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ABSTRACT. Motivated by recent development in structural agent models on asset
pricing, explanation power and calibration issue of those models, this paper presents
a simple market fraction model of two types of traders—fundamentalists and trend
followers—under a market maker scenario. It is found that asset prices, wealth dy-
namics and market behaviour are characterised by the dynamics of the underlying
deterministic system. The model is able to explain various market behaviour, and
generate some of the stylized facts. By introducing two measures on wealth dynam-
ics, we are able to show the limitations of profitability and rationality of different
trading strategies. Six significant autocorrelation coefficients (ACs) patterns are char-
acterized by different types of bifurcation of the underlying deterministic system. In
particular, an oscillating and decaying AC pattern with positive ACs for even lags and
negative for odd lags can only be generated when the market is dominated by the fun-
damentalists (that is when the parameters are near the flip bifurcation boundary), and
a positive decaying AC patterns with long memory can only be generated when the
market is dominated by the trend followers with high decay memory (that is when the
parameters are near the Hopf bifurcation boundary). The results show a promising
power of stability analysis and bifurcation theory in explaining and calibrating asset
price and wealth dynamics, market behaviour, and generating various econometric
properties of financial data.
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1. INTRODUCTION

A great deal of well established economic and finance theory is based on the as-
sumptions of investor homogeneity and the efficient market hypothesis. However,
there is a growing dissatisfaction with (i) models of asset price dynamics based on
the representative agent paradigm, as expressed for example by Kirman (1992), and
(ii) the extreme informational assumptions of rational expectations. As a result, the lit-
erature has seen a rapidly increasing number of structural agent models to characterise
the dynamics of financial asset prices resulting from the interaction of heterogeneous
agents having different attitudes to risk and having different expectations about the fu-
ture evolution of prices in recent years (e.g. Arthur et al (1997), Brock and Hommes
(1997, 2002), Brock and LeBaron (1996), Bullard and Duffy (1999), Chen and Yeh
(1997, 2002), Chiarella (1992), Chiarella et al (2001), Chiarella and He (2001, 2002,
2003b), Dacorogna et al (1995), Day and Huang (1990), De Long et al (1990), Farmer
and Joshi (2002), Frankel and Froot (1987), Gaunersdorfer (2000), Hommes (2001,
2002), Iori (2001), LeBaron (2000, 2001, 2002), LeBaron et al (1999), Lux (1995,
1997, 1998) and Lux and Marchesi (1999)). This heterogeneous agent literature can
be classified as either theoretical or computational oriented in general. Most of them is
computational oriented (e.g. Arthur et al (1997), Brock and LeBaron (1996), Bullard
and Duffy (1999), Chen and Yeh (1997, 2002), Dacorogna et al (1995), Iori (2001),
LeBaron (2000, 2001, 2002), LeBaron et al (1999), Lux (1995, 1997, 1998)), includ-
ing Santa Fe artificial stock market of Arthur et al (1997), Farmer and Joshi (2002)
and LeBaron (2000, 2001, 2002), and the stochastic multi-agent models of Lux (1995,
1997, 1998) and Lux and Marchesi (1999). Computational agent-based modeling is
a promising way to study the stock market as a complex adaptive system of many
groups of heterogeneous traders learning about the relations between prices and mar-
ket information. Recent progress in computing technology has made possible a more
ambitious vehicle to construct and simulate the stock market. It attacks the problem
of very complex heterogeneity which leaves the boundary of what can be handled an-
alytically and has shown that many econometric properties (stylized facts) of financial
time series, including volatility clustering, excess kurtosis, bubbles and crashes, unit
roots, and many others, can be replicated.

Although the computational oriented approach provides useful insight and intuition,
being able to generate rich dynamics is only minor part of complex adaptive system.
A disadvantage of this approach is that it is not always clear what effect exactly causes
certain simulation outcomes. Among these are the question of what type of trading
strategies should be used to generate certain stylized facts. As pointed out by LeBaron
(2000), ‘researchers...may be frustrated by the fact that results are sensitive to the ac-
tual details of trading...Validation remains a critical issue if artificial financial markets
are going to prove successful in helping to explain the dynamics of real market.’ This
clearly indicates the weakness of this approach.
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Theoretical oriented approach approximates complicated computer models by sim-
ple nonlinear dynamical system (e.g. Brock and Hommes (1997), Chiarella (1992),
Chiarella et al (2001), Chiarella and He (2001, 2002, 2003b), Day and Huang (1990),
Gaunersdorfer (2000), Hommes (2001, 2002), 2002)). It has been widely accepted
in finance and economics that simple deterministic nonlinear system can exhibit very
rich dynamics, including stability and various bifurcation routes to complex and even
chaotical behaviour. Recently, Brock and Hommes (1997, 1998) have proposed sim-
ple Adaptive Belief System to model economic and financial markets, where agents
base decisions upon predictions of future values of endogenous variables whose actual
values are determined by equilibrium equations. A key aspect of these models is that
they exhibit expectations feedback. Agents adapt their beliefs over time by choosing
from different predictors or expectations functions, based upon their past performance
as measured by realized profits. The resulting dynamical system is nonlinear and, as
Brock and Hommes (1998) show, capable of generating the entire “zoo” of complex
behaviour from local stability to high order cycles and even chaos as various key pa-
rameters of the model change. Brock and Hommes’s framework has been extended
further in Gaunersdorfer (2000) and Chiarella and He (2001, 2002, 2003b) to incor-
porate heterogeneous variance, risk and learning under both Walrasian auctioneer and
market maker scenarios. By using both bifurcation theory and numerical analysis, it is
found that the relative risk attitudes, different learning mechanism and different market
clearing seniors affect asset pricing dynamics in a very complicated way. It has been
shown (e.g. Hommes (2002)) that such simple nonlinear adaptive models are capa-
ble of explaining important stylized facts, including fat tails, clustered volatility and
long memory, of real financial series. The most important advantage of the theoretical
oriented approach is that theoretical analysis of stylized simple evolutionary adaptive
system and its numerical analysis may contribute in providing insight into the con-
nection between individual and market behaviour, in particular, the important question
whether asset prices in real markets are driven only by news or, at least in part, driven
by market psychology.

There are two goals this literature is trying to achieve, first, to replicate the econo-
metric properties and stylized facts of financial time series, and second to explain
various market behaviour. Both theoretical and computational approaches have shown
some promising results in achieving these two goals, however, based on the following
discussion, we are still have some distance to achieving these goals.

It is well known that most of the stylized facts can be observed only for high fre-
quency data, such as weekly, daily or intraday data, not for low frequency data, such as
monthly and yearly data. Most of existing literatures (e.g. Arthur et al (1997), Brock
and Hommes (1997), Chen and Yeh (2002), Chiarella et al (2001), Chiarella and He
(2002, 2003b), Iori (2001), LeBaron (2002), LeBaron et al (1999), Levy et al (1994))
that are capable of generating realistic market price, market behaviour, and stylized
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facts uses risk-free rate of rf = 0.101per trading period when an optimal portfolio of
risk and risk-free assets is constructed. The risk-free rate plays a crucial role for traders
to optimally determine their demand on the risky asset. For model calibration, this is
not calibrated to any sort of actual data and no where is trading period specified as to
what the time period is. This level of risk-free rate is too high to characterize the styl-
ized facts of high frequency financial time series and those models have limitation for
further reduction of the risk-free rate to a reasonable level2, for example, to an annual
rate of ra = 5 − 10% that leads to rf = ra/250 for daily trading period3. As pointed
out by LeBaron (2002), ‘This (unrealistic trading period) is fine for early qualitative
comparisons with stylized facts, but it is a problem for quantitative calibration to actual
time series’.

Another problem is related to the explanation power of various models to financial
market behaviour. As mentioned early, the theoretical oriented approach is more capa-
ble in this respect than the computational oriented approach. As an adaptive evolution
system of heterogeneous agents, the asset pricing and agents’ behaviour can be mod-
eled as simple nonlinear dynamics system, whose underlying deterministic system can
be studied by using stability analysis and bifurcation theory (e.g. Brock and Hommes
(1997), Chiarella (1992), Chiarella et al (2001), Chiarella and He (2001, 2002, 2003b),
Day and Huang (1990), Gaunersdorfer (2000), Hommes (2001, 2002)). Following the
studies on Brock and Hommes’ framework, it is very interesting to find that many im-
portant elements, such as adaption, evolution, heterogeneity, and even learning, can be
incorporated into the theoretical analysis framework and many rich and complicated
dynamics developed from this framework lead some insight into the understanding and
explaining the market behaviour. However, because of the complicity of the dynamics
and the calibration problem mentioned early, the explanation power of this framework
has not been fully developed yet. In particular, the questions that how market fractions
of heterogeneous traders influence the asset prices, volatility and market behaviour,
and how various types bifurcation are connected to certain patterns on prices and re-
turns, have not been studied in deep. Those are some of issues this paper is trying to
address.

It is well known from both empirical (e.g. Taylor and Allen (1992)) and theoreti-
cal (e.g. Brock and Hommes (1997)) studies that market fraction plays an important
role in financial markets. Empirical evidence from Taylor and Allen (1992) suggests
that at least 90% of traders place some weight on technical analysis at one or more

1Apart from the trading ‘day’ risk-free rate rf = 0.01 in Gaunersdorfer (2000) and LeBaron (2001),
which corresponds to an unreasonable annual risk-free rate of 250%, and rf = 0.0004 in Hommes
(2002), which corresponds to a reasonable annual risk-free rate of 10%.
2As risk-free rate of trading period decreases, demand on the risky asset increases and hence stock prices
increases. Consequently, the price of the risky asset become rather larger numbers resulting sometimes
in break-down in theoretic analysis and overflows in numerical simulations.
3In this paper, we follow a convention of 250 trading days a year.
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time horizons. In particular, traders rely more on technical, as opposed to the funda-
mentalist, analysis at shorter horizons. As the length of time horizons increase, more
traders rely on the fundamentalist, rather than technical, analysis. In addition, there
is certain proportion of traders do not change their strategies over all time horizons.
Theoretical study from Brock and Hommes (1997) shows that, when different groups
of traders having different expectations about future prices and dividends, such as fun-
damentalists and chartists, compete between trading strategies and choose their strat-
egy according to an evolutionary ‘fitness measure’, the corresponding deterministic
system exhibits coexistence of a stable steady state and a stable limit cycle. When buf-
feted with dynamic noise, irregular switching occurs between close to the fundamental
steady state fluctuations, when the market is dominated by fundamentalists, and peri-
odic fluctuation when the market is dominated by the chartists. The adaptive switching
mechanism proposed by Brock and Hommes (1997) is one of very important elements
and it is based on certain ‘fitness function’ and discrete choice probability. However,
because of the amplifying effect of the exponential function used in the discrete choice
probability, the market fractions become very sensitive to price changes and the fit-
ness functions, leading the market fractions to be switched significantly even when
the prices change insignificantly. This amplifying effect becomes even more signifi-
cantly when the model is calibrated to market date (such as when a realistic risk-free
rate is used for daily trading period). Therefore, it is not very clear how the market
fractions do actually influence the market price and this issue is partially addressed in
this paper. More realistically, we propose a market fraction model that there are some
market fractions of heterogeneous traders are fixed while the rest are switching based
on some fitness functions and the adaptive switching mechanism introduced in Brock
and Hommes (1997). To have a clear picture how market fraction influence market
price and market behaviour, we consider in this paper a simple case where all market
fractions are fixed.

This paper takes the model of Chiarella and He (2003b) by using a market-maker,
instead of Walrasian auctioneer, scenario as the mechanism generating the market
clearing price and investigates a simple model for the price dynamics involving only
three types of participants in the asset market: two groups of traders—fundamentalists
(also called informed traders) and trend followers (also called less informed traders or
chartists)—and a market-maker. Both fundamentalists and trend followers’ demands
are determined by maximising their expected (exponential) utility function4 of wealth
one period ahead. The fundamentalists are assumed to adjust their expected price to-
wards the fundamental price. The trend followers are assumed to extrapolate the latest
observed price change over a long-run sample mean price which follows some learning
4The problem of exponential utility function is that traders’ optimal demand of risk asset is independent
of their wealth level, even though wealth is shifting among traders. In actual markets it is clear that
wealthier traders will have a greater impact on price. Therefore further extension to power or logarithm
utility function so that the wealth effect can be incorporated is necessary, see Chiarella and He (2001)
for related discussion.
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processes, such as a geometric decay (learning) process used in this paper5. The mar-
ket maker at the beginning of each trading period announces a price and then receives
all the buy and sell orders for the risky asset in that time period formed by agents on
the basis of the announced price. The market-maker hence determines the excess de-
mand and then takes an off-setting long or short position in the risky asset so as to clear
the market. The market-maker announces the price for the next trading interval as a
function of the excess demand in the current period. Whilst this scenario is still highly
stylised it does bring the analysis closer to the functioning of real markets than does
the Walrasian scenario. As pointed out by O’Hara (1995) that there is only one market
in which market clearing prices are arrived at via the Walrasian auctioneer scenario.
O’Hara (1995) also highlights the inadequacy of assuming Walrasian type of market
clearing mechanism. Related literature on the behavior of the market maker in secu-
rities markets can also be found in Garman (1976), Stoll (1978), Beja and Goldman
(1980), Ho and Stoll (1981), Peck (1990), Day and Huang (1990), Chiarella (1992),
Sethi (1996) and Farmer and Joshi (2002). The market maker in this paper still remains
highly stylised in that he or she does not change behavior, irrespective of the size of his
or her long or short position. We assume the market maker is risk neutral, setting the
price in response to excess demands from the traders, without worrying about accu-
mulated inventory. The market framework and price formation mechanism are similar
to that of Kyle (1985) and Farmer and Joshi (2002).

By using the market fraction approach, this paper seeks to determine how market
price and behaviour are determined and influenced by these three groups of traders.
In particular, we examine how the market fraction, the speed of price adjustment from
the market maker, the speed of the expected price adjustment from the fundamentalists
towards the fundamental price, and the memory decay rate and extrapolation of the
trend followers affect asset prices, volatility and market behaviour. In particular, we are
trying to establish a connection between various types of bifurcation of the underlying
deterministic system and various econometric properties of time series generated from
the corresponding stochastic system, such as excess volatility, volatility clustering,
normality of return distributions, autocorrelation patterns etc.

Another central issue is the rationality and survivability of irrational speculators in
the market. Market psychology and investors sentiment have been viewed by new clas-
sical economists as irrational and hence are inconsistent with the rational expectation
hypothesis. For example, Friedman (1953) argued that irrational speculative traders
would be driven out of the market by rational traders and prices would then be driven
back to fundamental prices. However, it is shown (e.g. Brock and Hommes (1997))
that this need not be the case and that simple, technical strategies may survive evolu-
tionary competition, even in the long run. This issue is also addressed from the point of
market fraction. Although traders’ wealth does not enter their optimal demand, wealth

5Learning on variance literature.
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is shifting among traders. By introducing two relative wealth proportion measures, the
wealth dynamics is also examined. When the fundamentalists become more informed
about the fundamental price, it is shown that the fundamentalists accumulate more
significant wealth proportion in long run, compared with the trend followers. This
indicates that, in a long-run, trend followers have incentive to switch to the fundamen-
talists. However, given that traders are bounded rational, information is not costless,
and market may not always be efficient, trend followers may survive over a long run
and this is demonstrated in this paper.

The plan of the paper is as follows. Section 2 outlines a market fraction model of
heterogeneous agents with the market clearing price set by a market maker, introduces
the expectations function and learning mechanisms of the fundamentalists and trend
followers, and derives a complete market fraction model. Sections 2 and 3 examine two
special cases of the complete model by assuming that there is only one type of traders
in the market. It becomes clear that the dynamics and statistic properties of these
two special cases have a close connection to the dynamics and time series properties
of the complete model, which is examined in Section 5. In all these sections, the
local stability and bifurcation of the fundamental steady state is studied analytically
and numerical analysis is then conducted to examine statistical properties. Section 6
concludes and all proofs are included in the Appendix.

2. MARKET FRACTION AND A MARKET-MAKER MODEL

This section sets up a standard discounted value asset pricing model with heteroge-
neous agents, which is closely related to the framework of Brock and Hommes (1997,
1998) and Chiarella and He (2002). However, the market clearing price is arrived
at via a market maker scenario in line with Chiarella and He (2003b) rather than the
Walrasian scenario. We focus on the simple case in which there are three classes of
participants in the asset market: two groups of traders, fundamentalists and trend fol-
lowers, and a market maker, which are described in detail in the following discussion.

2.1. Market Fraction and Market Clearing Price under a Market Maker. Con-
sider an asset pricing model with one risky asset and one risk free asset. It is assumed
that the risk free asset is perfectly elastically supplied at gross return of R = 1 + r/K,
where r stands for a constant risk-free rate per annual and K stands for the frequency
of trading period per year. Typically, K = 1, 12, 52 and 250 for trading period of year,
month, week and day, respectively. To calibrate the stylized facts observed from daily
price movement in financial market, we select K = 250 in our following discussion.

Let Pt be the price (ex dividend) per share of the risky asset at time t and {Dt} be
the stochastic dividend process of the risky asset. Then the wealth of a typical investor
at t + 1 is given by

Wt+1 = RWt + [Pt+1 + Dt+1 − RPt]zt, (2.1)
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where Wt is investor’s wealth at time t and zt is the number of shares of the risky
asset purchased by the investor at t. Denote by Ft = {Pt, Pt−1, · · · ; Dt, Dt−1, · · · } the
common information set formed at time t. We assume that, apart from the common
information set, the fundamentalists have ‘superior’ information on the fundamental
price. Let Eh,t and Vh,t be the “beliefs” of type h traders about the conditional expec-
tation and variance of quantities at t + 1. Denote by rt+1 and Rt+1 the return and the
excess capital gain on the risky asset, respectively, at t + 1, that is

rt+1 =
Pt+1 + Dt+1 − RPt

Pt

, Rt+1 = Pt+1 + Dt+1 − R Pt. (2.2)

Then it follows from (2.1) and (2.2) that

Eh,t(Wt+1) = RWt + Eh,t(Rt+1)zh,t,
Vh,t(Wt+1) = z2

h,tVh,t(Rt+1),
(2.3)

where zh,t is the demand by agent h for the risky asset.
Assume each type, say type h, of traders is an expected utility maximizer with ex-

ponential utility function, but having different attitudes towards risk, characterized by
the risk aversion coefficient, ah. That is Uh(W ) = −exp(−ahW ). Then, for type h of
traders, the demand zh,t on the risky asset is given by

zh,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
. (2.4)

Let N be the total number of traders, among which, there are N1 fundamentalists,
classed as type 1 traders, and N2 trend followers, classed as type 2 traders. Then the
market fraction of traders are defined by

n1 =
N1

N
, n2 =

N2

N
. (2.5)

We assume that the market fraction (n1, n2) is fixed. Denote m = n1 − n2. Then

n1 =
1 + m

2
, n2 =

1 − m

2
. (2.6)

Obviously, m ∈ [−1, 1] and m = 1,−1 corresponds to the case when all the traders
are fundamentalists and trend followers, respectively. Assume zero supply of outside
shares. Then the excess demand ze,t is given by

ze,t ≡ n1z1,t + n2z2,t, (2.7)

or (using (2.3) and (2.7))

ze,t =
1 + m

2

E1,t[Rt+1]

a1V1,t[Rt+1]
+

1 − m

2

E2,t[Rt+1]

a2V2,t[Rt+1]
. (2.8)

To complete the model the price changes must be made explicit. The role of the
market maker is to take a long (when ze,t < 0) or short (when ze,t > 0) position
so as to clear the market. At the end of period t, after the market maker has carried
out all transactions, he or she adjusts the price for the next period in the direction
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of the observed excess demand. Using µ to denote the corresponding speed of price
adjustment for each period and ε̃t be an IID normally distributed random variable that
captures a random demand noise process for unexpected news about fundamentals or
noise created by “noise traders” with ε̃t ∼ N(0, σ2

ε ), then the price adjustment equation
would be given by

Pt+1 = Pt + µze,t + ε̃t

which, by using (2.8), becomes

Pt+1 = Pt +
µ

2

[

(1 + m)
E1,t[Rt+1]

a1V1,t[Rt+1]
+ (1 − m)

E2,t[Rt+1]

a1V2,t[Rt+1]

]

+ ε̃t. (2.9)

It should be pointed out that the market maker behavior in this model is highly stylised.
For instance, the inventory of the market maker built up as a result of the accumulation
of various long and short positions is not considered. This could affect his or her
behavior, e.g. the market maker price setting role in (2.9) could be a function of the
inventory. Allowing µ to be a function of inventory would be one way to model such
behavior. Such considerations are left to future research. Future research should also
seek to explore the microfoundations of the coefficient µ. In the present paper it is best
thought of as a market friction, and an aim of our analysis is to understand how this
friction affects the market dynamics.

2.2. Heterogeneous Trading Strategies. Based on the nature of asymmetric infor-
mation among traders, we now formulate two most popular trading strategies for two
types of traders—fundamentalists and trend followers.

2.2.1. Fundamentalists. It is assumed that the fundamental traders have some ‘supe-
rior’ information on the fundamental value (or price) P ∗

t of the risky asset and they
also realise the existence of non-fundamental traders, such as trend followers intro-
duced in the following discussion. For various reasons, such as the existence of non-
fundamental traders, or less confident about the fundamental price, they believe that
the stock price may be driven away from the fundamental price in the short run, but it
will eventually converge to the fundamental value. More precisely, for the fundamental
traders, their conditional mean and variance are assumed to follow

E1,t(Pt+1) = P ∗

t+1 + α(Pt − P ∗

t+1), (2.10)

V1,t(Pt+1) = σ2
1, (2.11)

where P ∗

t denotes the fundamental price, constant α ∈ [0, 1] measures the speed of
price adjustment toward the fundamental price and, σ2

1 stands for a constant variance
on the price. In terms of parameter α, two special cases are particular interesting.

• If α = 0, then it follows from (2.10) that

E1,t(Pt+1) = P ∗

t+1.

In this case, the fundamental traders adjust their expected price at next period
instantaneously to the fundamental value.
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• If α = 1, then, from (2.10),

E1,t(Pt+1) = Pt,

which corresponds to a naive expectation—today’s price is the best forecast
for tomorrow’s price.

In general, the fundamental traders believe that markets are efficient and prices con-
verge to the fundamental price. An increase in α may indicate a less confidence of
the fundamental traders on the convergence of the asset price to the fundamental price,
leading to a slow adjustment of their expected price towards the fundamental price.

2.2.2. Trend followers. Apart from the fundamental traders, we assume that there is
another group of traders—the trend followers who extrapolate the latest observed price
change over a long-run sample mean price. More precisely, their estimates on the
conditional mean and variance are assumed to follow

E2,t(Pt+1) = Pt + γ(Pt − ut), (2.12)

V2,t(Pt+1) = σ2
1 + b2vt, (2.13)

where γ, b2 ≥ 0 are constants, and ut and vt are sample mean and variance, respec-
tively, which follow some learning processes. Parameter γ measures the extrapolation
rate and high values of γ correspond to strong extrapolation from the trend followers.
The coefficient b2 measures the influence of the sample variance on the conditional
variance estimated by the trend followers. It is in general assumed that b2 > 0, indi-
cating a believe of the trend followers on more volatile price movement. In terms of
the sample mean ut and variance vt, it is assumed in this paper that

ut = δut−1 + (1 − δ)Pt, (2.14)

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2. (2.15)

This process on sample mean and variance can be treated as a limiting process of
geometric decay process when the memory lag length tends to infinity6. Parameter δ
measures the geometric decay rate. For δ = 0, the sample mean ut = Pt, which is
the latest observed price, while δ = 0.95 gives a half life of 2.5 weeks, while δ =
0.999 gives a half life of about 2.7 years. The selection of this process is intend to
capture various aspects of asset price dynamics, such as asset volatility, certain pattern
of autocorrelation coefficients and long memory.

2.2.3. Demand Functions of Fundamentalists and Trend Followers. Regarding the
dividend process Dt, we assume Dt ∼ N(D̄, σ2

D). It follows from Dt = (r/K)Pt

that the long-run fundamental price P̄ = (K/r)D̄, where r is the annual risk-free rate.

6For related studies on heterogeneous learning in general and asset pricing models with heterogeneous
agents who’s conditional mean and variance follow various learning processes, we refer to Chiarella
and He (2002, 2003a, 2003b)
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Let σP̄ be the annual volatility of Pt, then the trading period variances of price and
dividend can be estimated as7

σ2
1 = (P̄ σ)2/K, σ2

D = r2σ2
1. (2.16)

Throughout the paper, we choose

P̄ = $100, r = 5% per annual, σ = 20% per annual, K = 250. (2.17)

Correspondingly, R = 1 + 0.05/250 = 1.0002, σ2
1 = (100 × 0.2)2/250 = 8/5 and

σ2
D = 1/250.

Based on assumptions (2.10)-(2.11),

E1,t(Rt+1) = E1,t[Pt+1 + Dt+1 − R Pt]

= P ∗

t+1 + α(Pt − P ∗

t+1) + D̄ − R Pt

= (α − 1)(Pt − P ∗

t+1) − (R − 1)(Pt − P̄ ),

V1,t(Rt+1) = (1 + r2)σ2
1 using (2.16),

and hence the optimal demand for the fundamentalist is given by

z1,t =
1

a1(1 + r2)σ2
1

[(α − 1)(Pt − P ∗

t+1) − (R − 1)(Pt − P̄ )]. (2.18)

In particular, when P ∗

t = P̄ ,

z1,t =
(α − R)(Pt − P̄ )

a1(1 + r2)σ2
1

. (2.19)

Similarly, from (2.12) and (2.13),

E2,t(Rt+1) = E2,t(Pt+1 + Dt+1 − R Pt)

= Pt + γ(Pt − ut) + D̄ − R Pt

= γ(Pt − ut) − (R − 1)(Pt − P̄ ) (using D̄ = (R − 1)P̄ ),

V2,t(Rt+1) = σ2
1(1 + r2 + b vt),

where b = b2/σ
2
1 . Hence the optimal demand of the trend followers is given by

z2,t =
γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2σ2
1(1 + r2 + b vt)

. (2.20)

7Let D̄t and σ̄2

D be the annual dividend and variance. Then it follows from D̄t = rPt and σ̄2

D =
r2(P̄ σ)2 that σ2

D = σ̄2

D/K = r2(P̄ σ)2/K = r2σ2

1
.
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2.3. Complete Model. To sum up, the price dynamics under a market maker is
determined by the following 3-dimensional difference system











Pt+1 = Pt + µze,t + ε̃t,

ut = δut−1 + (1 − δ)Pt,

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2,

(2.21)

where






























ze,t =
1 + m

2
z1,t +

1 − m

2
z2,t,

z1,t =
1

a1(1 + r2)σ2
1

[(α − 1)(Pt − P ∗

t+1) − (R − 1)(Pt − P̄ )],

z2,t =
γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2σ2
1(1 + r2 + b vt)

.

Because of the nonlinear demand function z2,t of the trend followers, the stochastic
nature of the fundamental price P ∗

t and the demand shock ε̃t, system (2.21) is a 3-
dimensionally nonlinear stochastic difference system. In terms of the fundamental
prices, we assume that P ∗

t follows random walk

P ∗

t+1 = P ∗

t + ε̃∗t , ε̃∗t ∼ N(0, σ2
1). (2.22)

To understand the combined effect of different types of traders on the asset price
dynamics, in the following sections, two special versions of the model—the market
maker model with either fundamentalists or trend followers only—are analysed first
(in Sections 3 and 4) and the complete market fractions model (2.21) with both fun-
damentalists and trend followers is then studied in Section 5. Various aspects of the
model, including asset pricing and wealth dynamics, market dominance of one type
of traders over the other, market behaviour, and econometric properties of the return
series, are discussed.

It has been widely accepted that stability and bifurcation theory is a powerful tool
in the study of asset-pricing dynamics (see, for example, Brock and Hommes (1997,
1998) and Chiarella and He (2002, 2003b)). However, how the stability and various
types of bifurcation of the underlying deterministic system affect the nature of the
stochastic system, including stationarity, distribution and statistic properties of the sto-
chastic system, is not very clear at the current research stage, although the techniques
discussed in Arnold (1998) may be useful in this regard. In this paper, we consider
first the corresponding deterministic version of various model by assuming that the
fundamental price is given by its long-run value P ∗

t = P̄ and there is no demand
shocks ε̃t = 0. It becomes clear from the following discussion that understanding
of the dynamics of the underlying deterministic system, including stability and bi-
furcation, plays an important role on the stochastic behaviour of system (2.21). It is
shown that various parameters, including market fraction m, speeds of adjustment of
the fundamentalists α and the market maker µ, extrapolation rate γ and memory decay
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rate δ of the trend followers, play different roles on the price dynamics and market be-
haviour. By using numerical simulation approach, the asset price dynamics and market
behaviour of the stochastic system are analysed.

2.4. Fundamental Steady State. When the long run fundamental price is a constant,
the following result on the existence and uniqueness of steady state of the correspond-
ing deterministic system is obtained.

Proposition 2.1. Assume
P ∗

t = P̄ , σε = 0. (2.23)

Then (Pt, ut, vt) = (P̄ , P̄ , 0) is the unique steady state of system (2.21).

Proof. See Appendix A.1. �

Proposition 2.1 shows that, when the fundamental price is a constant, there is a
unique steady state of the system with Pt = P̄ . This steady state is therefore called
fundamental steady state. Its stability and bifurcation plays a crucial role for under-
standing the dynamics of the stochastic system.
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FIGURE 2.1. Time series on prices and returns and density distribu-
tions and autocorrelation coefficients (ACs) of the return for S&P500
(a) and AOI (b) from Aug. 10, 1993 to July 24, 2002.
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2.5. Econometric Properties of Financial Time Series and Stylized Facts. As a
benchmark for econometric properties of financial times, we include time series plots
on prices and returns for both S&P500 and AOI from Aug. 10, 1993 to July 24, 2002
in Fig.2.1. The corresponding density distributions, autocorrelation coefficients (ACs)
and statistics of the returns are also illustrated in Fig.2.1 and Table 2.1.

Index Mean Median Max. Min. Std. Dev. Skew. Kurt. Jarque-Bera
S&P500 0.000194 0.0000433 0.057361 -0.070024 0.0083 -0.504638 8.215453 2746.706

AOI 0.000269 0.000106 0.055732 -0.071127 0.010613 -0.23127 7.263339 1789.96

TABLE 2.1. Statistics of returns series of for S&P500 and AOI from
Aug. 10, 1993 to July 24, 2002.

A comprehensive discussion of stylized facts characterizing financial time series is
given by Pagan (1996). They include excess volatility (relative to the dividends and
underlying cash flows), volatility clustering, skewness, excess kurtosis, etc. Given the
simplicity of the market fraction model established in this paper, we are not able to
calibrate all those stylized facts. Instead, the aim of this paper is to establish a connec-
tion on price dynamics between the stochastic model and its underlying deterministic
model, a relation between traders behaviour and market behaviour, and to have a the-
oretical understanding how different groups of traders influence the overall market
behaviour. This effort is necessary, not only to replicate and calibrate financial time
series, but also to understand real market.

3. A MARKET MAKER MODEL OF FUNDAMENTALISTS

This section is devoted to a special case of the complete model when m = 1, that is
when all the traders are fundamentalists. In this case, system (2.21) is reduced to the
following 1-dimensional difference system

Pt+1 = Pt − µ
(R − 1)(Pt − P̄ ) + (1 − α)(Pt − P ∗

t+1)

a1(1 + r2)σ2
1

+ ε̃t. (3.1)

Furthermore, under assumption (2.23), the underlying deterministic system of the sto-
chastic system (3.1) is given by

Pt+1 = Pt − µ
(R − α)(Pt − P̄ )

a1(1 + r2)σ2
1

. (3.2)

3.1. Stability and Bifurcation Analysis. For the deterministic system (3.2), the sta-
bility and bifurcation of the fundamental price P̄ is obtained in the following Proposi-
tion 3.1.

Proposition 3.1. Under assumption (2.23), if all the traders are fundamentalists, then
the fundamental price P̄ of (3.2) is globally asymptotically stable if and only if

0 < µ < µ0,1 ≡
2a1(1 + r2)σ2

1

(R − α)
. (3.3)
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In addition, µ = µ0,1 leads to a flip bifurcation with λ = −1, where

λ = 1 − µ
R − α

a1(1 + r2)σ2
1

. (3.4)

Proof. See Appendix A.2. �

α

µ

1R

µ0,1(0)

µ0,1(1)

Flip Boundary

FIGURE 3.1. Stability region and bifurcation boundary for m = 1.

The stability region of the fundamental price P̄ is plotted in (α, µ) plane in Fig. 3.1.
One can see that µ0,1 is an increasing function of α and

µ0,1 =

{

µ0,1(0) =
2a1(1+r2)σ2

1

R
for α = 0;

µ0,1(1) =
2a1(1+r2)σ2

1

(R−1)
for α = 1.

Proposition 3.1 leads to the following implications on price dynamics and market be-
haviour.

• An increase of α corresponds a slow price adjustment of the fundamentalists
towards the fundamental price. For µ ∈ (µ0,1(0), µ0,1(1)), as the fundamen-
talists adjust the price toward the fundamental price slowly, the fundamental
price is stabilised.

• The region of the speed of price adjustment µ from the market maker to main-
tain the stability of the fundamental price is enlarged as α increases, that is as
the fundamentalists adjust their expected price towards the fundamental price
slowly. However, over-reactions from the market maker (in terms of µ > µ0,1)
or the fundamentalists (in terms of small α) can push prices to be exploded. In
other word, when there is no trend followers in the market and all the traders
are fundamentalists, the stability of the fundamental price is maintained when
the market maker and fundamentalist are under-reaction and an over-reaction
from either the market maker or the fundamentalists can push the price to ex-
plode.
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• The stability boundary µ0,1 increases as the fundamentalists become more risk
averse.

0 750 1500 2250 3000 3750 4500

50

100

150

mu
=1

0 10 20 30

0.0

0.2

0 850 1700 2550 3400 4250

50

100

150

mu
=2

0 10 20 30

−0.5

−0.2

0.1

0 750 1500 2250 3000 3750 4500

50

100

150

mu
=2

.5

Prices

0 10 20 30

1

ACs of return

(a) (b)

0 850 1700 2550 3400 4250

−0.05

0.00

0.05

0.10

mu
=1

−0.05 0.00 0.05

10

20

30

40

0 850 1700 2550 3400 4250

0.0

0.2

mu
=2

−0.2 −0.1 0.0 0.1 0.2

5

10

15

0 850 1700 2550 3400 4250

0.0

0.5

1.0

mu
=2

.5

Return

−0.25 0.00 0.25 0.50 0.75

2

4

Density distribution of return

(c) (d)

FIGURE 3.2. Time series on prices (a), returns (c), and autocorrelation
coefficients (ACs) (b) and distribution densities (d) of the returns for
fixed α = 0 and µ = 1, 2, 2.5.

3.2. Time Series Analysis. We now examine the time series properties for the sto-
chastic system (3.1), in which the fundamental price P ∗

t follows a random walk pro-
cess (2.22). In the following simulations8, apart from the parameters selected in (2.17),

8For all simulations in this paper, we choose a sample size of 5,000, which corresponds to about 20
years’ daily data. For comparison purpose, a same set of random number generators are selected for all
simulations. All the statistics presented in this paper are based on sample data between 500 and 5,000.
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we choose a1 = 0.8 and b = 1. With the selected parameters, for the deterministic
system, the flip bifurcation value of µ for α = 0 is given by µ0,1(0) = 2.5589. When
the fundamental price P ∗

t follows the random walk, it is found from numerical simu-
lations that prices are exploded for the parameters of α and µ which are either near the
flip bifurcation boundary or outside the stability region indicated in Fig. 3.1.

3.2.1. Dynamics of the speed of price adjustment from the market maker—µ. The dy-
namics of µ is illustrated by choosing µ = 1, 2, 2.5 and fixed α = 0 and numerical
simulations show a similar feature for different α ∈ [0, 1]. For fixed α = 0, Fig.
3.2 shows the times series plots of prices (a) and returns (c), the corresponding au-
tocorrelation coefficients (ACs) (c), and density distributions (d) of the return series
for different values of µ = 1, 2, 2.5(< µ0,1(0) = 2.5589). For those combinations, the
long-run constant fundamental price P̄ = $100 of the corresponding deterministic sys-
tem is stable. However, the price of the stochastic system displays different dynamics
for different values of µ. In Fig. 3.2(a), the prices generated from the model are plotted
against the fundamental prices. For µ = 1, price follows the fundamental price closely.
As µ increases, prices deviate from the fundamental price and become more volatile,
as indicated by the return series in (c) and the density distributions of the returns in
(d). This is further confirmed by the systematical increase in the standard deviations
and the significant skewness and kurtosis of the statistical results, as µ increases, in the
upper panel in Table 3.1.

(α, µ) Mean Median Max. Min. Std. Dev. Skew. Kurt. Jarque-Bera

(0, 1) 0.000221 0.000064 0.079361 -0.074376 0.01354 0.058219 4.960488 723.3618
(0, 2) 0.00062 0.000084 0.221923 -0.190233 0.031506 0.180158 5.546204 1240.21

(0, 2.5) 0.005071 -0.000335 0.813137 -0.451884 0.10111 0.883403 8.724681 6731.542

(0,2) 0.00062 0.000084 0.221923 -0.190233 0.031506 0.180158 5.546204 1240.21
(0.5, 2) 0.000221 0.000064 0.079334 -0.074351 0.013538 0.058189 4.958836 722.1447
(0.9, 2) 0.000139 0.000133 0.021129 -0.020756 0.004782 0.004617 4.025611 197.287
(1, 2) 0.000221 0.000231 0.002386 -0.001841 0.00063 -0.058484 2.934318 3.374964

TABLE 3.1. Statistics of return series of the market maker model for
m = 1 and various combinations of (α, µ) for which the fundamental
price of the underlying deterministic system is stable.

The ACs of the returns in Fig. 3.2(b) have clear patterns as µ increases and these
patterns can be explained by the underlying dynamics of the deterministic system. In
fact, the stochastic system (3.1) can be rewritten as follows:

Pt+1 − P̄ = λ[Pt − P̄ ] + ν̃t, (3.5)

where

ν̃t =
µ(1 − α)

a1(1 + r2)σ2
1

(P ∗

t+1 − P̄ ) + ε̃t.

It follows that ν̃t is a white noise process with mean of 0. Therefore, under the stability
condition (3.3), the price process (3.5) is a stationary process and the autocorrelation
coefficients of the price series are determined by the value of λ. The upper panel in
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(α, µ) (0, 0) (0, 1) (0, 2) (0, 2.5)
λ 1 0.22 -0.56 -0.95

(α, µ) (0, 2) (0.5, 2) (0.9, 2) (1, 2)
λ -0.56 0.22 0.84 0.99

TABLE 3.2. The values of λ for various combinations of (α, µ) of the
market maker model with m = 1.

Table 3.2 lists values of λ for various combinations of (α, µ). Note that, for fixed
α = 0, λ decreases from 1 to -1 as µ increases. For those combinations, the long-run
constant fundamental price P̄ = $100 is stable. However, the ACs of the returns of the
stochastic system are closely related to the underlying dynamics of the deterministic
system.

• For µ = 1, it follows from λ = 0.22 and (3.5) that the market maker under-
adjusts the market price. As a result of instantaneous price adjustment of the
fundamentalists towards the fundamental price, price series is positively cor-
related at the first lag and less correlated for all other lags. Consequently, the
return series is positively correlated at the first lag and less significant for all
other lags. In general, when λ > 0 is small, such positive ACs may become
less significant for lag L ≥ 2. This observation underlies the numerical simu-
lation result for the stochastic system (3.1) in the first plot in Fig. 3.2(b) which
shows a significant AC of the return series for L = 1 (AC(1)=0.214) and less
significant ACs for L ≥ 2.

• For µ = 2, λ = −0.56 implies that the market price is over-adjusted by the
market maker. As a result of the instantaneous price adjustment from the fun-
damentalist, price is negatively correlated for even lags and positively corre-
lated for odd lags, which in turn lead to positive (negative) ACs on the return
series for even (odd) lags. Because of |λ| < 1, the ACs of the absolute re-
turn decrease and ACs become less significant for high lags. This underlies
the significant AC pattern for the first few lags (AC(1)=-0.542, AC(2)=0.274,
AC(3)=-0.139, AC(4)=0.073) and less significant ACs for all other lags in the
second plot in Fig. 3.2(b).

• For µ = 2.5, λ = −0.95. This is the result of over-reaction from both the mar-
ket maker and the fundamentalists. Because λ is close to -1, a strong oscillated
autocorrelation patterns in both price and return are expected. This underlies
the strong AC pattern for the return series across all the lags in the third plot in
Fig. 3.2(b).

3.2.2. Dynamics of the speed of the expected price adjustment of the fundamentalists
towards the fundamental price—α. To illustrate the time series properties of dynamics
generated from α, we choose fixed µ = 2(< µ0,1(0)). Fig. 3.3 shows the times series
plots of prices (a) and returns (c), the corresponding autocorrelation coefficients (b)
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and density distributions (d) of the return series for α = 0, 0.5, 0.9, 1, respectively. In
terms of the price series, for α = 1, price converge to the fundamental price P̄ = $100.
For α = 0.9, price follows the fundamental price closely. As the speed of the price
adjustment of the fundamentalists towards the fundamental prices is increases, that is
as α decreases, prices deviate from the fundamental price and become more volatile,
as indicated by the return series in Fig. 3.3(c) and their density distributions in Fig.
3.3(d). This is also confirmed by the systematical increase in the standard deviations
and the significant skewness and kurtosis of the statistical results, as α decreases, in
the lower panel in Table 3.1.
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FIGURE 3.3. Time series on prices (a), returns (c), and autocorrelation
coefficients (ACs) (b) and density distributions (d) of the returns for
fixed µ = 2 and α = 0, 0.5, 0.9, 1.



20 XUE-ZHONG HE

The lower panel in Table 3.2 lists values of λ for various combinations of (α, µ).
Note that, for fixed µ = 2, λ increases from -1 to 1 as α increases. For those combina-
tions, the long-run constant fundamental price P̄ = $100 of the underlying determin-
istic system is stable. However, for fixed µ = 2, the ACs of the returns in Fig. 3.3(b)
have clear patterns as α increases and these patterns are connected to the underlying
dynamics of the corresponding deterministic system.

• For α = 1, it follows from λ = 0.99 that the price series has a close to unit root.
Consequently, the ACs of the return series become less significantly for all lags.
This underlies the numerical simulation result for the stochastic system (3.1)
in the fourth plot in Fig. 3.3(b) which shows no significant pattern for the ACs
of the return series across all the lags.

• For α = 0.9, it follows from λ = 0.84 and (3.5) that the price series and hence
the return series, are positively correlated across all the lags and ACs for the
return are decreases as lag increases. This underlies the strong pattern for the
ACs of the return series across all the lags for the stochastic system (3.1) in the
third plot in Fig. 3.3(b).

• For α = 0.5, λ = 0.22 implies significant ACs on the return series for the first
few lags in the second plot in Fig. 3.3(b).

• For α = 0, λ = −0.56 implies an oscillated patterns on the ACs of the return
series in the first plot in Fig. 3.3(b).

3.2.3. Overall Features. To sum up, for the market maker model with fundamentalists
only, the following features on the price dynamics and time series properties have been
obtained:

• In terms of significant AC patterns of the return series, the following four pat-
terns can be generated:

[AC-A ] AC(1) > 0 is significant and AC(i), i ≥ 2, are not significant, as indi-
cated by the first AC pattern in Fig.3.2(b);

[AC-B ] AC(i) are significantly negative (positive) for odd (even) small lags i, as
indicated by the second AC pattern in Fig.3.2(b);

[AC-C ] AC(i) are significantly negative (positive), but decreasing for all lags, as
indicated by the third AC pattern in Fig.3.2(b);

[AC-D ] AC(i) > 0 are significantly positive and decay for all lags, as indicated
by the third AC pattern in Fig.3.3(b).

• When the fundamentalists adjust their expected price towards the fundamental
price instantaneously, under-reaction from the market maker leads the market
price moving closely towards to the fundamental price and hence the return
has the pattern [AC-A]. As the speed of price adjust from the market maker in-
creases, market price starts to be over adjusted towards the fundamental price,
leading the return pattern [AC-B]. As the speed increases further, market price
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volatility increases, reinforcing the AC patterns for returns to have pattern [AC-
C].

• For fixed speed of price adjustment from the market maker, if the fundamen-
talists do not adjust their expected price towards the fundamental price (i.e.
α = 1), the return series have no significant ACs for all lags. As the speed of
the expected adjustment of the fundamentalists towards the fundamental price
is low (say α = 0.9), the market price moves closely to the fundamental price,
leading the returns have pattern [AC-D]. As the speed increases, the strong pos-
itive pattern [AC-D] is degenerated to pattern [AC-C]. As the speed increases
further (when α is close to 0), over-reaction from the fundamentalists make the
market price more volatile, leading return pattern [AC-B].

• In terms of AC patterns for the returns, [AC-B] can only be generated when
both the market maker and the fundamentalists are over-reaction, and [AC-D]
can only be generated when the fundamentalists are under-reaction.

• Normality of the return series, in terms of the first four moments of the return
distribution, increases as both the market maker and the fundamentalists adjust
their price and expected price, respectively, slowly (that is as (α, µ) moves
away from the bifurcation boundaries).

• Excess volatility and strong ACs patterns occur as (α, µ) move towards the
bifurcation boundaries and the patterns for the ACs are closed related to the
underlying dynamics of the deterministic system. Near the flip bifurcation,
significant oscillating pattern [AC-C] occurs. As parameters (α, µ) move away
from the bifurcation boundary, patterns [AC-B], [AC-A], and [AC-D] appear
in turn. The significant level of those AC patterns increases as the parameters
move close to the boundary.

4. A MARKET MAKER MODEL OF TREND FOLLOWERS

We now consider another special case of the complete model when m = −1, that
is all the traders are trend followers. In this case, system (2.21) is reduced to the
following 3-dimensional difference system



















Pt+1 = Pt + µ
γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2(1 + r2 + bvt)σ2
1

+ ε̃t

ut = δut−1 + (1 − δ)Pt,

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2.

(4.1)

In particular, when the memory decay rate δ = 0, E2,t(Pt+1) = Pt and system (4.1) is
reduced to the following 1-dimensional system

Pt+1 = Pt − µ
(R − 1)

a2(1 + r2)σ2
1

(Pt − P̄ ) + ε̃t. (4.2)
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4.1. Stability and Bifurcation Analysis. First of all, the stability of the fundamental
steady state of the underlying deterministic system and its bifurcation is summarised
in Proposition 4.1.

Proposition 4.1. Under assumption (2.23), if all the traders are trend followers (that
is m = −1), then

(1) for δ = 0, the fundamental steady state is globally asymptotically stable if and
only if

0 < µ <
Q

R − 1
,

where Q = 2a2(1 + r2)σ2
1 . In addition, a flip bifurcation occurs along the

boundary µ = Q/(R − 1);
(2) for δ ∈ (0, 1), the fundamental steady state is stable for

0 < µ <

{

µ̄1 0 ≤ γ ≤ γ̄0

µ̄2, γ̄0 ≤ γ,

where

µ̄1 =
Q

(R − 1) − γ2δ/(1 + δ)
,

µ̄2 =
(1 − δ)Q

2δ[γ − (R − 1)]
,

γ̄0 = (R − 1)
(1 + δ)2

4δ
.

In addition, a flip bifurcation occurs along the boundary µ = µ̄1 for 0 < γ ≤
γ̄0 and a Hopf bifurcation occurs along the boundary µ = µ̄2 for γ ≥ γ̄0.

Proof. See Appendix A.3. �

The local stability regions and bifurcation boundaries are indicated in Fig. 4.1 (a)
for δ = 0 and (b) for δ ∈ (0, 1), where γ̄2 = (1+ δ)(R− 1)/(2δ) is obtained by letting
µ̄2 = Q/(R − 1). Given that R = 1 + r/K is very close to 1, the value of µ along
the flip boundary is very high and γ̄o is very close to 0. This implies that, for δ = 0,
the fundamental price is stable for a wide range of µ, while for δ ∈ (0, 1), the two
bifurcation boundaries degenerate to the Hopf bifurcation boundary. More precisely,
based on Proposition 4.1, we obtain the following implications.

• When the memory decay rate δ = 0, the trend followers use the naive ex-
pectation E2,t(Pt+1) = Pt. In this case, the fundamental price becomes sta-
ble (exploded) when the market maker under-react (over-react) to the demand
from the trend followers in the sense that µ < Q/(R − 1) (µ ≥ Q/(R − 1)).
However, the critical value Q/(R − 1) for the market maker can be very high,
implying that the fundamental price is stable in most of case.
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FIGURE 4.1. Stability region and bifurcation boundaries for the trend
followers and market maker model with δ = 0 (a) and δ ∈ (0, 1) (b).

• When δ ∈ (0, 1) is fixed and the trend followers extrapolate weakly (with
γ < γ̄2), stability region for the market maker (in terms of µ) is enlarged com-
paring with the case of δ = 0. However, as the trend followers extrapolate
strongly (for γ ≥ γ̄2), the stability region becomes smaller, implying a desta-
bilising role of the trend followers. In addition, the fundamental price becomes
unstable mainly through a Hopf bifurcation, implying that, near the bifurcation
boundary, price either converges periodically to the fundamental price or oscil-
lates regularly or irregularly (determined by the nature of the Hopf bifurcation).

• For fixed γ > γ̄0, µ̄2 decreases as δ increases. This implies that the stability
region for the market maker becomes smaller as the trend followers give more
weight to the most recent prices. This observation also leads to the destabilis-
ing role of the geometric decay rate of the trend followers.

4.2. Time Series Analysis. In the following simulations, apart from the parameters
in (2.17), we select a basic set of parameters, unless specified otherwise,

δ = 0.5, µ = 1.2, γ = 1, σε̃ = 0.05.

4.2.1. Price Dynamics Near the Hopf Boundary. For γ = 1 fixed, the Hopf bifurca-
tion values of µ̄2 for different δ are listed in Table 4.1.

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
µ̄2 11.551 5.133 2.994 1.925 1.283 0.855 0.550 0.320 0.142

TABLE 4.1. Hopf bifurcation values of µ̄2 for different δ.

Fig. 4.2 illustrates the price dynamics for the parameter µ near the Hopf bound-
ary for δ = 0.1, 0.5 and 0.9 and Fig. 4.3 plots the corresponding return series and
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their ACs, where parameter q is an indicator—q = 0, 1 corresponds to σε = 0, 0.05,
respectively.
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FIGURE 4.2. Time series of prices for the parameters of µ on both
sides of the Hopf bifurcation boundary with δ = 0.1, 0.5, 0.9. q = 0
corresponds to the case without demand shocks (a) and (b), and q = 1
corresponds to the case with demand shocks (c) and (d). Here γ = 1 is
fixed.

Based on the simulations, we obtain the following observations.

• Without the demand shock, prices converge to the fundamental price P̄ = $100
for the parameters inside the Hopf boundary and to periodic or quasi-periodic
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cycles for the parameters outside the boundary. However, along the Hopf bi-
furcation boundary, as δ increases, the speed of the convergence (when P̄ is
stable) and the periodicity of the oscillations (when P̄ is unstable) decrease.

• With the demand shock, along the Hopf bifurcation boundary, the prices are
dominated by the underlying price patterns without the shock. In addition, as
δ increases, the volatility of the price is reduced and the normality (in terms of
the first four moments) of the return distribution is improved on the both sides
of the boundary, as indicated by the statistic results in Table 4.2.

(δ, µ) Mean Median Max. Min. Std. Dev. Skew. Kurt. Jarque-Bera

(0.1, 10) 0.000218 0.000221 0.004455 -0.003897 0.001164 -0.096387 2.984778 7.012829
(0.5, 1.2) 0.000251 0.000284 0.004296 -0.003749 0.001128 -0.072582 2.86204 7.521431
(0.9, 0.14) 0.000266 0.000289 0.003442 -0.00317 0.000877 -0.048872 2.990261 1.80956
(0.1, 12) 0.000212 0.000113 0.010933 -0.009671 0.004614 0.08355 1.870704 244.4105
(0.5, 1.3) 0.000266 0.000305 0.00524 -0.004602 0.001453 -0.062007 2.610581 31.32442
(0.9, 0.15) 0.000279 0.0003 0.003682 -0.00327 0.000903 -0.050813 3.02206 2.02816

TABLE 4.2. Statistics of return series of the market maker model for
m = −1 and various combinations of (δ, µ).

• The ACs of the return series are significantly positive across all the lags for the
parameters near the Hopf bifurcation boundary, and the significance is reduced
as δ increases. This is partly determined by the Hopf bifurcation of the under-
lying deterministic system9, partly influenced by an increase of the geometric
decay rate10.

4.2.2. Dynamics of the Extrapolation Rate of the Trend Followers—γ. For fixed δ =
0.5 and µ = 2, the fundamental price of the deterministic system is stable for γ = 1
and unstable for γ = 1.2. As the fundamental price becomes unstable, it bifurcates a
periodic cycles, implied by the Hopf bifurcation near the boundary. Fig. 4.4 illustrates
the time series of price with and without demand shock. For γ = 1.2, under the
demand shock, the price pattern is influenced by the cyclical movement of the price
without shock, although the periodicity of the price is broken down. This implies
that a strong extrapolation from the trend followers can push the price away from the
fundamental price, leading to cyclical price movement.

4.2.3. Overall Features. Further extensive simulations lead to the following observa-
tions on the overall features of the market maker model with trend followers only.

9When the underlying deterministic system displays a Hopf bifurcation, the linearised system at the
fundamental steady state has a complex eigenvalues, implying a damped oscillation AC pattern. The
frequency of these oscillation is determined by the geometric decay rate.
10As δ increases, the weights to the past prices increase and the frequency of the oscillation of ACs
increases as well.
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FIGURE 4.3. Time series (a) and (b) and ACs (c) and (d) of the re-
turn series with demand shocks for δ and µ on both sides of the Hopf
bifurcation boundary.

• Near the Hopf bifurcation boundary, prices tend to have cyclical movement.
The frequency of such cyclical price movement is reduced as either the mar-
ket maker adjust market price to the demand quickly or the trend followers
extrapolate the trend strongly.

• Different from the market maker model with the fundamentalists only (dis-
cussed in the previous section), the current model can generate only three sig-
nificant AC patterns when the underlying deterministic system is stable: [AC-
D] (defined in the previous section) and [AC-E], [AC-F] defined below:

[AC-E ] AC(i) are significant (at relative low level) across all lags, as indicated
in the third AC pattern in Fig.4.3(c);
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[AC-F ] AC(i) oscillate and decay with significantly positive for all small lags
and less significantly negative for high lags, as indicated in the first AC
pattern in Fig.4.3(c).

• As the result of trend chasing by the trend followers and reinforcing price ad-
justment by the market maker, price series and hence the return series tend to
be positively correlated across all the lags.

• The significance and pattern of the ACs of the return series are mainly deter-
mined by the geometric decay rate. For small decay rate (such as δ = 0.1),
returns have pattern [AC-F], ACs oscillate and die out quickly. However, for
high decay rate (such as δ = 0.9), returns have pattern [AC-E], ACs may take
long time to die out, a long memory feature generated from trend following
strategy with high decay rate.

• Along the Hopf bifurcation boundary, returns have pattern [AC-F], [AC-D] and
[AC-E], in turn, as the decay rate δ increases and the level of the significance
can be reinforced by either quick price adjustment from the market maker or
strong extrapolation from the trend followers. As parameters (γ, µ) move away
(towards the inside of the stability region), those three AC patterns become
less, and even not, significantly.
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FIGURE 4.4. Price time series for γ = 1 and 1.2 without demand
shock (a) and with shock (b).

5. DYNAMICS OF THE COMPLETE MARKET FRACTION MODEL

We now consider the complete market fraction model with both fundamentalists and
trend followers by assuming m ∈ (−1, 1). Let a = a2/a1 be the ratio of the absolute
risk aversion coefficients. As in the previous sections, the stability and bifurcation
of the fundamental steady state of the deterministic system are discussed first. To
characterise the market dominance, wealth dynamics and asset pricing behaviour, we
then introduce two relative wealth measures. Various aspects of time series properties
and market behaviour are followed by using numerical analysis.
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5.1. Stability and Bifurcation Analysis. It turns out that the stability and bifurcation
of the fundamental steady state are different from the previous two models and they
are determined jointly by the geometric decay rate and extrapolation rate of the trend
followers, the speed of the price adjustment of the fundamentalists towards the fun-
damental steady state, and the speed of adjustment of the market maker towards the
market aggregate demand.

Proposition 5.1. Under assumption (2.23),
(1) for δ = 0, the fundamental steady state is stable for 0 < µ < µ∗, where

µ∗ =
2Q

(R − 1)(1 − m) + a(R − α)(1 + m)
.

In addition, a flip bifurcation occurs along the boundary µ = µ∗ with α ∈
[0, 1];

(2) for δ ∈ (0, 1), the fundamental steady state is stable for

0 < µ <

{

µ1 0 ≤ γ ≤ γ0

µ2, γ0 ≤ γ,

where

µ1 =
1 + δ

δ

Q

1 − m

1

γ2 − γ
,

µ2 =
1 − δ

δ

Q

1 − m

1

γ − γ1

,

γ1 = (R − 1) + a(R − α)
1 + m

1 − m
,

γ0 =
(1 + δ)2

4δ
γ1, γ2 =

1 + δ

2δ
γ1.

In addition, a flip bifurcation occurs along the boundary µ = µ1 for 0 < γ ≤
γ0 and a Hopf bifurcation occurs along the boundary µ = µ2 for γ ≥ γ0.

Proof. See Appendix A.3. �

For δ = 0, E2,t(Pt+1) = Pt corresponds a the naive expectation. In this case, the
stability region of the fundamental steady state in (α, µ) plane have the same feature
as in Fig. 3.1. The fundamental price becomes unstable through a flip bifurcation only.
Therefore the model with the fundamentalists only discussed in section 3 can be treated
as a degenerated case of the complete model with δ = 0. However, for δ ∈ (0, 1), the
fundamental price becomes unstable through either flip or Hopf bifurcation.

The stability region and bifurcation boundaries for δ ∈ (0, 1) are plotted in Fig.5.1,
where

µ̄0 =
2

1 − δ
µ̄, µ̄ =

2Q

(R − 1)(1 − m) + a(R − α)(1 + m)
.
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FIGURE 5.1. Stability region and bifurcation boundaries for m ∈
(−1, 1) and δ ∈ (0, 1).

The implications of the stability conditions in Proposition 5.1 can be stated from dif-
ferent aspects of the parameters involved. For convenient, we denote

ΩF ≡ {(γ, µ) : 0 ≤ γ ≤ γ0, 0 < µ < µ̄1}, ΩT ≡ {(γ, µ) : γ ≥ γ0, 0 < µ < µ̄2}

and call the region ΩF as the stability region dominated by the fundamentalists and ΩT

as the stability region dominated by the trend followers.

5.1.1. Implication of the Market Fraction—m. It can be verified that, on the one hand,
γ1 and hence γ0 and γ2 increase as m increases. On the other hand, µ̄ and hence
µ̄0 increase for a = a2/a1 < a∗ and decrease for a = a2/a1 > a∗, where a∗ =
(R − 1)/(R − α). Obviously a∗ ∈ (1 − 1/R, 1]. These facts lead to the following
observations.

• When the trend followers are less risk averse than the fundamentalists in the
sense of a2 < a∗a1, the local stability region is enlarged (shift to the upper-
right) as the fraction of the fundamental traders increases. The stability region
is mainly bounded by the flip bifurcation boundary. Combinations of over-
adjusted price from both fundamentalists and the market maker can lead the
price to explode. However, the local stability region is also enlarged (shift to
the upper-left) as the fraction of the trend followers increases and the stability
region is mainly bounded by the Hopf bifurcation boundary. Combinations of
over-adjusted price from the market maker and strong extrapolation from the
trend followers can lead the price to oscillate regularly or irregularly. In both
cases, the market maker can maintain the stability of the fundamental price
over a large region of the price adjustment (in terms of µ).

• When the trend followers are more risk averse than the fundamentalists in the
sense of a2 > a∗a1, the local stability region becomes smaller as the fraction
of the fundamental traders increases (shift to the lower-right). The stability
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region is mainly bounded by the flip bifurcation boundary. However, the local
stability region becomes smaller too (shift to the left) as the fraction of the
trend followers increases and the stability region is mainly bounded by the
Hopf bifurcation boundary.

Overall, the stability region of the fundamental price becomes large (small), in terms
of (γ, µ), when the fundamentalists become more (less) risk averse. Despite different
risk attitude of two types of traders, the stability and bifurcation of the complete model
tend to have the feature of the model with the fundamentalists (trend followers) only
discussed in section 3 (section 4) as the market fraction of the fundamentalists (trend
followers) increases. The intuition of this observation is obvious.

5.1.2. Implication of Speed of the Price Adjustment of the Fundamental Traders To-
wards the Fundamental Price—α. Note that parameter α measures the speed of the
price adjustment of the fundamentalists towards the fundamental price, α = 0 corre-
sponds to an instantaneous adjustment and α = 1 corresponds to no adjustment. As
α decreases (increases), µ̄ and hence µ̄0 decrease (increase), and γ1 and hence γ0, γ2

increase (decrease). Consequently, the flip (Hopf) bifurcation boundary of the local
stability region in Fig. 5.1 is enlarged, leading to the following observations.

• As the fundamental traders decrease the speed of their expected price ad-
justment toward the long-run constant fundamental price P̄ (that is, as α in-
creases), the local stability region in Fig. 5.1 shifts to upper-left and the Hopf
bifurcation boundary is enlarged. In this case, the market maker can maintain
the stability of the fundamental price over a large (small) region of the price
adjustment when the trend followers extrapolate weakly, i.e. γ ≤ γ0 (strongly,
i.e. γ ≥ γ0).

• As the fundamental traders increase the speed of their expected price toward
the long-run constant fundamental price P̄ (that is, as α decreases), the local
stability region in Fig. 5.1 shifts to low-right and the flip bifurcation boundary
is enlarged.

• When trend followers extrapolate weakly (γ ≤ γo), over-reaction (in terms
of over-adjustment of the market price) from the market maker leads price to
explode. However, when trend followers extrapolate strongly (γ ≥ γ0), such
over-reaction from the market maker can make the price to fluctuate (either
regularly or irregularly, depending on the nature of the Hopf bifurcation).

Overall, the stability and bifurcation of the complete model tend to have the feature
of the model with the fundamentalists (trend followers) only discussed in section 3
(section 4) as the fundamentalists increase (decrease) the speed of the adjustment of
their expected price towards the fundamental price, just like the effect of the market
fraction m.

5.1.3. Implication of the Geometric Decay Rate From the Trend Followers—δ. Note
that both γ1 and µ̄ are independent of δ. However, as δ decreases, both γ0 and γ2

increase and µ̄0 increases as well. In particular, as a limiting case, γ0, γ2 → +∞
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as δ → 0, and the stability and bifurcation can then be characterised by the model
with the fundamentalists only, discussed in section 3 and indicated by Fig.3.1. On the
other hand, as δ increases, both γ0 and γ2 decrease, but µ̄0 increases. In particular,
as δ → 1−, both γ0 and γ2 tend to γ1 whilst µ̄0 tends to infinity and the stability
and bifurcation can then be characterised by the model with the trend followers only,
discussed in section 4 and indicated by Fig.4.1. These analyses lead to the following
observations.

• The less geometric decay rate the trend followers have for the past prices, the
less influence of their extrapolation on the stability of the fundamental price.
The price either converges to the fundamental price or explodes.

• As the trend followers increase their geometric decay rate on the past prices,
their influence on the price dynamics becomes significantly. When they ex-
trapolate strongly, the price either converge to the fundamental price (when µ
is small) or fluctuate regularly or irregularly (when µ is large). In particular,
for γ near γ1, the market maker can maintain the stability of the fundamental
price for a wilder range of price adjustment (not that µ̄0 → +∞ as δ → 1).

Overall, in terms of the local stability and bifurcation of the fundamental steady state, a
high (low) geometric decay rate has a similar effect as either high (low) market fraction
of the trend followers or low (high) speed of the price adjustment of the fundamental-
ists towards the fundamental price.

5.1.4. Summary. Based on the above analysis, a broad picture on the features of the
stability and bifurcation of the deterministic system can be summarised as following.

• The model with fundamentalists (trend followers) only discussed in the previ-
ous section 3 (4) can be treated as a degenerate case of the complete model with
either (i) a low (high) geometric decay rate—δ close 0 (1)—of the trend fol-
lowers or (ii) a high (low) speed of the price adjustment—α close to 0 (1)—of
the fundamentalists.

• The stability region and bifurcation boundary are mainly determined by the
degenerated model with fundamentalists (trend followers) only in section 3
(section 4) as either (i), or (ii), or (iii) a high market fraction of the fundamen-
talists (trend followers).

• Give that the stability region ΩF (ΩT ) has a flip (Hopf) bifurcation boundary,
instability of the fundamental steady state through the bifurcation boundary of
ΩF (ΩT ) leads the price to explode (oscillate).

Given the fact that the complete model is jointly characterised by the model with ei-
ther fundamentalists and trend followers only, returns are expected to have all those
features described in the previous sections, including the six significant AC patterns.
Depending on the dominance of either type of traders, some patterns are expected to
dominant others, as shown in the following discussion.

5.2. Wealth Dynamics and Relative Wealth Measures. Traders’ wealth in general
follow some growing processes. To be able to measure the wealth dynamics among
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different trading strategies, to examine the market dominance and behaviour, we intro-
duce the following two relative wealth measures. The first measures the absolute level
of the wealth proportion of representative agent from each type, called the absolute
wealth proportion for short, defined by

w1,t =
W1,t

W1,t + W2,t

, w2,t =
W2,t

W2,t + W2,t

. (5.1)

The second measures the overall market level of the wealth proportion, called the mar-
ket wealth proportion for short, which is defined as market fraction weighted average
of the absolute level of the wealth proportion,















w̄1,t =
(1 + m)W1,t

(1 + m)W1,t + (1 − m)W2,t

,

w̄2,t =
(1 − m)W2,t

(1 + m)W1,t + (1 − m)W2,t

.

(5.2)

Let

V1,t = 1/W1,t, V2,t = 1/W2,t.

Then it follows from (2.1) that














V1,t+1 =
V1,t

R + Rt+1z1,tV1,t

,

V2,t+1 =
V2,t

R + Rt+1z1,tV1,t

.

Note that

V1,t

V1,t + V2,t

=
1/W1,t

1/W1,t + 1/W2,t

=
W2,t

W1,t + W2,t

,

V2,t

V1,t + V2,t

=
1/W2,t

1/W1,t + 1/W2,t

=
W1,t

W1,t + W2,t

and therefore

w1,t =
V2,t

V1,t + V2,t

, w2,t =
V1,t

V1,t + V2,t

(5.3)

and














w̄1,t =
(1 + m)V2,t

(1 + m)V2,t + (1 − m)V1,t

,

w̄2,t =
(1 − m)V1,t

(1 + m)V2,t + (1 − m)V1,t

.

(5.4)

By using auxiliary functions (V1,t, V2,t) and numerical simulations, we are able to study
the wealth dynamics of the fundamentalists and trend followers.
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5.3. Time Series Analysis. In the following simulations, apart from the parameters in
(2.17), we also select a1 = a2 = 0.8. To characterise various aspects of the model, we
first examine an extreme case α = 0 where the fundamentalists adjust their expected
price towards the fundamental price instantaneously. The case α ∈ (0, 1) is then
discussed to see its effect one the dynamics. The model is analysed from different
aspect through different parameters.

5.3.1. Dynamics of the Market Fraction m. We first examine the dynamics generated
from the market fraction m. In this subsection, we select

α = 0, δ = 0.85, γ = 2.1, µ = 0.43, w1,0 = 0.5.

For the selected parameters, Table 5.1 lists the bifurcation values of µ and types of
bifurcation for a set of market fraction parameters. For fixed µ = 0.43, the fundamental
steady state is stable for m ≥ m̄ and unstable for m < m̄ with m̄ ∈ (0, 0.05). For
given µ > 0, one can see that the market fraction m plays a stabilising role as the
market fraction of the fundamentalist increases.

Market Fraction (m) -0.95 -0.5 -0.2 0 0.3 0.35
Hopf Bif. Value (µ̄2) 0.1119 0.1709 0.2633 0.4118 2.6703 31.0201
Market Fraction (m) 0.4 0.5 0.6 0.7 0.8 0.95
Flip Bif. Value (µ̄1) 21.1607 9.5844 6.1952 4.5768 3.6288 2.7686

TABLE 5.1. Bifurcation values of µ for various market fraction m.

In Figures 5.2-5.3, we choose m = −0.95,−0.5, 0, 0.5, respectively. In terms of
the market fraction, they correspond to market fraction of the fundamentalists mF =
2.5%, 25%, 50%, 75%, respectively. For the corresponding deterministic system, the
fundamental steady state is not stable for m = −0.95, −0.5, 0 and stable for m = 0.5.

The Market Prices. The stochastic fundament price (generated from the random walk
process (2.22)) and two market price series of the model, corresponding to either the
constant or the stochastic fundamental price, are plotted and compared in Fig.5.2(a)-
(b).

• When the underlying fundamental price is constant P̄ = $100, the market
price of the complete model converges to the fundamental price P̄ = $100 for
mF = 75% and displays regular oscillation around the constant fundamental
price P̄ = $100 for mF = 2.5%, 25%, 50%. In addition, as the market fraction
of the fundamentalists increases, the frequency of the oscillation increases but
the dispersion of the oscillation from the fundamental price P̄ decreases.

• When the underlying fundamental price follows the random walk process, for
mF = 2.5%, the price is dominated by the large irregular swings generated
by the trend followers. However, convergence of the price to the fundamental
price is improved as the market fraction of the fundamentalists increases. Such
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FIGURE 5.2. Effect of m: (a)-(b) Comparison of stochastic funda-
mental price and the prices generated from the complete model with
underlying fundamental price is either constant or follows the stochas-
tic fundamental price for different m = −0.95,−0.5, 0, 0.5; (c)-(d):
The corresponding return series with underlying stochastic fundamen-
tal price; (e)-(f): ACs of the return series.

convergence may be slow down as the speed of the price adjustment of the
fundamentalist towards the fundamental price, as discussed late.

Returns and ACs. The corresponding return series and ACs of the returns when the
fundamental price follows the random walk process are plotted in Fig.5.2(c)-(d) and
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(e)-(f), respectively. The AC patterns of the returns are clearly related and influenced
by the six AC patterns of the model with either fundamentalists or trend followers only
discussed in sections 3-4.

• When there is a very low market fraction of the fundamentalists, such as mF =
2.5% (for m = −0.95), the market is dominated by the trend followers. Re-
turns have pattern [AC-D]: ACs are significantly positively correlated across
all lags when the geometric decay rate is high (such as δ = 0.85 used here).
The significant level of the ACs can be increased as the result of strong ex-
trapolations from the trend followers. Consequently, the market price oscillate
regularly away from the fundamental price.

• As the market fraction of the fundamentalists increases (from mF = 2.5% to
either mF = 25% or mF = 50%), the market price trend is partly corrected
towards the fundamental price by the fundamentalists’ instantaneous adjust-
ment. Consequently, returns have AC pattern [AC-F]: ACs oscillate, indicated
by the ACs for either mF = 25% or 50% in Fig. 5.2(e)-(f). The level of the
significance is reduced as mF increases.

• As the market fraction of the fundamentalists increases further so that there
is enough market fraction of the fundamentalists to dominate the market, the
market price follow the fundamental price closely and returns have AC pattern
[AC-D], as the case when mF = 75%.

The above analysis illustrates the important role of the market fraction and explanation
power of the model in asset price dynamics and market behaviour. When the market is
dominated by the trend followers, asset prices are driven far away from the fundamen-
tal price and returns are characterized by AC pattern [AC-D] with very significant ACs;
when the market is dominated by the fundamentalists, asset prices follows closely the
fundamental price and returns are characterized by AC pattern [AC-D] with less sig-
nificant ACs; when two groups of traders are balanced in some way, asset prices are
driven away, but not significantly, from the fundamental price and returns have AC
pattern [AC-F].

Wealth Proportions. The wealth dynamics of the fundamentalists among the two types
of traders is illustrated in Fig. 5.3, where the wealth proportions of the fundamentalists
are plotted.

• When the underlying fundamental price is the constant P̄ , the absolute wealth
proportion of the fundamentalists stay below 50%, as shown in Fig. 5.3(a).
For mF = 2.5%, the wealth proportion is dropped from 50% to about 40%
quickly when the market price is driven down below the fundamental price.
The most part of the 10% loss may be quickly recovered when the market
price moves back upwards to the fundamental price. Hence the wealth propor-
tion of the fundamentalists oscillates, but over the time, follows a downward
trend. It is very interesting to notice that their wealth proportion always stays
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FIGURE 5.3. Wealth dynamics of the market fraction—the absolute
level of wealth proportions of the fundamentalists with (a) constant, (b)
stochastic fundamental price; the market fraction weighted wealth pro-
portion of the fundamentalists with underlying stochastic fundamental
price. Here the initial absolute wealth proportion w1,0 = 0.5.

above at about 35% over the 20 years period. This situation may not be im-
proved by increasing their fraction, as indicated by the plot for mF = 25%
(for m = −0.5) in Fig. 5.3(a). In this case, the wealth proportion of the fun-
damentalists monotonically decreases from 50% to about 30% over the time
period. This is clearly indicated by the small regular oscillating trend on the
price. Since the dispersion of the price from the constant fundamental price
is small, the demand for the fundamentalists is also small and hence the profit
opportunities for the fundamentalists when the prices revert to the fundamen-
tal price diminishes. However, when the market fraction of the fundamentalists
increases further (to mF = 50% or 75%), their wealth proportions stay at about
50%, their initial level.

• When the underlying fundamental price follows the random walk process, the
absolute wealth proportions of the fundamentalists improves from 50% up to
about 65% over the whole time period, although their wealth proportion may
be dropped initially because of their lower market fraction (mF = 2.5%). This
is clearly indicated by the price patterns in Fig. 5.2(a)-(b). Because of the ran-
domness of the fundamental price, the market price trend generated from trend
followers becomes less informed and lagged for the trend followers, which
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puts the fundamentalists in a more favourable position to be in the right price
at the right time.

• The market wealth proportions of the fundamentalists are plotted in Fig.5.3(c),
which clearly indicates that, on the one hand, the market wealth proportions
of the fundamentalists can be very small when their market fraction is small
(for mF = 2.5%), although their absolute wealth proportion is high. On the
other hand, their market wealth proportions can be vary high when their market
fraction is high.

The two wealth proportion measures clearly indicate the absolute and market wealth
proportions of each group of traders. They confirm the market dominance and be-
haviour discussed in the previous subsection.

5.3.2. Dynamics of the Price Adjustment From the Market Maker µ. To see the ef-
fect of the price adjustment of the market maker on the price dynamics and market
behaviour, we select in this subsection

α = 0, m = 0, δ = 0.85, γ = 0.3, w1,0 = 50%

and let the fundamental price follow the same random walk process. With this selec-
tion, mF = 50%, the fundamental steady state of the deterministic system is stable for
µ < µ̄∗

1 = 7.082417 and a flip bifurcation occurs for µ = µ̄∗

1. To illustrate the effect
of µ, in the following simulations, µ = 1, 3 and 5 are selected. Obviously, the steady
state of the deterministic system is stable for µ = 1, 3, 5(< µ̄∗). Fig. 5.4 plots time
series of prices, returns, wealth proportions, and the ACs of the returns for µ = 1, 3, 5
in (a), (b) and (c), respectively.

Prices, Returns, and Volatilities. Because of the instantaneous price adjustment of the
fundamentalists towards the fundamental price (α = 0), 50% of the market fraction of
each type of traders, and the stability of the fundamental steady state of the underlying
deterministic system, the market price follows the fundamental price closely. However,
as µ increases, that is as the speed of the price adjustment from the market maker
increases, the market prices become more volatile. In other words, over-reaction from
the market maker can generate excess volatility on prices, which is clearly indicated
by both the price and return series in Fig. 5.4 and the statistical result in Table 5.2 on
the return series. As µ increases, the volatility, skewness and kurtosis increase too.

µ Mean Median Max. Min. Std. Dev. Skew. Kurt. Jarque-Bera

1 0.000165 0.000166 0.040037 -0.042549 0.008408 0.01345 4.465331 402.8243
3 0.000327 0.000014 0.124849 -0.112888 0.019978 0.081569 5.068942 807.7675
5 0.003328 -0.000677 0.610357 -0.382382 0.080999 0.723064 8.096536 5263.537

TABLE 5.2. Statistics of return series for µ = 1, 3, 5 with α = 0, δ =
0.85,m = 0.
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FIGURE 5.4. Effect of µ: Prices, returns, wealth proportions, and
ACs of the returns for (a) µ = 1, (b) µ = 3, and (c) µ = 5. Here
m = 0, δ = 0.85, γ = 0.3.

ACs of the Returns. The selected parameters are located in ΩF , the stability region
dominated by the fundamentalists. When the market maker under-reacts to the de-
mand, which mainly comes from the fundamentalists, it may need few trading periods
for the market price move towards the fundamental price. Hence the market prices are
positively correlated and such price correlation becomes less significant as the price
is getting closer and closer to the fundamental price (and hence the demand from the
fundamentalists becomes less and less). Consequently, ACs of the return are posi-
tively significant over the first few lags, but diminish very quickly as time goes. This
underlies the AC pattern [AC-F], illustrated in Fig. 5.4(a) for µ = 1. As µ increases,
under-reaction from the market maker is correct partially and the positive AC pattern
of the return becomes less significant, such as pattern [AC-B] in Fig. 5.4 (b) for µ = 3,
and even disappears. However, as µ increases further, the market maker over-reacts
to the demand (mainly from the fundamentalists) and price is over-shotted. Because
of the instantaneous price adjustment from the fundamentalists towards the fundamen-
tal price, the market price is negatively correlated and the return has pattern [AC-C]
illustrated by the AC patterns in Fig. 5.4 (c) for µ = 5.
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Wealth Proportions. Since m = 0, both the absolute and market wealth proportions
are the same. Fig. 5.4 illustrates the wealth proportions of the fundamentalists. Be-
cause of the dominance of the fundamentalists, as illustrated in Fig. 5.4, their wealth
proportions increase from the initial level of 50% up to 76.2% for µ = 1, 85.2% for
µ = 3, and 99.2% for µ = 5 over the whole time period and even become more
significantly as the market maker over-react more and more. Therefore, in terms of
the relative wealth in the market, the trend following strategy becomes less and less
popular, although their market fraction is still at 50%.
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FIGURE 5.5. Effect of µ: Prices, returns, wealth proportions, and
ACs of the returns for (a) µ = 0.3, (b) µ = 0.6, and (c) µ = 1. Here
m = 0, δ = 0.85, γ = 2.1.

Remark. To see the effect of µ on the price dynamics and market behaviour over the
stability region ΩT where the market is dominated by the trend followers, we select
γ = 2.1, instead of γ = 0.3 in the above analysis. In this case, the fundamental
steady state of the deterministic system is stable for µ < µ̄∗

2 = 0.411872 (see also
Table 5.1) and µ = µ̄∗

2 leads to a Hopf bifurcation. Fig. 5.5 illustrates the price
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and wealth dynamics for µ = 0.3, 0.6 and 1. In general, it shows a similar feature
to the model of the trend followers only discussed in section 4. Prices become more
volatile as µ increases while the returns have pattern [AC-F]. The prices and hence
returns are positive correlated, but because of the existence of the fundamentalists, the
level of the positive ACs of the returns is reduced significantly as lag increases. In
addition, as the result of the over-reaction from the market maker, the demand from
fundamentalists increases, and hence some negative ACs for the market prices and
returns become significant, as indicated in Fig. 5.5 (b) for µ = 0.6 and (c) for µ =
1. Because of the randomness of the fundamental price, the trend generated from
the trend followers becomes less informed and hence the wealth proportion of the
fundamentalists is increased from their initial level of 50% to about 68-70%. It is
however interesting to notice that, unlike the previous case, the wealth proportion of
the fundamentalists does not improved significantly as µ increases.

5.3.3. Dynamics of the Geometric Decay Rate of the Trend Followers δ. To see the
effect of the geometric decay rate of the trend followers on the price dynamics, we
choose in this subsection

α = 0, m = 0, γ = 2, µ = 1, w1,0 = 0.5

and let q = 0 be the case when the underlying fundamental price is the constant P̄ =
$100 and q = 1 be the case when the underlying fundamental price follows the same
random walk process. Based on the selected parameters, for the deterministic system,
there exists δ∗ ∈ (0.7, 0.8) such that the fundamental steady state is stable for δ < δ∗

and δ = δ∗ leads to a Hopf bifurcation. To see the dynamics of the complete model
near the bifurcation value, we select δ = 0.7 and 0.8 in the following simulations and
the corresponding results are shown in Figs. 5.6-5.7.

Price and Wealth Dynamics. When the underlying fundamental price is the constant
P̄ = $100, that is when q = 0, the market prices converge to the fundamental price for
δ = 0.7 and oscillate periodically near the fundamental price for δ = 0.8. However,
when the fundamental price follows the random walk process, the trend generated by
the trend followers become less informed and hence the prices for both δ = 0.7 and
0.8 follow the fundamental price closely. This comparison is illustrated in Fig. 5.6
(a). For m = 0, both the absolute and market wealth proportions are the same. For
q = 0, the wealth proportion of the fundamentalists stays at their initial wealth level
for δ = 0.7, but declines by about 2-3% over the whole time period for δ = 0.8, shown
in Fig. 5.6(b). However, for q = 1, their wealth proportion increases from the initial
level of 50% to about 68-70% for both q = 0.7 and 0.8, shown in Fig. 5.6(c).

Returns and ACs. The corresponding return series and the distribution densities and
ACs of the returns are plotted in Fig. 5.7. For q = 0 and δ = 0.7, the return is nor-
mally distributed with no significant pattern on ACs, reflecting the underlying dividend
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FIGURE 5.6. Effect of δ: Price series for both q = 0 and q = 1 (a)
and Wealth proportions of the fundamentalists for q = 0 (b) and q = 1
(c) with δ = 0.7, 0.8. Here α = 0,m = 0, γ = 2, µ = 1, w1,0 = 0.5.

process. For q = 0 and δ = 0.8, the return displays a bi-mode distribution and strong
oscillating AC pattern, reflecting the periodical fluctuation of the market price and the
underlying dynamics of the deterministic system. For q = 1, the returns display excess
volatility and volatility clustering for both q = 0.7 and 0.8. The ACs of the returns
follow pattern [AC-F]: Acs are significantly positive for the first few lags and less sig-
nificantly negative for the following lags, reflecting the geometric decay memory on
the past prices from the trend followers and the market price reverting activity to the
fundamental price from the fundamentalists.

5.3.4. Dynamics of the Extrapolation Rate of the Trend Followers γ. For α = 0,m =
0, µ = 1, δ = 0.85, numerical simulations are conducted for γ = 1, 2 and 3. It is found
that, as γ increases, the price and wealth dynamics and returns have a similar feature
as the case when δ increases discussed in the previous subsection.

In the above analysis, we assume that α = 0, that is the fundamentalists adjust
their expected price instantaneously towards the fundamental price which follows the
random walk process. As α increases, the speed of such adjustment from the funda-
mentalists is slowing down. This may partially reflect that the fundamentalists are less
informed or confident on the fundamental price, partially because of the information
cost. Consequently, the role of the fundamentalists on the market price becomes less
dominated and less important, leading the returns and ACs to display features when the
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market prices are more dominated by the trend followers. In the rest of the discussion,
we demonstrate such changes by examining few cases when α ∈ (0, 1].
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5.3.5. Dynamics of the Extrapolation Rate γ When α = 1. We first examine another
extreme case when α = 1, that is when the fundamentalists do not adjust their expected
price towards the fundamental price. For illustration, we select

α = 1, m = 0, µ = 1, δ = 0.85, w1,0 = 0.5

and different γ = 0.3, 0.4, 0.5 and 0.6. For the select parameters, there exists a Hopf
bifurcation value γ∗ ∈ (0.4, 0.5) such that the market price converges to the fundamen-
tal price for γ = 0.3, 0.4 and fluctuates around the fundamental price for γ = 0.5, 0.6.
The price series and wealth proportion for both q = 0 and q = 1 are plotted in Fig.
5.8. Because of α = 1, the random fundamental price has no influence on the market
price. Therefore, the indicator parameter q stands for the demand shocks.
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Prices and Wealth Proportions. One can see from Fig. 5.8(a) that, when trend followers
extrapolate weakly (with γ = 0.3, 0.4), the market price fluctuate around the constant
fundamental price P̄ = $100 and the wealth proportions stay at about the same level
for both without (q = 0) and with (q = 1) demand shocks, although the wealth pro-
portion of the fundamentalists is dropped slightly for q = 1. However, when trend
followers extrapolate strongly (with γ = 0.5, 0.6), the market prices are driven away
from both the constant and random fundamental prices. In addition, the dispersion and
the frequency of oscillation of the market price increases as γ increases, shown in Fig.
5.8(a) for γ = 0.6. The wealth proportions of the fundamentalists decline by about
1-2% over the whole time period for both q = 0 and q = 1.
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FIGURE 5.9. Effect of γ when α = 1: Returns, distribution densities
and ACs of the returns for γ = 0.3, 0.4, 0.5, 0.6 and q = 1.

Returns and Distribution Densities and ACs of the Returns. The corresponding returns
and their distribution densities and ACs are plotted in Fig. 5.9 for γ = 0.3, 0.4, 0.5, 0.6.
For γ = 0.3, the return has skewness of -0.022445, kurtosis of 2.9767, Jarque-Bera of
0.479305 and probability of normality 0.7869. The ACs of the return are not signifi-
cant for all the lags. As γ increases, normality of the return distribution is destroyed,
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volatility clustering appears and ACs have pattern [AC-E]: ACs are significantly posi-
tive across all the lags.

Overall, when the fundamentalists do not adjust their expected towards the funda-
mental price (or have no information on the fundamental price), they simple become
trend followers with no memory on the past price. In such case, the market prices
become more volatile as the trend followers extrapolate strongly and returns have AC
pattern [AC-E]. In terms of the wealth dynamics, the wealth proportions of the funda-
mentalists are reduced, but not significantly, over the whole time period.

5.3.6. Dynamics of the Speed of Expected Price Adjustment of the Fundamentalists
Towards the Fundamental Price α. After examining the two extreme cases of α =
0, 1, we now explore the price and wealth dynamics and market behaviour for α ∈
(0, 1). In this subsection, we select

m = 0, γ = 2, δ = 0.85, µ = 0.4, w1,0 = 0.5

and let q be the indicator parameter for the underlying fundamental price. To see the
effect of α, we select α = 0, 0.5, 0.9, 0.995 for our simulations in Fig. 5.10.

Note that a low (high) value of α corresponds to a high (low) speed of the price
adjustment of the fundamentalists towards the fundamental price. One can see from
Fig. 5.10 that, for α = 0 and q = 0, the market price converges to the constant
fundamental price and the wealth proportion does not change. However, the wealth
proportion of the fundamentalists increases by about 17% for q = 1. For α = 0.5,
the wealth proportion of the fundamentalists is reduced by about 2-3% for q = 0,
but increased by about 7% for q = 1. As the speed of the price adjustment of the
fundamentalists towards the fundamental price decreases (that is as α increases), the
market price are driven away from the fundamental price for both q = 0 and q = 1, as
the case for α = 0.9, 0.995 in Fig. 5.10. With slow adjustment of their expected price
from the fundamentalists towards the fundamental price, the market prices are largely
influenced by the oscillating trend generated by the trend followers. This results in
declines of the wealth proportions of the fundamentalists by about 3-5% over the whole
time period for both q = 0 and 1.

In terms of the return series, as the fundamentalists adjust their expected price to-
wards the fundamental price slowly, they share the same feature as the case when the
market is dominated by the trend followers (e.g. the dynamics of γ when α = 1 and γ
is high, discussed in the previous subsection). Because of the dominance of the trend
followers, the returns tend to be positively correlated (but decreasing as lag increases)
as α increases.

It is interesting to notice that, when the fundamentalists have less confidence on
the convergence of the market price to the fundamental price, the market price can be
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FIGURE 5.10. Effect of α 6= 1: Price series, and wealth proportions
of the fundamentalists for both q = 0 and q = 1 with different value of
α = 0, 0.5, 0.9, 0.995. Here m = 0, γ = 2, δ = 0.85, µ = 0.4.w1,0 =
0.5.

driven away by the trend followers and the wealth proportions of the trend followers
increases. However, the level of the increase of their wealth proportions is relative
low, unlike the case when the market is dominated by the fundamentalists, the wealth
proportions of the fundamentalists increased significantly. This indicates that the prof-
itability of the trend following strategy is limited and the trend followers may be driven
out of the market over long time periods when the fundamentalists become more in-
formed and more confident about the fundamental price. To be able to survive, the
trend followers may have to adapt their beliefs from time to time, leading to future
research on adaptive model. Of course, the existence of such fundamentalists having
full information to know the fundamental price is also questionable.
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5.3.7. Dynamics of the Geometric Decay Rate δ When α ∈ (0, 1). For α = 0 and δ
near the Hopf bifurcation boundary, we have seen from out previous discussion that the
market prices follow the random fundamental price closely and the wealth proportions
of the fundamentalists can be increased by about 20%. We now examine the case when
α 6= 0. In this subsection, we select

m = 0, µ = 0.4, α = 0.9, γ = 2, w1,0 = 0.5

and let q = 0 (q = 1) be the case when the underlying fundamental price is the constant
(follows the same random walk process).
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FIGURE 5.11. Effect of the decay rate δ: Price, return and wealth
proportion series for q = 0, 1 and δ = 0.7, 0.85, 0.99. Here m = 0, µ =
0.4, α = 0.9, γ = 2, w1,0 = 0.5.
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Fig. 5.11 plots the price, return and wealth proportion series for q = 0, 1 and δ =
0.7, 0.85, 0.99.

For q = 0, the market price converges to the constant fundamental price for δ = 0.7
and periodically oscillates around the constant fundamental price for δ = 0.85, 0.99.
Furthermore, as the result of high decay rate, the market price has long memory and
hence the frequency of the oscillation decreases as δ increases. The wealth proportions
of the fundamentalists is dropped by about 3-5% over the whole time period.

For q = 1, the market prices follow the random fundamental price approximatively
when the geometric decay rate is low (e.g. for δ = 0.7 and 0.8) and the wealth pro-
portions of the fundamentalists declines slightly (by 0.1% for δ = 0.7 and 3.5% for
δ = 0.85). However, as δ increases (to δ = 0.99), the market price is driven away from
the fundamental price and the fundamentalists benefit from the large oscillating trend,
as the result the wealth proportion of the fundamentalists increases slightly (by about
1-2%).

It is interesting to notice that, when δ = 0.85, the dispersion of the trend generated
by the trend followers is about the right size for the trend followers to generate a rel-
ative high wealth proportion. On the one hand, if such dispersion is not enough, the
price trend generated by the trend followers becomes less informative, do not help the
trend followers. On the other hand, if such dispersion is too large, the fundamental-
ists can benefit from the big swings with low frequency to accumulate more wealth
proportion than the trend followers do.

Remarks: The effects of other parameters, such as the market fraction m and the speed
of the price adjustment of the market maker µ when α ∈ (0, 1) are also examined and
numerical simulations (not reported here) lead to the following broad features.

• Dynamics of the market fraction m when α = 0.9. We select α = 0.9, γ =
2, µ = 0.4, δ = 0.85 and different values of m = 0.5, 0,−0.5. For the cor-
responding deterministic system, the market price converges to the constant
fundamental price for m = 0.5 and oscillates periodically around the constant
fundamental price for m = 0,−0.5. When the underlying fundamental price
follows the same random walk process, the market price is dominated by the
price trend generated by the trend followers, leading volatility clustering and
positively significant ACs on the returns. The absolute wealth proportions of
the fundamentalists are dropped by about 2%, 4% and 6% for m = 0.5, 0 and
-0.5, respectively. Correspondingly, the market wealth proportions of the fun-
damentalists are dropped from their initial levels of 75%, 50%. 25% to 73.5%,
46.7% and 21.2%, respectively.

• Dynamics of the speed of price adjustment of the market maker µ when α =
0.9. We select α = 0.9, γ = 2,m = 0, δ = 0.85 and different values of
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µ = 1, 0.5, 0.1. For the corresponding deterministic system, the market price
converges to the constant fundamental price for µ = 0.1 and oscillates pe-
riodically around the constant fundamental price for µ = 0.5, 1. When the
underlying fundamental price follows the same random walk process, the mar-
ket prices become more volatile as the market maker adjusts the prices quickly.
The returns have oscillating AC pattern [AC-F]: with positive ones for the small
lags (between 1 and 18) and negative for high lags for µ = 1, persistent and
decay positive ACs for µ = 0.5, and persistent (and not much decay) ACs for
µ = 0.1. For both µ = 1 and 0.5, the wealth proportion of the fundamentalists
declines by about 6% and 4% for µ = 1 and 0.5, respectively. However, for
µ = 0.1, their wealth proportion increases by about 1.5%.

5.3.8. Overall Features. Based on the above analysis, one can see that the price and
wealth dynamics of the stochastic system of the market fraction are closely underlined
by the dynamics of the underlying deterministic system and the market behaviour is
jointly determined by the fundamentalists, the trend followers and the market maker.
When the market is dominated by either the fundamentalists or the trend followers,
the price and wealth dynamics and the statistic properties of the return series can be
characterized by the market maker model with one type of traders only, discussed in
Sections 3 and 4. The main features of the complete model can be summarised as
follows.

• With the rest of parameters fixed, the market is dominated by the fundamen-
talists (trend followers) under either one of the following cases, in particular,
when parameters belong to the stability region ΩF (ΩT ):

– High (low) market fraction of the fundamentalists;
– High (low) speed of the expected price adjustment from the fundamental-

ists towards the fundamental price;
– Low (high) geometric decay rate from the trend followers;
– Low (high) extrapolation from the trend followers.

• When the market is dominated by the fundamentalists, we obtain the following
results.

– The market prices tend to follow the fundamental price closely.
– Returns tend to be less (more) volatile when the market marker adjust

price slowly (quickly) and consequently, ACs have patterns [AC-A, D]([AC-
B, C]).

– Both the absolute and market wealth proportions of the fundamentalists
increase significantly over the whole time period.

In particular, when the fundamentalists become more informed and more con-
fident about the convergence to the fundamental price, the wealth proportions
of the trend followers can be reduced dramatically over the long-run. This par-
tially supports the traditional view in economic and finance theory, for example
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Friedman (1953), that irrational traders would be driven out of the market by
the rational traders in long-run.

• When the market is dominated by the trend followers, the following results are
obtained.

– The market prices is driven away from the fundamental price, the dis-
persion and frequency of oscillation depend on the extrapolation rate and
geometric decay rate from the trend followers. The oscillating frequency
can be reduced by either quick price adjustment from the market maker or
strong extrapolation from the trend followers.

– Returns tend to be more volatile and ACs have patterns [AC-D, E, F] with
long memory for high decay rate.

– Both the absolute and market wealth proportions of the trend followers
increase insignificantly when they extrapolate weakly with low geometric
decay rate. However, their wealth proportions may even be reduced when
the market prices have big swings with low frequent oscillations.

In such case, the level of significance of ACs can be reinforced as either the
trend followers extrapolate strongly or the market maker adjust the market
price quickly.

• When two types of traders are balanced (for parameters near the jointed part
of two stability regions ΩF and ΩT ), the market is jointly determined by both
types of traders.

– The market prices have no regular cyclical trend and they tend to depart
from the fundamental price from time to time. Both excess volatility and
volatility clustering can be observed.

– Returns tend to have AC pattern [AC-F]: ACs oscillate and decay with
significantly positive for small lags and negative for high lags. The fre-
quency of the oscillation of ACs tends to be high when the decay rate is
low and to have a long memory when the decay rate is high.

– Wealth proportions for the fundamentalists increase in most of cases.
• Under- and over-reaction from different types of traders lead to significant AC

patterns.
– Under-reaction from the market maker and weak extrapolation from the

trend followers tend to generate AC pattern [AC-D]: ACs are positively
correlated across all lags and decay as lag increases.

– Over-reaction from the market maker or quick adjustment of their ex-
pected price from the fundamentalists towards the fundamental price tend
to generate AC pattern [AC-F]. The frequency of oscillating AC is high
(low) when the decay rate is low (high).

– Trend following tend to generate AC patterns [AC-D, E].
In general, ACs of returns tend to be positively correlated over short time pe-
riods and negatively correlated over long time periods, one of features found
in empirical literature. This also reflects a popular view that the market price



ASSET PRICING, VOLATILITY AND MARKET BEHAVIOUR 51

can be driven away from the fundamental price over a short-run, but converge
to the fundamental price over long-run.

6. CONCLUSION

Motivated by recent development in structural agent models on asset pricing, ori-
ented both computationally and theoretically, explanation power and calibration issue
of those models, this paper presents a simple market fraction model of two types of
traders—fundamentalists and trend followers—under a market maker scenario. It is
found that asset prices, wealth dynamics and market behaviour are characterised by
and related closely to the dynamics of the underlying deterministic system. The model
is able to explain various market behaviour, and generate some of the stylized facts,
such as excess volatility, volatility clustering, skewness and kurtosis. Excess volatil-
ity is created by various trading process, such as over-reaction from the market maker
and quick adjustment of the expected price from the fundamentalists towards the fun-
damental price. In terms of the market prices, on the one hand, they tend to follow
the fundamental price closely when the market is dominated by the fundamentalists,
and on the other hand, they can be driven away from the fundamental price when the
market is dominated by the trend followers.

Two measures on the wealth dynamics of different types of traders are introduced
for the first time in this paper. They correctly reflect a connection between the market
dominance and the wealth dynamics. On the one hand, when the market is dominated
by the fundamentalists, both absolute and market wealth proportions of the funda-
mentalists increase significantly in long-run. On the other hand, when the market is
dominated by the trend followers, the wealth proportions of the trend followers in-
crease insignificantly in some cases (when the dispersion of the trend generated by
the trend followers is small) and even decrease in other cases (when the dispersion of
the trend from the fundamental price is large). It is interesting to notice that, when
the fundamentalists are less confident on the convergence of the market price to the
fundamental price, the market price can be driven away by the trend followers and the
wealth proportions of the trend followers increases. However, the level of the increase
of their wealth proportions is relative low, unlike the case when the market is domi-
nated by the fundamentalists. When the fundamentalists become more informed and
confident about the fundamental price, the wealth proportions of the trend followers
can be reduced dramatically over the long-run. This partially suggests that, in long-
run, the profitability of the trend following strategy is limited, and partially supports
the traditional view in economic and finance theory (see Friedman (1953)) that irra-
tional traders would be driven out of the market by the rational traders in long-run.
Of course, the existence of such fundamentalists having full information to know the
fundamental price is questionable. To be able to survive, the trend followers may have
to adapt their beliefs from time to time. This leads to our future research on a more ra-
tional market fraction model we proposed in Section 1 that part of the market fractions
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are fixed and the rest part follows some evolutionary adaptive processes, inspirited by
Brock and Hommes (1997, 1998).

When the underlying deterministic system is stable, different types of autocorre-
lation coefficients (ACs) patterns of returns can be generated and explained through
different types of bifurcation. Typically, when the market is dominated by the funda-
mentalists, the stability region of the deterministic system is bounded by a flip type of
bifurcation. Near the flip bifurcation boundary, four types of significant AC patterns
[AC-A, B, C, D] (see the discussion in Section 3) can be generated. In particular, the
oscillating AC patterns [AC-B, C] with negative ACs for odd lags and positive ACs for
even lags can only be generated when both the market maker and the fundamentalists
over-react and the positive decaying AC patterns [AC-A, D] can be generated when
the market maker under-react and the fundamentalists over-react. When the market
is dominated by the trend followers, the stability region of the deterministic system
is bounded by a Hopf type of bifurcation. Near the Hopf bifurcation boundary, three
types of significant AC patterns [AC-D, E, F] (see the discussion in Section 4) can be
generated. In particular, the oscillating AC patterns [AC-F] with positive ACs for low
lags and negative ACs for high lags can be generated when both the market maker and
the trend followers over-react and the positive AC patterns [AC-E] with long memory
can be generated when the trend followers extrapolate strongly using high geometric
decay rate. In general, when the market is balanced by both fundamentalists and trend
followers, there is no significant AC patterns when the parameters are far inside of the
stable boundaries, however, significant AC pattern [AC-F] is presented when the pa-
rameters near the stability boundaries. Under AC pattern [AC-F], ACs are positively
correlated over short time periods and negatively correlated over long time periods,
one of features found in empirical literature. This also reflects a popular view that
the market price can be driven away from the fundamental price over a short-run, but
converge to the fundamental price over long-run. Such explicit relation between types
of bifurcation and AC patterns of returns has not been seen in the literature.

The model established in this paper has shown a very promising power in explain-
ing asset price and wealth dynamics, and market behaviour. It also demonstrates that
the theoretical oriented approach (through stability analysis and bifurcation theory) of
then underlying deterministic system can be used to characterize various features of
the stochastic system, such as autocorrelation patterns of returns. Given the bounded
rationality of agents and profitability of various trading strategies, it is very interesting
to extend the current research to a adaptive market fraction model and we leave this to
our future study.
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APPENDIX A. PROOFS OF PROPOSITIONS

A.1. Proof of Proposition 2.1. Under assumption (2.23), the demand function for the funda-
mentalists becomes

z1,t =
(α − R)(Pt − P̄ )

a1(1 + r2)σ2
1

.

Let (Pt, ut, vt) = (P0, u0, v0) be the steady state of the system. Then (P0, u0, v0) satisfies

P0 = P0 +
µ

2

[

(1 + m)
(α − R)(P0 − P̄ )

a1(1 + r2)σ2
1

+ (1 − m)
γ(P0 − u0) − (R − 1)(P0 − P̄ )

a2σ2
1(1 + r2 + b v0)

]

, (A.1)

u0 = δu0 + (1 − δ)P0, (A.2)

v0 = δv0 + δ(1 − δ)(P0 − u0)
2. (A.3)

One can verify that (P0, u0, v0) = (P̄ , P̄ , 0) satisfies (A.1)-(A.3); that is the fundamental
steady state is one of the steady state of the system (2.21). It follows from (A.2)-(A.3) and
δ ∈ [0, 1) that P0 = u0, v0 = 0. This together with (A.1) implies that P0 = P̄ . In fact, if
P0 6= P̄ , then (A.1) implies that

1 + m

a1
(α − R) +

1 − m

a2
(1 − R) = 0. (A.4)

However, since α ∈ [0, 1], R = 1 + r/K > 1 and m ∈ [−1, 1], equation (A.4) cannot be hold.
Therefore the fundamental steady state is the unique steady state of the system.

A.2. Proof of Proposition 3.1. Under assumptions (2.23) and m = 1, equation (3.1) be-
comes

Pt+1 = Pt − µ
(R − α)(Pt − P̄ )

a1(1 + r2)σ2
1

, (A.5)

which can be rewritten as
Pt+1 − P̄ = λ[Pt − P̄ ], (A.6)

where

λ ≡ 1 − µ
R − α

a1(1 + r2)σ2
1

.

Obviously, from (A.6), the fundamental price P̄ is globally asymptotically attractive if and
only if |λ| < 1, which in turn is equivalent to 0 < µ < µo.

A.3. Proof of Propositions 4.1 and 5.1. Under assumptions (2.23), system (2.21) is reduced
to the following 3-dimensional difference deterministic system











Pt+1 = F1(Pt, ut, vt),

ut+1 = F2(Pt, ut, vt),

vt+1 = F3(Pt, ut, vt),

(A.7)
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where

F1(P, u, v) = P +
µ

2

[

(1 + m)
(α − R)(P − P̄ )

a1(1 + r2)σ2
1

+ (1 − m)
γ(P − u) − (R − 1)(P − P̄ )

a2σ2
1(1 + r2 + b v)

]

,

F2(P, u, v) = δu + (1 − δ)F1(P, u, v),

F3(P, u, v) = δv + δ(1 − δ)(F1 − u)2.

Denote

a =
a2

a1
, Q = 2a2(1 + r2)σ2

1.

At the fundamental steady state (P̄ , P̄ , 0),

∂F1

∂P
= A ≡ 1 +

µ

Q
[(1 + m)a(α − R) + (1 − m)(1 + γ − R)],

∂F1

∂u
= B ≡ −

µγ(1 − m)

Q
,

∂F1

∂v
= 0;

∂F2

∂P
= (1 − δ)A,

∂F2

∂u
= C ≡ δ + (1 − δ)B,

∂F2

∂v
= 0;

∂F3

∂P
=

∂F3

∂u
=

∂F3

∂v
= 0.

Then the Jacobina matrix of the system at the fundamental steady state J is given by

J =





A B 0
(1 − δ)A C 0

0 0 0



 (A.8)

and hence the corresponding characteristic equation becomes

λΓ(λ) = 0,

where

Γ(λ) = λ2 − [A + δ + (1 − δ)B]λ + δA.

It is well known that the fundamental steady state is stable if all three eigenvalues λi satisfy
|λi| < 1 (i = 1, 2, 3), where λ3 = 0 and λ1,2 solve the equation Γ(λ) = 0.

For δ = 0, Γ(λ) = λ[λ − (A + B)]. The first result of Proposition 4.1 is then follows from
−1 < λ = A + B < 1 and λ = −1 when A + B = 1.

For δ ∈ (0, 1), the fundamental steady state is stable if

(i). Γ(1) > 0;
(ii). Γ(−1) > 0;

(iii). δA < 1.

It can be verified that

(i). For α ∈ [0, 1], Γ(1) > 0 holds;
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(ii). Γ(−1) > 0 is equivalent to

either γ ≥ γ2 or 0 < γ < γ2 and 0 < µ < µ1,

where

γ2 =
1 + δ

2δ
[(R − 1) + a(R − α)

1 + m

1 − m
],

µ1 =
1 + δ

δ

Q

1 − m

1

γ2 − γ
.

(iii). The condition δA < 1 is equivalent to

either γ ≤ γ1 or γ > γ1 and 0 < µ < µ2,

where

γ1 = (R − 1) + a(R − α)
1 + m

1 − m
,

µ2 =
1 − δ

δ

Q

1 − m

1

γ − γ1
.

Noting that, for δ ∈ (0, 1), γ1 < γ0 < γ2, where

γ0 =
(1 + δ)2

4δ

[

(R − 1) + a(R − α)
1 + m

1 − m

]

solves the equation µ1 = µ2. Also, µ1 is an increasing function of γ for γ < γ2 while µ2 is a
decreasing function of γ for γ > γ1. Hence the two conditions for the stability are reduced to
0 < µ < µ1 for 0 ≤ γ ≤ γ0 and 0 ≤ µ ≤ µ2 for γ > γ0. In addition, the two eigenvalues
of Γ(λ) = 0 satisfy λ1 = −1 and λ2 ∈ (−1, 1) when µ = µ1 and λ1,2 are complex numbers
satisfying |λ1,2| < 1 when µ = µ2. Therefore, a flip bifurcation occurs along the boundary
µ = µ1 for 0 < γ ≤ γ0 and a Hopf bifurcation occurs along the boundary µ = µ2 for γ ≥ γ0.
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