e

QUANTITATIVE FINANCE
RESEARCH CENTRE

UNIVERSITY OF
TECHNOLOGY SYDNEY

QUANTITATIVE FINANCE
RESEARCH CENTRE

THINK.CHANGE.DO

QUANTITATIVE FINANCE RESEARCH CENTRE

Research Paper 125 May 2004

Intraday Empirical Analysis and Modeling of
Diversified World Stock Indices

Wolfgang Breymann, Leah Kelly and Eckhard Platen

ISSN 1441-8010 www.qgfrc.uts.edu.au




Intraday Empirical Analysis and

Modeling of Diversified
World Stock Indices

Wolfgang Breymann

Eidgenossische Technische Hochschule

Ziirich

Leah Kelly

University of Technology Sydney,

School of Finance & Economics,

PO Box 123, Broadway, NSW, 2007, Australia
Eckhard Platen

University of Technology Sydney,

School of Finance & Economics and Department of Mathematical Sciences,
PO Box 123, Broadway, NSW, 2007, Australia

May 5, 2004

Abstract. This paper proposes an approach to the intraday analysis
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the basis for a range of financial applications. The normalized GOP is
modeled as a time transformed square root process of dimension four.
Its dynamics are empirically verified for several world stock indices.
Furthermore, the evolution of the transformed time is modeled as the
integral over a rapidly evolving mean-reverting market activity process
with deterministic volatility. The empirical findings suggest a rather
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historical evolution, by using only a few readily observable parameters.
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1 Introduction

The purpose of this paper is the empirical construction of an intraday world stock
index (WSI) that provides a good approximation of the growth optimal portfolio
(GOP), see Kelly (1956) and Long (1990). It is the portfolio that maximizes
logarithmic expected utility of terminal wealth. For practical applications, which
include portfolio optimization and numeraire based derivative pricing, it is useful
to be able to construct approximations of the GOP from observed data. This
can be achieved by considering diversified portfolios, see Platen (2004). It is the
objective of this paper to study such proxies and model the intraday dynamic
properties. More specifically, we will (i) construct several GOP proxies with
five minutes data, (ii) compare their empirical quantities with theoretical model
predictions, and (iii) select the best one on the basis of theoretical requirements.

Increasingly, diffusion processes are used to model financial markets in continuous
time, see Merton (1992). The well-known Black-Scholes (BS) framework, in which
volatility is a central concept, continues to provide the basis for quantitative
financial techniques in practice. The simplest form of the BS framework implies
Gaussian log-return distributions. The deviation of observed log-returns from a
Gaussian distribution is an increasingly established stylized empirical fact. This is
particularly apparent in the intraday regime, which has been widely documented,
see, for example, Dacorogna, Gengay, Miiller, Olsen & Pictet (2001).

In the discrete time setting, the most advanced time-series models are able to
reflect the main stylized empirical features reasonably well.! In general, however,
the time-aggregation properties of these models make it difficult to integrate
intraday information into a typically daily discrete time framework.? Continuous
time diffusion type models, on the other hand, can resolve much of this problem.
Furthermore, continuous time models benefit from the high observation frequency
realized with intraday data, in particular, for the estimation of the diffusion
coefficients.

The benchmark approach (BA), see Platen (2004), uses the GOP as a central
building block and generalizes existing financial market modeling approaches.
By using the BA, a GOP model is obtained that is able to accommodate many
of the known empirical stylized facts. The practical availability of a suitable
proxy for the GOP will be demonstrated. This allows a number of applications
of the BA with regards to portfolio optimization, derivative pricing, integrated
risk management and the efficient use of intraday data.

Diffusion processes are determined by the form of their drift and diffusion co-
efficients. It is known that the drift coefficient of the discounted GOP is fully

For a review using ARCH-type models, see for example Bollerslev, Chou & Kroner (1992).
For a review on stochastic volatility models, see for example Taylor (1994).

2The unsatisfactory behaviour of the coefficients of a GARCH(1,1) model under time aggre-
gation is demonstrated in Dacorogna, Gengay, Miiller, Olsen & Pictet (2001).
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determined by its diffusion coefficient, see Long (1990). Indeed, the risk premium
of the GOP simply equals its squared volatility. A similar property can be shown
for any other security under the BA, see Platen (2004). The BA provides an
extension to previous approaches insofar as it excludes arbitrage without requir-
ing the existence of an equivalent risk neutral martingale measure. As shown
in Platen (2002), the ideal dynamics of the GOP implies Student ¢ distributed
log-returns with degrees of freedom four. This is consistent with empirical stud-
ies that indicate tail indices around four, see Hurst & Platen (1997), Miiller,
Dacorogna & Pictet (1998) and Breymann, Dias & Embrechts (2003).

In general, reliable estimation of the drift coefficient or trend using the relatively
short period of historical financial data available is extremely difficult for financial
market models. However, the diffusion coefficient is relatively simple to determine
from short observation periods. In fact, inference about the diffusion coefficient
benefits from the use of intraday data, allowing considerable precision. Therefore,
a market model that is fully determined by the diffusion coefficient, as provided
by the BA, is highly desirable since it allows the information about the drift
to be automatically extracted. Analysis of high-frequency data requires special
techniques, see Dacorogna, Gengay, Miiller, Olsen & Pictet (2001) and Goodhart
& O’Hara (1997). This includes the appropriate treatment of daily and weekly
seasonal patterns apparent, see Breymann, Dias & Embrechts (2003). Thus,
daily and weekly seasonal patterns need to be integrated in the modeling. We
will demonstrate that this can be done in a consistent and robust manner. It
leads to a reliable observation and estimation of market activity, which under the
BA turns out to be a more suitable financial quantity for incorporating stylized
empirical features than is volatility in the BS framework.

Initially, the analysis is illustrated using the Morgan Stanley Capital Growth
World Index (MSCI). It is shown that the MSCI, despite being observed daily,
approximates the GOP reasonably well. Deviations exist although these can
be attributed to two shortcomings. Firstly, the lack of intraday information
and secondly, the missing data from emerging markets that are not sufficiently
accounted for in the MSCI. Therefore, to rectify these problems we construct
three new high-frequency WSIs that are observed at five minute intervals. These
appear to be more diversified than the MSCI and approximate the GOP well.

Section 2 discusses the empirical features of the MSCI and the construction of
the high-frequency WSIs. Section 3 summarizes the BA for an intraday GOP
and Section 4 discusses the empirical analysis and models market activity of the
WSIs.



2 World Stock Indices

2.1 A Preliminary Analysis of a Daily World Stock Index

Initially we examine the empirical features of the daily observed Morgan Stanley
Capital Growth World Index (MSCI), denominated in USD, and denoted by
V(MSCI(¢). This is one of the most diversified, readily available accumulation
indices. Since we are not interested in the interest rate dynamics we will study
the discounted MSCI

¢
VMSED (1) = yMSED (1) exp {—/ r(u)du} (2.1)
0
for ¢t € [0,7]. Here r(t) is the short term interest rate for the USD market at
time ¢.

The MSCI index includes stocks from 22 countries and is based on approximately
1200 stocks. Figure 1 shows the evolution of the discounted MSCI index over the
period from January 1970 until January 2003.
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Figure 1: The discounted MSCI World Index 1970-2003.

The discounted index displayed in Figure 1 appears, on average, to grow expo-
nentially. To compensate for this we introduce the normalisation function

a(t) =& exp(nt), (2.2)

for t € [0,T], where £ > 0 is a normalisation constant and n > 0 is called the net
growth rate of the market.

An empirical study by Dimson, Marsh & Staunton (2002) suggests that over the
last one hundred years a discounted World Stock Index (WSI), denominated in
USD, has experienced an average rate of net growth of approximately n = 4.8%.
This is consistent with the parameter range that other earlier studies detected.
Thus, we introduce the normalized MSCI

“/(MSCI) (t)

Y(MSCI) (t) d(t)

(2.3)



for t € [0,7]. In the following illustrations, we have chosen n = 0.048 and
¢ = 10.5, as in Platen (2004), which matches the long term growth of a market
capitalization weighted WSI, as will be shown in Section 2.2. Figure 2 displays the
resulting normalized MSCI over the period of thirty two years. As we will see, the
time series shown in Figure 2 is in essence stationary even though fluctuations on
all scales are evident and the mean reversion appears to be weak. It is interesting
to note that the strength of the fluctuation depends on the level of the normalized
MCSI. Periods of high values correspond to periods of large fluctuations and
periods of low values correspond to periods of small fluctuations.
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Figure 2: Normalized MSCI Y (MSC1) (¢) for 1970 - 2003.
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Figure 3: Square root /Y (MSCD) () of normalized MSCI.

An important observable, when considering the fluctuations of a stochastic pro-
cess X, is its quadratic variation (X);. It is given by the limit of the sum of
the squared increments of this process X when the step size of the underlying
time discretization tends to zero. For Brownian motion, the quadratic variation
is simply the time itself. Typically, the empirically observed quadratic variation
of a security or an index displays behaviour more complicated than a linear func-
tion of time. The slope of quadratic variation reflects phenomena like stochastic
volatility. Ideally, one would like to transform the time series of the normalized
MSCI in a way that results in a process with approximately level independent
fluctuations. This means that the corresponding quadratic variation should be



approximately proportional to time, which implies that the diffusion term of the
transformed time series would then be proportional to a Brownian motion.
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Figure 4: Absolute returns of normalized MSCI YMS¢D(3) (above) and
Y (MSCD(¢) (below).
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Figure 5: Quadratic variation of (VY (MSCD),.

With this goal in mind we consider the square root /Y (MSCI)(¢). This particular
transformation is motivated by theoretical arguments which will be presented in
Section 3. Taking the square root increases fluctuations when the level of the nor-
malized index is low and decreases fluctuations when its level is high. According
to Figure 3 and 4, the fluctuations of /Y (MSCI)(t) seem to be reasonably similar
for high and low levels. To verify this impression Figure 5 shows the correspond-
ing quadratic variation (VY (MSCD), “which indeed appears to be approximately
proportional to time. Note that we observe in Figure 5 a slope of approximately
% per year. This empirical feature will be explained in Section 3.

2.2 Construction of Intraday World Stock Indices

To our knowledge there is no readily available high-frequency WSI that one could
use for an intraday analysis that extends over several years. Therefore, we con-
struct three different intraday WSIs, for which we will compare key features of



their dynamics. Each WSI is constructed as a self-financing portfolio consisting
of local stock market indices taken from almost all financial markets through-
out the world. The WSIs, which will be denominated in USD, are constructed
from d = 34 local stock market accumulation indices. Many of the local indices
used are spot price indices. We denote by PU) (t) the local stock spot price in-
dex at time ¢ of stock market j € {1,2,...,d}, when denominated in currency
i € {USD,CHF,...}. As a first step we transform the original local spot price
index into an accumulation index 1% (¢) by forming the expression

169 () = PO () exp { /0 e (u)du} (2.4)

for t € [0,7], j € {1,2,...,d} and i € {USD,CHF,...}. Here yU)(t) is the
continuously compounding dividend rate for the jth local stock index at time t.
Secondly, in order to form a WSI in USD, all local accumulation indices must be
denominated in USD. The corresponding foreign exchange rate X “USP) () is the
spot price of one US Dollar at time t when measured in units of the ith currency.
Thus, the jth local accumulation index denominated in USD is given by

[G:USD) (1) = U () X EUSD) () (2.5)

for t € [0,7]. We then obtain a WSI at time ¢, denoted by VWS (), which is
denominated in USD, by forming the portfolio

U

VOV (1) =3 6 (8) 19U (2). (2.6)

J=1

Here 69) (WsD) (t) denotes the number of units of the jth local accumulation index

held in the WSI at time ¢ € [0,7]. The value used for 5 (wsn (t) corresponds to
the jth weight or proportion W((%S,SI)( ). Throughout our analysis we separate the
USD interest rate evolution from our study by considering the discounted WSI
VWSD(#) at time t, which is computed from V(WSD(¢) in the same manner as

shown in (2.1).

We construct three WSIs: the approximately Fqual Weighted Indexz (EWI), the
Market Capitalization Weighted Index (MCI) and the Gross Domestic Product

Weighted Index (GDPI). The values § {,\)[SI (t) for each WSI are adjusted such

that the proportions W((WSI (t) for the MCI and GDPI correspond to the respec-
tive weights of the jth local accumulation index, 7 € {1,2,...,d}. Despite its
name, the EWI is not equally weighted for all markets. Developed markets were
given a weight of 0.0357 and emerging markets only a weight of 0.0179. The
markets were classified as either developed or emerging to be consistent with the
classification used by Morgan Stanley Capital International. The stock markets
considered in the MCI account for more than 95% of the total world market

capitalization, while the GDPI weights account for more than 85% of the total
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world GDP. In each of the WSIs, the number of units of each of the accumula-
tion indices is kept piecewise constant. The WSIs are rebalanced after one year
has elapsed or when a local stock index is to be added to the WSI, whichever
occurs first. The rebalancing dates are 05/04/1996, 17/12/1996, 31/01/1997,
30/01/1998, 20/10/1998, 20/10/1999 and 20/10/2000.

To ensure that the WSIs are comparable, each index must have the same initial
value. Additionally, to enable the convenient comparison of the WSIs to a readily
available market index, each WSI is rescaled to have the same initial value as the
MSCI at the starting date ty = 05/04/1996 00:00:00 Greenwich Mean Time (GMT)
of our sample.
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Figure 6: World stock indices with equal weights (EWI), market capitalization
adjusted weights (MCI), GDP adjusted weights (GDPI) and MSCI, where initial
values are matched to the MSCI.

As any single local accumulation index represents a portfolio consisting of a cross
section of the stocks in that local market, a WSI can be regarded as a diversified
portfolio containing the stocks of all local stock markets considered. To include
as many stocks as possible in the WSIs constructed, all local accumulation indices
for which we could obtain high-frequency data were included. As a result of this,
the three WSIs are based on between two and three thousand stocks.

In addition to local stock indices we rely on high-frequency FX spot data to trans-
form the value of the different local stock indices into USD. The high-frequency
index and FX data consists of tick-by-tick data, which was collected and filtered
by Olsen Data. The period explored is from 4 April 1996 until 29 June 2001.
Intraday data for a number of local stock indices start at later dates and are
included into the WSIs as soon as they became continuously available. Both
the original high-frequency local stock indices and FX time series are irregularly
spaced. Previous tick interpolation was used to transform the observed data to



regularly spaced time series with an observation time of five minutes. Further-
more, in order to form the discounted accumulated WSIs we used daily dividend
rates and USD interest rates. Omitting the high-frequency information in div-
idends and short rates is justified because only the exponentials of integrals of
these quantities, but not the values themselves, enter the formulae for the relevant
quantities in our construction of the WSIs, see (2.1) and (2.4).

Figure 6 displays the three different WSIs in addition to the daily observed MSCI.
It is striking that, in spite of significant differences in the weights, all WSIs appear
to be very similar. In particular, the similar fluctuations of all four indices are
apparent. Using the normalisation function a(t), given in (2.2), enables us to
calculate the normalized WSI

V(WSI) (t)

Y =5 (2.7)

for t € [0,77], as in (2.3) .

We omit a plot of the normalized WSIs, however the normalized MCI is shown in
Figure 15 in an alternative time scale. The normalized WSIs all display similar
dynamics. In Section 3, we will give a theoretical argument for this stylized fact.
The hourly log-returns of the high-frequency MCI are shown in Figure 7, those
of the EWI and GDPI are very similar. On the basis of their similar visual
appearance it is reasonable to expect that the statistical characteristics of the
intraday WSIs will be similar as well. However, this is not obvious and needs to
be explored. To place this type of analysis in a theoretically sound context, the
benchmark approach (BA) is introduced in the next section.

0.010

| T ! \‘\
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-0.025
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Figure 7: Hourly log-returns of the MCI.

3 Benchmark Approach

In the following we summarize essential facts about the BA in a somewhat infor-
mal way. To ensure the readability of this section, mathematical technicalities
are omitted. For more detailed information we refer to Platen (2004).
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3.1 Primary Security Accounts and Portfolios

We consider a continuous financial market with d + 1 primary security accounts
with values S©(t),...,S@(t) at time ¢t € [0,T], where T is finite. A primary
security account contains units of a given asset with all accrued income reinvested.
Here S(©(¢) models the riskless money market savings account and S (t), the
jth accumulation stock index at time ¢ as mentioned in Section 2.2. Note however
that a primary security account can consist of any type of asset class. Without
loss of generality, the jth primary security account is supposed to satisfy the
stochastic differential equation (SDE)

d
dSY(t) = SU)(¢t) {r(t) dt + > () (0% (t)dt + dWH(t)) } (3.1)
k=1

for t € [0,7] with SU)(0) >0, j € {0,1,...,d}.

The uncertainties are modeled by d independent standard Brownian motions
Wk = {W*),t € [0,T]}, k € {1,2,...,d} fulfilling the usual conditions, see
Oksendal (1998). Only d sources of uncertainty are necessary in our complete
market since one of the assets is riskless. The kth market price for risk 6%(¢) is
proportional to the expected excess return that an investor obtains at time ¢ for
taking risk that is modeled by the kth Brownian motion.

The savings account is given by

SO(t) = exp { /0 t r(s)ds} (3.2)

where r(t) denotes the interest rate at time t. Zero volatility b>*(t) applies
for S in (3.1) for all t € [0,7] and k € {1,2,...,d}. The volatility matriz
b(t) = [b"*(t)]} 4=, is assumed to be invertible to ensure that the uncertainties of
the underlying securities are uniquely securitised.

Central to the BA is a portfolio that is used as benchmark and numeraire. The
jth component 6 (t) € (—oo, 00) of the strategy § denotes the number of units
of the jth primary security account, which are held at time ¢ € [0,7] in the
corresponding portfolio, j € {0,1,...,d}. The value V©®(t) of the corresponding
portfolio at time t can be written as the sum

d

V(1) = Z 59 (#) 89 (¢) (3.3)

5=0
for t € [0,T]. The portfolio is called self-financing if
d
dVO(t) = "9 (t) dS9 (1) (3.4)

J=0

10



for all t € [0, T]. That is, all changes in the value of the portfolio are due to gains
from trade in the primary security accounts.

The self-financing portfolio value V() (#) satisfies according to (3.4) and (3.1) the
SDE

dvOt)y =v© { t) dt + Z BE(t t)dt + dW*(t ))} (3.5)
with kth volatility
d
S0 =7 () () (3.6)
j=0
and jth proportion
SU)(¢)

(3.7)

fort €0, 7], k€ {1,2,...,d} and j € {0,1,...,d}.

3.2 Growth Optimal Portfolio

From (3.5) it follows by application of the It6 formula for the logarithm of a
strictly positive portfolio V¥ (¢) the SDE

dlog (VO(t)) dt+z BE(t) dWE(t) (3.8)

with portfolio growth rate

as(t) = o) + 3 0) (50— 5 600 (3.9)

for t € 0, 7.

The growth optimal portfolio (GOP), see Long (1990), is the portfolio that max-
imizes the portfolio growth rate (3.9). By solving the first order conditions for
the corresponding quadratic maximization problem one obtains the jth GOP

proportion
d

Ty (6) = Db (D64 () (3.10)

k=1

for t € [0,T] and j € {1,2,...,d}. Here [b=1(¢)]*’ denotes the ( 7j)th element
of the inverse b=!(¢) of the Volatlhty matrix. The GOP value V) (¢) at time ¢
satisfies the SDE

v (t) = v t)dt + Z 0% (t) (0% (t) dt + dW*(t)) (3.11)

11



for t € [0,7]. It can be seen from (3.11) that the GOP volatilities 6%(¢), k €
{1,2,...,d}, are the corresponding market prices for risk. Consequently, the
drift of the GOP can be identified via its diffusion coefficients.

To form the GOP using the proportions (3.10) is a difficult task, see for example,
Long (1990). However, the GOP can be approximated in a robust manner. It
is well-known that well diversified stock portfolios behave in a similar fashion,
see Figure 6. In Platen (2004) it has been shown given some weak regularity
conditions, that any well diversified world stock portfolio approximates the GOP.
This makes it reasonable to assume that the WSIs constructed in Section 2.2
approximate the GOP of the world stock market. The most intuitive property
of the GOP is that it systematically outperforms all other portfolios in the long
run. From this perspective, the MCI in Figure 6 seems to emerge as the best
approximate GOP because it outperforms the other WSIs over the observation
period considered.

3.3 Discounted GOP

Let us discount the GOP value V) (t), see (3.11), at time ¢ by the savings
account value S (), see (3.2). By application of the Ité formula together with
(3.2) and (3.11), the discounted GOP

B V(é*)@)

VO (¢) 2010 (3.12)
satisfies the SDE
AV O () = VO (1) 16(8)] (16()] dt + dW (1)) (3.13)
where .
T 1 k k
AW (t) = o1 ;9 (t)dW"(t) (3.14)

and the GOP volatility |0(t)| equals the total market price for risk

d
0(6)] = (| D (6%(1))". (3.15)
k=1
The discounted GOP drift a(t) is defined to be
alt) = VO () 16(t)]% (3.16)

Allowing «a(t) to be a, possibly stochastic, parameter process leads to a GOP
volatility of the form

o)) = |- (3.17)



We will demonstrate in this paper that one can model the discounted GOP drift
in the form

a(t) = a(t) m(t) (3.18)

for t € [0,T], where a(t) is given in (2.2). Here m = {m(t), t € [0,T|} denotes
the nonnegative market activity process that fluctuates around one and will be
specified below. This process is particularly important when modeling intraday
indices as short term fluctuations in GOP volatility are captured by m(t).

3.4 Normalized GOP and Market Activity

Based on the market activity m(t) introduced in the previous section the market
actiity time can be defined as v = {¢(t), t € [0,T]} with

¢(t):/0 m(s)ds (3.19)

for t € [0,T]. Note that (3.19) requires proper normalisation of the market
activity. It is reasonable to normalize m(t) in such a way that on average the
market activity time scale elapses approximately as fast as physical time. The
choice in our case is such that ¢ = 0 years corresponds to the starting date of our
sample 05/04/1996 00:00:00 GMT and ¢(T") = 5.25 years, which is equivalent to
30/05/2001 00:00:00 GMT, the terminal date of the data available. Furthermore,

we assume that )
lim TE(@&(T)) =1. (3.20)

T—o0

The normalized GOP'Y = {Yy, ¥ € [0,9(T)]}, see (2.3)and (2.7), in market
activity time is defined to be

Yoy =Y(0) =~ (3.21)

It is straightforward to show via the It6 formula, by using (3.13) and (3.18), that
(3.21) satisfies the SDE

1 Y, R
de =7 (— — _1/1) d@[) + \/ Y¢ dW¢ (322)

no My
for ¢ € [0,4(T)]. Here we set

AWy = V/m(t)dW(t) and  myu = m(t) (3.23)

for t € [0,7]. The normalized GOP in market activity time in (3.22), is for
my = 1, a square oot process with dimension four, which is a CIR process, see
Cox, Ingersoll & Ross (1985). As such, the solution of (3.22) has a long term mean
of % and a speed of adjustment parameter 7. One observes that the only relevant

13



parameter in (3.22) is the net growth rate 7, which is also a key parameter for the
economy. If we consider the square root of the normalized GOP, then by (3.22)
and application of the Ito formula, it evolves according to the SDE

Ny Yy

(V) - (e

for ¢ € [0,4(T)]. It is crucial to note that the diffusion coefficient in (3.24) is
constant. Therefore we obtain in market activity time the quadratic variation of
VY in the form

) dyp + %dm (3.24)

<\/?>w - % (3.25)

for ¢ € [0,9(T)], see Platen (2004). Relation (3.25) holds under general circum-
stances since no restrictive assumptions have been imposed on the actual model
dynamics. The market activity process can still be freely chosen.

Note that from the market activity time given in (3.19) and the quadratic varia-
tion of v/Y in (3.25), the market activity can be calculated as

_du(t) _ AT
dt dt

m(t) (3.26)
for ¢ € [0, T]. This implies that market activity is directly observable. A measure
of the slope of the quadratic variation of the square root of the normalized GOP
is all that is required. For the daily observed MSCI the quadratic variation of
its square root has been shown in Figure 5. The slope of this graph is then the
corresponding market activity, which remains to be modeled. However, seasonal
patterns are to be expected in intraday market activity since the market expe-
riences active and non-active periods that depend on the time of the week, see,
for example, Dacorogna, Gengay, Miiller, Olsen & Pictet (2001) and Breymann,
Dias & Embrechts (2003).

4 Intraday Market Activity

4.1 Market Activity of the WSIs

As a next step we investigate the three intraday WSIs introduced in Section 2.2.
According to (3.25) their market activity time is simple to calculate. In Figure 8
we show the market activity time of the MCI for the period covered by the
intraday data. This allows us to calculate the market activity directly. We simply
calculate the numerical derivative corresponding to (3.26) using five minute time
steps. This derivative fluctuates over a wide range. Therefore, we show the
logarithm In(m(t)) of this derivative in Figure 9 for the MCI over a few weeks

14
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Figure 8: The market activity time for the MCI.
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Figure 9: Logarithm of market activity, In(m(t)), for the MCI.

in April/May 1996. It appears that the observed market activity process shows
some seasonal patterns and reverts quickly back to a reference level.

The observed market activity processes for the EWI and GDPI look very simi-
lar and are therefore omitted. This segment of the logarithm of market activity
illustrates the seasonality apparent in the average level of market activity and
to some degree also some seasonality present in the average fluctuation. The
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Figure 10: Quadratic variation of the logarithm of the market activity, (In(m)),
process for the MCI.
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presence of seasonality within the fluctuations of market activity is further con-
firmed by the quadratic variation (In(m)), of the logarithm of the market activity,
which is shown for the above segment in Figure 10. Here we see that the week-
ends are characterised by a plateau in the quadratic variation. Notably, despite
the seasonal pattern, the quadratic variation in Figure 10 appears to be almost
linear for the periods when the global market is open and actively trading. Of
interest is whether the seasonal patterns in the level and fluctuations of In(m(t))
can be extracted leaving only an almost stationary residual market activity pro-
cess. The deseasonalization of m(t) requires a two stage procedure. The first
step deseasonalizes the average of the market activity and the second its diffusion
coefficient.

In order to model the market activity it is necessary to characterize the relation-
ship between its fluctuations and those of the normalized WSI. For each WSI
we analyzed the covariation of the square root of the normalized WSI with the
logarithm of the corresponding market. The quadratic covariation is the sum of
the product of the increments of the respective processes. We observed in all
three cases over the entire period that the observed covariation remains close to
zero. There seems to be some evidence of a slight positive trend. However, for
simplicity we assume that the noise that drives market activity is independent of
that driving the WSI. This assumption will be relaxed in forthcoming work.

4.2 Modeling Market Activity

The expected value of the market activity is deseasonalized by the average sea-
sonal market activity m(t) at time ¢, which is defined as the expectation

m(t) = E (m(t)) . (4.27)

By the law of large numbers we obtain an estimate for 1m(t) for each five minute
interval of the week during the full observation period, 258 weeks in total, from the
arithmetic average of the corresponding observed market activity. This means we
simply estimate the expectation of the market activity at time ¢ by assuming the
same pattern for each week and sampling over all weeks of observation. Figure 11
displays the estimated Northern Hemisphere summertime weekly pattern of the
average market activity m(t). The average wintertime market activity is simply
shifted by one hour. Note that Figure 11 is calculated from market activity,
not the logarithm. The overall daily pattern is composed of several U-shaped
patterns of different magnitude. The individual patterns are characteristic of
localized, exchange-traded markets. As expected, the magnitude is highest when
the European and American market are simultaneously active. It is lowest during
the pacific gap, that is 21:00 till 00:00 GMT, and of course on the weekends.

Figure 10 suggests that the market activity m(t) is likely to have multiplicative
noise when global markets are open, with some seasonal activity volatility since
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Figure 11: Weekly pattern of average market activity m(t) for summertime in
the Northern Hemisphere.

the quadratic variation of its logarithm shows a piecewise linear pattern. For the
open market regime, a possible model for m(t) with multiplicative noise is given
by the SDE

p(t) —1

am(®) = 16 (m(1) ( .

- m(t)) dt + B()ym(t)dW (¢) (4.28)

with speed of adjustment v > 0, reference level p(t) > 0 and activity volatility
B(t) > 0 for t € [0,7]. The reference level p(t) and the activity volatility /3(¢)
are assumed to exhibit some weekly periodic seasonal patterns. The activity
volatility 3(t) is estimated by averaging over the weekly observations of 32(t).
Figure 12 shows the estimated values for §(t) for the MCI during summertime
in the Northern Hemisphere. These estimates are also obtained from the five
minute observations. Here we have set the activity volatility to zero during the
weekends, since spurious observations do not allow a meaningful calculation of
B(t) outside the open market regime. Note that during the open market trading
days the activity volatility is almost constant and slightly larger than one. We
see that the activity volatility spikes once the Asia-Pacific markets have opened.

T
o 2 a =3

Days of the Week

Figure 12: Average weekly pattern of activity volatility £(¢) for summertime in
the Northern Hemisphere.
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The activity volatility G(t) allows us to introduce activity volatility time T =
{r(t), t €[0,7]} as

#(t) = (In(m)), = / (B(u))? du (4.29)
for t € [0, 7.

It is useful to consider the market activity in activity volatility time 7(¢), denoted
by m-u = m(t), as the presence of seasonal patterns may overshadow empirical
features. Then, by (4.29) we obtain the SDE (4.28) in activity volatility time,

—1
dm, = %mT (pT — m7> dr + m dW,, (4.30)
Y
where 7 € [0, 7(t)], pr#) = p(t) and
AW, = BEYAW (2) (4.31)

for t € [0, 7.

By considering the logarithm of market activity in activity volatility time and
using It6’s formula together with (4.30) we obtain the SDE

dln(m,) =~ (% - mT) dr + dW, (4.32)

for 7 € [0, T]. Note that the diffusion coefficient in (4.32) is constant and equal to
one. Furthermore, we see that, for the open market regime, the dynamics of the
logarithm of market activity are described by a mean-reverting model with speed
of adjustment v and time dependent reference level %. By considering (4.32), we

may set p, &~ m,y + % to account for the seasonal patterns in the reference
level.
/
/
]
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Figure 13: Quadratic variation (In(m)), of the logarithm of the normalized mar-
ket activity process in activity volatility time.

The quadratic variation of the logarithm of market activity is shown in Figure 13.
It confirms the theoretical slope of one of the quadratic variation (In(m)), = 7
that follows from (4.32).
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4.3 Estimation of the Speed of Adjustment

The speed of adjustment parameter v in (4.30) remains to be estimated. In
Figure 14 we plot the histogram of all observations of the logarithm I, = In(m,)
of the market activity. One notes a very distinct shape of the histogram with a
concentration of negative spikes around —0.4. These negative spikes and other
negative values result from the effects of market opening and closing, which can
be interpreted as the typical levels of market activity in the opening and closing
regimes. The given model dynamics for market activity during the open market
regime, see (4.28) and (4.30), are not intended to include the opening and closing
market regimes. For this reason we will ignore values less than [ = —0.2 in the
histogram in Figure 14 for the estimation of the drift parameters for the open
market regime that is modeled by (4.32). A more detailed model would need to
incorporate the probability mass created in the lower tail by the superposition of
the stationary densities for the different regimes.

Under the simplifying assumption that p, = p is constant, the market activity
process can be shown to have as stationary density a gamma density. The sta-
tionary density of the logarithm [ of the corresponding market activity process
in activity volatility time can be written as

n(l;v,p) = % exp {—ve'} /@Y. (4.33)

Here I'(+) is the Gamma function and 7 and p are the only free parameters.

In this case, we can perform a restricted maximum likelihood estimation. As
indicated, we exclude most of the distortions caused by the effects of market
opening and closing from our estimation by forming a restricted log-likelihood

function
ny

L(v,p) = D> Vg, o0 W (i(ln57,p)) - (4.34)
n=1

Here np = 523585 is the total number of observations and 1y >; denotes the
indicator function which takes only observations with [, > [ into account, n €
{1,2,...,nr}. A plot of the estimated probability density function of I, = In(m,)
based on the resulting maximum likelihood estimate 4 ~ 103 and p ~ 106 is
shown in Figure 14. We see from the effects of market opening and closing
that the left tail of the histogram is fatter than what is given by the theoretical
gamma density. The estimates for each of the WSIs, together with 99% confidence
intervals, are shown in Table 1.

4.4 Analysis of Normalized WSIs in Market Activity Time

In Section 3 it was shown that the normalized GOP, when observed in market
activity time, is a square root process of dimension four. The trajectory of the
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Index | ¥ [year™'] | p [year™!]
MCI 103.2 105.8
(89.3,116.4) | (92.3,119.2)
GDPI 136.6 138.9
(120.7,152.5) | (122.5,155.3)
EWI 137.3 139.7
(121.2,153.4) | (123.5,155.8)

Table 1: Estimates for the drift parameters of market activity in activity volatility
time with 99% confidence intervals.

Figure 14: Histogram and estimated probability density function of In(m.).

normalized MCI in market activity time is plotted in Figure 15. By using market
activity time we know that the quadratic variation of the square root of the
normalized MCI should be linear with a slope close to 0.25, see (3.25). This
relationship is confirmed by performing a simple linear regression of the quadratic
variation of the square root of the normalized WSI against the corresponding
estimated market activity time. The slope coefficient and R? value are given in
Table 2 for all three WSIs.

Index | Slope Coefficient | R?

MCI 0.245 0.9968
GDPI 0.232 0.9969
EWI 0.198 0.9919

Table 2: Slope coefficients and R? values for the quadratic variation of the square
root of normalized WSIs in market activity time.

Table 2 shows that the MCI and GDPI fit the model well and the MCI outper-
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Figure 15: Normalized MCI in market activity time.
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forms the EWI and the GDPI, when the quadratic variations of the square root
of the corresponding normalized index are considered. Additionally, the corre-
sponding market activity processes in activity volatility time are shown to have
the hypothesized dynamics, when the opening and closing regimes are omitted.
Moreover, it follows from Figure 6 that the MCI has the maximum value in rela-
tion to all other indices considered, at the end of the observation period, which is
a main property of the GOP. Consequently, we consider the MCI to be the best
proxy for the GOP and the world stock market portfolio on the basis of the above
statistical results. The model calibrated above appears to be a largely accurate
intraday description of the dynamics of the market capitalization weighted world
stock index.

5 Conclusion

We constructed and examined three diversified high-frequency world stock in-
dices. A simple and robust way of calculating and modeling market activity is
demonstrated. Market activity is found to contain seasonal patterns in both the
drift and the diffusion term. We showed that the market activity can be modeled
as a strongly mean reverting process with constant speed of adjustment incorpo-
rating the weekly periodicities contained in average market activity and activity
volatility. Furthermore, we confirmed that, in market activity time, the normal-
ized indices represent square root processes of dimension four. The world stock
portfolio appears to be an excellent proxy for the GOP. Work is in progress on the
use of the MCI for applications of the benchmark approach in derivative pricing,
portfolio management and integrated risk management.
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