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� Introduction

In �nancial modelling it is sometimes the case that not all quantities� which
determine the dynamics of security prices� can be fully observed� Some of the
factors that characterize the evolution of the market are hidden� However� these
unobserved factors may be essential to re�ect in a market model the type of
dynamics that one empirically observes� This leads naturally to �lter methods�
These methods determine the distribution� called �lter distribution� of the unob�
served factors� given the available information� This distribution allows then to
compute the expectation of quantities that are dependent on unobserved factors�
for instance� derivative prices�

There is a growing literature in the area of �ltering in �nance� To mention a few
recent publications let us list Elliott 	 van der Hoek 
����
� Fischer� Platen 	
Runggaldier 
����
� Elliott� Fischer 	 Platen 
����
� Fischer 	 Platen 
����
�
Landen 
����
� Gombani 	 Runggaldier 
����
� Frey 	 Runggaldier 
����
�
Elliott 	 Platen 
����
� Bhar� Chiarella 	 Runggaldier 
����a� ����b
 and
Chiarella� Pasquali 	 Runggaldier 
����
� All these papers provide examples�
where �lter methods have been applied in the area of �nance� Such applications
involve optimal asset allocation� interest rate term structure modelling� estima�
tion of risk premia� volatility estimation and hedging under partial observation�

A key problem that arises in most �ltering applications in �nance is the deter�
mination of a suitable risk neutral equivalent martingale measure for the pricing
of derivatives� The resulting derivative prices and hedging strategies depend of�
ten signi�cantly on the chosen measure� On the other hand it is obvious that
in �ltering one has to deal with the real world probability measure� It is there�
fore important to explore alternative methods that are based on the real world
measure and allow consistent derivative pricing�

In this paper we suggest a benchmark approach to �ltering� where the bench�
mark portfolio is chosen as the growth optimal portfolio 
GOP
� see Long 
����

and Platen 
����
� The GOP has the important economic interpretation of be�
ing the portfolio that maximizes expected logarithmic utility� The dynamics
of the growth optimal portfolio depends on the degree of available information�
Given a certain information structure� one naturally obtains in this approach a
fair price system� where benchmarked prices equal their expected future bench�
marked prices� This avoids the involvement of a risk neutral equivalent martingale
measure� All resulting prices� when expressed in units of the GOP� turn out to
be local martingales under the given real world measure� In cases when bench�
marked prices are strict local martingales the benchmark approach generalizes
the standard risk neutral approach�

The paper is structured in the following way� It summarizes in Section � the
general �ltering methodology for multi�factor jump di�usion models with unob�
served factors� Section � describes the proposed �ltered benchmark model� The

�



fair pricing and hedging of derivatives is then studied in Section �� This section
also demonstrates how to quantify the reduction of the variance for derivative
prices using more information�

� Filtered Multi�Factor Models

��� Factor Model

To build a �nancial market model with a su�ciently rich structure and high com�
putational tractability we introduce a multi�factor model� This model provides
the basis for the dynamics of �nancial quantities�

We consider a multi�factor model with n � � factors z�� z�� � � � � zn� forming the
vector process

z �
n
zt �

�
z�t � � � � � z

k
t � z

k��
t � � � � � znt

��
� t � ��� T �

o
� 
���


We shall assume that not all of the factors are observed� More precisely� only the
�rst k factors are directly observed� while the remaining n� k are not� Here k is
an integer with � � k � n that we shall suppose to be �xed during most of this
paper� However� in Section ��� we shall discuss the implications of a varying k�
For �xed k we shall consider the following subvectors of zt

yt � 
y�t � � � � � y
k
t 
� � 
z�t � � � � � z

k
t 
� and xt � 
x�t � � � � � x

n�k
t 
� � 
zk��

t � � � � � znt 
�


���


with yt representing the observed and xt the unobserved factors� For instance�
yt may represent the vector of logarithms of the continuous and jump parts of
observed risky security prices�

Let there be given a �ltered probability space 
��AT �A� P 
� where A � 
At
t����T �
is a given �ltration to which all the processes will be adapted� We assume that
the observed and unobserved factors satisfy the system of stochastic di�erential

equations 
SDEs


dxt � at
zt
 dt � bt
zt
 dwt � gt�
zt�
 dmt

dyt � At
zt
 dt � Bt
yt
 dvt � Gt�
yt�
 dNt 
���


for t � ��� T � with given initial value z�� Here

w �
n
wt �

�
w�
t � � � � � w

k
t � w

k��
t � � � � � wn

t

��
� t � ��� T �

o

���


is an n�dimensional 
A� P 
�Wiener process and

vt �
�
w�
t � � � � � w

k
t

��

���


�



is the subvector of its �rst k components� The process m � fmt � 
m�
t � � � � � m

k
t �

mk��
t � � � � � mn

t 
�� t � ��� T �g is an n�dimensional 
A� P 
�jump martingale de�ned
as follows� Consider n counting processes N�� � � � � Nn having no common jumps�
These are at time t � ��� T � characterized by the corresponding vector of intensi�
ties �t
zt
 � 
��t 
zt
� � � � � �

n
t 
zt



�� where for i � f�� �� � � � � kg

�it
zt
 � ��it
yt
� 
���


This means� we assume without loss of generality that the jump intensities of the
�rst k counting processes are observed� De�ne the ith jump martingale by

dmi
t � dN i

t � �it
zt
 dt 
���


for t � ��� T � and i � f�� �� � � � � ng� Let

Nt �
�
N�

t � � � � � N
k
t

��

���


be the vector of the �rst k counting processes at time t � ��� T ��

Concerning the coe�cients in the SDE 
���
� we assume that the vectors at
zt
�
At
zt
� �t
zt
 and the matrices bt
zt
� Bt
yt
� gt
zt
 and Gt
yt
 are such that a
unique strong solution of 
���
 exists that does not explode until time T � see
Protter 
����
� We shall also assume that the k�k�matrix Bt
yt
 is invertible for
all t � ��� T �� Finally� gt
zt
 may be any bounded function and the k � k�matrix
Gt
yt
 is assumed to be a given function of yt� invertible for each t � ��� T ��
This latter assumption implies that� since there are no common jumps among
the components of Nt� by observing a jump of yt we can establish which of the
processes N i� i � f�� �� � � � � kg� has jumped�

In addition to the �ltration A� which represents the complete information� we
shall also consider the sub�ltration

�Ak � 
 �Ak
t 
t����T � � A� 
���


where �Ak
t � �fys � 
z�s � � � � � z

k
s 
�� s � tg represents the observed information

at time t � ��� T �� Thus �Ak provides the structure of the actually available
information in the market� which depends on the speci�cation of the degree of

available information k�

We shall be interested in the conditional distribution of xt� given �Ak
t � that� ac�

cording to standard terminology we call the �lter distribution at time t � ��� T ��
There exist general �lter equations for the dynamics described by the SDEs in

���
� It turns out that these are SDEs for the conditional expectations of inte�
grable functions of the unobserved factors xt� given �Ak

t � Notice that� in particular�
exp��� xt� is� for given � � �k and with � denoting the imaginary unit� a bounded
and thus integrable function of xt� Its conditional expectation leads therefore to
the conditional characteristic function of the distribution of xt� given �Ak

t � The

�



latter characterizes completely the entire �lter distribution� Considering condi�
tional expectations of integrable functions of xt is thus not a restriction for the
identi�cation of �lter equations�

The general case of �lter equations is beyond the scope of this paper� These are�
for instance� considered in Liptser 	 Shiryaev 
����
� We assume that the SDEs

���
 are such that the corresponding �lter distributions admit a representation
of the form

P
�
zk��
t � zk��� � � � � znt � zn

�� �Ak
t

�
� Fzk��t ���� �znt

�
zk��� � � � � zn

�� ��t � � � � � �qt �

����


for all t � ��� T �� This means� that we have a �nite�dimensional �lter� character�
ized by the �lter state process

� �
n
�t �

�
��t � � � � � �

q
t

��
� t � ��� T �

o
� 
����


which is an �Ak
t �adapted process with a certain dimension q � �� We shall denote

by �zkt the resulting 
k � q
�vector of observables

�zkt �
�
y�t � � � � � y

k
t � �

�
t � � � � � �

q
t

��
� 
����


which consists of the observed factors and the components of the �lter state
process� Furthermore� we assume that the �lter state �t satis�es an SDE of the
form

d�t � Ct
�zkt 
 dt � Dt�
�zkt�
 dyt 
����


with Ct
�
 denoting a q�vector valued function and Dt
�
 a 
q � k
�matrix valued
function� t � ��� T ��

There are various models of the type 
���
 that admit a �nite�dimensional �lter
with �t satisfying an equation of the form 
����
� In the following two subsections
we recall two classical such models� These are the conditionally Gaussian model�
which leads to a generalized Kalman��lter and the �nite�state jump model for x�
which is related to hidden Markov chain �lters� Various combinations of these
models have �nite�dimensional �lters and can be readily applied in �nance� as
demonstrated in the literature that we mentioned in the introduction�

Example ��� � Conditionally Gaussian Filter Model

Assume that in the system of SDEs 
���
 the functions at
�
 and At
�
 are linear
in the factors and that bt
zt
 	 bt is a deterministic function� while gt
zt
 	
Gt
yt
 	 �� This means the model 
���
 takes the form

dxt �
�
a�t � a�t xt � a�t yt

�
dt � bt dwt

dyt �
�
A�
t � A�

t xt � A�
t yt
�
dt � Bt
yt
 dvt� 
����


�



for t � ��� T � with given deterministic initial values x� and y�� Here a�t and A�
t are

column vectors of dimensions 
n� k
 and k respectively� and a�t � a
�
t � bt� A

�
t � A

�
t �

Bt
yt
 are matrices of appropriate dimensions� Recall that w is an n�dimensional

A� P 
�Wiener process and v the vector of its �rst k components�

In this case the �lter distribution is a Gaussian distribution with vector mean
	t � 
	�t � � � � � 	

�n�k�
t 
�� where

	it � E
�
xit
�� �Ak

t

�

����


and covariance matrix ct � �c��it ���i�f������� �n�kg� where

c
��i
t � E

��
x�t � 	�t

� �
xit � 	it

� �� �Ak
t

�
� 
����


The dependence of 	t and ct on k is for simplicity suppressed in our notation�
The above �lter can be obtained from a generalization of the well�known Kalman
�lter� see Chapter �� in Liptser 	 Shiryaev 
����
� namely

d	t �
�
a�t � a�t 	t � a�t yt

�
dt �

�
�btBt
yt


� � ct 
A�
t 

�
�


Bt
yt
Bt
yt

�
��

�
�
dyt �

�
A�
t � A�

t 	t � A�
t yt
�
dt
�

dct �
�
a�t ct � ct 
a�t 


� � 
bt b
�
t 


�
�
�btBt
yt


� � ct 
A�
t 

�
� �
Bt
yt
Bt
yt


�
��� ��btBt
yt


� � ct 
A�
t 

�
��o

dt�


����


where �bt is the k�dimensional vector obtained from the �rst k components of bt�
t � ��� T �� We recall that Bt
yt
 is assumed to be invertible�

Although for t � ��� T �� ct is de�ned as a conditional expectation� it follows from

����
 that if Bt
yt
 does not depend on the observable factors yt� then ct can
be computed o��line� Notice that the computation of ct is contingent upon the
knowledge of the coe�cients in the second equation of 
����
� These coe�cients
are given deterministic functions of time� except for Bt
yt
 that depends also on
observed factors� The value of Bt
yt
 becomes known only at time t� however� this
is su�cient to determine the solution of 
����
 at time t� Model 
����
 is in fact
of the type of a conditionally Gaussian �lter model� where the �lter process � is
given by the vector process 	 � f	t� t � ��� T �g and the upper triangular array of

the elements of the matrix process c � fct� t � ��� T �g with q � 
n� k
 �	��n�k��
�

�
Note by 
����
 that the matrix ct is symmetric� Obviously� in the case when
Bt
yt
 does not depend on yt for all t � ��� T �� then we have a Gaussian �lter

model�

�



Example ��� � Finite�State Jump Model

Here we assume that the unobserved factors form a continuous time� 
n � k
�
dimensional jump process x � fxt � 
x�t � � � � � x

n�k
t 
�� t � ��� T �g� which can take

a �nite number M of values� More precisely� given an appropriate time t and
zt�dependent matrix gt
zt
� and an intensity vector �t
zt
 � 
��t 
zt
� � � � � �

n
t 
zt



�

at time t � ��� T � for the vector counting process �N � f �Nt � 
N�
t � � � � � N

n
t 
��

t � ��� T �g� we consider the particular case of model 
���
� where in the xt�
dynamics we have at
zt
 � gt
zt
�t
zt
 and bt
zt
 	 �� Thus� by 
���
 and 
���

we have

dxt � gt�
zt�
 d �Nt 
����


for t � ��� T �� Notice that the process x of unobserved factors has here only
jumps and is therefore piecewise constant� On the other hand� for the vector yt
of observed factors we assume that it satis�es the second equation in 
���
 with
Gt
yt
 	 �� This means that the process of observed factors y is only perturbed
by continuous noise and does not jump�

In this example� the �lter distribution is completely characterized by the vector of
conditional probabilities pt � 
p�t � � � � � p

M
t 
�� where M is the number of possible

states 
�� � � � � 
M of the vector xt and

p
j
t � P

�
xt � 
j

�� �Ak
t

�
� 
����


j � f�� �� � � � �Mg� Let �ai�jt 
y� 
h
 denote the transition kernel for x at time t to
jump from state i into state j given yt � y and xt � 
h� The vector pt satis�es
the following dynamics

dp
j
t �

�
�at
yt� pt


� pt
�j
dt � p

j
t

h
At
yt� 


j
� �At
yt� pt

i �
Bt
yt
Bt
yt


�
���

�
h
dyt � �At
yt� pt
 dt

i
� 
����


see� Liptser 	 Shiryaev 
����
� Chapter �� where

�
�at
yt� pt


� pt
�j

�
MX
i
�

	
MX
h
�

�ai�jt 
yt� 

h
 pht



pit

At
yt� 

j
 � At
yt� xt
 ��xt
�j

�At
yt� pt
 �
MX
j
�

At
yt� 

j
 pjt 
����


�



for t � ��� T �� j � f�� �� � � � �Mg� The �lter state process � � f�t � 
��t � � � � �
q
t 
��

t � ��� T �g for the model of this example is thus given by the vector process
p � fpt � 
p�t � � � � � p

q
t 

�� t � ��� T �g with q � M � �� Since the probabilities add

to one� we need only M � � probabilities to compute�

��� Markovian Representation

As in the two previous examples we have� in general� in our �lter setup to deal
with the quantity E
At
zt
 j �Ak

t 
 assuming that it exists� This is the conditional
expectation of At
zt
 � At
y

�
t � � � � � y

k
t � x

�
t � � � � � x

n�k
t 
� given in 
���
� with respect

to the �lter distribution at time t for the unobserved factors xt� Since the �lter
is characterized by the �lter state process �� we obtain the representation

�At
�zkt 
 � E
�
At
zt


�� �Ak
t

�
� 
����


where the vector �zkt is as de�ned in 
����
�

Notice that� in the case of Example ���� namely the conditionally Gaussian model�
the expression �At
�zkt 
 takes the particular form

�At
�zkt 
 � A�
t � A�

t	t � A�
t yt� 
����


Furthermore� for Example ���� namely the �nite�state jump model� �At
�zkt 
 can
be represented as

�At
�zkt 
 � �At
yt� pt
 �
MX
j
�

At
yt� 

j
 pjt 
����


for t � ��� T �� see 
����
�

We have now the following generalization of Theorem ���� in Liptser 	 Shiryaev

����
� which provides an important representation of the SDE for the observed
factors�

Proposition ��� Let At
zt
 and the invertible matrix Bt
yt
 in 
���
 be such

that Z T

�

E 
jAt
zt
j
 dt �
 and

Z T

�

Bt
yt
Bt
yt

� dt �
 
����


P �a�s� Then there exists a k�dimensional �Ak�adapted Wiener process �v � f�vt� t �
��� T �g such that the process y � fyt� t � ��� T �g of observed factors in 
���

satis�es the SDE

dyt � �At
�zkt 
 dt � Bt
yt
 d�vt � Gt�
yt�
 dNt 
����


with �At
�zkt 
 as in 
����
�

�



The proof of Proposition ��� is given in Appendix A�

Instead of the original factors zt � 
y�t � � � � � y
k
t � x

�
t � � � � � x

n�k
t 
� � 
z�t � � � � � z

n
t 
��

where xt � 
x�t � � � � � x
n�k
t 
� is unobserved� we may now base our analysis on the

components of the vector �zkt � 
y�t � � � � � y
k
t � �

�
t � � � � � �

q
t 
�� see 
����
� that are all

observed� Just as was the case with z � fzt� t � ��� T �g� also the vector process
�zk � f�zkt � t � ��� T �g has a Markovian dynamics� In fact� replacing dyt in 
����

by its expression resulting from 
����
� we obtain

d�t �
h
Ct
�zkt 
 � Dt
�zkt 
 �At
�zkt 


i
dt � Dt
�zkt 
Bt
yt
 d�vt � Dt�
�zkt�
Gt�
yt�
 dNt

� �Ct
�zkt 
 dt � �Dt
�zkt 
 d�vt � �Gt�
�zkt�
 dNt� 
����


whereby we implicitly de�ne the vector �Ct
�zkt 
 and the matrices �Dt
�zkt 
 and �Gt
�zkt 

for compact notation�

From equations 
����
 and 
����
 we immediately obtain the following result�

Corollary ��� The dynamics of the vector �zkt � 
yt� �t
 can be expressed by

the system of SDEs

dyt � �At
�zkt 
 dt � Bt
yt
 d�vt � Gt�
yt�
 dNt

d�t � �Ct
�zkt 
 dt � �Dt
�zkt 
 d�vt � �Gt�
�zkt�
 dNt� 
����


From Corollary ��� it follows that the process �zk � f�zkt � t � ��� T �g is Markov�

Due to the existence of a Markovian �lter dynamics we have our original Marko�
vian factor model� given by 
���
� projected into a Markovian model for the
observed quantities� Here the driving observable noise �v is an 
 �Ak� P 
�Wiener
process and the observable counting process N is generated by the �rst k com�
ponents N�� N�� � � � � Nk of the n counting processes�

For e�cient notation we write for the vector of observables �zkt � �zt � 
�z�t � �z�t �
� � � � �zk�qt 
� the corresponding system of SDEs in the form

d�z�t � ��
t� �z�t � �z�t � � � � � �zk�qt 
 dt �
kX

r
�

���r
t� �z�t � �z�t � � � � � �zk�qt 
 d�vrt

�
kX

r
�


��r
�
t�� �z�t�� �z�t�� � � � � �zk�qt�

�
dN r

t 
����


for t � ��� T � and � � f�� �� � � � � k � qg� The functions� ��� ���r and 
��r follow
directly from �A� B� G� �C� �D and �G appearing in 
����
�

We also have as an immediate consequence of the Markovianity of �zk � �z� as well
as property 
����
� the following result�

�



Corollary ��� Any expectation of the form E
u
t� zt
 j �Ak
t 
 � 
 for a given

function u � ��� T ���n � � and given k � f�� �� � � � � n� �g can be expressed as

E
�
u
t� zt


�� �Ak
t

�
� �uk
t� �zkt 
 
����


with a suitable function �uk � ��� T �� �k�q � ��

Relation 
����
 in Corollary ��� will be of importance for contingent claim pricing
as we shall see later on�

� Filtered Benchmark Model

On the basis of the Markovian dynamics for the prices� generated by the observed
factors introduced above� we formulate a �ltered benchmark model� As described
in Platen 
����
� we model the di�erent denominations of the growth optimal

portfolio 
GOP
� see Long 
����
� We only use the observed factors to model
the GOP� However� these factors evolve in conjunction with unobserved factors
that in�uence the observed ones� The resulting �ltered benchmark model has the
key advantage that a consistent price system is automatically established without
using any measure transformation�

��� Primary Security Accounts

We assume that there are d�� primary assets in the market� where d � � k� These
are� for instance� currencies or shares� For the domestic currency as primary
asset we express the time evolution of its value by the savings account process

B� � fB�
t
� t � ��� T �g� We call B� also the �th primary security account

process�

For the modelling of the time value of the jth primary asset� j � f�� �� � � � � dg�
we introduce the jth primary security account process Sj � fSj
t
� t � ��� T �g�
For instance� in the case of currencies� Sj
t
 is the value of the savings account of
the jth foreign currency� expressed in units of the domestic currency� If the jth
asset is a share� then Sj
t
 is the cum�dividend share price� where all dividend
payments are reinvested� We then denote by �Sj
t
 the discounted value at time
t of the jth primary security account� that is

�Sj
t
 �
Sj
t


B�
t


���


for t � ��� T � and j � f�� �� � � � � dg� We assume that �Sj is �Ak�adapted and the

��



unique strong solution of the stochastic di�erential equation 
SDE


d �Sj
t
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t�
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t
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t
 dt � d�vrt 
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 dt � dN r
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���


for t � ��� T � with �Sj
�
 � �� j � f�� �� � � � � dg�

We assume that �j�r and �j�r are �Ak�predictable with �j�r
t
 � �� ���r
t
 � � a�s�
for t � ��� T � and

Z T

�

�

�j�r
s

� � ��rs
ys


�
ds �


for j � f�� �� � � � � dg and r � f�� �� � � � � kg� The given parameterization of the
above SDE 
���
 does not restrict its generality but is convenient for the bench�
mark approach�

��� Portfolios

Let us now form portfolios of primary security accounts� We say that an �Ak�
predictable stochastic process � � f�
t
 � 
��
t
� � � � � �d
t

�� t � ��� T �g is a
self��nancing strategy� if � is �S�integrable� see Protter 
����
� the corresponding
portfolio V �

� 
t
 has at time t the discounted value

�V �
� 
t
 �

V �
� 
t
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t
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dX
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�j
t
 �Sj
t
 
���


and it is

d �V �
� 
t
 �

dX
j
�

�j
t�
 d �Sj
t
 
���


for all t � ��� T �� The jth component �j
t
� j � f�� �� � � � � dg� of the self��nancing
strategy � expresses the number of units of the jth primary security account
held at time t in the corresponding portfolio� Under a self��nancing strategy no
out�ow or in�ow of funds occurs for the corresponding portfolio� All changes in
the value of the portfolio are due to gains from trade in the primary security
accounts�

We assume that no primary security account is redundant� That means� no pri�
mary security account can be expressed as a self��nancing portfolio of other pri�

��



mary security accounts� Let us set

bj�r
t
 �

���
��

���r
t
� �j�r
t
 for r � f�� �� � � � � kg

�
�j�r�k�t�
���r�k�t�

� �
�q

��r�kt 
yt
 for r � fk � �� � � � � dg

���


for t � ��� T � and j � f�� �� � � � � dg� We then de�ne the matrix b
t
 � �bj�r
t
�dj�r
�

for t � ��� T � and assume that b
t
 is for Lebesgue�almost�every t � ��� T � invert�
ible� Note that the observed market is complete� which means that the observed
primary security accounts securitize the uncertainty generated by the Wiener
processes �v�� � � � � �vk and the counting processes N�� � � � � Nk�

��� Growth Optimal Portfolio

The GOP is the self��nancing portfolio that achieves maximum expected loga�
rithmic utility� We denote by �V i

� 
t
 the value of the GOP when it is expressed at
time t in units of the ith primary security account� For the di�usion case without
jumps the corresponding SDE is well known� see� for instance� Long 
����
 or
Karatzas 	 Shreve 
����
� In the case with jumps the derivation of the SDE for
the GOP is more involved and described in Platen 
����
� It has the form

d �V i
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for t � ��� T � and i � f�� �� � � � � dg�

To make the above framework computationally tractable� given our factor model�
we specify �V i

� 
t
 as a function of time t and the vector of observables �zkt � that is

�V i
� 
t
 � �V i

� 
t� �zkt 
 � �V i
� 
t� �z�t � � � � � �zk�qt 
 
���


for t � ��� T � and i � f�� �� � � � � dg� Assuming su�cient smoothness of �V i
� 
�� �
� by

application of the It�o formula and using 
����
� we then obtain
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for t � ��� T � and i � f�� �� � � � � dg� Here we use the operators
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����


for t � ��� T �� r � f�� �� � � � � kg and F � ��� T � � �k�q � � being any given
function of time and vector of observables� where �zkt � �zt � 
�z�t � � � � � �zk�qt 
� as
introduced before 
����
�

By comparison of 
���
 and 
���
 it follows that the i� �th GOP�volatility �i��
t

has the form

�i��
t
 �
L� �V i

� 
t� �zkt 

�V i
� 
t� �zkt 



����


and the inverted i� �th GOP�jump ratio �i��
t
� see 
���
 is given by the expression

�i��
t�
 �
�V i
� 
t�� �zkt�


��
�V i
�


t�� �zkt�
 � �V i
� 
t�� �zkt�



����


for t � ��� T �� i � f�� �� � � � � dg� � � f�� �� � � � � kg�

� Fair Pricing and Hedging of Derivatives

��� Benchmarked Prices

In what follows we call prices that are expressed in units of the GOP� benchmarked

prices� This means for j � f�� �� � � � � dg that the jth benchmarked primary

��



security account �Sj � f �Sj
t
� t � ��� T �g with

�Sj
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satis�es by 
���
� 
���
� 
���
 and application of the It�o formula the SDE
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for t � ��� T � and j � f�� �� � � � � dg� see Platen 
����
� Here mr
t denotes the rth

component of the jump martingale m de�ned in 
���
� Note that the jth bench�
marked primary security account is an 
 �Ak� P 
�local martingale� Moreover� as
shown in Platen 
����
� for any self��nancing portfolio V �

� it follows by applica�

tion of the It�o formula that its benchmarked value �V�
t
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for t � ��� T �� This shows that �V� is an 
 �Ak� P 
�local martingale too� Note that
these processes are� in general� not 
 �Ak� P 
�martingales� Since a nonnegative
benchmarked portfolio process is here an 
 �Ak� P 
�supermartingale� the result�
ing �ltered benchmark model can be shown to exclude standard arbitrage� This
means� it is impossible to generate� with strictly positive probability� strictly
positive wealth from zero initial capital�

��� Derivative Prices

To provide an intuitive link between the benchmark framework and the standard
risk neutral approach� let us discuss a situation where we assume for the moment
that the following steps can be made and a standard equivalent risk neutral
probability measure P k exists� We underline that such assumptions will not
be needed for our results� Then all prices� discounted by the domestic savings
account B� would be 
 �Ak� P k
�martingales� Denoting by E the expectation with
respect to P and by Ek that with respect to P k� we would have� taking into
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for t � ��� T � and j � f�� �� � � � � dg� Here the Radon�Nikodym derivative �k
T � dP k

dP

would satisfy the expression
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for t � ��� T �� Furthermore� by 
���
� the price of a self��nancing portfolio V �
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would satisfy the relation
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for t � ��� � � and any �Ak�stopping time � � Thus� under the above assumptions all

benchmarked portfolio prices �V�
t
 �
V �
� �t�

V �
� �t�

would be 
 �Ak� P 
�martingales� that is

�V�
t
 � E
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�

���


for all t � ��� � ��

In the benchmark framework we avoid the above steps and the assumption on
the existence of an equivalent risk neutral measure by introducing the concept
of a fair price� A price process is called fair� if its benchmarked values form an

 �Ak� P 
�martingale� see Platen 
����
�

At a given maturity date � � which is assumed to be an �Ak�stopping time� we
consider a benchmarked contingent claim U
�� y� 
 as a function of � and the
corresponding values of observed factors y� � where we assume that

E
jU
�� y�
j
�� �Ak

t 
 �
 
���


��



a�s� for all t � ��� � �� There is no point to let the payo� function depend on
any other than observed factors� otherwise the payo� would not be veri�able at
time � � The benchmarked fair price process �uk � f�uk
t� �zkt 
� t � ��� � �g for the
benchmarked contingent claim U
�� y� 
 is then the 
 �Ak� P 
�martingale� obtained
by the conditional expectation

�uk
t� �zkt 
 � E
�
U
�� y� 


�� �Ak
t

�

���


for t � ��� � �� This means� we form directly the conditional expectation 
���

without using any measure transformation� The corresponding fair price at time
t for this contingent claim� when expressed in units of the domestic currency� is
then

�u��k
t� �zkt 
 � V �
� 
t
 �uk
t� �zkt 
 
����


for t � ��� �
� The above concept of fair pricing generalizes the well�known concept
of risk neutral pricing and avoids not only the assumption on the existence of an
equivalent risk neutral measure but also some issues that arise from measure
changes under di�erent �ltrations�

The vector of observables y� is a subvector� not only of �zk� but also of z� � This al�
lows us to de�ne the 
A� P 
�martingale u � fu
t� zt
� t � ��� � �g by the conditional
expectation

u
t� zt
 � E
�
U
�� y� 


��At

�

����


for t � ��� � �� which at time t exploits the complete information characterized
by the ��algebra At� The above derivation can be summarized in the following
result�

Corollary ��� The benchmarked fair price �uk
t� �zkt 
 for the benchmarked con�

tingent claim U
�� y� 
 can be expressed as the conditional expectation
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t� �zkt 
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for t � ��� � ��

We recall that �Ak
t denotes in Corollary ��� the information� which is available

at time t� whereas At is the complete information at time t that determines the
original model dynamics including also the unobserved factors�

Note that the benchmarked fair price� given in Corollary ���� �ts perfectly the
expression of our result for the �ltered factor model given in 
����
� The advan�
tage of the representation 
����
 is that it allows us to express the benchmarked
fair price �uk
t� �zkt 
 as conditional expectation with respect to �Ak

t � The actual
computation of the conditional expectation in 
����
 is equivalent to the solution
of the �ltering problem for the unobserved factors�

��



��� Hedging Strategy

Assume that the above benchmarked pricing function �uk
�� �
 in 
���
 and 
����

is di�erentiable with respect to time and twice di�erentiable with respect to the
observables� Then we obtain by the It�o formula the representation
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for t � ��� � �� Let us search for a fair benchmarked price process �V�U � with self�
�nancing hedging strategy �U � that possibly matches �uk� This means� we consider
�V�U 
t
 with
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Note that the volatilities and jump ratios in 
����
 are those identi�ed in 
����

and 
����
� Above we used the jth proportion
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U
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of the value of the corresponding hedging portfolio that has to be invested into
the jth primary security account at time t � ��� � �� To replicate the benchmarked
contingent claim U
�� y� 
 we can start at a given time t � ��� � � by forming a
portfolio with fair benchmarked price
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By comparison of 
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 and 
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 the proportions must satisfy the system of
linear equations
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for � � f�� �� � � � � kg and t � ��� T �� Let us use the d�dimensional vector c
t�
 �
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t�

� with components

cr�uk
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t � ��� �
� By involving the matrix b
t
 given in 
���
� we can then rewrite the
system of equations 
����
 � 
����
 in the form

c�uk
t�
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t�
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for t � ��� T �� Now� we obtain the following result�

Proposition ��� For a given benchmarked contingent claim U
�� y� 
 with cor�
responding vector c�uk
t
 given in 
����
 the proportions of the corresponding hedg�
ing portfolio are of the form

��U 
t�
 �
�
c�uk
t�
� b��
t�


��

����


for t � ��� �
�

Note that the invertibility of the matrix b
t
 is not linked to a speci�c contingent
claim� Thus� one can form a perfectly replicating hedging portfolio for all bench�
marked contingent claims U
�� y� 
� The introduced �ltered benchmark model
forms a complete market despite the fact that the original model involves unob�
served factors� The benchmarked pricing functions can always be obtained from
the conditional expectation 
����
 on the basis of the �lter distribution�

We did not consider the case d � �k� In such a case the market is incomplete�
Incomplete markets of this type can be handled by a generalization of the above
described �ltered benchmark approach�

��� Variance of Benchmarked Prices

Let us now investigate the impact of varying degrees of information concerning
the factors zt � 
z�t � � � � � z

n
t 
� that underly our model dynamics� see 
���
 � 
���
�

As already mentioned in Section ���� the degree of available information is indexed

��



by the parameter k� A larger value of k means that more factors are observed�
providing thus more information in �Ak� Again we use the notation �zkt for the
vector of observables de�ned in 
����
� where we stress its dependence on k and
recall that� by 
����
� the process �zk is Markovian�

Consider from now on a benchmarked contingent claim

U
�� y� 
 � U
�� y�� � y
�
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r
�
 
����


for some �xed r � f�� �� � � � � n � �g� where we assume that the number of ob�
served factors that in�uence the claim equals r� For k � fr� r � �� � � � � n� �g let
�uk
t� �zkt 
 be the corresponding benchmarked fair price under the information �Ak

t �
as given by 
����
� Recall by 
����
 that �uk
t� �zkt 
 can be computed as conditional
expectation via the �lter distribution� Then
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�� �� �Ak
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is the corresponding conditional variance at time t � ��� �
� Note that for larger k
we have more information available� which naturally should reduce the conditional
variance�

For each degree of available information one obtains� in general� di�erent equiva�
lent risk neutral probability measures� The complexity of working with di�erent
pricing measures can be signi�cant� This is avoided by using the suggested �l�
tered benchmark model� All conditional expectations can be taken under the
real world probability measure P � Furthermore� it is clear that �ltering itself is
always performed under the real world measure�

We can prove the following proposition� which expresses the reduction in condi�
tional variance and can also be seen as a generalization of the celebrated Rao�
Blackwell theorem towards �ltering�

Proposition ��� For m � f�� �� � � � � n � kg and k � fr� r � �� � � � � n� �g we

have
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Proof� For t � ��� �
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By taking conditional expectations with respect to �Ak
t on both sides of the above

equation it follows that
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Since the last term on the right hand side is equal to zero by de�nition� we obtain

����
�

� Conclusions

We constructed a �ltered benchmark model by specifying the growth optimal
portfolio for a given degree of available information� A consistent price system has
been established� Benchmarked fair derivative prices are obtained as martingales
under the real world probability measure� In general� benchmarked security prices
are not forced to be martingales� They may be just local martingales� The
reduction of the conditional variance of fair derivative prices under increased
information is quanti�ed via a generalization of the Rao�Blackwell theorem�

A Appendix

Proof of Proposition ���

Denote by yc the continuous part of the observation process y� that is

yct � yt �
X
�j�t

G�j�
y�j�
 �N�j � 
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where the �j denote the jump times of N � fNt� t � ��� T �g and �N�j � N�j �
N�j� is the vector 
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 it follows that
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From this we �nd� by the multi�variate It�o formula with � � �k a row vector and
� the imaginary unit� that
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Recalling that v is an �Ak�measurable Wiener process� notice that
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and that� by our assumptions and by the boundedness of exp ��� 
�vu � �vs
��

E

�Z t

s

exp ��� 
�vu � �vs
� B
��
u 
yu


�
Au
zu
� �Au
�zku


�
du
�� �Ak

s

�
�

E

�Z t

s

exp ��� 
�vu � �vs
�B
��
u 
yu
E

��
Au
zu
� �Au
�zku


� �� �Au

�
du
��� �Ak

s

�
� ��


A��


Taking conditional expectations on the left and the right hand sides of 
A��
 we
end up with the equation
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which has the solution

E
�

exp ��� 
�vt � �vs
�
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s

�
� exp
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�
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�

A��


for � � s � t � T � We can conclude that 
�vt � �vs
 is a k�dimensional vector
of independent �Ak

t �measurable Gaussian random variables� each with variance

t � s
 and independent of �Ak

s � By Levy s theorem� �v is thus a k�dimensional
�Ak�adapted standard Wiener process�
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