is the probability
density function of the future lifetime random variable τ . It is obvious that
for a fixed issue age, a higher value of T increases the probability that the
policyholder will die and use the embedded option.
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Example 18 Let τ denote the future lifetime random variable having distribu-
tion Fτ and density fτ .

(i) If τ is exponentially distributed, i.e. fτ (t) = λe−λt, then E[τ ] = 1
λ and the

force of mortality at time t of a policyholder aged x defined by λ(x + t) =
fτ (t)

1−Fτ (t) , is given by λ(x) = λ for all x, i.e. in this case the probability of
death is constant throughout life.

(ii) If we assume a Gompertz mortality, see [5], then we have

λ(x) =
1
b

exp
(

x−m

b

)
with modal value m and dispersion parameter b. The Gompertz speci-
fication, when calibrated to mortality tables, is very accurate at higher
ages. Note that higher ages arise usually from the demographic in mar-
kets for variable annuities. Younger investors are less likely to die when
the GMDBs are most valuable. Moreover, GMDBs are much more valu-
able for middle aged to senior investors compared to younger investors
because of the management fees charged.

Alternatively, one can use mortality tables to discretize the integral in (5.20).
This gives for a policyholder aged x at the inception of the contract

GMDB0 =
maxage −x∑

j=1

q(x; j)GMDBj
0,

where GMDBj
0 is the fair present value of a GMDB with known death date j

and can be computed by (5.18). Moreover, q(x; j) is the probability that the
death benefit option is exercised in the j-th year, i.e.

q(x; j) =
j−2∏
i=0

(1− qx+i)qx+j−1, q(x; 1) = qx.

Here we assume that policyholders do not live beyond maxage years.
Since lapsation statistics show that at least 1% of the policyholders irra-

tionally (that is non-optimally) exercise the GMDB option every year, in a last
step we will now assume an irrational lapsation rate l = 1%. Then the prob-
ability that in the years 1, . . . , j − 1, the policyholder will neither irrationally
surrender nor die is given by

pl(x; j) =
j−2∏
i=0

(1− qx+i − l), pl(x; 1) = 1.
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Figure 3: German mortality data

Hence, the GMDB present value of a person aged x assuming an annual lapsation
rate l is

GMDB0 =
maxage −x∑

j=1

pl(x; j)
[
qx+jGMDBj

0 + l(1− βj)V ∗0
]
, (5.21)

where βj is the surrender charge in year j (see (2.2)) and GMDBj
0 is again the

present value of a GMDB with maturity j.

Example 19 In this example we shall use standard mortality data shown in
Figure 3. The data shows the death probability qx (on a log-scale) for a male
(female) aged x to die within the next year, i.e. prior to age x + 1 for x =
1, . . . , 111. Moreover, we assume maxage = 111, η = 0.05, α0 = 0.05, Y0 = 20,
r = 0.05 and g = 0.025. Using formula (5.21) we calculate the present value
of the roll-up death benefit option for various ages x, assuming an irrational
lapsation rate l = 1%. Figure 4 shows the results. Our results indicate that the
death benefit options are much more valuable to senior investors compared to
middle aged and young investors. This is because older investors are more likely
to die (and exercise the embedded option) when the GMDBs are most valuable.
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Figure 4: Present value of the GMDB under the MMM for male and female policyholders

aged x, assuming an irrational lapsation of l = 1%.

Furthermore, the GMDBs are less valuable to female policyholders due to their
lower death probability.

6 Conclusion

In this paper we proposed a methodology for pricing guaranteed minimum death
benefit (GMDB) contracts under a benchmark approach, where we assumed
that the insurance company invested in the growth optimal portfolio, which
turned out to be the portfolio that maximizes expected logarithmic utility. In
particular, we replaced the classical risk neutral pricing by real world pricing,
which for contingent claims with long term to maturity (such as the guarantees
embedded in variable annuities) may provide significantly lower prices.

We showed that under the minimal market model the fair price of a roll-up
GMDB was lower than the price obtained by applying standard risk neutral
pricing. Moreover, we took into account rational as well as irrational lapsation
of the policyholder.

Further research will expand on the methodology outlined in this paper in
order to deal with more complex products (e.g. guaranteed minimum living
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benefits) and more realistic market parameters such as stochastic interest rates.
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