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Abstract

We study a nonlinear filtering problem to estimate, on the basis of noisy observations of

forward rates, the market price of interest rate risk as well as the parameters in a particular

term structure model within the Heath-Jarrow-Morton family. An approximation approach

is described for the actual computation of the filter.
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1 Introduction

The paper by Heath, Jarrow and Morton [14] (henceforth HJM) marked an important step in

the development of models of the term structure of interest rates. The HJM model had been
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presaged by the simpler (and less general) Ho-Lee [15] model. The HJM model distinguished

itself from previous term structure models, which were essentially based conceptually on

the approach of Vasicek [24], by providing a pricing framework that is consistent with the

currently observed yield curve and whose major input is a function specifying the volatility

of forward interest rates. To this extent it can be viewed as the complete analogue, in the

world of stochastic interest rates, to the Black-Scholes model of the deterministic interest

rate world that prices derivatives consistently with respect to the price of the underlying

asset (of which the currently observed yield curve is the analogue) and requires as its major

input the volatility of returns of the underlying asset (to which the forward rate volatility

function is the analogue).

The challenges posed in implementing the HJM model arise from the fact that in its

most general form the stochastic dynamics are non-Markovian in nature. As a result most

implementations of the HJM model revolve around some procedure, and/or assumptions, that

allow the stochastic dynamics to be re-expressed in Markovian form - usually by employing

the “trick” of expanding the state-space.

As we have stated above the major input into the HJM model is the forward rate volatility

function and indeed its specification will determine the nature of the stochastic dynamics

and whether and how it then can be reduced to Markovian form.

In view of finite dimensional realizations of HJM models (for a general study see [6]),

Chiarella and Kwon [8], [9] have shown that a broad, and important for applications, class of

interest rate derivative models whose dynamics can be “Markovianised” can be obtained by

assuming forward rate volatility functions that depend on a finite set of forward rates with

given maturities as well as time to maturity.

An important practical problem faced in implementing such term structure models is

the estimation of the parameters entering into the specification of the forward rate volatility

function. In fact, one of the major aims of this paper is to show how this estimation problem

can be approached within a filtering framework.

In section 2 we introduce our basic model that is a particular version of the HJM model

set-up within the Chiarella-Kwon [8], [9] framework in which the volatility function depends

on the instantaneous spot rate of interest (maturity of zero), one forward rate of fixed ma-

turity and, time to maturity. Under the risk-neutral probability measure the stochastic dy-

namics of the spot rate and of the fixed maturity forward rate are given by a two-dimensional

Markovian stochastic differential equation system. However as our observations occur under

the so-called historical probability measure, we need to introduce also the market price of

interest rate risk (that connects the two probability measures). We assume that the market

price of risk follows a mean reverting process and so, under the historical measure, we are

left with a three-dimensional Markovian stochastic differential system. A truncation factor

is furthermore added to the coefficients thereby guaranteeing existence and uniqueness of a

strong solution that takes values in a compact set. Assuming that the information comes

from noisy observations of the fixed-maturity forward rate, in this same section 2 we also

formulate the filtering problem, whose solution leads to the estimation of the market price

2



of risk and of the unobserved instantaneous rates of interest and as well as of the parameters

in the model.

The resulting filtering problem is highly nonlinear so that approximation methods have

to be used for its solution. We shall describe a method, based on time discretization that,

together with further approximations (quantization), leads to a discrete time approximating

problem for which a filter of fixed finite dimension can be derived. Provided the discretization

is sufficiently fine, the optimal filter for the approximating problem can be shown to be

an arbitrarily good approximation to the filter for the original problem. Time and spatial

discretization methods for nonlinear filtering were pioneered by H.Kushner and his co-workers

(for a general exposition see [18]). Our method here differs in various respects from those

in [18] and extends previous work in [12], [17], [23] (see also [20], [22] and the references in

those papers).

In section 3 we discuss the time discretization and show the convergence of the time

discretized filter for each observed trajectory and not merely in the mean with respect to

the observations. We also mention further discretizations (quantizations) that lead to finite-

dimensional approximating filters. We point out that the time discretization does not even

need to be looked at as an approximation per se, since the real observations take place in

discrete time only and so the true filtering problem is actually one in discrete time. In

this sense the convergence of the time discretized filter can be viewed as guaranteeing the

consistency of the discrete time models with the original continuous-time setup.

2 Stochastic Dynamics and Filter Setup

Let f(t, T ) be the rate we contract at time t for instantaneous borrowing at time T (> t).

The Heath, Jarrow and Morton (HJM) [14] model for the term structure of interest rates is

based on modelling the forward rates according to

f(t, T ) = f(0, T ) +
∫ t

0

σ∗(u, T )du+
∫ t

0

σ(u, T )dw̃u (1)

Here f(0, T ) is the observed forward rate curve at time 0 and w̃t is a scalar Wiener process

on a filtered probability space (Ω,F ,Ft, Q) with Q the HJM “martingale measure”. The

quantity σ(t, T ) is the volatility function of the forward rate process which in general is an

adapted process (in t), that we may view as being parametrized by T . From the HJM drift

restriction we have that

σ∗(t, T ) = σ(t, T )
∫ T

t

σ(t, u)du (2)

The two major inputs into the HJM model are the initially observed forward curve f(0, T )

and the forward rate volatility function σ(t, T ). The f(0, T ) is imposed by the market, but

σ(t, T ) remains at the discretion of the model builder. In fact, equation (1) specifies an entire

family of models depending on how σ(t, T ) is specified and, as stated in the Introduction, in

its most general form is non-Markovian.

Bhar, Chiarella, El-Hassan and Zheng [2] have modellled the randomness of the volatility

function through dependence on the unobserved instantaneous spot rate of interest rt =
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f(t, t) 1 and a forward rate ft = f(t, τ) with fixed maturity τ . In particular, they take (with

obvious abuse of notation)

σ(t, T ) = σ(t, T ; rt, ft) = g(rt, ft) e−λ(T−t) (3)

with 0 ≤ t < τ < T , where λ > 0 is a parameter and g a sufficiently well behaved function.

The motivation for this particular specification is that it allows reduction of the forward

rate dynamics to Markovian form. Furthermore, it generalizes in an obvious way the class of

volatility functions introduced by Ritchken and Sankarasubramanian [21] in which g depends

only on rt. It turns out that, under the specification (3), the dynamics of a generic forward

rate f(t, T ), of the fixed maturity forward rate ft, and of the short rate rt are then, according

to [8], [9], driven by the Markovian system of stochastic differential equations


df(t, T ) = Dt(T )σ2 (t, T ; rt, ft) dt+ σ (t, T ; rt, ft) dw̃t
dft = Dt σ

2 (t, τ ; rt, ft) dt+ σ (t, τ ; rt, ft) dw̃t
drt = [At +Btrt + Ctft] dt+ σ (t, t; rt, ft) dw̃t

(4)

The function g(r, f) in (3) is assumed to be of the form

g(r, f) = | a0 + a1r + a2f |δ (5)

for some positive parameters a0, a1, a2, δ. Furthermore,

Dt(T ) = λ−1
(
eλ(T−t) − 1

)
; Dt = Dt(τ)

Bt = −λ
[(
e−λ(τ−t) − 1

)−1
+ 1
]

; Ct = −λeλ(τ−t) (e−λ(τ−t) − 1
)−1

At = fT (0, t) −Btf(0, t) − Ctf(0, τ)

(6)

where f(0, t), f(0, τ) are the initial forward rates for the maturities t and τ respectively, and

fT (0, t) represents the partial derivative of f(0, t) with respect to the second variable. We

shall refer to ft and rt as state variables in the Markovian system (4). From model (4) we

can derive by Ito’s lemma the dynamics for the price P (t, T ) of a zero-coupon bond 2 with

generic maturity T , namely

dP (t, T ) = P (t, T ) [rtdt−Dt(T )σ(t, T ; rt, ft) dw̃t] (7)

For later empirical implementations it is important to keep in mind how the stochastic

dynamic system (4) should be interpreted. Suppose our observation period is 1st June to

30th June, and we have daily observations. On the first of June we have a zero coupon

forward curve, f(0, T ) (T indicates maturity), reconstructed from a whole set of (noisily)

1The instantaneous spot rate of interest, rt, is treated as unobserved since the shortest rate we observe in

most markets is a 30-day rate. In many empirical studies in finance this latter rate is treated as a proxy for rt.

Part of our contribution is the development of a methodology that avoids such an approximation. We should

however also point out that [7] discusses situations in which certain market observed short rates (such as 30-day

and 90-day rates) are reasonable proxies for rt.

2Recall that P (t, T ) = exp
(
− ∫ T

t
f(t, u)du

)

4



observed forward rates. It is more likely that agents observe the prices of available zero-

coupon bonds, however, since there is a one-to-one correspondence between these prices and

forward rates, we may as well assume that the agents have access to the latter (forward

rates can be reconstructed from observable data). Whether we take available bond prices

or forward rates as the observed quantities, these have to be reconstructed from actually

accessible data, and so such observations have to be considered as noisy. In spite of the fact

that the forward rates are noisy, we take the reconstructed f(0, T ) as the ”true” zero coupon

yield curve on 1st June. This viewpoint is consistent with the one we shall adopt in setting

up the (Bayesian) filtering algorithm (see Remark 2.4).

The SDE system (4) that we are considering tells us how the zero coupon forward curve

of 1 June will be projected over the month of June under the proposed forward rate volatility

function. Recall that under the assumptions of the model, the evolution of the forward curve

on any day is driven by that of the state variables.

This evolution of the initial forward curve can be depicted as shown in Fig. 1.

1st June

maturity(T)

time(t)

30th June

�

�

�

�

kth June

initial forward curve (f(0, T ))

on 1 June

a realisation of evolution of (f(0, T ))

over the month of June

Figure 1: The Evolution of the Forward Curve

• Solid curve — initial (reconstructed from forward rates of many maturities) forward curve

• Dashed curves — realisations of the evolution of f(0, T )

In order to focus on perhaps the simplest filtering problem in the framework of the

stochastic dynamical system (4), we shall assume (see (16) below) that the available ob-

servations are noisy observations of the forward rate with the fixed maturity τ (one may

obviously add noisy observations of forward rates with other maturities as well as of any
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other economic quantity, whose dynamics can be derived from (4)).

Since ft = f(t, τ) has to be treated here as an underlying quantity as opposed to a

derivative quantity, we have to model its observations under the “historical” or “real world”

probability measure P . 3 We shall therefore introduce the “market price of interest rate risk”

process ψt, that corresponds to the translation of the Wiener process when passing from the

measure Q to P , and assume that it satisfies, under the measure P , a mean reverting diffusion

model. The market price of interest rate risk is essentially the additional compensation that

a rational investor, operating under conditions of absence of arbitrage, would require for

bearing an additional unit of interest rate risk as measured by a unitary increase in volatilty

of the forward rate curve (see e.g. [4]).

Denote then by Xt the “state” process

Xt := [ft, rt, ψt]
′ (8)

and, given a (large) H > 0 and a (small) ε > 0, let

χ(X) =




1 if max {|ft|, |rt|} ≤ H

0 if min {|ft|, |rt|} ≥ H + ε ;

else a Lipschitz interpolation

χ̄ (ψ) =




1 if |ψ| ≤ H

0 if |ψ| > H + ε
H+ε−|ψ|

ε if H < |ψ| < H + ε

(9)

Under the measure P with Wiener process wt = w̃t−
∫ t
0
ψsds, we now let the processes

ft, rt, ψt satisfy the dynamics


dft = (Dt σ (t, τ ; rt, ft) + ψt)σ (t, τ ; rt, ft) χ(Xt) dt+ σ (t, τ ; rt, ft) χ(Xt) dwt
drt = [At +Btrt + Ctft + ψtσ (t, t; rt, ft)] χ(Xt) dt+ σ (t, t; rt, ft) χ(Xt) dwt
dψt = κ

(
ψ̄ − ψt

)
χ̄(ψt)dt+ b |ψt|γ χ̄(ψt) dwt

(10)

where the totality of the parameters is given by the vector

θ := (a0, a1, a2, δ, κ, ψ̄, b, γ, λ) (11)

and each of them is supposed to take values in a compact subset of the positive halfline.

With the vector Xt as in (8), we shall write the dynamics in (10) in compact form as

dXt = Ft(Xt) dt+Gt(Xt) dwt (12)

where Ft(·) and Gt(·) are implicitly defined in (10). In what follows, the generic i−th

(i = 1, 2, 3) components of Ft(·) and Gt(·) will be denoted by F (i)
t (·) and G(i)

t (·) respectively.

We have

Proposition 2.1 The system (10) (equivalently (12)) has a unique strong and bounded so-

lution.
3On the other hand, if one takes as observations any of the derivative quantities, one would have the choice

(depending on the intended application) of modelling their observations either under the martingale measure Q

or under the real world measure P .
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Proof : The boundedness of the solution follows from the truncation factors in the coeffi-

cients. It then suffices to show that, for a bounded solution, the drift and diffusion coefficients

in the three equations in (10) are globally Lipschitz and for this purpose it is easily seen that

it suffices to show the Lipschitzianity with respect to the spatial variable.

For the first drift coefficient we have

| [Dtσ(t, τ ; r, f) + ψ] σ(t, τ ; r, f)χ(X) − [Dtσ(t, τ ; r′, f ′) + ψ′] σ(t, τ ; r′, f ′)χ(X ′) |
≤ C

∣∣σ2(t, τ ; r, f)χ(X) − σ2(t, τ ; r′, f ′)χ(X ′)
∣∣+ |σ(t, τ ; r, f)ψχ(X) − σ(t, τ ; r′, f ′)ψ′χ(X ′)|

(13)

with C a constant and from here the Lipschitzianity follows by the boundedness of σ(·), χ(·)
and ψ and the Lipschitzianity of σ(·) and χ(·) (recall that r, f and ψ are solutions of (10)

and therefore bounded).

Coming to the second drift term we have

|[At +Btr + Ctf + ψtσ(t, t; r, f)]χ(X) − [At +Btr
′ + Ctf

′ + ψ′
tσ(t, t; r′, f ′)]χ(X ′)|

≤ |At| |χ(X) − χ(X ′)| + |Bt| |rχ(X) − r′χ(X ′)|
+|Ct| |fχ(X) − f ′χ(X ′)| + |σ(t, t; r, f)ψtχ(X) − σ(t, t; r′, f ′)ψ′

tχ(X ′)|
(14)

The function At is an input and is bounded, uniformly in t, together with Bt and Ct. The

Lipschitzianity then follows for the same reasons as before.

For the last drift term the Lipschitzianity follows again straightforwardly for the same

reasons as before since

∣∣κ (ψ̄ − ψ
)
χ̄(ψ) − κ

(
ψ̄ − ψ′) χ̄(ψ′)

∣∣ ≤ C (|χ̄(ψ) − χ̄(ψ′)| + |ψχ̄(ψ) − ψ′χ̄(ψ′)|) (15)

Finally, the Lipschitzianity of the diffusion coefficients follows by complete analogy with the

drift coefficients.

Remark 2.2 In the literature one can find results on the existence of a strong solution to

equations of the form (4) with volatilities according to (3) and (5) (see e.g. [10]). These

results hold however for specific ranges of the parameter δ in (5). In our application δ may

take any positive value and so we preferred to introduce the Lipschitz truncation factors (9)

to ensure in any case the existence of a strong and bounded solution. From a practical point

of view this truncation is hardly any restriction at all.

Model (12), resulting from (10) is a minimal Markovian model for the term structure of

interest rates : the dynamics of the various other forward rates f(t, T ) with generic maturity

T ( as well as the corresponding zero-coupon bond prices) can be derived from the first

equation in (4) and from (7), whose dynamics depend only on the vector Xt. In what follows

we shall denote by X the compact subset of IR3 for which Xt ∈ X .

In line with the foregoing, we shall assume that agents have access to noisy observations

of ft = f(t, τ). Denoting the observation process by yt, we assume that it satisfies

dyt = ftdt+ ε̂dŵt (16)
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with ε̂ > 0 small and ŵt a P−Wiener, independent of wt.

The goal here is a recursive Bayesian-type estimation of Xt and θ on the basis of the past

and present observations of yt, i.e. the combined filtering and parameter estimation of (Xt, θ),

given Fy
t , which is the filtration generated by the process yt. The most complete solution to

this problem is the recursive computation of the conditional joint distribution p (Xt, θ | Fy
t ).

This is a highly nonlinear filtering problem and so in section 3 we shall compute a weak

approximation to p (Xt, θ | Fy
t ) in the sense that we shall compute an approximation of the

conditional expectation

E
{
Γ̄(Xt; θ) | Fy

t

}
=
∫

Γ̄(X; θ) dp (X; θ | Fy
t ) (17)

where, for each θ, Γ̄(·; θ) is Lipschitz. The approximation is by discretization in time, which

is motivated not only by the difficulty of computing (17) exactly, but also by the fact that,

in reality, yt is observed in discrete time. Additional possible approximations will also be

mentioned in section 3

Remark 2.3 Since the solution Xt of (12) takes values in the compact set X , we may,

without changing the value in (17), assume that Γ̄(X; θ) = 0 for X �∈ X . Notice also that

from the econometric literature one has an indication of what could be possible values of the

parameter vector θ. We shall thus assume that θ takes already from the outset only a finite

number of possible values to which we may assign a uniform prior. This implies that the

time discretization below concerns only the process Xt and, to emphasize this fact, we shall

put Γθ(X) := Γ̄(X; θ) so that, instead of (17), we shall compute/approximate

E {Γθ(Xt) | Fy
t } (18)

Remark 2.4 Stochastic filtering can be viewed as a dynamic generalization of Bayesian

statistics. The “prior distribution” in this dynamic setup is given by the joint distribution of

the (unobservable) state process Xt and of the parameter vector θ. This distribution is implied

by the dynamic model for Xt (see (10) and (12)) and by the prior distribution on θ. This

joint prior distribution is then successively updated on the basis of empirical data, namely

of the noisy observations yt of ft. Analogously to classical Bayesian statistics, also in its

dynamic generalization the “prior” is specified on the basis of extra-experimental information

and/or on the basis of prior empirical information. As explained in the paragraph below

equation (6), this is also the sense in which our double use of observations of forward rates

is being interpreted : the one time initial observations of f(0, t), f(0, τ) , fT (0, t) correspond

to “prior” empirical information which is used, see (6), to determine the function At that is

part of the dynamic model for Xt (see (10)), and thus of the “prior” for Xt. The successive

noisy observations yt of ft on the other hand constitute the successively increasing empirical

information, on the basis of which the prior of (Xt, θ) is being updated.

We want to point out that, in Bayesian statistics, the current distributions turn out to be

more informative, if one is able to assign a more informative prior. To this effect notice that,

although the solution of (12) takes values in the compact set X , there is no guarantee on the
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positivity of the instantaneous rates rt and ft. Since these rates are essentially positive, we

should get more informative results if the “prior”, i.e. our dynamic model for Xt guarantees

positivity of these rates. For this purpose notice next that, if two quantities are in a one-to-

one correspondence with each other, observing one of them or updating the distribution of

one of them turns out to be equivalent to observing the other or updating its distribution

respectively. We may therefore apply to the rates rt and ft an invertible transformation that

transforms them into positive rates. For this purpose we use the C2−transformation

x̄ = T (x) :=


 x if x ≥ ε+ η

(ε+ η) + 2η
π arctan

[
π
2η (x− ε− η)

]
if x < ε+ η

(19)

where ε is, again, a small positive real and 0 < η < ε (see Figure 2).

�

�

x

x̄

ε+ η

ε

ε+ η

Figure 2: The Transformation x̄ = T (x)

Define ρt := T (rt) , φt := T (ft) and notice that, with the same H as in (9), ρt, φt ≥
T (−H − ε) > ε and, on [ε + η,H], we have ρt = rt, φt = ft. Putting X̄t := [φt, ρt, ψt]

′, we

may, with some abuse of notation, also write X̄t = T (Xt) and, applying Ito’s rule, obtain

from (12)

dX̄t = F̄t(Xt)dt+ Ḡt(Xt) dwt (20)

where the i−th (i = 1, 2, 3) components of F̄t(·) and Ḡt(·) are

F̄
(i)
t (Xt) =

{
F

(i)
t (Xt) if i = 3

Ṫ (X(i)
t )F (i)

t (Xt) + 1
2 T̈ (X(i)

t )(G(i)
t )2(Xt) if i = 1, 2

Ḡ
(i)
t (Xt) =

{
G

(i)
t (Xt) if i = 3

Ṫ (X(i)
t )G(i)

t (Xt) if i = 1, 2

(21)

and they are bounded since all the individual factors on the right in (21) are. Since T (·) is

invertible, the Ito process X̄t in (20) can be represented as solution of

dX̄t = F̄t(T−1(X̄t))dt+ Ḡt(T−1(X̄t)) dwt (22)
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Proposition 2.5 Equation (22) admits a unique strong solution.

Proof : Notice first from (19) that the inverse transformation T−1(x̄) is given by

T−1 (x̄) =


 x̄ x̄ ≥ ε+ η

(ε+ η) + 2η
π tan

[
π
2η (x̄− ε− η)

]
ε < x̄ < ε+ η

and is Lipschitz so that F (i)
t

(
T−1(X̄)

)
and G

(i)
t

(
T−1(X̄)

)
are also Lipschitz in addition to

being bounded. To obtain the global Lipschitzianity of the coefficients in (22) and thus the

existence of a strong solution, by (21) it suffices thus to show Lipschitzianity and boundedness

of Ṫ
(
T−1 (x̄)

)
and T̈

(
T−1 (x̄)

)
. This follows immediately from their explicit expression,

namely

Ṫ
(
T−1 (x̄)

)
=




1 x̄ ≥ ε+ η
1

1+[tan( π
2η (x̄−ε−η))]2

ε < x̄ < ε+ η

T̈
(
T−1 (x̄)

)
=




0 x̄ ≥ ε+ η
π
η tan[ π

2η (x̄−ε−η)][
1+[tan( π

2η (x̄−ε−η))]2
]2 ε < x̄ < ε+ η

In what follows we shall always refer to the same model (12) also in the case when we

apply the transformation T (·). In this latter case Xt stands for X̄t, and the functions Ft(X)

and Gt(X) then correspond to F̄t
(
T−1(X̄)

)
and Ḡt

(
T−1(X̄)

)
respectively. Similarly, ft in

equation (16) stands for φt in case we apply the transformation T (·).
Notice that alternative approaches to obtain positive rates can be found in the recent

literature (see e.g. [13]).

Notice finally that the filtering approach to HJM term structure models can also be seen

as a possible way to overcome consistency problems in the calibration of HJM models (for

the latter see e.g. the overview in [5]).

3 Time discretization and convergence results

In the following we implicitly assume that a generic value of θ has been fixed. Consider

the partition of [0, T ] into subintervals of the same width ∆ = T
N and perform an Euler

discretization of (12), namely

XN
n+1 −XN

n = Fn
(
XN
n

)
∆ +Gn

(
XN
n

)
∆wn (23)

with ∆wn = w(n+1)∆ − wn∆. Notice that, while the solution of the continuous-time model

(12) is bounded, its discretized version (23) does not guarantee boudedness of (XN
n ). Denote

by XN
t the piecewise constant time interpolation of XN

n , namely

XN
t :=

{
XN
n n∆ ≤ t < (n+ 1) ∆

XN
N t = T

(24)

and simply write Xn for XN
n∆ as well as X(i) for the i−th component of X.
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Consider next a Girsanov-type change of measure which allows us to transform the orig-

inal filtering problem into one with independent state and observations. Denote by P 0 the

measure under which yt is a Wiener process, independent of Xt and thus also of XN
t . In

fact, the change of measure affects only the distribution of yt and not also of Xt . The

corresponding Radon-Nikodym derivative is

dP

dP 0
= exp

[
1
ε̂2

∫ T

0

fsdys − 1
2ε̂2

∫ T

0

f2
s ds

]
(25)

Analogously, denote by PN the measure under which yt satisfies the equation

dyt = fNt dt+ ε̂dwNt (26)

with wNt a PN−Wiener process and where, with some abuse of notation, we denote by fNt
the first component of XN

t , truncated upon exit from [−(H + ε), (H + ε)] (H and ε are the

same as in (9)); as a consequence, in what follows fNt will be treated as having the same

bounds as ft. We thus have that, under PN , yt has the same form as under P , but as a

function of the discretized state.

Applying the so-called Kallianpur-Striebel formula (see [16]), the filter in (18) can be

expressed as

E {Γθ(Xt) | Fy
t } =

E0
{
Γθ (Xt) dP

dP 0 |Fy
t

}
E0
{
dP
dP 0 |Fy

t

} (27)

It follows that it suffices to approximate, for each value of θ,

Vt (Γθ; y) := E0

{
Γθ (Xt)

dP

dP 0
|Fy
t

}
(28)

(the denominator in (27) is in fact simply Vt(1; y)).

Define

zt := E0

{
dP

dP 0
|Ft
}

= exp
[∫ t

0

1

ε̂2
fsdys − 1

2ε̂2

∫ t

0

f2
s ds

]
(29)

zNt := E0

{
dPN

dP 0
|Ft
}

= exp
[∫ t

0

1

ε̂2
fNs dys −

1
2ε̂2

∫ t

0

(fNs )2ds
]

(30)

where Ft = Fy
t ∨ FX

t . By analogy to (28) define, for N ∈ IN,

V Nt (Γθ; y) := E0
{
Γθ
(
XN
t

)
zNT |Fy

t

}
(31)

By the ”smoothing property” of conditional expectations we have

Vt (Γθ; y) = E0 {Γθ (Xt) zt |Fy
t } , V Nt (Γθ; y) = E0

{
Γθ
(
XN
t

)
zNt |Fy

t

}
(32)

We first have the following

Proposition 3.1 The processes {Xt} and
{
XN
t

}
satisfy, for t ∈ [0, T ]

E
∥∥Xt −XN

t

∥∥4 ≤ K∆2 and E0
∥∥Xt −XN

t

∥∥4 ≤ K∆2

where K is a positive constant.

11



Proof : The proof can easily be adapted from [12], where the components of XN
t are

not truncated, while here we have truncated the first component fNt . Notice however

that, given the recursions (23) and our assumptions, the difference in fourth mean of the

truncated and non-truncated values of fNt is, for all t ∈ [0, T ], bounded from above by

E

{∣∣∣F (1)
n (·)∆ +G

(1)
n (·)∆wn

∣∣∣4} ≤ const · (‖F (1)‖4 + ‖G(1)‖4
)

∆2 and the coefficient of ∆2

in this latter quantity is bounded due to the fact that F and G are bounded by definition

and this also in the case when we apply the transformation T (·) in (19) (see (21) and the

proof of Proposition 2.5).

Notice that, according to Remark 2.3, the value of V Nn∆(Γθ; y) in (31) does not change if

we change the values of XN
t outside of X . Consequently, we shall truncate the process XN

t as

soon as it exits from X and denote by Xn the so truncated process (X(i)
n will denote the i−th

( i = 1, 2, 3) component of Xn and notice that for fNn = fn = X
(2)
n we have already used this

truncation after (26)). The process Xn is now bounded Markov with a well-defined transition

kernel P (Xn+1|Xn). The explicit expression of P (Xn+1|Xn) is somewhat complicated but,

for the actual calculations, we need its expression only in the interior of X and there it is

given by

P (Xn+1|Xn) =

{
1√

2π (G
(1)
n )2(Xn)∆

exp

[
−
(
X

(1)
n+1−X(1)

n −F (1)
n (Xn)∆

)2
2(G

(1)
n )2(Xn)∆

]

·
3∏
i=2

δ
(
X

(i)
n+1 −X(i)

n − F (i)
n (Xn)∆

−G(i)
n (Xn)) · X

(1)
n+1−X(1)

n −F (1)
n (Xn)∆

G
(1)
n (Xn)

)}

·
3∏
i=1

1[−(H+ε),(H+ε)]

(
X

(i)
n+1

)
(33)

We also make the following assumption, which is in line with our observation model (16)

Assumption A.1 : The actually observed trajectory (yt) satisfies, for n = 0, · · · , N − 1,

sup
s,t∈[n∆,(n+1)∆]

| ys − yt | ≤ K∆1/2

Lemma 3.2 Given an observed trajectory ys (s ≤ t) satisfying A.1, we have for t = n∆

E0
{
z2
t |Fy

t

} ≤ K(y) ; E0
{
(zNt )2|Fy

t

} ≤ K(y) (34)

E0
{∣∣zt − zNt

∣∣ |Fy
t

} ≤ K̄(y) · ∆ 1
2 (35)

where K(y), K̄(y) depend only on the observed trajectory ys, s ≤ t.

Proof. We start with the proof of the first inequality in (34). Using the stochastic integration

by parts formula and the fact that Xn = [fn, rn, ψn] is bounded together with the coefficients

12



F
(i)
t (·), G(i)

t (·) (i = 1, 2, 3), we have

E0
{
z2
t | Fy

t

}
= E0

{
exp

[
2
ε̂2

∫ t

0

fsdys − 1
ε̂2

∫ t

0

f2
s ds

]
| Fy

t

}

≤ E0

{
exp

[
2
ε̂2
ftyt − 2

ε̂2

∫ t

0

ysdfs

]
| Fy

t

}

≤ K(y)E0

{
exp

[
− 2
ε̂2

∫ t

0

ysF
(1)
s (Xs)ds− 2

ε̂2

∫ t

0

ysG
(1)
s (Xs)dws

]
| Fy

t

}

≤ K̄(y)E0

{
exp

[∫ t

0

Hs(y)dws − 1
2

∫ t

0

H2
s (y)ds

]
exp

[
1
2

∫ t

0

H2
s (y)ds

]}
≤ K̃(y)

(36)

for appropriate constants K(y), K̄(y), K̃(y) and an adapted bounded process Hs(y) that

depends on the observed trajectory of y (recall that, under P 0, the processes Xt and yt are

independent).

Coming to the second inequality in (34) and recalling that the values of fNn are bounded,

we have, for t = n∆ and with ∆yi+1 := y(i+1)∆ − yi∆,

E0
{
(zNt )2 | Fy

t

}
= E0

{
exp

[
2
ε̂2

n−1∑
i=0

fNi ∆yi+1 − 1
ε̂2

n−1∑
i=0

(fNi )2∆

]
| Fy

t

}

≤ E0

{
exp

[
2
ε̂2

n−1∑
i=0

fNi ∆yi+1

]
| Fy

t

}
≤ K(y)

(37)

Next we come to (35). Using |ex − ey| ≤ |x− y| |ex + ey| and (34) we obtain

E0
{| zt − zNt | | Fy

t

} ≤ K(y)
[
E0

{(
|
∫ t

0

(
fs − fNs

)
dys |2

+ 1
4 |
∫ t

0

(
f2
s − (fNs )2

)
ds | 2

)
| Fy

t

}]1/2 (38)

By Proposition 3.1 , the fact that without loss of generality we may assume ∆ < 1, and the

independence, under P 0, of the processes Xt and yt, it suffices to show that

E0

{
|
∫ t

0

(
fs − fNs

)
dys |2 | Fy

t

}
≤ K̄(y)∆ (39)

For this purpose, putting ∆yi+1 = y(i+1)∆ − yi∆, we use the stochastic integration by parts

formula as well as the fact that

fnyn∆ =
n−1∑
i=0

fi+1∆yi+1 +
n−1∑
i=0

yi∆fi+1 (40)

13



together with y0 = 0 to obtain, for t = n∆ , (n = t/∆),

|
∫ n∆

0

(
fs − fNs

)
dys |2 = | yn∆fn∆ −

∫ n∆

0

ysdfs −
n−1∑
i=0

fi∆yi+1 |2

= | yn∆fn∆ −
∫ n∆

0

ysdfs −
n−1∑
i=0

fi+1∆yi+1 +
n−1∑
i=0

∆fi+1∆yi+1 | 2

≤ K | yn∆(fn∆ − fn) | 2 +K |
n−1∑
i=0

(
yi+1∆fi+1 −

∫ (i+1)∆

i∆

ysdfs

)
| 2

≤ K1(y) (fn∆ − fn)
2 +K1 |

n−1∑
i=0

(
yi+1∆fi+1 −

∫ (i+1)∆

i∆

yi+1dfs

)
| 2

+K2 |
n−1∑
i=0

∫ (i+1)∆

i∆

(yi+1 − ys) dfs | 2 = I + II + III

(41)

To obtain (39) it suffices now to show that a similar relation holds when replacing the

| ∫ t
0

(
fs − fNs

)
dys | 2 there by the expressions corresponding to I, II, and III respectively.

By Proposition 3.1 the expression corresponding to I is immediately seen to be bounded

by K̄1(y)∆ for a suitable K1(y).

For the expression corresponding to II we have

E0


|

t/∆−1∑
i=0

(
yi+1∆fi+1 −

∫ (i+1)∆

i∆

yi+1dfs

)
| 2 | Fy

t




= E0



t/∆−1∑
i=0

yi+1

[
F

(1)
i (Xi)∆ +G

(1)
i (Xi)∆wi

−
∫ (i+1)∆

i∆

F (1)
s (Xs)ds−

∫ (i+1)∆

i∆

G(1)
s (Xs)dws

]
| Fy

t

}2

≤ 2E0



t/∆−1∑
i=0

yi+1

(∫ (i+1)∆

i∆

(
F

(1)
i (Xi) − F (1)

s (Xs)
)
ds

)
| Fy

t




2

+2E0



t/∆−1∑
i=0

yi+1

(∫ (i+1)∆

i∆

(
G

(1)
i (Xi) −G(1)

s (Xs)
)
dws

)
| Fy

t




2

≤ 2 maxi,j |yi · yj |E0



t/∆−1∑
i=0

(∫ (i+1)∆

i∆

LF (∆ + ‖Xi −Xs‖) ds
)2

+
t/∆−1∑
i,j=0

(∫ (i+1)∆

i∆

LF (∆ + ‖Xi −Xs‖) ds
)

·
(∫ (j+1)∆

j∆

LF (∆ + ‖Xj −Xs‖) ds
)

+
t/∆−1∑
i=0

(∫ (i+1)∆

i∆

L2
G (∆ + ‖Xi −Xs‖)2 ds

)


(42)

where we have used the fact that, under P 0, the processes Xt and yt are independent so

that conditioning on Fy
t is equivalent to fixing a trajectory of y. Furthermore, we have

used the global (also with respect to the time variable) Lipschitzianity of F (1)
t (·) and G(1)

t (·)
(Lipschitz constants LF and LG respectively) and for the rightmost part we computed the
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expectation of the conditional expectation exploiting the property that

E0

{∫ (i+1)∆

i∆

(
G

(1)
i (Xi) −G(1)

s (Xs)
)
dws | Fi∆

}
= 0 and that

E0



(∫ (i+1)∆

i∆

(
G

(1)
i (Xi) −G(1)

s (Xs)
)
dws

)2



=
∫ (i+1)∆

i∆

E0

{(
G

(1)
i (Xi) −G(1)

s (Xs)
)2
}
ds

Notice next that, for s ∈ [i∆, (i+ 1)∆) we have XN
s = Xi so that ‖Xi −Xs‖ = ‖XN

s −Xs‖
and therefore, by Proposition 3.1 , E0 {‖Xi −Xs‖} ≤ K

√
∆, E0

{‖Xi −Xs‖2
} ≤ K∆.

Assuming without loss of generality that ∆ < 1, we can then continue the above relation

(42) to become

expression II ≤ K(y)
[
L2
F

(
∆2 + 2∆5/2 + ∆3

)
+ L2

F

(
∆2 + 2∆5/2 + ∆3

)

+L2
G

(
∆ + 2∆3/2 + ∆2

)] ≤ K̄(y) · ∆
(43)

for suitable K(y), K̄(y) depending on the observed trajectory of y.

Finally, for the expression corresponding to III we have

E0

{
|
n−1∑
i=0

∫ (i+1)∆

i∆

(yi+1 − ys) dfs |2 | Fy
t

}

= E0

{
|
n−1∑
i=0

∫ (i+1)∆

i∆

(yi+1 − ys)
[
F (1)
s (Xs)ds−G(1)

s (Xs)dws
]
| 2 | Fy

t

}

≤ 2E0



(
n−1∑
i=0

∫ (i+1)∆

i∆

|yi+1 − ys| | F (1)
s (Xs) | ds

)2

| Fy
t




+2E0



(
n−1∑
i=0

∫ (i+1)∆

i∆

(yi+1 − ys)G(1)
s (Xs)dws

)2

| Fy
t




≤ K̃∆
[
T ||F (1)||2 + T ||G(1)||2] ≤ K̄ · ∆

(44)

where we have used assumption A.1 and the boundedness of F (1)(·) and G(1)(·) (norms

||F (1)|| and ||G(1)||).

Theorem 3.3 For each n = 0, 1, ..., N , for t = n∆, for each observed trajectory ys, s ≤ t

satisfying A.1 and for each value of θ

∣∣Vt (Γθ; y) − V Nt (Γθ; y)
∣∣ ≤ K1(y)∆

1
2 . (45)

where K1(y) depends only on the observed trajectory ys, s ≤ t.

Proof. We have∣∣Vt (Γθ; y) − V Nt (Γθ; y)
∣∣ ≤ E0

{∣∣Γθ(Xt)zt − Γθ(XN
t )zNt

∣∣ |Fy
t

}
≤ E0

{
zt
∣∣Γθ(Xt) − Γθ(XN

t )
∣∣ |Fy

t

}
+ E0

{∣∣Γθ(XN
t )
∣∣ ∣∣zt − zNt

∣∣ |Fy
t

} (46)
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Applying Hölder’s inequality and the fact that Γθ(·) is, uniformly in θ (recall that θ takes a

finite number of values) Lipschitz (with L−constant Γ̂) and bounded (by Γ̃), (46) is majorized

by (
E0
{
z2
t |Fy

t

}) 1
2 Γ̂
(
E0
∥∥Xt −XN

t

∥∥2
) 1

2
+ Γ̃E0

{∣∣zt − zNt
∣∣ |Fy

t

}
. (47)

By Lemma 3.2 and Proposition 3.1 we then obtain the thesis.

Remark 3.4 Theorem 3.3 implies convergence of the filter for each observed trajectory.

This is a stronger form of convergence than those in the traditional filtering literature (see

e.g.[19]), where convergence is obtained in the mean with respect to y.

Consider next the sequence of nonnegative measures qn(B; yn), where B denotes the

generic Borel subset of X and yn = (y∆
1 , · · · , y∆

n ) with y∆
n := yn∆ − y(n−1)∆, and that are

recursively defined by

q0 (B) := p0 (B)

qn+1

(
B; yn+1

)
:=
∫
B

∫
X

exp
[

1
ε̂2
fny

∆
n+1 −

1
2ε̂2

f2
n∆
]
P (Xn+1 |Xn ) dqn (Xn; yn) dXn+1

(48)

where p0 is the initial distribution and fn corresponds to X(1)
n , which is also the same as fNt

in (26) and (30).

Proposition 3.5 For any bounded function Ψ we have

E0
[
Ψ (Xn) zNT |Fy

n∆

]
=
∫
X

Ψ (X) dqn (X; yn) . (49)

For a proof see e.g. [1].

Applying this proposition we immediately obtain (writing V Nn for the V Nn∆ (31))

V Nn (Γθ; y) =
∫
X

Γθ (X) dqn (X; yn) (50)

for n = 0, 1, ..., N and this also implies that, when computing V Nn (Γθ; y), we do not lose

information by considering only yn instead of the entire filtration Fy
n∆.

Using (50) and (27) it is easily seen that the measures qn(B; yn) can be given the inter-

pretation of unnormalized conditional distributions. To determine the time discretized filter

it suffices thus to compute the recursions (48). This is still an infinite-dimensional problem

and so further approximations are needed, specifically discretizations in the spatial variable

(quantization). This can be done in a variety of ways, for which we refer e.g. to [1],[12],

[17], [18], [20],[22], [23]. In particular, for problems that are already reduced to discrete

time, in [20],[22], [23] a specific methodology is described to arrive at a finite-dimensional

approximating filter. Alternatively, always for problems already in discrete time, one could

also use the recent so-called “particle approach” to nonlinear filtering, that is based on a

simulation methodology (see e.g.[11]).
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4 Conclusion

We have considered a version of the Heath-Jarrow-Morton model with a volatility depending

on time-to-maturity, the instantaneous spot rate and one fixed maturity forward rate. We

have seen how estimation of this model may be set up as a non-linear filtering problem under

the historical measure. We have proposed a framework in which a recursive (Bayesian-type)

filtering algorithm may be developed.

We have provided convergence results that demonstrate the consistency of the discretized

filtering model with the original continuous time counterpart.

Future research needs to focus on actual implementation of the filtering framework pro-

posed here. Results of [3] using a recursive (Bayesian) filtering algorithm for estimation

in a model of the instantaneous spot rate of interest indicate the feasibility of this general

approach.
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