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Abstract

This paper proposes a new test based on a Fourier series expansion to approximate

the unknown functional form of a nonlinear time-series model. The test speci…cally

allows for structural breaks, seasonal parameters and time-varying parameters. The

test is shown to have very good size and power properties. However, it is not especially

good in detecting nonlinearity in variables. As such, the test can help determine

whether an observed rejection of the joint null hypothesis of linearity and time invariant

parameters is due to time-varying coe¢cients or a nonlinearity in variables.

Keywords: time varying parameters. Fourier-series, nuisance parameters

JEL Classi…cation: C51, C52 G12
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1 Introduction

It is now generally agreed that linear econometric models do not capture the dynamic

relationships present in many economic time-series. Moreover, adopting an incorrect non-

linear speci…cation may be more problematic than simply ignoring the non-linear structure

in the data. It is not surprising, therefore, that non-linear model selection is an important

area of current research and a wide array of testing procedures have been developed and

subjected to rigorous empirical scrutiny (see, for example, Lee et al., [1993] and Barnett et

al., [1997]). Although di¤erent in detail, these tests generally have two common attributes.

First, the null hypothesis is taken to be a linear model with time-invariant parameters

and is in fact, therefore, a joint hypothesis. Second, the available tests have good power

against a wide variety of common nonlinear time-series models, but their ability to detect

time dependence in the parameters, sometimes referred to as non-linearity in parameters,

is, as yet, unknown. Given the vast number of plausible nonlinear speci…cations, to pare

down all the potential nonlinear speci…cations to the actual nonlinearity present in the data

generating process remains a di¢cult task (Ashley and Patterson, [2000]).

This paper proposes a new test based on a Fourier series expansion to approximate the

unknown functional form of a time-varying autoregressive coe¢cient which seeks to provide a

reliable test for time dependence in parameters. The null hypothesis remains a linear model

with time-invariant parameters, while the alternative hypothesis speci…es a model which is

linear in variables but with time-varying coe¢cients. This speci…cation contributes to the

literature a number of important ways. In the …rst instance, time dependence in parameters
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is an important issue in its own right and includes issues related to structural breaks (Perron,

[1989], Clements and Hendry, [1999]), seasonal parameters (Herwartz, [1995]) and time-

varying parameters (Harvey, [1989]). The test proposed is capable of encompassing all these

varying-parameter models in an integrated environment. A further important feature of this

test is that, although it has good power against the alternative hypothesis of time dependence

in parameters, it does not detect many other, important, nonlinear models. As such the

test should help determine whether an observed rejection of the joint null hypothesis of

linearity and time invariant parameters is due to time-varying coe¢cients or a nonlinearity

in variables.

The issue of time-varying coe¢cients has been the subject of recent work by Lütkepohl

and Herwartz [1996]. They propose a generalized ‡exible least squares (GFLS) estimation

procedure, based on a standard likelihood function, which allows for time-varying coe¢cients

by adding a series of penalty terms. By adjusting these penalties they are able to examine

how coe¢cient variation contributes to the residual sum of squares. As Lütkepohl and

Herwartz [1996] argue, however, GFLS is very much a tool for preliminary data analysis

and visualisation; the method cannot provide a framework for statistical testing. Our use of

a model with Fourier coe¢cients presents a method which allows identical conclusions to the

GFLS method to be drawn in a statistically rigorous framework. Rigorous implementation

of this testing strategy has to deal with the presence of unidenti…ed parameters under the

null distribution (Davies, [1987], Andrews and Ploberger, [1994], Hansen [1996]) and can be

di¢cult to implement. It is demonstrated, however, that the problem may be restricted in

such a way that a set of tabulated critical values can be applied without a meaningful loss
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of precision.

The paper is structured as follows. Section 2 outlines the GFLS method of Lütkepohl and

Herwartz [1996]. Section 3 introduces the trigonometric testing approach and relates it to

the literature of testing in the presence of unidenti…ed parameters under the null and Section

4 outlines a simple implementation of the test which appears to yield satisfactory empirical

results. In Section 5 a Monte Carlo exercise is performed to document the performance of

the proposed procedure and an empirical example using the same data as Lütkepohl and

Herwartz [1996] is presented in Section 6. Section 7 contains brief concluding comments.

2 Generalised Flexible Least Squares (GFLS)

Lütkepohl and Herwartz [1996] estimate ®t in yt = yt¡1®t + "t by minimising the

residual sum of squares plus two penalty terms, which penalise period to period (®t¡ ®t¡1)

and season to season (®t ¡ ®t¡S ) changes in the parameters1. The objective function to be

minimised in the parameter estimation process is

Q(¸1; ¸2)=

TX

t=1

(yt ¡yt¡1®t)
2 + ¸1

TX

t=2

(®t ¡ ®t¡1)
0D(®t ¡ ®t¡1)

+¸2

TX

t=S+1

(®t ¡ ®t¡S)
0D(®t ¡ ®t¡S).

where ¸1 and ¸2 are non-negative, …xed penalty parameters and D is a (k £ k) weighting

matrix. It is convenient to chooseD to be a diagonal (k£k) matrix with diagonal elements

1Most of this paper will solely focus on time series applications, but the proposed testing and modelling
strategies are readily applicable to any regression relationship.
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equal to y0t¡1;iyt¡1;i=T for i = 1 : : : k. Further smoothness constraints can be imposed by

adding longer lags in the penalty functions.

Estimation of the time path ®t; which minimises Q(¸1; ¸2), is achieved by means of a

recursive algorithm, where values for the weighting matrix D and the penalty parameters

are taken as given. Once the (Tk £ 1) minimising parameter vector ®̂ = (®̂1; ®̂2; : : : ; ®̂T )

is found, residual sum of squares, RSS(¸1; ¸2); can be computed. When ¸1 and ¸2 are

very high and any parameter variation is prohibitively penalised, the resulting parameter

estimates will be equivalent to OLS parameter estimates. When the penalties are inactive,

¸1 = ¸2 = 0, the parameters will vary such that the …t of the model to the data is perfect

and RSS(0;0) = 0.

The use of this method to detect time-variance in the parameters and, in particular,

whether or not the parameters have a seasonal pattern, is best explained by using the sim-

ulation example reported in Lütkepohl and Herwartz [1996], p.274. Consider the following

two models2:

Model 1: AR[4]

yt = 0:9yt¡4 + "t, ¾2" = 0:04 : (1)

2Here and in the following an AR[p] model is an autoregressive model which contains lag p only. This is
in contrast to a AR(p) model, which includes all lags from 1 to p.
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Model 2: Periodic Autoregressive(1) or PAR(1)

yt= ®0s + ®1syt¡1 + "t, ¾2" = 0:04 (2)

with ®0s =¡0:6; 0:3;¡0:9; 0:8

and ®1s =¡0:4; 0:7;¡0:3; 0:2 for s = 1; 2;3; 4.

Data are generated from these models (T = 100) and GFLS used to estimate RSS(¸1; ¸2)

for di¤erent permutations of values for ¸1 and ¸2:

AR[4] Model
¸2

0 0.001 1 1000
0 0 12.26 85.22

¸1 0.001 0 0 12.56 85.26
1 17.34 17.38 41.53 96.57

1000 98.00 98.00 98.01 100.00

PAR(1) Model
¸2

0 0.001 1 1000
0 0 3.07 13.77

¸1 0.001 0 0 3.10 13.81
1 25.90 25.91 32.79 49.95

1000 98.96 98.96 98.97 100.00

Table 1: Normalised RSS obtained with objective function Q(¸1; ¸2) for ¸1; ¸2 =
0; 0:001; 1; 1000 respectively. Normalisation enforces RSS(1000;1000) = 100.

The ‡avour of these results is best obtained by focussing attention on the last column

and the last row of the matrix of RSS values provided in Table 1 for each model. For the

AR[4] model, the imposition of the additional penalty on (®t ¡ ®t¡S), when (®t ¡ ®t¡1) is

already heavily penalised (that is reading across the last row), does not result in a signi…cant
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deterioration in the goodness of …t. Similarly, increasing ¸1 when ¸2 = 1000 (reading down

the last column) has no signi…cant impact in terms of RSS. By contrast, the lower panel of

Table 1 reveals that the additional imposition of high penalties for period-to-period variation

(®t ¡ ®t¡1) is extremely costly. This indicates that the restriction of ®t ¼ ®t¡1 is not

supported by the data.

The methodology is designed to identify time-variability in parameters and to detect

whether or not this variation is seasonal. However, as recognised by Lütkepohl and Herwartz

[1996], GFLS does not itself admit statistical inference. Instead, detecting the presence

of time-varying coe¢cients relies primarily on inspection of the patterns emerging from

the variation of RSS with changes in the penalty parameters ¸1 and ¸2: Moreover, the

estimated parameter time paths resulting from an application of GFLS depend crucially

upon the chosen values of the penalty parameters. Since there is no way to determine the

actual values of ¸1 and ¸2; there is no way to obtain the true time paths of the parameters.

Once a parameter is identi…ed as having seasonal variation, the {ytg series may be estimated

using a speci…c non-linear time-series model as in Herwartz, [1995].

3 Tests based on Fourier approximation

This section develops an alternative approach for identifying parameter variation in

a framework that allows for statistical inference on the estimated parameters. The idea

of using trigonometric variables in regression relationships is not particularly new. For

example, Gallant and Souza [1991] estimate Fourier parameters in a factor demand system;

Engle [1974] and Tan and Ashley [1999] use frequency bands to test for parameter instability.
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In a similar vein, we use a Fourier series expansion to approximate the unknown functional

form of a time-varying autoregressive coe¢cient. Consider the following system

yt=®tyt¡1 + "t (3)

®t=®0 +
MX

j=1

�
®1j sin

µ
2fj¼t

T

¶
+ ®2j cos

µ
2fj¼t

T

¶¸
.

If M is su¢ciently large, the unknown functional form of ®t will be well approximated.

If the null hypothesis ®1j = ®2j = 0 cannot be rejected for all values of j, then ®t = ®0

and the autoregressive coe¢cient is constant. Thus, instead of positing a speci…c model

of parameter variation, the speci…cation problem is to …nd the appropriate frequencies to

include in the model. However, the choice of the appropriate number of frequencies to

include in the Fourier approximation is not straightforward. To overcome this hurdle, we

use a device …rst proposed by Ludlow and Enders [2000]. Speci…cally, we limit out attention

to only one frequency so that (3) may be written as

yt =

�
®0 + ®1 sin

µ
2f¼t

T

¶
+ ®2 cos

µ
2f¼t

T

¶¸
yt¡1 + "t (4)

If the value of f was known, it would be possible to test the null hypothesis ®1 =

®2 = 0 by means of a standard F-test. Rejecting the null hypothesis would imply a time-

varying autoregressive coe¢cient.

In all reasonable circumstances, the true value of f is unknown and must be estimated

from the data. The di¢culty is that f is unidenti…ed under the null hypothesis, in that
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di¤erent values of f do not change the likelihood of the data under the null (see Rothenberg,

[1971]). It is therefore desirable to consider a range of values for this parameter f . A

discrete set ¡ needs to be speci…ed and the testing strategy will take all values of f 2 ¡ into

consideration. One consequence of this is that standard asymptotic theory cannot be used

to derive the correct distribution of the test statistic under the null hypothesis. Alternative

techniques to obtain the distribution of a test statistic must therefore be used and these are

now outlined brie‡y.

3.1 The distribution of the test statistic

In implementing the general testing procedure, it is desirable to construct statistics

which have an asymptotic chi-squared distribution such as the likelihood ratio, Lagrange

multiplier and Wald statistics. For the purposes of exposition, consider the G likelihood

ratio test statistics of the hypothesis ®1 = ®2 = 0 for all f 2 ¡, in (4). These may be

denoted

LR(fi) = ¡2(lT ¡ lfiT ) i = 1 : : :G

where lT is the log-likelihood of the restricted/linear model and lfiT is the log-likelihood of

the model which includes the trigonometric variables. In order to make a statistical decision

on the signi…cance of the trigonometric terms, the information contained in LR(f1), LR(f2),

:::, LR(fG)g has to be distilled into one test statistic, LRÁ, whose distribution under the

null hypothesis is known; this is achieved by specifying a mapping Á : RG ! R.

Note the two pieces of relevant information which will impact on the distribution of LRÁ
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under the null distribution. First, it is well known that in large samples the distribution of

each individual test statistic, LR(fi), under the null hypothesis is Â2(2): Second, it is likely

that

E [LR(fi); LR(fj )] 6= 0 i 6= j:

In other words, the o¤-diagonal elements of the covariance matrix of the calculated

likelihood ratio statistics, §, may be non-zero (Hansen, [1996], [1999]) and this covariance

structure may be application speci…c.

Once the mapping, Á, has been de…ned, Andrews and Ploberger [1994] and Stinchcombe

and White [1998] show that the test statistic, LRÁ; and its distribution under the null

hypothesis, Â(Á;¡;§), are given by

LRÁ= Á (LR(f1); LR(f2); : : : ;LR(fG)) (5)

Â(Á;¡;§)= Á(Â22;1; Â
2
2;2; : : : ;Â

2
2;G); (6)

where each Â22;i is a Â2(2) deviate and

E
£
Â22;i; Â

2
2;j

¤
=§ i; j=1 : : : G : (7)

A statistical decision on the signi…cance of any given test statistic, LRÁ, requires critical

values obtained from the distribution Â(Á;¡;§), which is a non-trivial task (Davies, [1987],

Andrews and Ploberger, [1994]). We follow Hansen [1999] and use two methods for obtaining

the critical values. The …rst method draws random realisations from this asymptotic distri-
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bution in the following way. Construct G deviates from a Â2(2) distribution ensuring that

these deviates have covariance matrix §, which is the covariance of the sample likelihood

ratio statistics. One draw from the asymptotic distribution, Â(Á;¡;§), is then obtained by

applying the mapping, Á (¢), to these Â2(2) deviates. It is clear that the asymptotic distri-

bution of the respective test statistics under the null hypothesis may be approximated by

J draws and the proportion of these J realisations, therefore, which exceed the calculated

value is an estimate of the appropriate p-value, bp, which under standard conditions is ap-

proximately normal distributed with standard deviation
p
p̂(1¡ p̂)=J . The second method

for determining p-values is from bootstrap realisations of the test statistic, LRÁ. In this

particular application, under the null hypothesis the model is a linear autoregressive one

and bootstrap generation is relatively straightforward.

So far the mapping Á was left unspeci…ed and indeed (5) and (6) are valid for a general

class of functions Á (see Stinchcombe and White, [1998]). In this work, three variations of

Á will be used, namely, the sup-norm, unweighted average and an exponentially weighted

average of the arguments. In terms of the sample likelihood ratio statistics, the resultant

test statistic under the mappings are given by

LRsup= sup
f2¡

LR(f ) (8)

LRave=
1

G

X

f2¡
LR(f ) (9)

LRexp= ln

"
1

G

X

f2¡
exp

µ
LR(f)

2

¶#
. (10)

12



Note that the latter two test statistics are derived under an optimal local power argument,

LRave being the most powerful test for local alternatives and LRexp performing superior for

more distant alternatives.

3.2 Implementation

Consider the regression equation

yt= ®01yt¡1 + ®02yt¡2 + : : :+ ®0kyt¡k (11)

+®1 sin

µ
2f¼t

T

¶
yt¡p + ®2 cos

µ
2f¼t

T

¶
yt¡p + "t

where k lags of yt enter as ordinary, time-invariant, AR terms but the trigonometric terms

operate only on one chosen lagged value of yt, namely yt¡p for p 2 [1; k]: It is now convenient

to simplify notation slightly. Let

yt¡1 = a (1£ k) vector of lagged values of yt;

¯0 = [®01; ®02; : : : ®0k ]
0 ;

h(yt¡p; f) =
£
sin

¡
2f¼t
T

¢
yt¡p; cos

¡
2f¼t
T

¢
yt¡p

¤
; and

¯1 = [®1; ®2]
0 :

It is now possible to write equation (11) as

yt = yt¡1¯0 + h(yt¡p; f )¯1 + "t (12)

with the null hypothesis of interest being ¯1 = 0: Two further items of notation are needed.
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Let

¯ = [¯0 ¯1]
0 ;

yt¡1(f) = (yt¡1; h(yt¡p; f )), and

h(f ) the (T £ 2) matrix of stacked h(yt¡p; f ) for all t = 1; :::; T .

The vector yt¡1(f ) may now be interpreted as the tth row of the matrix Y¡1(f ) which is

obtained by stacking all T observations, yt¡1(f ). Since the estimation of (12) is straightfor-

ward under both the null and alternative hypotheses, the computation of the G likelihood

ratios LR(fi) and LRÁ is a relatively simple task.

In order to obtain critical values by means of the approach proposed by Hansen [1996],

[1999], it is now necessary to construct the Â2(2) deviates with covariance matrix §. In order

to generate the required deviates, Hansen [1999] suggests using the well known fact that the

average regression score is normally distributed under the null hypothesis. In essence, Â2(2)

deviates may be constructed from squares of simulated regression scores with appropriate

standardisation. Clearly the regression score of (12) will have k + 2 elements of which only

the last two, pertaining to the trigonometric variables h(f); are of interest. References to

“score” should now be interpreted as relating only to these elements. By using h(f) in the

simulation of regression scores, the required covariance structure for the Â2(2) deviates will

be ensured.

To generate a random realisation of the score under the null hypothesis, let u be (T £1)
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random vector drawn from a standard normal distribution, set

û =
¡
I¡Y¡1(f)(Y

0
¡1(f )Y¡1(f))

¡1Y0
¡1(f )

¢
u (13)

and de…ne the normalising factor

M(f )¡1 =
£
h(f )0h(f )¡ (h(f )0Y¡1)(Y

0
¡1Y¡1)

¡1h(f )
¤¡1

as the lower right hand (2£2) submatrix of (Y¡1(f )0Y¡1(f ))¡1 (see Hendry, [1995], for the

rules of partitioned inversion).

A random realisation of the average score can be generate by means of û0h(f)=T . Due

to the projection in (13) the average score generated in this manner will be zero, as required

under the null hypothesis. The suitably standardised squared version of this average score,

û0h(f )M(f )¡1h(f)0û, is the required Â2(2) deviate. One draw from the asymptotic null

distribution of LRÁ is then3

Á
©
û0h(f1)M(f1)

¡1h(f1)
0û; : : : ; û0h(fG)M(fG)

¡1h(fG)
0û

ª
; (14)

and J realisations of this process will enable appropriate p-values to be computed.

The second method for determining p-values is from bootstrap realisations of the test

statistic. Since the null model is a model of the autoregressive class, the bootstrap generation

3This is valid for a stationary model with homoscedastic residual terms. Detailed derivations of the tests
null distribution are given in Hansen [1996], Andrews and Ploberger [1994] and Andrews [1994].
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has to follow a recursive scheme, using appropriate starting values and assuming the validity

of the null hypothesis ¯1 = 0.

y¤t = y
¤
t¡1
^̄
0 + "

¤
t

The bootstrapped residuals "¤t are resampled (with replacement) from the empirical

distribution of the "̂ts. The p-value for the LRÁ test statistic computed from the original

data is again estimated by the proportion of the J bootstrapped test statistics.

The consistency of this bootstrap method has been proven by Bose [1988], when applied

to estimating the distribution of ¯0. It is well known that LR test statistics are asymptoti-

cally pivotal and bootstrap techniques therefore promise to deliver tests with good statistical

properties (Li and Maddala, [1996]). Here, however, the test statistic is a mapping of cor-

related LR test statistics and to the best of our knowledge, there is no theoretical work

establishing consistency of bootstrap methods applied to such test statistics. The approach

in this paper is purely empirical, in that the correct size of the bootstrap test is established

by means of a Monte Carlo simulation.

4 A simple implementation of the test

The previous section has described how the distribution of the test statistic may be

obtained by asymptotic draws from the speci…c distribution under the null hypothesis or by

bootstrapping. This testing procedure is technically correct, but it is di¢cult to implement

using standard software packages. This section discusses an alternative way of implementing

the test.
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In one special case, established by Davis [1987], the distribution of the test statistic

is invariant under the null hypothesis and hence it is possible to tabulate critical values.

Although in other cases considered here the distribution of the test statistic under the null

hypothesis is not invariant, it transpires that the variation in critical values is so slight that

it is possible to use tabulated critical values for all practical purposes.

It is clear from equations (6) and (7) that an invariant distribution under the null hy-

pothesis is obtained when § = IG , or, in other words, E[LR(fi); LR(fj )] = 0 for i 6= j.

Consider the speci…cation used by Davis [1987]

yt = ®0 + ®1 sin

µ
2f¼t

T

¶
+ ®2 cos

µ
2f¼t

T

¶
+ "t (15)

where "t is independently normally distributed. If the domain of the frequency, f , is re-

stricted to integer values in the interval 1 : : : T=2, then the trigonometric terms in equation

(15) are all orthogonal at all points in this restricted domain of f. This result may be used

to generate a test for ®1 = ®2 = 0 in the following way

Estimate equation (15) by OLS for each value of f in the restricted domain. Denote by

f ¤ the frequency which yields the smallest residual sum of squares, RSS¤; and let ®¤0; ®
¤
1,

and ®¤2 be the coe¢cients associated with that frequency value. An F-type test, Ftrig , of

®1 = ®2 = 0 is given by

Ftrig(f
¤) =

(RSSr ¡RSS¤)=2
RSS¤=(T ¡ k + 1)

where RSS is the residual sum of squares with the restriction imposed. Since the Ftrig
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statistic is calculated for the frequency which minimised the residual sum of squares, this

is equivalent to using the sup norm mapping of the previous section. Note, however, that,

although invariant, the distribution of the test statistic under the null hypothesis does not

follow a standard F-distribution with 2 and T ¡ k+1 degrees of freedom, and critical values

need to be tabulated by simulation4.

Unfortunately the special case of equation (15) simply tests the constant term for time

dependence. The more interesting applications of this testing procedure, at least in this

paper, are aimed at identifying time variation in autoregressive coe¢cients5. While it is

still possible to implement the simple testing strategy based on an integer frequency chosen

by minimising the residual sum of squares, the orthogonality property of the trigonometric

terms does not carry over. It follows therefore that the distribution of the test statistic

under the null hypothesis is no longer invariant. It transpires, however, that the variation

in the critical values of the distribution of Ftrig are so small that for all practical purposes

tabulated critical values may be used without signi…cant loss of precision.

The e¤ect on the critical values of the Ftrig test of changing the parameter values of the

underlying linear model speci…ed as the null hypothesis, is easily demonstrated as follows.

4Davies [1987] derives the invariant distribution under the null hypothesis for this special case based on
a test statistic which is distributed as a Â2

2 deviate for any …xed frequency.
5Of course the test may also be used to test any parameter in any regression model for time dependence.
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Critical Values for Ftrig test
AR(1) AR(2) AR(2) AR[4]
H0 : ®1t = ®1 H0 : ®1t = ®1 H0 : ®2t = ®2 H0 : ®4t = ®4

Parameter
range
0.1 7.206 7.282 7.280 7.265
0.2 7.206 7.320 7.274 7.265
0.3 7.248 7.322 7.277 7.254
0.4 7.237 7.304 7.273 7.249
0.5 7.236 7.305 7.265 7.255
0.6 7.273 7.331 7.289 7.269
0.7 7.284 7.337 7.299 7.271
0.8 7.292 7.346 7.308 7.287
0.9 7.278 7.314 7.303 7.314

Table 2: 5autorgressive models and parameter values.

The following autoregressive models were simulated for the parameter ranges shown:

AR(1) : yt = ®0 + ®1yt¡1 + ²1t 8 ®1 2 [0:1; 0:9] ;

AR(2) : yt = ®0 + ®1yt¡1 ¡ 0:3yt¡1 + ²1t 8 ®1 2 [0:1;0:9] ;

AR[4] : yt = ®0 + ®4yt¡4 + ²4t 8 ®4 2 [0:1; 0:9] :

In each case the 5% critical values of the Ftrig test was computed from 50000 repetitions.

Note that the AR(2) model allows the test to be conducted on both ®1and ®2. The results

are presented in Table 2.

It is clear from these results that changing the parameters of the underlying linear

models results in only minor variations in the critical values of the distribution of the test

statistic under the null hypothesis. It appears, therefore, that this simpli…ed procedure is
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a viable practical approximation to the generation of the correct asymptotic distribution

outlined in the previous section. The key to this result is the restriction of the domain of

the frequency, f , to only integer values between 1 and T=2. The empirical performance

of the Ftrig test will be evaluated in the next Section along with the LRÁ tests. As the

approximate distribution changes very little with changes in the parameters, the critical

values tabulated in Ludlow and Enders [2000], where only variations the sample size for

given ¡ are considered, can be used.

5 Empirical properties of the test

This section reports results from Monte Carlo experiments which were designed to

demonstrate the following points. First, the Ftrig and the LRsup, LRave and LRexp tests have

the correct statistical size under the null hypothesis of a linear time-invariant autoregressive

process. Second, the tests have signi…cant power properties for the alternative hypothesis

of time-varying coe¢cients. As a by-product of this inquiry we show that these tests also

have power against alternative hypotheses which are non-linear in variables.

In order to provide results comparable to Lütkepohl and Herwartz [1996] the two arti…cial

examples given in Section 2 of their paper are used again6. Recall that in process (1) both

the parameters were time-invariant and in process (2) both parameters displayed seasonal

patterns. The processes with sample size 100 were simulated 5000 times and for each

realisation the constant and the autocorrelation coe¢cients were tested for time invariance

6They also provide a third example, which also incorporates a structural break. Dealing with structural
breaks is an important aspect of time-series modelling but not objective of this paper.
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Test Draw from asymp. Bootstrap
distribution

process Ftrig LRsup LRave LRexp LRsup LRave LRexp
AR(1)
0.01 0.0106 0.016 0.002 0.016 0.007 0.013 0.008
0.05 0.0572 0.074 0.036 0.070 0.058 0.057 0.052
0.10 0.1196 0.134 0.085 0.122 0.109 0.108 0.112
AR[4]
0.01 0.011 0.013 0.002 0.014 0.008 0.008 0.008
0.05 0.053 0.065 0.030 0.065 0.044 0.048 0.051
0.10 0.104 0.13 0.076 0.118 0.100 0.093 0.098
AR[4]¡ const
0.01 0.013 0.018 0.000 0.018 0.008 0.008 0.008
0.05 0.069 0.082 0.000 0.076 0.044 0.048 0.051
0.10 0.127 0.141 0.000 0.134 0.100 0.093 0.098
PAR(1)
0.01 1.0 1.0 0.015 1.0 1.0 0.041 1.0
0.05 1.0 1.0 0.098 1.0 1.0 0.117 1.0
0.10 1.0 1.0 0.198 1.0 1.0 0.208 1.0
PAR(1)¡ const
0.01 1.0 1.0 0.497 1.0 1.0 0.531 1.0
0.05 1.0 1.0 0.834 1.0 1.0 0.571 1.0
0.10 1.0 1.0 0.945 1.0 1.0 0.587 1.0

Table 3: Simulation results of the Ftrig, LRsup, LRave and LRexp tests applied to AR(1),
AR[4] and PAR(1). Where not speci…ed otherwise, the AR coe¢cient is tested for time-
invariance.

in the described manner. Due to the increased computational burden, the results for the

LR tests were based on 1000 simulations (J = 500).

The simulation results of the OLS based F-test and the LR tests described in the previ-

ous section are reported in Table 2, which also includes the simulation results for a conven-

tional AR(1) process. The AR[4] process has time-invariant parameters and therefore is a

representation of the null hypothesis. The rejection frequencies are close to the expected fre-

quencies, indicating that the tests have approximately the correct size. The only exception
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is theLRave test applied to the constant of the AR[4] model, which is far too conservative.

If any general conclusion must be drawn, then it appears that the empirical size of the LR

tests based on bootstrapped p-values is slightly superior to the other two tests. The time

variance in the parameters of the PAR(1) model is easily detected by all tests except the

LRave test. This is to be expected, because this test is particularly powerful against local

alternatives and the PAR(1) model is the most global alternative possible. For the other

tests, the null hypothesis of time invariance in both coe¢cients of the PAR(1) process was

rejected in 100% of the cases. More importantly, when considering quarterly seasonality in

the coe¢cients, the optimal frequency f ¤ in all cases is 25. In conjunction with the sample

size 100 this implies a period of 100=25 = 4 for the coe¢cient variation. The coe¢cients

therefore have a quarterly-varying component. The e¢cacy of the Ftrig test is particularly

pleasing given its OLS foundations.

In order to scrutinise the power properties of the test two further time-varying coe¢cient

models were simulated

yt= ®t yt¡1 + "t

SC : ®t = ¡0:2(0:9) for t = 4; 8; 12 etc:(all other t)

ARC : ®t = 0:3 + 0:5®t¡1 + ºt, ºt » N (0; 0:25).

SC is a seasonal coe¢cient model and ARC features a coe¢cient following a stationary

autoregressive model of order one. In the introduction it was mentioned that time-varying
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coe¢cient models and models nonlinear in variables are treated separately in the literature.

And indeed its modelling principles are di¤erent. However, in real life situations it might be

di¢cult to, per-se, rule out one or the other. In the following it will be demonstrated that,

provided no …rm theoretical grounding is available to dismiss one model type, it might be

di¢cult to di¤erentiate between them on the basis of testing alone. For that purpose we

extend the simulation by three processes, which are nonlinear in variables. These are

BL : yt = 0:7 yt¡1"t¡2 + "t

TAR : yt = 0:9 yt¡1 + "t

at =0:9(¡0:3 ) for jyt¡1j � 1(> 1)

LSTAR : yt = (0:0 + 0:02Ft) + (1:8¡ 0:9Ft) yt¡1

+(¡1:06 + 0:795Ft) yt¡2 + "t

where Ft= [1 + exp (100 (yt¡1 ¡ 0:02))]¡1

and "t»N(0; 0:022)

and have been used in simulation studies by Lee et al. [1993], Teräsvirta et al. [1993] and

Dahl [1998]. In Table 3 simulation results for the Ftrig, and both versions of the LRexp

test are reported. In addition, commonly used tests of nonlinearity in variables, namely the
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Test
process Ftrig LRexp LRbexp V23 Tsay LSTAR CUSUM CUSUM2

SC
0.01 0.932 0.944 0.925 0.227 0.023 0.880 0.002 0.131
0.05 0.971 0.979 0.967 0.399 0.091 0.959 0.016 0.283
0.10 0.985 0.987 0.980 0.491 0.158 0.979 0.040 0.393
ARC
0.01 0.702 0.450 0.740 0.348 0.162 0.349 0.058 0.548
0.05 0.825 0.662 0.873 0.471 0.258 0.456 0.128 0.662
0.10 0.878 0.765 0.916 0.549 0.326 0.524 0.194 0.730
LSTAR
0.01 0.042 0.243 0.198 0.854 0.856 0.880 0.011 0.085
0.05 0.129 0.440 0.378 0.942 0.943 0.959 0.055 0.210
0.10 0.209 0.541 0.502 0.967 0.970 0.979 0.116 0.303
TAR
0.01 0.010 0.017 0.012 0.228 0.008 0.009 0.004 0.007
0.05 0.053 0.056 0.041 0.455 0.041 0.052 0.036 0.044
0.10 0.103 0.108 0.090 0.595 0.091 0.099 0.077 0.091
BILIN
0.01 0.609 0.673 0.627 0.266 0.173 0.892 0.022 0.517
0.05 0.770 0.826 0.815 0.416 0.292 0.949 0.066 0.674
0.10 0.834 0.895 0.897 0.514 0.374 0.964 0.114 0.753

Table 4: Power statistics for trigonometric tests. The two versions of the LR test are labelled
a and b respectively.

Tsay test, the V23 and the LSTAR test, are also applied for comparative purposes. All

three tests7 examine the signi…cance of cross products of elements in Y¡1. A widely used

test for parameter instability is the CUSUM and the CUSUM2 test (Brown et al., [1975]).

The results reported in Table 3 con…rm that the tests basing on trigonometric expansions,

detect time-variance in parameters reliably. They are also far superior to the CUSUM and

the CUSUM2 tests. In fact, in the context of the time varying parameter processes simulated

here, the CUSUM test can hardly be recommended. However, it should be noted that the

trigonometric tests also have power against the bilinear model. This is not surprising, since

7A good overview for these tests is given in Teräsvirta et al [1993].
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the latter can be interpreted as a model whose AR(1) coe¢cient is randomly drawn from

a normal distribution with mean 0:7 and variance equal to the variance of "t¡1. Therefore

the coe¢cient is time varying, but in an unsystematic way. The tests power against the

TAR and the LSTAR model is, as we would have hoped, very limited. This facilitates the

di¤erentiation between a time-varying coe¢cient model and a model nonlinear in variables.

From these results it can be concluded, that in real-life problems, it might be di¢cult to

rule out one of the two process classes on the basis of testing results. Also it appears that

Ftrig test performs as well as the LR tests based on the asymptotic or bootstrap distribution,

which are more di¢cult to implement and also more computing intensive. The Ftrig test

does not require more than the ability to calculate OLS regressions over a range of values for

f and to store the obtained results. This is easy to implement in most standard econometric

packages.

6 Empirical application

Lütkepohl and Herwartz [1996] illustrate their procedure using seasonally unadjusted

quarterly per-capita non-entrepreneurial income and consumption data from1960.I to 1988.IV

(116 observations). Although the time-period straddles German uni…cation, we use the iden-

tical span so as to facilitate comparison of the two methods.8

8We thank Hiltrud Nehls from the Rhine-Westphalia Institute for Economic Research for providing the
data. The data are in actual prices.
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Figure 1: Figure 1: Di¤erence in log per-capita income. 1960.I to 1994.IV.

6.1 German per-capita income

The log di¤erence of the quarterly income data display an obvious quarterly pattern

(Figure 1). Growth rates are negative for QI and in general positive for the remaining

quarters.

We will start the testing procedure with an AR(1) model9. The null of time invariance

is rejected for the constant and the AR(1) coe¢cient. The test statistics are 60.8 and

20.1 respectively10. The frequencies f ¤are 28 and 29 respectively and, in combination with

T = 115, hint at a quarterly variation. Lütkepohl and Herwartz use an AR(4) model as

their base model and conclude that only the constant term displays seasonal variation. The

9 In general only the results of the F (f¤) test are reported. Test results basing on the bootstrap distrib-
ution are only reported when they indicate di¤erent decisions.

10The critical values for a sample size of 100 and a frequency search region of k = 1 : : : T=2 are 6.37 (10%
signi…cance), 7.19 (5%) and 9.09 (1%) (Table 1 in Ludlow and Enders, [2000]).
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F (f ¤) test applied to the AR(4) model does not reject the null hypothesis of parameter

constancy for the four autoregressive coe¢cients. All test statistics are well below the

10% critical value. The test statistic for the constant is marginally signi…cant at the 10%

level. However, the selected frequency is f ¤ = 35, which is too high to indicate a seasonal

behaviour. The LR bootstrap tests con…rm this marginal result. While LRave is clearly

nonsigni…cant, the LRsuptest statistic has a p-value of 0.102 and the LRexp test has an

estimated p-value of 0.072.

If the goal was to further model the process driving the quarterly growth rate of German

per-capita income, one would have to decide whether one should use the AR(4) model as the

basis model, where the inclusion of the autoregressive component of order 4 appears to be

su¢cient to capture most of the seasonality. Alternatively, a periodic autoregressive model

of order one might be the appropriate model. The choice is made di¢cult because it is

well known (Herwartz, [1995] and Franses, [1996]), that PAR models create autocorrelation

patterns which might well be approximated by a higher order linear AR model. One would

have to resort to criteria such as forecast performance or economic plausibility to decide for

one or the other model.

6.2 German per-capita consumption

From Figure 2 the seasonal pattern in the log di¤erence in consumption, c, is obvious.

Note that the pattern of the seasonal variation appears to be relatively stable.

When testing the AR(1) model for time constant parameters, the results are again clear

cut. The null of time invariance is rejected for both coe¢cients with test statistics of 46.2
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Figure 2: Figure 2: Di¤erence in log per-capita consumption. 1960.I to 1994.IV.

parameters F (f¤) LRsup LRave LRexp f¤

constant 9.3¤¤ 0.008 0.102 0.01 45
®1 15.8¤¤ 0.000 0.014 0.000 10
®2 13.3¤¤ 0.000 0.046 0.000 10
®3 6.5¤ 0.146 0.912 0.178 10
®4 10.8¤¤ 0.010 0.486 0.010 10

Table 5: Test on parameter constancy in AR(4) model for per-capita consumption data.
Test statistics for the Ftrig test and p-values otherwise.

and 21.3 respectively. Again the frequencies f ¤ (28 and 29) clearly indicate a predominant

seasonal variation. When testing the coe¢cients of an AR(4) model for time constancy,

results are markedly di¤erent to the results in the income data.

The null of time constancy is clearly rejected for the constant and the coe¢cients ®1,

®2 and ®4. This result is slightly di¤erent Lütkepohl and Herwartz’s conclusion, who after

visually evaluating the ‡uctuations in parameters, conclude that ®1, ®2 can be treated as

constant. The test results presented here do not support this. All tests, including the LRave
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test11 reject the null hypothesis for ®1 and ®2. Only the F (f¤) test rejects ®3 = 0marginally.

The frequencies f ¤, however, do not support a quarterly variation in the coe¢cients. The

AR(4) model has 111 usable observations. In conjunction with f ¤ = 10 this hints at cycles

in the autoregressive parameters of approximately 3 years. Interestingly, when AIC or SIC

criteria are used to …nd the optimal AR lag structure, both criteria select lag 12. This and

the f¤are snapshots of the same phenomenon.

It is not in the scope of this paper to investigate this further and, for example, examine

whether possibly a low order PAR model is suitable. It is known that the latter can create

autocorrelation patterns at multiples of the number of seasons. The purpose of this exercise

was to illustrate how the results obtained by means of GFLS can be achieved with much

simpler means. Also, f ¤ which is a natural side product of the proposed testing strategy,

carries valuable information.

7 Conclusion

The testing framework presented here provides a useful framework for testing regression

parameters for time dependence. A trigonometric approximation is shown to capture the

e¤ects of possible variation in the parameters of a time-series model and allows the reliable

detection of any such variation in a rigorous statistical manner. The primary econometric

di¢culty encountered in implementing this testing strategy is that the appropriate frequency

in the Fourier approximation is unidenti…ed under the null hypothesis. As a result the test

11All signi…cance statements for the LR tests are based on the bootstrapped distribution under the null
hypothesis.
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statistic has a non-standard distribution under the null hypothesis. It is possible to assess

the signi…cance of the test statistic either by draws from the asymptotic distribution under

the null hypothesis or by bootstrapping. Alternatively, if the domain of the frequency is

limited to integer values it is shown that the critical values of the test statistic’s distribution

is relatively stable, at least for the models examined in this paper. As a result tabulated

critical values constructed by Ludlow and Enders [2000] work well in the sense that the

test’s empirical performance is not impaired by this simple approximation.

The test is shown to have very good size and power properties. However, it is not

especially good in detecting nonlinearity in variables. As such, the test can help determine

whether an observed rejection of the joint null hypothesis of linearity and time invariant

parameters is due to time-varying coe¢cients or a nonlinearity in variables. As an example,

we used the same West German income and consumption data as Lütkepohl and Herwartz

[1996]. It was demonstrated that the results generated by Generalised Flexible Least

Squares may be obtained in a statistically rigorous manner.
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