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Abstract

Within the framework of the heterogeneous agent paradigm, we establish a
stochastic model of speculative price dynamics involving of two types of agents,
fundamentalists and chartists, and the market price equilibria of which can be
characterised by the invariant measures of a random dynamical system. By con-
ducting a stochastic bifurcation analysis, we examine the market impact of spec-
ulative behaviour. We show that, when the chartists use lagged price trends to
form their expectations, the market equilibrium price can be characterised by a
unique and stable invariant measure when the activity of the speculators is be-
low a certain critical value. If this threshold is surpassed, the market equilibrium
can be characterised by more than two invariant measures, of which one is com-
pletely stable, another is completely unstable and the remaining ones may exhibit
various types of stability. Also, the corresponding stationary measure displays a
significant qualitative change near the threshold value. We show that the stochas-
tic model displays behaviour consistent with that of the underlying deterministic
model. However, when the time lag in the formation of the price trends used by the
chartists approaches zero, such consistency breaks down. In addition, the change
in the stationary distribution is consistent with a number of market anomalies and
stylised facts observed in financial markets, including a bimodal logarithmic price
distribution and fat tails.
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1 Introduction

Traditional economic and finance theory based on the paradigm of the representative

agent with rational expectations has not only been questioned because of the strong

(and some would argue - unrealistic) assumptions of agent homogeneity and rational-

ity, but has also encountered great difficulties in explaining many market anomalies and

stylised facts that show up in many empirical studies, including high trading volume,

excess volatility, volatility clustering, long-range dependence, skewness, and excess kur-

tosis (see Pagan (1996) for a description of the various anomalies). Furthermore, survey

data and empirical literature (see Frankel and Froot (1986), Shiller (1987), Allen and

Taylor (1990) and Taylor and Allen (1992)) have provided evidence of heterogeneity and

bounded rationality. As a result, there has been a rapid growth in the literature on het-

erogeneous agent models that is well summarised in the recent survey papers by Hommes

(2006), LeBaron (2006) and Chiarella, Dieci and He (2008). These models characterise

the dynamics of financial asset prices and returns resulting from the interaction of het-

erogeneous agents having different attitudes to risk and having different expectations

about the future evolution of prices. For example, Brock and Hommes (1997, 1998) pro-

pose a simple Adaptive Belief System to model economic and financial markets. Agents’

decisions are based upon their predictions of future values of endogenous variables, the

actual values of which are determined by equilibrium equations. A key aspect of these

models is that they exhibit feedback of expectations. Agents update their beliefs based

on the market price which in turn is determined by agents’ expectations. The resulting

dynamical system is nonlinear and, as Brock and Hommes (1998) show, capable of gen-

erating complex behaviour from local stability to (a)periodic cycles and even chaos. It

has been shown (see for instance Hommes (2002) and He and Li (2007)) that such simple

nonlinear adaptive models are capable of capturing important empirically observed fea-

tures of real financial time series, including fat tails, clustering in volatility and power-law

behaviour (in returns). The analysis of the stylised simple evolutionary adaptive models

and their numerical analysis provide insight into the connection between individual and

market behaviour.

The current paper contributes to the development of this new paradigm of hetero-

geneous boundedly rational agents by modelling the stochastic price dynamics of specu-

lative behaviour in financial markets in a continuous time framework. One of the most

important issues for various heterogeneous asset pricing models is the interaction of the

behaviour of the heterogeneous agents and the interplay of noise with the underlying

nonlinear deterministic market dynamics. Indeed He and Li (2007) in their simulations

found that these two effects interact in ways which are not yet understood at a the-

oretical level. The noise can be either fundamental noise (by which we mean noise in

the underlying economic processes determining the fundamental market price) or market

noise (this can best be thought of as noise impinging on the market-clearing mechanism,

due perhaps to the arrival of news events causing stochastic shifts in demand and sup-
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ply, and hence so-called noise traders could be incorporated under this rubric), or both.

One simple approach, referred to as the indirect approach for convenience, is to first con-

sider the corresponding deterministic “skeleton” of the stochastic models where the noise

terms are set to zero and use is made of stability and bifurcation theory to investigate

the dynamics of this nonlinear deterministic system; one then uses simulation methods

to examine the interplay of various types of noise and the deterministic dynamics. In

fact, this indirect approach has been used extensively in the economic dynamics and

financial market modelling literature (we refer the reader to Hommes (2006) for related

references). However it is well known that the dynamics of stochastic systems can be

very different from the dynamics of the corresponding deterministic systems. Ideally we

would like to deal directly with the dynamics of the stochastic systems, but this direct

approach can be difficult. For example, in an agent-based financial market model with

stochastic noise, we would like to know how the distributional properties of the model,

which can be characterised by the stationary distribution of the market price process,

change as agents’ behaviour changes and how the market price distribution is influ-

enced by the underlying deterministic dynamics. In particular, we can ask if there is a

connection between different types of attractors and bifurcations of the underlying deter-

ministic skeleton and different types of invariant measures of the stochastic system. By

adding noise to the underlying deterministic system and using the simulation approach,

many models are able to generate realistic time series (see, for example, Hommes (2002),

Chiarella, He and Hommes (2006a), (2006b)), but few models have been developed that

are able to give a qualitative characterisation of the stochastic nature of the dynamics.

In this paper, we extend the deterministic models of speculative price dynamics of

Beja and Goldman (1980) and Chiarella (1992) to a stochastic model whose market price

equilibria can be characterised by different types of invariant measures. We choose this

very basic model of fundamentalist and speculative behaviour as it captures in a very

simple way the essential aspects of the heterogeneous boundedly rational agent paradigm.

Instead of the indirect approach, we use the direct approach to investigate the stochastic

model. By using concepts and stochastic bifurcation techniques from the theory of ran-

dom dynamical systems (see Arnold (1998)), we conduct a quantitative and qualitative

analysis of the stochastic model and examine the existence and stability of invariant

measures of the equilibrium market price. Because of the analytical limitations imposed

by the state of the art in stochastic bifurcation theory for higher dimensional systems,

we investigate the equilibrium distribution of the market price through a combination of

theoretical analysis and numerical studies of the stochastic bifurcation. We show that

the market price can display different forms of equilibrium distribution, depending on

the speculative behaviour of the chartists. In particular, when the chartists use lagged

price trends in their expectation, we show through a so-called dynamical (D)-bifurcation

analysis that the market equilibrium price can be characterised by a unique and stable

invariant measure when the activity of the speculators is below a certain critical value.

If this threshold is surpassed, a new and stable invariant measure appears, while the
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original invariant measure becomes unstable. In addition, we show through a so-called

phenomenological (P)-bifurcation analysis that the corresponding stationary measure

displays a significant qualitative change near the threshold value from a single peak

(unimodal) to crater-like (bimodal) joint distributions (and also marginal distributions)

as the chartists become more active in the market. Using a stochastic approximation

method, we confirm this qualitative change analytically and show that the stochastic ap-

proximation of the stochastic model displays a bifurcation of very similar nature to that

of the underlying deterministic model. However, when the time lag of the price trends

used by the chartists approaches zero, the stochastic model can display very different

features from those of its underlying deterministic model and the resulting P-bifurcation

may not be consistent with the D-bifurcation. Overall, the change of the stationary dis-

tributions is characterised by a number of market anomalies and stylised facts observed

in financial markets, including a bimodal logarithm price distribution and fat tails.

A number of stochastic asset pricing models have been constructed in the heteroge-

neous agent literature. The earliest of which we are concern is that of Föllmer (1974)

who allows agents’ preferences to be random and governed by a law that depends on

their interaction with the economic environment. Föllmer and Schweizer (1993) con-

sider a model of fundamentalists and noise traders (akin to our chartists) in a stochastic

environment and under certain assumptions show that the limiting distribution can dis-

play fat tail bahaviour. Brock, Hommes and Wagener (2005) study the evolution of a

discrete financial market model with many types of agents by focusing on the limiting

distribution over types of agents. They show that the evolution can be well described by

the large type limit (LTL) and a simple version of LTL buffeted by noise is able to gen-

erate important stylised facts, such as volatility clustering and long memory, observed

in real financial data. Föllmer, Horst and Kirman (2005) consider a discrete financial

market model in which adaptive heterogeneous agents form their demands and switch

among different expectations stochastically via a learning procedure. They show that,

if the probability that an agent will switch to being a “chartist” is not too high, the

limiting distribution of the price process exists, is unique and displays fat tails. Rhein-

laender and Steinkamp (2004) study a one-dimensional continuously randomised version

of Zeeman’s (1974) model and show a stochastic stabilisation effect and possible sudden

trend reversal. Other related works include Hens and Schenk-Hoppé (2005) who anal-

yse portfolio selection rules in incomplete markets where the wealth shares of investors

are described by a discrete random dynamical system, Lux and Schornstein (2005) who

present an adaptive model of a two country foreign exchange market where agents learn

by using genetic algorithms, Böhm and Chiarella (2005) who consider the dynamics of

a general explicit random price process of many assets in an economy with overlap-

ping generations of heterogeneous consumers forming optimal portfolios, and Böhm and

Wenzelburger (2005) who provide a simulation analysis of the empirical performance

of portfolios in a competitive financial market with heterogeneous investors and show

that the empirical performance measure may be misleading. Most of the cited papers
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focus on the existence and uniqueness of limiting distributions of discrete time models,

rather than the existence and stability of multiple limiting distributions of continuous

time models, which are the focus of this paper. The only exception seems to be the one-

dimensional continuously randomised version of Zeeman’s (1974) stock market model

studied by Rheinlaender and Steinkamp (2004) and the work of Föllmer and Schweizer

(1993). To our knowledge, the current paper is the first to consider the existence and

stability of multiple limiting distributions for a two-dimensional financial market model

in a continuous time framework. We show that, as the chartists change their behaviour

(through their speed of reaction coefficient), the market price can display different forms

of equilibrium distribution. In particular, the market price can be driven away from the

fundamental price when the chartists extrapolate the price trend strongly.

The paper unfolds as follows. Section 2 reviews the heterogeneous agent financial

market models developed by Beja and Goldman (1980) and Chiarella (1992). Section 3

gives the deterministic dynamical behaviour of the model. Section 4 analyses the stochas-

tic dynamics of the model, including the existence and/or stability of invariant measures

and stationary distributions, and their bifurcations. In addition, through the method of

stochastic approximation, the properties of stationary distributions are obtained analyt-

ically. In both Sections 3 and 4, we examine two different cases in which the time lag of

the price trends used by the chartists is either positive or zero. The latter (which is a

limiting case when the time lag goes to zero) corresponds to the case when the chartists

place full weight on the most recent price change. Section 5 concludes with a discussion

of the main results. All proofs are in the Appendix.

2 The Model

Consider a financial market consisting of two types of investors, fundamentalists and

chartists and two types of assets, a risky asset (for instance a stock market index) and a

riskless asset (typically a government bond). The fundamentalists base their investment

decisions on an understanding of the fundamentals of the market, perhaps obtained

through extensive statistical and economic analysis of market trends. The chartists base

their investment decisions on recent price trends. In the market, the transactions and

price adjustments occur simultaneously. The changes of the risky asset price P (t) are

brought about by aggregate excess demand D(t) of investors at a finite speed of price

adjustment. Accordingly, these assumptions may be expressed as

dp(t) = D(t)dt = [Df
t + Dc

t ]dt, (2.1)

where pt = ln P (t) is the logarithm of the risky asset price P (t) at time t and D(t)

is the investors’ excess demand for the risky asset at time t. The excess demand D(t)

is further decomposed as the excess demands of the fundamentalists (Df
t ) and of the

chartists (Dc
t ), defined below.
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The excess demand of the fundamentalists is assumed to be given by

Df
t (p(t)) = a[F (t)− p(t)], (2.2)

where F (t) denotes the logarithm of the fundamental price1 that clears fundamental

demand at time t so that Df
t (F (t)) = 0 and a > 0 is a constant measuring the excess

demand of the fundamentalists brought about by the market price deviation from the

fundamental price.

Unlike the fundamentalists, the chartists consider the opportunities afforded by the

existence of continuous trading out of equilibrium. Their excess demand is assumed to

reflect the potential for direct speculation on price changes, including the adjustment of

the price towards equilibrium. Let ψ(t) denote the chartists’ assessment of the current

trend in p(t). Then the chartists’ excess demand is assumed to be given by

Dc
t (p(t)) = h(ψ(t)), (2.3)

where h is a nonlinear continuous and differentiable function, satisfying

h(0) = 0; h′(x) > 0 for x ∈ R, lim
x→±∞

h′(x) = 0; (2.4a)

h′′(x)x < 0 for x 6= 0 and h(3)(0) < 0, (2.4b)

where h(n)(ψ) denotes the nth order derivative of h(ψ) with respect to ψ.

Figure 1: The chartists’ demand function

These properties imply that h is an S-shaped function, as shown in Fig. 1, which

indicates that when the expected trend in the price is above (below) zero, the chartists

would like to hold a long (short) position in the risky asset. Since the chartists have

1In this paper, we consider the market price and the fundamental price to both be detrended by the
risk-free rate or correspondingly, the risk-free rate is also assumed to be zero.
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budget constraints, we impose upper and lower bounds on the chartists’ demand function,

that is

sup
x
|h(x)| < ∞. (2.5)

In addition, h′(·) measures the intensity of the chartists’ reaction to the long/short signal

ψ. When h′(·) is small, the chartists react cautiously to the long (short) signals. Under

the assumption of (2.4b), the intensity of the chartists’ reaction is always bounded and

especially, the chartists are most sensitive to the change at the equilibrium, that is

max
x

h′(x) = h′(0). We refer the reader to Chiarella (1992) and Chiarella, Dieci and

Gardini (2002) for a more detailed economic justification of the nonlinear function h(x)

and the consistency of the demand function under the set up described above with the

standard expected utility maximisation viewpoint.

Note that the chartists’ speculation on the adjustment of the price toward equilibrium

must primarily depend on an assessment of the state of the market as reflected in price

trends. Typically, the assessment of the price trend will be based at least in part on

recent price changes and will be an adaptive process of trend estimation. One of the

simplest assumptions is that ψ is taken as an exponentially declining weighted average

of past price changes2, which can be expressed as the first order differential equation

dψ(t) = c[dp(t)− ψ(t)dt], (2.6)

where c ∈ (0,∞] is the decay rate, which can also be interpreted as the speed with which

the chartists adjust their estimate of the trend to past price changes. Alternatively the

quantity τ = 1/c may be viewed as the average time lag in the formation of expectations

and it can be shown that3 in a loose sense ψ(t)dt ≈ dp(t− τ).

Summarising the above set up, we obtain the asset price dynamics




dp(t) = a
[
F − p(t)

]
dt + h

(
ψ(t)

)
dt,

dψ(t) =
1

τ

[
− ap(t)− ψ(t) + h

(
ψ(t)

)
+ aF

]
dt.

(2.7)

In the earlier cited literature that focuses on the deterministic dynamics of the finan-

cial market model, it is usually assumed that F is constant. However, we would never

expect that financial market behaviour can be characterised independently of random-

ness. There could exist at least two important random influences in our financial market

model—a random fundamental price reflecting the many sources of uncertainty imping-

ing on the underlying economy, and an unpredictable market noise that could for instance

be due to noise traders or to the arrival of news events leading to unpredictable changes

in demand/supply of the risky asset. For simplicity, this paper only considers the ran-

domness from the fundamental price. When the fundamental price F follows a stochastic

2This means that ψ(t) = c
∫ t

−∞ e−c(t−s)dp(s).
3Equation (2.6) can be written as dp(t) = τdψ(t) + ψ(t)dt ≈ ψ(t + τ)dt. Hence ψ(t)dt ≈ dp(t − τ).

Alternatively one can calculate that the average time lag for the weighting function in footnote 2 is
τ = 1/c. So in an approximate sense ψ is based on the change in p evaluated at the average time lag τ .
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process, for example a random walk, (2.7) becomes a stochastic dynamical system. We

examine the dynamic behaviour of (2.7) when the average time lag τ of the chartists in

the formation of expectations is either positive or zero, the latter can be treated as a

limiting case of the former one as τ → 0+.

3 The Deterministic Dynamical Behaviour

In this section, in order to later highlight the comparison between the deterministic

and stochastic dynamics, we consider the situation in which the fundamental price is

not perturbed by noise. Thus we assume that the fundamental price is constant with

F ≡ F ∗, in which case the system (2.7) has a unique steady-state p̄ = F ∗, ψ̄ = 0. In

the following discussion, we first consider the general case in which the average time

lag τ of the chartists in the formation of expectations is positive. We also consider the

limiting case τ → 0+. This corresponds to the situation in which the chartists use the

most recent price change to estimate the trend of the price. This limiting case is also

of interest because it has a similar structure to the catastrophe theory model of Zeeman

(1974), a structure that has been suggested by some empirical studies, such as Anderson

(1989).

3.1 Dynamical Behaviour with Lagged Price Trend

Under the assumption that the chartists use a finite speed of adjustment in adapting

to the price trend, that is 0 < c < ∞, or equivalently that the chartists always estimate

the price trend with a delay τ > 0, Beja and Goldman (1980) perform a local linear

analysis around the steady-state and show that the steady-state is locally stable if and

only if

b < b∗ = 1 + aτ, b = h′(0), (3.1)

where b represents the slope of the demand function at ψ = 0 for the chartists, which

plays a very important role in determining the dynamics. In this paper, we take b as

the key parameter through which to examine the role of the chartists in determining the

market price. Beja and Goldman (1980) show that, at b = b∗, the system has a pair

of purely imaginary eigenvalues λ1,2 = ±
√
−a/τ . By considering the nonlinear nature

of the function h(x), Chiarella (1992) conducts a nonlinear analysis of the same model

and demonstrates the occurrence of a Hopf bifurcation at b = b∗ if b is regarded as a

bifurcation parameter. The basic result is summarised in the following theorem.

Theorem 3.1 (The Bifurcation of the Fundamental Equilibrium (p∗, ψ∗) =

(F ∗, 0)) Let b = h′(0) and b∗ = 1 + aτ .

1. When b < b∗, (p∗, ψ∗) is locally asymptotically stable.

2. At b = b∗, (p∗, ψ∗) undergoes a supercritical Hopf bifurcation.
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(a) b < b∗ (b) b = b∗

(c) b ' b∗ (d) b > b∗

Figure 2: The phase plots from the stable fixed point (a) and (b) to the stable limit

cycle (c) and (d) when the bifurcation parameter b increases near the bifurcation point

b∗ = 1 + aτ . Here h(x) = α tanh(βx), a = 1, α = 1, τ = 1, F ∗ = 1 (hence b∗ = 2) and

b = β = 1.5 (a), 2.0 (b), 2.2 (c), 2.5 (d), respectively.

3. When b > b∗, (p∗, ψ∗) is unstable and a stable limit cycle exists.

The behaviour of the dynamics in the phase plane of p and ψ for various values

of b is illustrated in Fig. 2. In particular, by use of the Hopf bifurcation theorem

(stated for example in Guckenheimer and Holmes (1983)), under the transformation

(p, ψ) = (F ∗ + uτ − v
√

τ/a, u), the stable limit cycle appearing for b → (1 + aτ)+ near

the steady state is well-approximated in the (u, v) coordinates by

u2 + v2 = − 8

h(3)(0)
(b− b∗). (3.2)

Therefore, when the chartists use lagged price trends to form their expectations, the

strength of their activity, measured by b = h′(0), can lead to different market behaviour.

When they are less active (as measured by a low values of b), the market price converges

to the fundamental price. However, when they are very active, the fundamental price

becomes unstable and the market price oscillates periodically.
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3.2 Dynamical Behaviour in the Limit τ → 0+

We now consider the limiting case τ → 0+. This corresponds to the situation in

which the chartists react very quickly to the recent price changes, which might even be

described as over-reaction. We show that, different from the previous case, the dynamics

of the limiting case displays jump phenomena when the chartists are very active in the

market.

The system (2.7) can be rewritten as

Σ :

{
ṗ = f(p, ψ)

τ ψ̇ = g(p, ψ),
(3.3)

where

f(p, ψ) := a(F ∗ − p) + h(ψ), g(p, ψ) := a(F ∗ − p) + h(ψ)− ψ.

When τ → 0+, dynamical systems such as (3.3), where one of the time derivatives is

multiplied by a small parameter that tends to zero, are known as singularly perturbed

systems. As we show in the following they are characterised by the fact that the dynamics

are fast in one direction (here the ψ-direction) and slow in the other direction (here the

p-direction), see Yurkevich (2004) for a more detailed study of such systems.

In the limiting case τ = 0, the system (3.3) becomes

Σs :

{
ṗ = f(p, ψ),

0 = g(p, ψ),
(3.4)

which is a differential-algebraic equation (DAE)4 with an algebraic constraint on the

variables. The dynamical system Σ has apparently lost a dimension in the limit τ = 0.

However, the system Σs still has a two-dimensional phase plane.

For the system Σs in (3.4), if h′(ψ) 6= 1, we have

ψ̇ = − aψ

1− h′(ψ)
,

and

Dψg(p, ψ) = h′(ψ)− 1 6= 0,

where Dψg(p, ψ) = ∂g(p, ψ)/∂ψ. Then the Implicit Function Theorem holds with respect

to ψ in the function g(p, ψ) = 0. Therefore, we can denote ψ as a function of p, that is

ψ = ψ(p) satisfying g(p, ψ(p)) = 0. Furthermore the first equation of (3.4) can then be

rewritten as

ṗ = f(p, ψ(p)) = a(F ∗ − p) + h(ψ(p)), (3.5)

4For more information about DAEs, we refer the reader to the book of Brenan, Campbell and Petzold
(1989).

10



and the Jacobian matrix of (3.5) is

df(p, ψ(p))

dp
= Dpf(p, ψ)

∣∣∣
ψ=ψ(p)

−
[
Dψf(p, ψ)

(
Dψg(p, ψ)

)−1
Dpg(p, ψ)

]∣∣∣
ψ=ψ(p)

which is well defined provided Dψg(p, ψ) = h′(ψ) − 1 6= 0. In this case, Σs reduces to

two one-dimensional equations under the condition that h′(ψ) 6= 1.

However, if there is a ψ∗ such that h′(ψ∗) = 1, then we cannot apply the Implicit

Function Theorem. Those points where the Implicit Function Theorem cannot be applied

are called singular points. Note that h′(·) attains its maximum value at ψ = 0, that is

max
ψ

h′(ψ) = h′(0) = b. This implies that, depending on b < 1, b = 1 or b > 1, the

number of singularity points is different. In fact, there is no singular point for b < 1.

For b = 1, there is one singular point ψ = 0. While for b > 1, there are two singular

points satisfying Dψg(p, ψ) = h′(ψ) − 1 = 0. In terms of the number of the singular

points, b = 1 is the critical case. From the following discussion, we see that the different

types of singularities affect the dynamics differently. Therefore, as in the previous case

of τ > 0, we continue to take b as the bifurcation parameter.

In order to analyse the effect of the singularity, we adopt the Singularity Induced

Bifurcation Theorem, see Venkatasubramanian, Schättler and Zaborszky (1995), in the

following Theorem 3.2. Rewriting f(p, ψ) and g(p, ψ) as a function of the parameter b,

that is

f(p, ψ, b) := a(F ∗ − p) + h(ψ), g(p, ψ, b) := a(F ∗ − p) + h(ψ)− ψ,

and letting EQ represent the set of all equilibria of Σs, that is

EQ := {(p, ψ, b) ∈ R3 : f(p, ψ, b) = 0, g(p, ψ, b) = 0},

and S the set containing all the singular points, that is

S := {(p, ψ, b) ∈ R3 : g(p, ψ, b) = 0, Dψg(p, ψ, b) = 0}.

Then the singular equilibrium points occur when EQ∩ S 6= ∅. In particular, (p, ψ, b) =

(F ∗, 0, 1) is one such singular equilibrium point. The case of b = 1 corresponds to the

appearance of the singularity of the fundamental equilibrium (p, ψ) = (F ∗, 0) and the

stability and type of singularity of the fundamental equilibrium (p, ψ) = (F ∗, 0) depend

on the parameter b. Therefore, the bifurcation of the fundamental equilibrium (p, ψ) =

(F ∗, 0) near the singular parameter b = 1 is called a singularity induced bifurcation and

its dynamics are described by the following Theorem.

Theorem 3.2 A singularity induced bifurcation (SIB) occurs at b = 1. That is to say,

there exists a smooth curve of equilibria EQ in R3 which passes through (F ∗, 0, 1) and

is transversal to the singular surface S at (F ∗, 0, 1). In addition, when b increases from

b < 1 to b > 1, the eigenvalue of the matrix Dpf −Dψf(Dψg)−1Dpg at (p∗, ψ∗) = (F ∗, 0)

moves from R− to R+.
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Figure 3: The eigenvalue of the system Σs at the fixed point as a function of the parameter

b.

In fact, at (p∗, ψ∗) = (F ∗, 0), the eigenvalue λΣs = Dpf−Dψf(Dψg)−1Dpg = a/(b−1)

when b 6= 1. The change of the eigenvalue at (p∗, ψ∗) = (F ∗, 0) in Theorem 3 is illustrated

in Fig. 3.

Based on the above analysis and the fact that (p∗, ψ∗) = (F ∗, 0) is the unique fixed

point of the system Σs, we obtain the following result. For b < 1, the eigenvalue at

(F ∗, 0) is negative and hence (F ∗, 0) is stable. When b increases from 1− to 1+ through

b = 1, λΣs moves from R− to R+ due to the fact that the eigenvalue λΣs consists of

two branches separated by b = 1, as shown in Fig. 3. This means that the steady state

(F ∗, 0) loses its stability at b = 1 and becomes unstable as b increases from 1− to 1+.

To understand the dynamics of the system Σs, we consider the limiting dynamics of

the singularly perturbed system Σ as τ → 0+. We show that the jump phenomena for

the system Σs corresponds to the limiting case of the Hopf Bifurcation in the system

Σ for b∗ = b∗(τ) (τ 6= 0) when τ → 0+. Here b∗(τ) is a function in a small interval

[0, τ0)(τ0 > 0) with b∗(0) = 1.

Theorem 3.3 Given any parameter interval (b1, b2) containing b = 1, there exists τ0 > 0

such that for any τ ∈ (0, τ0), the Jacobian J of the system Σ,

J =

(
Dpf Dψf

Dpg/τ Dψg/τ

)

evaluated along EQ has a pair of eigenvalues which cross the imaginary axis away from

the origin within the parameter interval (b1, b2). In addition, there exists a unique smooth

function b∗ = b∗(τ) defined in the small interval [0, τ0) with b∗(0) = 1 such that J at

(F ∗, 0, b∗(τ)) for τ 6= 0 has a pair of purely imaginary eigenvalues of the form λ1,2(τ) =

±
√

ξ(τ)/τ where ξ(τ) is smooth in [0, τ0) and ξ(0) = −a.

Recall that, at b∗ = b∗(τ) = 1 + τa, the system Σ has a pair of purely imaginary

eigenvalues λ1,2 = ±
√
−a/τ , that is, ξ(τ) ≡ −a. We have also shown in (3.2) that
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(a) (b)

Figure 4: (a) The limit of the limit cycles as τ → 0+; (b) The projection of the limiting

cycles in the (ψ, p) plane.

with a fixed b > b∗(τ0) (τ0 > 0), as τ → 0+, the limit cycle persists. Figure 4(a) shows

a sequence of limit cycles as τ → 0+ and Fig. 4(b) gives a projection of Fig. 4(a)

onto the (ψ, p) plane. In fact, in the (ψ, p) plane, the following observations are made

about the system Σ. As illustrated in Fig. 5(a), for g(p, ψ) 6= 0, ψ moves infinitely

rapidly toward the curve defined by g(p, ψ) = 0 since ψ̇ → ∞ when τ → 0+. We

denote such a region as the fast region. For g(p, ψ) = 0, as τ → 0+, the dynamics

are governed by the differential equation for p, namely ṗ = a(F ∗ − p) + h(ψ) along the

curve g(p, ψ) = 0. We denote the regions of the phase plane where motion is governed

by ṗ = a(F ∗ − p) + h(ψ) as the slow manifold. Specifically, consider how the motion

evolves from the initial point Q in the fast region in Fig. 5(a). The variable ψ moves

instantaneously horizontally to the point N on the slow manifold g(p, ψ) = 0. Motion

is then down the slow manifold under the influence of ṗ = a(F ∗ − p) + h(ψ). When

the singular point B is reached, ψ jumps instantaneously horizontally across to C on

the opposite branch of the slow manifold. Motion is then up to another singular point

D and the cycle then repeats itself. Therefore, the limit cycle with jump phenomena

consisting of two slow movements along the manifold of Σs shown in Fig. 5(a), A → B,

and C → D, and two jumps at the singular points B and D in Σs, namely B ³ C

and D ³ A. The corresponding time series in Fig. 5(b) clearly shows the periodic

slow movement in price p and sudden jumps in ψ from time to time. In this way, the

model is able to generate significant transitory and predictable fluctuations around the

equilibrium. Using a different approach, this jump fluctuation phenomenon in the model

of fundamentalists and chartists was studied by Chiarella (1992) who pointed out that it

is merely the relaxation oscillation well-known in mechanics and expounded for example

by Grasman (1987). Our analysis indicates that strong reaction to price changes by the

chartists can make the fundamental price unstable, leading to predictable cycles for the

market prices and jumps in their estimate of the price trends.

13



(a) (b)

Figure 5: (a)The jump fluctuation in the phase plane and (b) the corresponding time

series of p(t) and ψ(t) at τ → 0+.

4 The Stochastic Dynamical Behaviour

The model reviewed in the previous section is entirely deterministic. In this section,

we examine the stochastic dynamics generated from the randomness of the fundamental

price. As in the previous section, we consider the general case of τ > 0 and its limiting

case of τ → 0+.

For the log fundamental price F (t), in accordance with the theory of equilibrium

prices in perfect markets, the successive changes in equilibrium values must be statis-

tically independent. This proposition is usually formalised by the statement that F (t)

follows a random walk. That is, F (t+h)−F (t) is normally distributed with mean 0 and

variance σ2h, independently of values of F (s) (s ≤ t). Using the notation of stochastic

differential equations, the log fundamental value F (t) can be considered to follow the

stochastic differential equation (SDE)

dF = σ ◦ dW, (4.1)

where W is a two-sided Wiener process on the probability space (Ω,F ,P) with zero drift

and unit variance per unit time and σ > 0 is the standard deviation (volatility) of the

fundamental returns. Here the circle ◦ indicates that the SDE (4.1) is to be interpreted

in the Stratonovich sense, rather than the Itô sense5.

By incorporating the random log fundamental price process F (t) of (4.1) into the

continuous model (2.7), we obtain the corresponding stochastic version of the financial

market model. Letting φdt = dψ, a nonlinear Stratonovich-SDE system in ψ and φ can

5The Stratonovich rather than the Itô SDE formalism is usually used in the theory of random
dynamical systems, one reason being that it has the advantage of the validity of the chain rule without
the addition of the second derivative terms.
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be obtained, namely




dψ = φdt,

dφ =
1

τ

[(
ς + h′(ψ)− b

)
φdt− aψdt + aσ ◦ dW

]
,

(4.2)

where ς = b − b∗ and b∗ = 1 + aτ . Once the dynamics of ψ(t) have been obtained, the

dynamics of the price p(t) can be obtained by integrating the first equation in (2.7).

To clarify the dynamical behaviour of the model (4.2), it is necessary to deal with the

random dynamical system (RDS) that it generates. We first establish some preliminary

mathematical results in order to gain some insight into the (Hopf) bifurcation of the

stochastic speculative behaviour generated by the system (4.2). We refer the reader to

Arnold (1998) for a more detailed and systematic treatment of the theory of RDSs.

A random dynamical system is the stochastic analogue of a deterministic dynamical

system. It consists of two ingredients: a model describing a dynamical system perturbed

by noise and a model of the noise itself. Here the model of the noise is the standard

two-sided Wiener process {Wt}t∈R, which consists of two independent Wiener processes,

one with t > 0, the other with t < 0 and both pinned down at zero. Let Ω be the space

of continuous functions ω : R→ R which satisfy ω(0) = 0. Let F be the Borel σ-algebra

on Ω, and let P be the Wiener measure on (Ω,F). Define the shift-mapping on Ω by

ϑtω(s) := ω(t + s) − ω(t), reflecting the fact that the Wiener process has stationary

increments rather than being stationary itself. Then ϑ is an ergodic metric dynamical

system on (Ω,F ,P) and Wt(ω) = ω(t).

A dynamical system perturbed by noise, that is a random dynamical system, is

characterised by the following co-cycle property. A local C∞ random dynamical system

on R2 over (Ω,F ,P, (ϑt)t∈R) is defined as a measurable mapping

ϕ : D → R2, (t, ω,x) 7→ ϕ(t, ω,x) (=: ϕ(t, ω)x),

where D ∈ B(R) ⊗ F ⊗ B(R2) and B(A) is the Borel σ-algebra generated by A, such

that (i) ϕ is a co-cycle, that is, ϕ(0, ω) = id, the identity map, and ϕ(t + s, ω) =

ϕ(t, ϑsω) ◦ ϕ(s, ω); (ii) (t,x) 7→ ϕ(t, ω,x) is continuous and x 7→ ϕ(t, ω)x is a C∞

diffeomorphism.

4.1 Dynamical Behaviour with Lagged Price Trend

We use the method of Schenk-Hoppé (1996a) to show in Theorem 4.1 below that the

solution ϕ(t, ·)x0 of (4.2) with the initial value x0 = (ψ0, φ0)
> and the average time lag

τ > 0 defines a global random dynamical system, that is D = R× Ω× R2.

Theorem 4.1 (i) The (Stratonovich) SDE system (4.2) uniquely generates a local smooth

RDS ϕ in R2 over the dynamical system ϑ modelling the Wiener process, that is there

exists a local RDS ϕ such that (ψt, φt) = ϕ(t, ·)x0 is the P-a.s. unique maximal solution

of (4.2) with any initial value x0 = (ψ0, φ0)
> ∈ R2.
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(ii)The SDEs (4.2) are strictly (forward and backward) complete, that is the local

diffeomorphism ϕ(t, ω) : Dt(ω) → Rt(ω)(⊂ R2) has domain Dt(ω) = R2 for any t ∈ R.

Equivalently,

P(ω : ι±(ω,x0) = ±∞, for all x0 ∈ R2) = 1,

where ι+ and ι− are, respectively, the forward and backward explosion times6 of the orbit

ϕ(·, ω)x0 starting at time t = 0 in the initial position x0.

In the following, the random dynamical behaviour of the solution of (4.2) is investi-

gated through stochastic bifurcation methods by examining either the change of stability

of invariant measures and the occurrence of new invariant measures, or the qualitative

change of stationary measures. The first approach corresponds to the so-called dynamical

(D)-bifurcation. For an n-dimensional SDE system, this approach examines the simul-

taneous behaviour of n (≥ 1) points forward and backward in time and characterises all

of the stochastic dynamics of the SDEs. The second approach corresponds to the so-

called phenomenological (P)-bifurcation. The stationary measure can be observed when

studying the solution of the corresponding Fokker-Planck equation. In other words, the

D-bifurcation examines the evolution of invariant measures from a dynamical sample

paths point of view, while the P-bifurcation studies the stationary distribution from a

distributional point of view. As indicated in Schenk-Hoppé (1996b) and the references

cited therein, the difference between P-bifurcation and D-bifurcation lies in the fact that

the P-bifurcation approach is, in general, not related to path-wise stability, whereas

the D-bifurcation approach is based on invariant measures, the multiplicative ergodic

theorem, Lyapunov exponents, and the occurrence of new invariant measures. The P-

bifurcation has the advantage of allowing one to visualise the changes of the stationary

density functions.

Stochastic bifurcation theory is a very powerful tool in helping us to understand the

stochastic nature of random dynamical systems. In particular, the study of the limiting

distribution of various stochastic models used in economics and finance is becoming more

important. However stochastic bifurcation theory is still in its infancy and its application

to heterogeneous agent models of financial markets presents many challenges. Here we

confront this challenge by using a combination of numerical and approximate analytical

6The forward and backward explosion times ι±(ω,x0) are essentially the times taken for the orbit
ϕ(·, ω)x0 to escape to ∞ based on the two sided Wiener process. Formally they are defined as below.
Let ι±n := ι±n (ω,x0) = ±(n ∧ inf{t : |ϕ(±t, ω)x0| ≥ n, t ≥ 0}) where a ∧ b stands for the smaller of a

and b. Then ι± := ι±(ω,x0) = lim
n↑+∞

ι±n (ω,x0) is called the explosion time of the solution ϕ(t, ω)x0 of

(4.2) with the initial condition ϕ(0, ω)x0 = x0. Explosion occurs on the set ET := {|ι±| < ∞}, because
on this set, by the continuity of ϕ(±t, ω)x0, ϕ(ι±, ω)x0 = lim

n↑+∞
ϕ(ι±n , ω)x0. Thus,

∣∣ϕ(ι±, ω)x0

∣∣ =
∣∣∣∣ lim
n↑+∞

ϕ(ι±n , ω)x0

∣∣∣∣ = lim
n↑+∞

n = +∞,

and infinity is reached in finite time on ET .

16



tools to analyse the model. The numerical analysis of the stochastic bifurcation of our

speculative market model is largely motivated by the work of Arnold, Sri Namachchivaya

and Schenk-Hoppé (1996) and Schenk-Hoppé (1996b) on the noisy Duffing-van der Pol

oscillator. Here we seek to use the combined analysis of D- and P-bifurcations to give

a broader picture of the behaviour of the model, including existence and/or stability,

of invariant measures and stationary distributions of the market prices as the chartist

behaviour changes.

In the following discussion, we conduct first the D-bifurcation analysis of (4.2) in

subsection 4.1.1. Based on the numerical results, we obtain the stochastic Hopf bifurca-

tion discussed in Schenk-Hoppé (1996b). We then examine the P-bifurcation of (4.2) in

subsection 4.1.2, followed by a summary of the overall picture of the stochastic dynamics

that emerges from the analysis of the D- and P-bifurcations. In subsection 4.1.3, via a

stochastic approximation method, we analytically confirm the picture obtained from the

D- and P-bifurcation analysis.

4.1.1 D-bifurcation

The dynamical or D-bifurcation approach deals with invariant measures, the applica-

tion of the multiplicative ergodic theorem, and random attractors. In stochastic models,

random invariant measures are the corresponding concept for invariant sets in deter-

ministic models. Invariant measures are of fundamental importance for an RDS as they

encapsulate its long-run and ergodic behaviour. First, we present a definition of invariant

measure.

Definition 4.1 For a given RDS ϕ over ϑ, the measure µ ∈ Pr(Ω×R2), where Pr(Ω×
R2) is a set of all probability measures in (Ω×R2,F ⊗B(R2)), is said to be an invariant

measure, if

(i) πΩµ = P, where πΩµ means the marginal of µ on Ω, and

(ii) Θ(t)µ = µ for all t ∈ R, where

Θ(t) : (Ω,R2) → (Ω,R2), (ω,x) 7→ (ϑ(t)ω, ϕ(t, ω)x) =: Θ(t)(ω,x).

In this definition, condition (i) indicates that the noise is an exogenous process, which

means that the marginal of the invariant measure on the probability space Ω has to be

the given measure P. Condition (ii) implies that the stochastic process {Θ(t)} with the

initial distribution µ has the same distribution µ at every time t, that is µ is invariant

for {Θ(t)}.
Every measure µ ∈ Pr(Ω × R2) with marginal P on Ω can factorise, that is, there

exists a P-a.s. unique measurable map µ : ω 7→ µω (probability kernel) with ω ∈ Ω

and µω ∈ Pr(R2) such that µ(dω, dx) = µω(dx)P(dω). In the following, we identify a
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measure µ with its factorisation (µω)ω∈Ω. Then, a measure µ ∈ Pr(Ω× R2) is invariant

under ϕ if and only if for all t ∈ R,

ϕ(t, ω)µω = µϑtω, P− a.s. .

A D-bifurcation occurs if a reference invariant measure µγ depending on a parameter

γ loses its stability at some point γD, and another invariant measure νγ 6= µγ exists

for some γ in each neighborhood of γD with νγ converging weakly to µγD as γ → γD.

Therefore, the D-bifurcation focuses on the loss of stability of invariant measures, which

is determined by Lyapunov exponents, and on the occurrence of new invariant measures,

which are characterised by random attractors, when a parameter varies. The following

discussion examines these two aspects of the D-bifurcation. As in the deterministic case,

we take b, the slope of the chartists’ demand at ψ = 0, as the bifurcation parameter.

(1) Lyapunov exponents

Similar to the stability analysis of a deterministic dynamical system, the stability of

invariant measures of a random dynamical system is described by the Lyapunov expo-

nents given by the multiplicative ergodic theorem (MET) (see Arnold (1998)).

Let µ be an invariant ergodic probability measure for the random dynamical system

ϕ generated by (4.2). Consider the linearisation (variational equations) corresponding

to (4.2), namely




du = vdt,

dv =
1

τ

[(
h′′(ψ)φ− a

)
u +

(
ς + h′(ψ)− b

)
v
]
dt,

(4.3)

where (ψ, φ) is the solution of (4.2) with initial value x. By the MET, there exists an

invariant set Γ ⊂ Ω× R2 with µ(Γ) = 1 satisfying the conditions:

(i) there exist two Lyapunov exponents of the invariant measure µ, λ1 ≥ λ2, which

are a.e. constants in Γ, and

(ii) for any (ω,x) ∈ Γ, there exists an invariant splitting E1(ω,x) ⊕ E2(ω,x) = R2,

such that any solution Vt(ω,x) with initial value V0 6= 0 of the variational equation

(4.3) has the exponential growth rates

λi = lim
t→∞

1

t
log ‖ Vt(ω,x)‖ if V0 ∈ Ei(ω,x), i = 1, 2.

Hence the Lyapunov exponent can be said to be the stochastic analogue of “the real part

of an eigenvalue” of a deterministic system (at a fixed point) and E1 and E2 correspond

to the eigenspaces. In addition, the stochastic analogue of “the imaginary part of the

eigenvalue” is the rotation number κ(µ), which is defined as the average phase speed of

Vt(ω,x), that is

κ(µ) = lim
t→∞

1

t
argVt(ω,x).
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When κ(µ) 6= 0, the stochastic flow will converge to (diverge from) the attractor (repeller)

in a spiralling fashion. Therefore the D-bifurcation approach is a natural generalisation

of deterministic bifurcation theory, if one adopts the viewpoint that an invariant measure

is the stochastic analogue of an invariant set, for instance a fixed point, and the MET is

the stochastic equivalent of linear algebra7.

To approximate the Lyapunov exponents and rotation number, we use stochastic

numerical methods to solve the variational equations (4.3). In the following, we take

h(x) = α tanh(βx),

with α, β (> 0), and note that h(·) satisfies the conditions (2.4)-(2.5). Then b = h′(0) =

αβ. In the following discussion, we take α = 1 and hence b = β. Therefore, we use β

as the bifurcation parameter in our subsequent numerical analysis. The computational

scheme proceeds as follows. We first solve the original SDEs (4.2) by the Euler-Maruyama

scheme, substitute this solution into the variational equations (4.3), and solve this linear

SDE system with the same numerical scheme as for (4.2). Then using the Gram-Schmidt

Orthonormalisation method (see pages 74-80 in Parker and Chua (1989)), we can simul-

taneously estimate all Lyapunov exponents of a stable invariant measure. In addition,

the rotation number can be calculated from the definition at the same time.

To detect the instability of an invariant measure, we calculate the Lyapunov expo-

nents and rotation number for the time reversed SDEs. This means that we make a

time transforation (time reversal) t → −t. Letting ψ̂(t) := ψ(−t), φ̂(t) := φ(−t) and

Ŵ (t) := W (−t), then the SDE system (4.2) becomes





dψ̂(t) = dψ(−t) = φ(−t)d(−t) = −φ̂(t)dt,

dφ̂(t) =
1

τ

[(
ς + h′(ψ(−t))− b

)
φ(−t)d(−t)− aψ(−t)d(−t) + aσ ◦ dW (−t)

]

=
1

τ

[(− ς − h′(ψ̂(t)) + b
)
φ̂(t)dt + aψ̂(t)dt + aσ ◦ dŴ (t)

]
.

(4.4)

We take a = 1, α = 1, τ = 1, σ = 0.02, the iteration time as 1000 time units with

step size 0.001 for each time unit and vary β. Figure 6 shows the Lyapunov exponents

of the invariant measures and their rotation numbers, as functions of the parameter β.

Note that with b = β increasing to βD ≈ b∗ = β∗ = 1 + aτ , the Lyapunov exponents

change from negative to positive, which means that the stability of the reference measure

µ transfers from stable to unstable. Near βD, because of κ(µ) < 0, the convergence to

(for β < βD) and divergence from (for β > βD) the measure µ occurs in a spiralling

fashion. When λ1,2(µ) becomes positive, we obtain two other Lyapunov exponents,

denoted by λ1,2(ν), satisfying λ2(ν) < λ1(ν) ≤ 0, which indicates the appearance of

a new stable invariant measure ν. This means that there always exists an invariant

7For deterministic systems we use linear algebra to determine the stable and unstable eigenspaces.
For stochastic systems we use the MET to determine the so-called Oseledets spaces as described below
(4.3).
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Figure 6: Lyapunov exponents and rotation number as a function of β for a = 1, α = 1,

τ = 1, σ = 0.02 and hence b = β. The negative values λ1,2(µ) indicate that the invariant

measure µ is stable for β < βD. For β > βD the invariant measure becomes unstable

since λ1,2(µ) are now positive. The appearance from β = βD of λ2(ν) < λ1(ν) ≤ 0

indicates the emergence of new stable measure ν.

measure µ in the market. However, when the chartists react to their demand signal

weakly (so that β < βD), this invariant measure is unique and stable; when the chartists

react to their demand signal strongly (so that β > βD), there exists a new invariant

measure ν such that the original invariant measure µ becomes unstable and the new

invariant measure ν is stable and converges in a spiralling fashion (since κ(ν) 6= 0). We

note that the bifurcation value βD is very close to the Hopf bifurcation value b∗ = β∗ for

the deterministic case discussed in the previous section. In the deterministic case, the

Hopf bifurcation occurs when b = β = β∗, leading to the appearance of the limit cycle.

In the following section, we characterise the stochastic Hopf bifurcation of the invariant

measure by using the concept of random fixed points and random attractors.

(2) Random fixed points and random attractors

Changes in the Lyapunov exponents indicate the changes of invariant measures. In

order to detect the changes of invariant measures, we first consider a random fixed point

(that is a random variable x(ω) satisfying ϕ(t, ω)x(ω) = x(ϑtω) for almost all ω ∈ Ω and

t ∈ T ), because a random fixed point corresponds to a random invariant Dirac measure

δx(ω).

Figure 7 displays sample paths, with two different parameter values of β = β1 = 1.5

and β = β2 = 2.2 satisfying β1 < βD < β2, for two different initial values and two orbits

of the Wiener process, ω and ω′. As t → ∞, Fig. 7 shows that, for a fixed Wiener
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(a) β = 1.5 (b) β = 2.2

Figure 7: Convergence of the process ϕ(t, ϑ−tω)x0 when a = 1, α = 1, τ = 1, σ = 0.02

from two different initial values and different orbits of the Wiener process ω and ω′ for

β = 1.5 (a) and β = 2.2 (b).

orbit, the sample paths converge to each other for two different initial values, however

with a different Wiener orbit, the limiting sample paths are different. This implies the

existence of a random fixed point which depends on the orbits of the Wiener process. In

the case of β = 1.5, there is no particular structure to the random fixed point but in the

case of β = 2.2, the sample paths converge with some fluctuating pattern. The change

in the structure of the dynamical behaviour of the random fixed points indicates that

the random invariant measures undergo some change as the parameter β varies.

In order to obtain more information about invariant measures, we need to examine

global random attractors. A global random attractor is a measurable map ω → A(ω)

such that A(ω) is compact in R2, invariant (that is ϕ(t, ω)A(ω) = A(ϑtω) for any t, ω),

and it attracts any bounded deterministic set D ⊂ R2, that is d(ϕ(t, ϑ−tω)D,A(ω)) → 0

when t → ∞, where d(S1, S2) := sups1∈S1
inf{d(s1, s2), s2 ∈ S2}. Random attractors

are of particular importance since on them the long-term behaviour of the system takes

place. In addition, global random attractors are connected and they support all invariant

measures (see Crauel and Flandoli (1994) and Crauel (1999)).

Note that in the definition of a global random attractor, a pullback process ϕ(t, ϑ−tω)

is used, which is based on the concept of moving points from time −t to time 0 (and not

from time 0 to time t). This enables us to study the asymptotic behaviour as t →∞ in

the fixed fibre at time 0. By increasing t the mapping is made to start at an ever earlier

time, corresponding to a pullback in time, which is illustrated in Fig. 8.

To view the global random attractor of (4.2), we need to calculate ϕ(t, ϑ−tω)D for a

given parameter β and given Wiener process ω. Here again, we use the Euler-Maruyama

Scheme to simulate ϕ with a step size ∆t = 0.001. As in the calculation of the Lyapunov

exponents, we fix the parameters a = 1, α = 1, τ = 1, σ = 0.02 and choose two different
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Figure 8: The pullback process ϕ(t, ϑ−tω). By starting the process at earlier times allows

us to study the asymptotic behaviour in the fixed fibre at time 0.

values of β, namely β = 1.5 and 2.2. At the same time, we choose a uniform distribution

as the initial value set D. The outcome of the pullback operation is shown in Fig. 9

with different initial values and different parameters β at different times t.

For β = 1.5, through the pullback process, we can see from Fig. 9(a) that ϕ(t, ϑ−tω)D

shrinks to a random point x∗(ω) which is distinct from zero. This is because the small

additive noise perturbs the invariance of the zero fixed point of the deterministic system.

Moreover, numerically it can be observed that, under time reversal, the solution of the

system satisfies ϕ(−t, ϑtω)x0 →∞ (t →∞) for any x0 6= x∗(ω), which implies that there

is no other invariant measure. Linking the pullback calculation with the calculation of

the Lyapunov exponents in Fig. 6, we know that the system is stable at this value of

β because of the negative largest Lyapunov exponents, and the system has a unique

and stable invariant measure which is a random Dirac measure µω = δx∗(ω) whilst the

global random attractor is A(ω) = {x∗(ω)}. This is exactly the stochastic analogue for

the corresponding deterministic case discussed in the previous section. Of course if ω′

rather than ω is used, then the Dirac measure and the global random attractor would

be different.

However, when β = 2.2, we observe from Fig. 6 the occurrence of positive Lyapunov

exponents. Applying the pullback operation again, we see from Fig. 9(b) that a dif-

ferent behaviour emerges, compared to the case of β = 1.5, during the convergence of

ϕ(t, ϑ−tω)D. A random circle becomes visible (at t = 40 in Fig. 9(b)) and further conver-

gence takes place on this circle. At last, ϕ(t, ϑ−tω)D converges to a random point x](ω).

We find that, again, the invariant measure is a random Dirac measure νω = δx](ω) which

is stable with the nonpositive largest Lyapunov exponent. However, through the time

reversed solution ϕ(−t, ϑtω)x0(t →∞), we show that the invariant measure µω = δx∗(ω)

exists in the interior of the circle, which is illustrated in Fig. 10. Also, the invariant

measure µω = δx∗(ω) is unstable and has two Lyapunov exponents that are positive. In

addition, under time reversal, x](ω) is not attracting. As suggested in Schenk-Hoppé
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(a) β = 1.5 (b) β = 2.2

Figure 9: Random attractors of ϕ(t, ϑ−tω)D when a = 1, α = 1, τ = 1, σ = 0.02, where

the initial value set D comes from a uniform distribution.

(1996b), another invariant measure, say ν ′ω, on the random circle exists as shown in Fig.

10. This analysis implies that, for β = 2.2, there exist more than two invariant measures,

one is completely stable and one is completely unstable (which is stable under time re-

versal for the SDE system (4.2)), and the global random attractor A(ω) which supports

all invariant measures is a random disc whose boundary is a random circle shown in Fig.

9(b) (t = 40). Again if ω′ rather than ω is used, then the Dirac measures and the global

random attractor would be different.

In summary, our analysis on the D-bifurcation gives us insights into the significant

impact of the chartists on the market equilibria. These equilibria can be characterised

by the invariant measures of the SDE system. We show that there exists a unique

stable invariant measure in the market. However, the stable invariant measure when the

chartists react to their demand weakly is quantitatively different from the one when the

chartists react to their demand strongly. The change in the stable invariant measure

can be described by the stochastic Hopf bifurcation. We have observed that the Hopf

bifurcation manifests itself on the level of the invariant measures as the loss of stability

of a measure and occurrence of a new stable measure, and on the level of the global

attractor as the change from a random point to a random disc.

4.1.2 P-bifurcation

The analysis of the D-bifurcation gives us a perspective from the dynamical systems

viewpoint by focusing on the evolution of the random dynamical system. However with

SDE systems, there is also a distributional viewpoint. To illustrate the distributional
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Figure 10: Global random attractor for β = 2.2, a = 1, α = 1, τ = 1, σ = 0.02. The

blank round point is the unstable invariant measure µω, the full round point represents

the stable invariant measure νω and the full square point is the additional invariant

measure ν ′ω.

characteristics of a random dynamical system, a stationary measure is an appropri-

ate choice to describe the long term distributional behaviour of solutions of differential

equations with random perturbations. The P-bifurcation approach to stochastic bifur-

cation theory examines the qualitative changes of the stationary measure when a param-

eter, in this case β, varies. In the following, we first review the concept of stationary

measures and connect stationary distributions to invariant measures. We then show,

using a numerical approach, the existence of a stationary measure for our stochastic

model. By calculating the joint and marginal stationary densities, we show the quali-

tative changes of the densities as the chartist behaviour changes. The combination of

D- and P-bifurcations gives us insights into the market equilibrium measures from both

quantitative and qualitative perspectives.

Definition 4.2 A probability measure ρ on (R2,B(R2)) is called stationary if
∫

R2

P (t,x, B)ρ(dx) = ρ(B) for all t ≥ 0, B ∈ B(R2),

where P (t,x, B) = P(ϕ(t, ω)x ∈ B) is generated by ϕ for time R+.

There is a one-to-one correspondence between the stationary measure ρ and the

invariant measure µω which is measurable with respect to the past F0
−∞ := σ(Ws, s ≤ 0)

(the σ-algebra generated by {Ws}s≤0). This correspondence is given by (see Arnold

(1998))

µω → Eµω = ρ and ρ → lim
t→∞

ϕ(t, ϑ−tω)ρ := µω. (4.5)
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Figure 11: The relationship between the invariant measure µω and the stationary measure

ρ.

This relationship is illustrated in Fig. 11.

If ρ has a density p, the stationarity of ρ is equivalent to the statement that p is a

stationary (i.e. time independent) solution of the Fokker-Planck equation, that is

L∗p = 0,

where L∗ is the formal adjoint of the generator L of P (t,x, B) given by

L =
2∑

i=1

fi(x)
∂

∂xi

+
1

2

2∑

k,l=1

(
g(x)g>(x)

)
k,l

∂2

∂xk∂xl

,

in which > represents a transpose operator and x = (ψ, φ)>,

f(x) =

(
φ

1
τ

[(
ς + h′(ψ)− b

)
φ− aψ

]
)

, g(x) =

(
0
aσ
τ

)
.

The hypoellipticity8 of L∗ and L is given in Theorem 4.2.

Theorem 4.2 Consider the SDE system (4.2) in the form dx = f(x)dt + g(x) ◦ dW .

Then L and L∗ are hypoelliptic and hence any solution of L∗p = 0 is smooth.

The P-bifurcation approach studies qualitative changes of densities of stationary mea-

sures ρ when a parameter varies. Hence, for the P-bifurcation, we are only interested in

the changes of the shape of the stationary density. We continue to take β as the bifurca-

tion parameter and use the Euler-Maruyama scheme to calculate one sample path up to

time 500, 000 with step size 0.001. Since the average amount of time this solution path

spends in each sample set is approximately equal to the measure of this set, we obtain

a histogram as an estimate of the density of the stationary measure. To enable a better

visualisation, the density functions are then smoothed by using a standard procedure.

8L is hypoelleptic if solutions υ of Lυ = q are smooth whenever q is smooth.
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(a) β = 1.5 (b) β = 1.5

(c) β = 2.0 (d) β = 2.0

(e) β = 2.2 (f) β = 2.2

Figure 12: Joint stationary densities of ψ and φ and the corresponding marginal distri-

butions for ψ for a = 1, α = 1, τ = 1, σ = 0.02.

26



(a) β = 1.5 (b) β = 1.5

(c) β = 2.0 (d) β = 2.0

(e) β = 2.2 (f) β = 2.2

Figure 13: Joint stationary densities of the log price p and the assessment of the price

trend ψ and the corresponding marginal distributions for p for a = 1, α = 1, τ = 1,

σ = 0.02.
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For a = 1, α = 1, τ = 1, and σ = 0.02, Figs 12 and 13 show qualitatively different

joint and marginal stationary densities for the different β values of 1.5, 2 and 2.2. Figure

12 shows the joint stationary densities for variables ψ and φ (the left panel) and the

marginal densities for the variable ψ (the right panel); while Fig. 13 shows the joint

stationary densities for the variables p and ψ (the left panel) and the marginal densities

for the logarithm price p (the right panel). We can see from Figs 12 and 13 that, for

β = 1.5, the joint densities in either the (ψ, φ) or (ψ, p) planes have one peak and the

marginal densities for either ψ or p are unimodal, which correspond to the stable Dirac

invariant measure µω = δx∗(ω) with the global random attractor A(ω) = {x∗(ω)} under

the D-bifurcation analysis. However, for β = 2.2, the joint density in either the (ψ, φ)

or (ψ, p) planes has a crater-like shape and the marginal densities for either ψ or p are

bimodal. This change is underlined by the stable Dirac invariant measure νω = δx](ω)

with the global random attractor of a random disc under the D-bifurcation analysis.

For β = 2, the joint (marginal) densities can be regarded as the transition from single

peak to crater-like (from unimodal to bimodal) densities. Therefore, as the strength of

reaction to the demand signal of the chartists increases, the qualitative change of the

stationary densities indicates the occurrence of a P-bifurcation.

In summary, our analysis shows that D- and P-bifurcations characterise the stochastic

behaviour in different ways. The relation (4.5) between the invariant measure, used for D-

bifurcation analysis, and stationary measure, used for P-bifurcation analysis, highlights

the connection between D- and P-bifurcations. Based on our analysis, we know that

when β < βD, the system only has one invariant measure δx∗(ω) which is stable. In this

case, x∗(ω) has a stationary measure which has one peak as shown in Figs 12(a) and

13(a). However, when β > βD, a new stable random Dirac measure δx](ω) appears and

the corresponding stationary measure has a crater-like density as shown in Figs 12(e) and

13(e). Quantitative changes under the D-bifurcation can help us to obtain a better view

of the qualitative changes under the P-bifurcation, but the combined analysis of both

D- and P-bifurcations certainly gives us a relatively complete picture of the stochastic

behaviour of the model. Economically, our analysis indicates the significant role the

chartists play on the distributional outcomes of the financial market model. When

chartists change from less active (so that β < βD) to more active (so that β > βD), the

joint (marginal) density function of the market equilibrium changes from single peak to

crater-like (from unimodal to bimodal) density function.

4.1.3 Stochastic approximation

To complete our understanding of the stochastic behaviour of the SDE system (4.2),

ideally we would like to obtain its solution. However, this SDE system cannot be solved

explicitly. In subsections 4.1.1 and 4.1.2, we have used numerical methods to detect the

D- and P-bifurcations of (4.2). In this subsection, we shall use an approximate method
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to obtain some analytical properties of our stochastic model. Under certain assumptions

concerning the nonlinearity and the noise terms, we obtain an approximate solution near

the steady state of the corresponding deterministic system. We show that the approx-

imate solution of our stochastic model shares the characteristics of the corresponding

dynamics of the deterministic model. Our analysis also verifies the quantitative and

qualitative changes of the invariant measures and stationary measures detected by our

D- and P-bifurcation analysis in subsections 4.1.1 and 4.1.2.

In the following, we first need to rescale the parameters and transform the Kol-

mogorov backward equation of the SDEs (4.2) to a standard form to which the stochastic

method of averaging (see Khas’minskii (1963)) can be applied. We then calculate the

corresponding stationary probability density in polar coordinates. As a result we are

able to show how the density function behaves as the parameter b varies.

Assume that h′(ψ) − b = h′(ψ) − h′(0) is small, that is ψ is near 0. We change

parameters by rescaling and introducing the (small) parameter ε so that

h′(ψ)− b → ε2(h′(ψ)− b), ς → ε2ς, σ → εσ.

Then (4.2) can be rewritten as





dψ = φdt,

dφ = ε2 1

τ

[
ς + h′(ψ)− b

]
φdt− aψ

τ
dt +

εaσ

τ
◦ dW,

(4.6)

the Kolmogorov backward equation of which is

∂pε

∂t
= φ

∂pε

∂ψ
− η2ψ

∂pε

∂φ
+ ε2

[
a2σ2

τ 2

∂2pε

∂φ2
+K(ψ, φ)

∂pε

∂φ

]
,

where

K(ψ, φ) =
1

τ

[
ς + h′(ψ)− b

]
φ,

η2 = a/τ and pε = pε(t; ψ, φ; ψ1, φ1) denotes the probability density of a transition from

the point (ψ, φ) to the point (ψ1, φ1) in time t for a trajectory of (4.6). We apply the

polar coordinate transformation

ψ =
r

η
sin(θ − ηt), φ = r cos(θ − ηt),

and set

uε(t; r, θ; r1, θ1) = pε(t;
r

η
sin(θ − ηt), r cos(θ − ηt);

r1

η
sin(θ1 − ηt), r1 cos(θ1 − ηt)).

Then it can be verified that uε satisfies

∂uε

∂t
= ε2Lε(r, θ, t)uε, (4.7)
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where

Lε(r, θ, t) =
a2σ2

τ 2

[
cos2(θ − ηt)

∂2

∂r2
− sin 2(θ − ηt)

r

∂2

∂r∂θ
+

sin2(θ − ηt)

r2

∂2

∂θ2

+
sin2(θ − ηt)

r

∂

∂r
+

sin 2(θ − ηt)

r2

∂

∂θ

]

+K(
r

η
sin(θ − ηt), r cos(θ − ηt))

[
cos(θ − ηt)

∂

∂r
− sin(θ − ηt)

r

∂

∂θ

]
,

which is of the standard form to which the stochastic method of averaging may be

applied. In fact, for partial differential equations of the form ∂u
∂t

= ε2L(x, t)u, the

averaging principle has been studied in Khas’minskii (1963), where L is an elliptical or

parabolic second-order differential operator. According to this principle, the solution of

the Cauchy problem for this equation as ε → 0 may be uniformly approximated over an

interval of time which is O(1/ε2) by the solution of the equation

∂v
∂t

= ε2L0v,

where L0 is an operator whose coefficients are obtained from those of L by averaging

with respect to time, that is

L0(x) = lim
T→∞

1

T

∫ T

0

L(x, t)dt.

We now apply the averaging principle to (4.7). First let p0(t; r, θ; r1, θ1) be the proba-

bility density of a transition of the random process by the method of averaging, which is

described in polar coordinates corresponding to (ψ, φ) by the partial differential equation

∂p0

∂t
=

a2σ2

2τ 2

[
∂2p0

∂r2
+

1

r2

∂2p0

∂θ2
+

1

r

∂p0

∂r

]
+ U (r)

∂p0

∂r
− V (r)

r

∂p0

∂θ
, (4.8)

where

U (r) =
1

2π

∫ 2π

0

K(
r

η
sin t, r cos t) cos tdt, V (r) =

1

2π

∫ 2π

0

K(
r

η
sin t, r cos t) sin tdt.

Then for any R > 0 and T > 0

uε(t; r, θ, r1, θ1)− p0(tε
2; r, θ, r1, θ1) → 0 as ε → 0,

uniformly with respect to r, θ, r1, θ1 in the region r < R, r1 < R and with respect to t

in the region 0 ≤ t ≤ T/ε2.

Making use of the fact that the stationary density of the two-dimensional process is

2π periodic in θ, we can assert that the stationary density p(r, θ) corresponding to the

solution of (4.8) is independent of θ and has the form p(r, θ) = p(r)
2π

, where p(r) is the

solution of the partial differential equation

a2σ2

2τ 2

[
∂2p(r)

∂r2
− ∂

∂r

p(r)

r

]
− ∂

∂r
(U (r)p(r)) = 0, r ∈ [0, +∞). (4.9)

Furthermore, we can obtain the following result.
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(a) b small (b) b large

Figure 14: The functions G and H.

Theorem 4.3 There exists a unique stationary probability density of (4.9), which has

the form

p(r) = Cr exp{ 2τ 2

a2σ2

∫ r

0

U (s)ds},

where C is the normalisation constant.

Clearly, p(r) attains its extremum at the point r = re satisfying

U (re) = − a2σ2

2τ 2re

. (4.10)

Let H(r) = 1
2π

∫ 2π

0
h′( r

η
sin t) cos2 tdt and G(r) = −a2σ2

2τr2 , so that U (r) = r
τ
(H(r)+ ς

2
− b

2
).

Then (4.10) may be written as

H(r) +
ς

2
− b

2
= G(r). (4.11)

The function H(r) has previously been studied in Chiarella (1992). Note that H(0) = b
2

and lim
r→+∞

H(r) = 0. In addition, H ′(r) < 0 for r > 0. However, it is obvious that G(r)

is monotonically increasing with r ∈ (0,∞). Hence (4.11) only has one solution r = re

and in particular, p(·) attains its maximum value at r = re.

Note that

Hmax ≡ max
r
{H(r) +

ς

2
− b

2
} =

ς

2
=

b− b∗

2
.

When b is very small, in particular b < b∗ = 1 + aτ , then ς < 0, Hmax < 0 and (4.11) is

approximated by

−a2σ2

2τr2
=

ς

2
,

Then p(r) attains its maximum value near

re ≈ aσ√−ςτ
,
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which is close to zero, see Fig. 14(a). In particular, when σ → 0, we have re → 0. This

analysis recovers the corresponding results for the deterministic case studied in Chiarella

(1992).

When b is large, in particular b > b∗ = 1 + aτ , we have Hmax > 0 and Hmin ≡
min

r
{H(r) + ς

2
− b

2
} = −aτ

2
− 1

2
< 0. In this case, the solution of (4.11) is far away from

zero, as shown in Fig. 14(b). This indicates a crater-like density whose maximum is

located on a circle (around the steady state of the deterministic system) with a large

radius. If we treat this stationary density (when b is large) as a bifurcation from the

case when b is small, the maximum radius of the density function corresponds to a

Hopf bifurcation. It is in this sense that we argue that the stochastic model shares the

corresponding dynamics to those of the deterministic model.

4.2 Dynamical Behaviour in the Limit of τ → 0+

Corresponding to the analysis of the deterministic case in subsection 3.2, in this

section, we analyse the behaviour of the stochastic dynamics as the chartists put greater

and greater weight on the most recent price changes in forming their estimate of the

trend, and in the limit τ → 0+ relying on just the most recent price change.

As τ → 0+, we see from (2.6) that dp → ψdt is governed by

dp =
[
a(F − p) + h(ψ)

]
dt,

whilst from (2.7) and (4.1) the dynamics of ψ are driven by

dψ =
−aψ

1− h′(ψ)
dt +

aσ

1− h′(ψ)
◦ dW. (4.12)

Let m(ψ) = −aψ
1−h′(ψ)

and �(ψ) = aσ
1−h′(ψ)

, then the Itô stochastic differential equation

corresponding to (4.12) is

dψ = M(ψ)dt + �(ψ)dW

:= (m(ψ) +
1

2
�′(ψ)�(ψ))dt + �(ψ)dW

= (
−aψ

1− h′(ψ)
+

a2σ2h′′(ψ)

2(1− h′(ψ))3
)dt +

aσ

1− h′(ψ)
dW.

(4.13)

Hence, if there exists ψ∗ such that h′(ψ∗) = 1, then (4.13) (or (4.12)) is singular at

ψ = ψ∗. Similarly to the deterministic case, for the different cases, b < 1, b = 1 and

b > 1, the stochastic differential equation (4.13) (or (4.12)) will have a different number

of singularity points and therefore exhibit different behaviour. We will discuss each case

in turn in the following analysis.

To simplify the analysis, in this subsection, we assume9 that there exists x1 < 0, x2 >

0 such that

for ψ ∈ (x1, x2), h(3)(ψ) < 0; otherwise, h(3)(ψ) > 0 (4.14a)

9The conditions (4.14) are general conditions, which are applicable to many functions. It is not
difficult to show that the hyperbolic tangent function satisfies these conditions.
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ψh(4)(ψ) > 0, for ψ ∈ (x1, x2). (4.14b)

Figure 15 illustrates the graphs of h′′, h(3) and h(4) satisfying the above conditions.

Figure 15: Plots of functions h′′(x), h(3)(x) and h(4)(x).

When b < 1, we have 1−h′(ψ) > 0 for any ψ and there is no singularity in (−∞, +∞).

The only singular points are ±∞. Based on the theory of the classification of singular

boundaries10, the boundaries ±∞ are the repulsively natural boundaries. Furthermore,

we obtain the following result.

Theorem 4.4 When b < 1, the SDE (4.12) uniquely generates a local smooth RDS

Ψ which is global (in the sense of Theorem 4.1). In addition, there exists a unique

stationary density p for Ψ, where

p(ψ) = N
(1− h′(ψ))

aσ
exp(

ψ∫

0

−2y(1− h′(y))

aσ2
dy) (4.15)

and N is the normalisation constant.

Note that when ψ satisfies

h′′(ψ) +
2ψ(1− h′(ψ))2

aσ2
= 0, (4.16)

the stationary density p(·) attains its extremum. This, together with the assumptions

(2.4) and (4.14), leads to the following result on the P-bifurcation.

10We refer to Lin and Cai (2004) for more information about the theory of the classification of various
singular boundaries, including entrance, regular, and (attractively and repulsively) natural boundaries
used in our discussion.
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Theorem 4.5 (P-Bifurcation) Let bp = 1−
√
−h(3)(0)aσ2

2
.

(1) When h(3)(0) > − 2
aσ2 and 0 < b < bp, the stationary density p(·) has a unique

extreme point ψ = 0, at which p(·) attains its maximum.

(2) When max{bp, 0} < b < 1, the stationary density p(·) has three extreme points ψ∗1,
0 and ψ∗2 satisfying ψ∗1 < 0 < ψ∗2. In addition, the stationary density p(·) attains

its minimum value at ψ = 0 and the maximum values at ψ = ψ∗1 and ψ∗2.

(a) h(3)(0) > − 2
aσ2 and b < bp (b) max{bp, 0} < b < 1

Figure 16: The determination of the extreme points of the stationary density p(·)

Theorem 4.5 indicates that, as the chartists place more and more weight on the recent

price changes, the number of the extreme points of the stationary density p(·) in (4.15)

changes from one to three as the parameter b changes (but b < 1). This is shown in Fig.

16. This means that, a moderate increase in activity (such that b < 1) of the chartists

when they are weighting recent price changes very heavily results in a large deviation of

their estimate of the price trend ψ from its mean value, which is illustrated by the changes

from unimodal to bimodal distribution in the upper panel of Fig. 17. The changes in

distributions are further illustrated by the underlying time series for ψ in the bottom

panel of Fig. 17. However, unlike the case of τ > 0, such a P-bifurcation is inconsistent

with the D-bifurcation, which does not occur based on the following theorem.

Theorem 4.6 (No D-Bifurcation) For b < 1, let p(ψ) be as defined in Theorem 4.4

and consider �(ψ) = p(ψ)dψ. Then

(i) the Lyapunov exponents of � satisfies

λ = −2

∫

R

(
m(ψ)

�(ψ)
)2p(ψ)dψ < 0, (4.17)

and hence the RDS Ψ generated by (4.12) is always exponentially stable under �.
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(a) b < bp, density (b) b / bp, density (c) bp / b < 1, density

(d) b < bp, time series (e) b / bp, time series (f) bp / b < 1, time series

Figure 17: When τ = 0 and h(3)(0) > − 2
aσ2 , a P -bifurcation occurs at b = bp. The top

panel shows different typical stationary densities p of ψ with different parameter ranges

and the bottom panel shows the underlying time series.

(ii) the �-invariant forward Markov measure �ω := lim
t→∞

Ψ(−t, ω)−1� is a Dirac mea-

sure, �ω = δx(ω), and A(ω) := {x(ω)} is the random attractor of Ψ in R in a

universe of sets containing all bounded deterministic sets.

(iii) the RDS Ψ has no other invariant measure besides �ω.

(iv) for any initial measure � ∈ Pr(R) and �t(·) :=
∫
R

P (t, ψ, ·)�(dψ),

lim
t→∞

�t = � = Eδx = P(x ∈ ·).

When b < 1, Theorem 4.6 implies that the RDS Ψ has no D-bifurcation since the

measure �ω = δa(ω) corresponding to � is the unique invariant measure of Ψ and it always

has a negative Lyapunov exponent. This result is similar to that of the corresponding

deterministic model (that is when b < 1, the unique steady state (F ∗, 0) is stable).

However, the appearance of the P-bifurcation discussed above cannot be inferred from

any information in the corresponding deterministic case. This result illustrates that, from

the P-bifurcation point of view, the stochastic dynamical system can be very different

from that of the underlying deterministic system.

When b = 1, that is h′(0) = 1, the drift term M(0) in (4.13) becomes unbounded and

further ψ = 0 is a regular boundary. With the increase of b to b > 1, by the assumptions

(2.4), there exist ψ1b < 0 and ψ2b > 0 satisfying h′(ψ1b) = h′(ψ2b) = 1, both of which are
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also regular boundaries. The appearance of the regular boundary at b = 1 corresponds

to the occurrence of a singularity induced bifurcation in the corresponding deterministic

case. In fact, at the same time, the stochastic model may share some of the features of

the deterministic model. For example, when b > 1, we know from the previous section

that the deterministic dynamics exhibit fast motion in the ψ-direction and slow motion

in the p-direction. For the stochastic model, we observe a similar behaviour, as shown in

Fig. 18. However, once a regular boundary appears, it renders the stationary solution

nonunique11 without further stipulation on the behaviour of (4.13) (or (4.12)) (see Feller

(1952)). This causes some difficulties in obtaining analytical properties of the stationary

densities of the stochastic system, as was possible in the case of b < 1. However, from

a practical point of view, this additional freedom may be a blessing since it may permit

certain realistic behaviour to be incorporated into the context of the financial model,

but we leave this consideration to future research.

Figure 18: Fast motion in ψ and slow motion in p in the limit of τ → 0+ for b > 1

5 Conclusion

In this paper, within the framework of the heterogeneous agent paradigm, we have

extended the basic deterministic model of speculative price dynamics studied by Beja

and Goldman (1980) and Chiarella (1992) to a stochastic model for the market price,

which can be characterised by the invariant measures of a random dynamical system.

In contrast to the indirect approach widely used in recent literature, we use a direct ap-

proach via stochastic bifurcation analysis to examine the market impact of speculative

11Note that in the deterministic case, the occurrence of the singularity induced bifurcation corresponds
to the appearance of a singular point where the Implicit Function Theorem does not hold, that is to say
that the solution of the implicit function can be nonunique.
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behaviour. By using D(dynamical)- bifurcation analysis, we examine the quantitative

changes of the stable invariant measures. By using P(Phenomenological)- bifurcation

analysis, we examine the qualitative changes of the stationary measures. The difference

between P-bifurcation and D-bifurcation lies in the fact that the P-bifurcation approach

focuses on the stationary distribution and is, in general, not related to path-wise stability,

while the D-bifurcation approach does focus on path-wise stability and is based on the

invariant measure and the multiplicative ergodic theorem. However, the P-bifurcation

has the advantage of allowing us to visualise the changes of the stationary density func-

tions. Quantitative changes under the D-bifurcation can help us to obtain a better view

on the qualitative changes under the P-bifurcation, but the combined analysis using both

D- and P-bifurcations certainly gives us a relatively complete picture of the stochastic

behaviour of the model.

For the simple stochastic financial market model studied here, when the time lag (τ)

used by the chartists to form their expected price trends is not zero, we show that the

market equilibrium price can be characterised by a unique and stable invariant measure

when the activity of the speculators is below a certain critical value. If this thresh-

old is surpassed, the market equilibrium can be characterised by a new stable invariant

measure while the original invariant measure becomes unstable. In addition, the corre-

sponding stationary measure displays a significant qualitative change near the threshold

value. Below the threshold, the joint densities display one peak and the marginal densi-

ties are unimodal. Above the threshold, the joint densities have crater-like shapes and

the marginal densities are bimodal. This indicates that the changes in the stationary

distributions lead to a bimodal logarithm price distribution and fat tails. This qualita-

tive change near the threshold is further confirmed by using a stochastic approximation

method. We show that, near the steady state of the underlying deterministic model, the

approximation of the stochastic model shares the corresponding Hopf bifurcation dy-

namics of the deterministic model. When the time lag (τ) used by the chartists to form

their expected price changes approaches zero, so that the chartists are placing greater

and greater weight on recent price changes, then the system can have singular points.

In this case, the stochastic model displays very different dynamics from those of the

underlying deterministic model. In particular, the fundamental noise can destabilise the

market equilibrium and result in a change of the stationary distribution through a P-

bifurcation of the stochastic model, while the corresponding deterministic model displays

no bifurcation. In addition, the consistency between D- and P-bifurcations for τ > 0

breaks down for τ → 0+. Our results demonstrate the important connection, but also

the significant differences, of the dynamics between deterministic and stochastic models.

Economically, our analysis indicates the significant role that the chartists play in the

financial market model. At one level, this phenomenon is very intuitive, but a rigorous

analysis of the stochastic behaviour underlying this intuition using the tools and concepts

of stochastic bifurcation theory is our main contribution in this paper.

In order to bring out the basic phenomena associated with stochastic bifurcations we
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have focused on a highly simplified model of interacting heterogeneous agents in a finan-

cial market. The model could be embellished in a number of ways in future research, in

particular; introducing other types of randomness such as market noise, since it is known

from empirical literature (see for example the work of Shiller (1981) that fundamental

noise is not sufficient to yield the type of volatility observed in financial markets; allow-

ing for switching of strategies according to some fitness measure as proposed by Brock

and Hommes (1997, 1998); and analysing in closer detail the stochastic dynamics in the

case when the time lag of chartists in their estimate of the trend tends to zero.

Appendix

Proof of Theorem 3.2: The results can be obtained by using the Singularity Induced

Bifurcation Theorem in Venkatasubramanian, Schättler and Zaborszky (1995). ¥

Proof of Theorem 3.3: This is a direct corollary of the main theorem in Yang, Tang

and Du (2003). ¥

Proof of Theorem 4.1: (i) This follows from the general existence, uniqueness

Theorem 2.3.36 given in Arnold (1998).

(ii) Since the Wiener process {Wt} is scalar, the SDE system (4.2) has a path-wise

interpretation (see Sussmann (1978), Theorem 8 and Section 7). We prove its strictly

forward completeness by transforming it into an equivalent non-autonomous ODE via

the transformation

Φt = φt − aσ

τ
Wt.

The result is 



ψ̇t = Φt +
aσ

τ
Wt,

Φ̇t =
1

τ

[(
ς + h′(ψt)− b

)(
Φt +

aσ

τ
Wt

)− aψt

]
.

(A.1)

Define the function V = ψ2 + Φ2 and apply the chain rule to V . Then

dV = 2ψdψ + 2ΦdΦ

= 2ψΦdt +
2a

τ
σWψdt + 2Φ

1

τ

[
ς + h′(ψ)− b

]
(Φ +

aσ

τ
W )dt− 2a

τ
ψΦdt

≤ (1 +
a

τ
)(ψ2 + Φ2)dt +

aσ

τ
W (ψ2 + 1)dt + M0(2Φ2 +

aσ

τ
WΦ2 +

aσ

τ
W )dt

≤ M1V dt + M2dt,

where M0 =
(
aτ+1+max

ψ
|h′(ψ)|)/τ , β = sup

s∈[0,T ]

|Ws|, M1 = 1+a/τ+max
{
aσβ/τ, M0(2+

aσβ/τ)
}

and M2 =
(
aσβ + M0aσβ

)
/τ . By the Gronwall lemma,

Vt ≤ K(T ) < ∞, for all 0 ≤ t ≤ T.
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Hence the solution of (4.2) exists on any interval [0, T ] and so its maximal interval of

existence is R+.

Now the maximal non-explosive solution is defined for any W ∈ C0 without any

exceptional set. Therefore the solution is strictly forward complete.

Similarly, we also use the time reversed equations to get the strictly backward com-

pleteness of the solution of (4.2). ¥

Proof of Theorem 4.2: The generator L of (4.2) is not elliptic because the diffusion

matrix

g(x)g>(x) =

(
0 0

0 a2σ2/τ 2

)

has rank 1. The Lie bracket [f, g] can be easily calculated to be

[f,g](x) =

(
aσ/τ

aσ[ς + h′(ψ)− b]/τ 2

)
, where x = (ψ, φ)>.

Hence for x ∈ R2, the vectors g(x) and [f,g](x) are clearly linearly independent, implying

dimLA(f,g)(x) = 2 for all x ∈ R2. By the Hörmander Theorem, full rank of the Lie

algebra ensures the hypoellipticity of L and L∗. Hence solutions υ of L∗υ = q are smooth

whenever q is smooth. ¥

Proof of Theorem 4.3: The proof is based on the theory of the classification of

singular boundaries in Lin and Cai (2004).

First, note that (4.9) has two boundaries rl = 0 and rr = +∞. The drift and diffusion

coefficients corresponding to (4.9) are respectively

M(r) = U (r) +
a2σ2

2τ 2r
, %2(r) =

a2σ2

τ 2
.

It is easy to see that the left boundary rl = 0 is a singular boundary of the second kind,

that is M(rl) = ∞. In addition,

%2(r) = O|r − rl|0, M(r) = O|r − rl|−1 as r → r+
l ;

so the diffusion and drift exponents of rl are given by, respectively,

�l = 0, �l = 1,

and the character value of rl is

cl = lim
r→r+

l

2M(r)(r − rl)
�l−�l

%2(r)
= 1.

These quantities indicate that the left-hand boundary rl = 0 is an entrance.

39



Similarly, the right-hand boundary rr = +∞ is a singular boundary of the second

kind at infinity, i.e. M(+∞) = ∞. In this case, one can obtain the result that the

diffusion and drift exponents of rr are given by, respectively

�r = 0, �r = 1.

Note that

b− ς = 1 + aτ > 0, lim
x→∞

h′(x) = 0,

so M(+∞) < 0. Therefore, the right-hand boundary rr = +∞ is repulsively natural.

Since each of the two boundaries is either an entrance or repulsively natural, then a

nontrivial stationary solution exists in [0,∞), which has the form

p(r) = Cr exp{ 2τ 2

a2σ2

∫ r

0

U (s)ds}.

Note that p(r) > 0 for r ∈ (0,∞), so the stationary probability is unique, see Kliemann

(1987). ¥

Proof of Theorem 4.4: The existence and uniqueness of the solution of (4.12) follows

from Theorem 2.3.36 in Arnold (1998).

For the global property, based on Theorem 2.3.38 in Arnold (1998), we only need

to prove that the singular boundaries ±∞ are natural. Based on Lin and Cai (2004),

it’s not difficult to obtain the result that the boundaries ±∞ are singular boundaries of

the second kind at infinity, that is |M(±∞)| = ∞ and the diffusion exponents and drift

exponents of ±∞ are respectively

�±∞ = 0 and �±∞ = 1.

In addition, M(±∞) ≶ 0. Therefore, ±∞ are repulsively natural. Similarly consider the

backward SDE

dψ =
aψ

1− h′(ψ)
dt− aσ

1− h′(ψ)
◦ dW. (A.2)

The boundaries ±∞ are attractively natural for (A.2). Therefore, the RDS Ψ is strictly

forward and backward complete.

In addition, for the forward SDE (4.12), ±∞ are repulsively natural, so there exists a

nontrivial stationary solution in (−∞, +∞). In fact, from the Fokker-Planck Equation,

we know that the stationary probability is

p(ψ) = N
(1− h′(ψ))

aσ
exp(

ψ∫

0

−2y(1− h′(y))

aσ2
dy),

where N is a normalisation constant. Note that p(ψ) > 0 for all ψ, so the stationary

probability density is unique. ¥
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Proof of Theorem 4.5: It is obvious that ψ = 0 is one of the solutions to (4.16) for

any of the cases considered. In the following, we only consider the case of (−∞, 0), for

the interval (0, +∞), a similar result can be easily demonstrated.

Let S(ψ) = −2ψ(1−h′(ψ))2

aσ2 . By the assumptions (2.4) and (4.14), we know that h′′(ψ)

is a concave function on (x1, 0) and lim
ψ→−∞

h′′(ψ) = ` where 0 ≤ ` < +∞. In addition,

lim
ψ→−∞

S(ψ) = +∞, S ′(ψ) < 0 for ψ ∈ (−∞, 0), (A.3a)

S ′′(ψ) > 0 for ψ ∈ (x1, 0). (A.3b)

When

h(3)(0) > − 2

aσ2
and b < 1−

√
−h(3)(0)aσ2

2
, (A.4)

then S ′(0) < h(3)(0) < 0. By the convexity and concavity of S(·) and h′′(·) in [x1, 0) and

monotonicity of h in (−∞, x1), there is no solution of (4.16) on (−∞, 0). Then (4.16)

has a unique solution ψ = 0 on (−∞, +∞) when (A.4) holds. In addition, if (A.4) is

satisfied, then

p′′(0) =
N

aσ
(−h(3)(0)− 2(1− b)2

aσ2
) < 0.

So ψ = 0 is the maximum point of p(·).
When b > 1 −

√
−h(3)(0)aσ2/2, then S ′(0) > h(3)(0). Therefore, there exists a

solution of (4.16) in (−∞, 0), denoted by ψ∗1. To demonstrate the uniqueness of the

solution of (4.16) in (−∞, 0), we consider the following two cases:

(i) If the solution ψ∗1 is on [x1, 0), by the concavity of h′′(·) and convexity of S(·)
in [x1, 0), there is a unique solution of (4.16) on [x1, 0). On the other hand, on

(−∞, x1), h′′(·) is monotonically increasing and however S(·) is monotonically de-

creasing. Hence, there is no other solution on (−∞, 0).

(ii) When ψ∗1 ∈ (−∞, x1), there is no solution of (4.16) on the interval [x1, 0), otherwise

there is a contradiction with the case (i). With the monotonicity of h′′(·) and S(·)
on (−∞, x1), there is only one solution ψ∗1 on (−∞, 0).

In addition, when b > 1 −
√
−h(3)(0)aσ2/2, we have p′′(0) > 0. So ψ = 0 is the

minimum point of p(·). We note that at ψ∗1, it must be the case that

h(3)(ψ)
∣∣∣
ψ∗1

> (
−2ψ(1− h′(ψ))2

aσ2
)′
∣∣∣∣
ψ∗1

, (A.5)

otherwise, by lim
ψ→−∞

h′′(ψ) = `(< +∞) and lim
ψ→−∞

S(ψ) = +∞, there must be another

solution ψ̃(< ψ∗1) of (4.16), which is a contradiction of the uniqueness of the solution of

41



(4.16) on (−∞, 0). Then, through (4.16) and (A.5)

p′′(ψ)

∣∣∣∣∣
ψ=ψ∗1

=

[
−h(3)(ψ)

aσ
+

6ψh′′(ψ)(1− h′(ψ))

a2σ3
− 2(1− h′(ψ))2

a2σ3

+
4ψ2(1− h′(ψ))3

a3σ5

]
N exp(

ψ∫

0

−2y(1− h′(y))

aσ2
dy)

∣∣∣∣∣∣
ψ=ψ∗1

< 0. (A.6)

Therefore, ψ∗1 is a maximum point of p(·). ¥

Proof of Theorem 4.6: Follows by the fact that aσ/(1 − h′(ψ)) > 0 and Theorem

9.2.4 in Arnold (1998). ¥

42



References

Allen, H. and Taylor, M. P. (1990), ‘Charts, noise and fundamentals in the London

foreign exchange market’, The Economic Journal 100, 49–59.

Anderson, S. (1989), ‘Evidence on the reflecting barriers: New opportunities for technical

analysis?’, Financial Analysts Journal 45, 67–71.

Arnold, L. (1998), Random Dynamical Systems, Springer-Verlag.

Arnold, L., Sri Namachchivaya, N. and Schenk-Hoppé, K. R. (1996), ‘Toward an un-
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Schenk-Hoppé, K. R. (1996a), ‘Deterministic and stochastic Duffing-Van der Pol oscil-

lators are non-explosive’, Z. Angew. Math. Phys. 47, 740–759.
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