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Abstract.

This paper introduces a new estimation technique for discretely
observed diffusion processes. Transform functions are applied to
transform the data to obtain good and easily calculated estima-
tors of both the drift and diffusion coefficients. Consistency and
asymptotic normality of the resulting estimators is investigated.
Power transforms are used to estimate the parameters of affine
diffusions, for which explicit estimators are obtained.
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1 Introduction

There exists a rich literature on the parameter estimation for diffusion processes.
Estimation of continuously observed diffusions is well studied, see, for instance,
Kutoyants (1984), Prakasa Rao (1999) or Liptser & Shiryaev (2001). When the
diffusion process is observed continuously, mazimum likelihood estimation results
in estimators that are consistent, asymptotically normal and efficient.

However, in practice it is usually only possible to observe the diffusion process
at discrete time points. Inference for discretely observed diffusions can be based,
for instance, on an approximation to the likelihood function. If the transition
densities of the diffusion are known explicitly, then the likelihood function can be
used to estimate the parameters. For the resulting maximum likelihood estima-
tors the properties of consistency and asymptotic normality have been studied
in Dacunha-Castelle & Florens-Zmirou (1986). When the transition densities are
unknown, a possible approach is to approximate the log-likelihood function based
on continuous observations. This technique has the problem that the estimators
that result are inconsistent if the time between observations is fixed, see Florens-
Zmirou (1989). This problem can be solved by suitable modifications, see Bibby
& Sgrensen (1995) and H. Sgrensen (2001). If the time between observations
is sufficiently small, this method works for drift parameters, see Kloeden et al.
(1996).

In lieu of this, there has been a great deal of research into alternative methods
for the estimation of discretely observed diffusions, many of which are reviewed
in Prakasa Rao (1999). One main strand of research has been to develop approx-
imations to the transition density and hence to the likelihood function. Peder-
sen (1995) and Brandt & Santa-Clara (2001) independently derived a simulation
based method for approximating the likelihood function. A sequence of approx-
imating transition densities is constructed that converges to the true transition
density. Based on these transition densities a sequence of likelihood functions is
used to approximate the true likelihood. Elerain, Chib & Shepard (2001) and Er-
aker (2001) also developed a simulation based estimation method using a Bayesian
Markov Chain Monte Carlo (MCMC) technique. Poulsen (1999) discussed an ap-
proximate maximum likelihood technique, which involves solving the Kolmogorov
forward equation, see Karatzas & Shreve (1991), to obtain approximations to the
transition densities and hence the likelihood function. Ait-Sahalia (2002) used an
approximation to the likelihood function based on Hermitian expansions to esti-
mate the transition density. Jensen & Poulsen (1999) compared a large number
of techniques used to approximate transition densities. The techniques they con-
sidered included simulation-based methods, binomial approximations, numerical
solutions of the Kolmogorov forward equation and Hermitian expansions. Their
results indicate that the Hermitian expansion technique of Ait-Sahalia (2002)
performs best when speed and efficiency considerations are included.

An alternative approach is to use estimating functions, which are functions of both



the parameter and the observed data, to derive the estimators. Bibby & Sgrensen
(1995) studied martingale estimating functions obtained from the derivative of
the continuous time log-likelihood function by correcting for the discretization
bias by subtracting its compensator. The resulting estimating function, known
as a linear martingale estimating function, depends on the conditional moments
of the diffusion process. Quadratic martingale estimating functions involving
also second order conditional moments were obtained from a Gaussian approx-
imation to the likelihood function by Bibby & Sgrensen (1996), while Kessler
& Sgrensen (1999) considered estimating functions based on eigenfunctions, for
which the conditional moments are explicit. Sgrensen (2000) considered more
general estimating functions, known as prediction-based estimating functions,
where conditional moments are approximated by expressions involving only un-
conditional moments. This type of estimating function is a useful alternative to
martingale estimating functions when the observed process is non-Markovian, as
in stochastic volatility models, for example. Christensen, Poulsen & Sgrensen
(2001) compared optimal martingale estimating functions and the approximate
maximum likelihood method mentioned earlier for the estimation of the parame-
ters in a model of the short rate to techniques such as the generalized method of
moments, see Hansen (1982), and indirect inference, see Gouriéroux, Monfort &
Renault (1993) and Gallant & Tauchen (1996). It was found that optimal mar-
tingale estimating functions and the approximate maximum likelihood method
reduce bias, true standard errors and bias in estimated standard errors when
compared to the aforementioned techniques. As discussed in Heyde (1997), it
can be more advantageous to work with estimating functions than the estimators
themselves. Reasons for this include that estimating functions are invariant un-
der one-to-one transforms of the data and these functions can be combined more
simply than the estimators themselves. For example, in Bibby (1994) martingale
estimating functions are combined to estimate parameters in both the drift and
the diffusion coeflicient. Surveys of recent results on estimating function the-
ory are given in Heyde (1997), Sgrensen (1997) and Bibby, Jacobsen & Sgrensen
(2003).

In a number of papers, for example Dorogovcev (1976), Prakasa Rao (1988),
Florens-Zmirou (1989) and Kessler (1997), contrast functions based on approxi-
mations to the conditional moments have been proposed to estimate parameters
in diffusion models. The approach in the present paper is somewhere between
this method and that of martingale estimating functions, but firmly based on the
foundations of estimating function theory.

Our objective is to obtain a simple yet general estimation method, which pro-
vides more flexibility in the estimation of discretely observed diffusion processes
via the use of transform functions. Unlike some of the aforementioned techniques,
particular information about the conditional and unconditional moments of the
diffusion process are not needed. Section 2 introduces the transform function
method. Section 3 discusses the asymptotics of the resulting estimators. Sec-



tion 4 reviews results about affine diffusions and Section 5 applies the technique
using a power transform function. An illustration of the methodology is given in
Section 6.

2 Transform Function for a Diffusion Process

Consider a class of one-dimensional diffusion processes defined by the following
stochastic differential equation (SDE)

for t > 0. The initial value X, = xz; is assumed to be Ajy-measurable. Here
W denotes a standard Wiener process given on the filtered probability space
(2, A, A, Py), where the filtration A = (A;):>o satisfies appropriate conditions,
see Karatzas & Shreve (1991) or Jacod & Shiryaev (2003). We assume that the
SDE (2.1) has a unique solution for all parameter values # in a given open subset
© CRr,pe {1,2,...}, see Kloeden & Platen (1999). The drift and diffusion
coefficient functions b(-,-;6) : [0,00) X R — R and o(:,+;6) : [0,00) x R = R,
respectively, are assumed to be known with the exception of the parameter vector
0= (',...,0°)" € ©. Throughout A" denotes transposition of A.

It is our aim to estimate the unknown parameter vector 6 from observations
of the diffusion process X = {X;,¢ > 0}. For simplicity, an equidistant time
discretization with observation times 7, where 0 =19 < 7y < ... < 7, < Tyq1 <

.., is assumed to be such that the time step size A = 7,, — 7,,—1 € (0,1). For
t > 0 we introduce the integer n; as the largest integer n for which 7,, does not
exceed t, that is

ne = max{n € {0,1,...} : 7 < £} = [ﬂ (2.2)

where [z] denotes the integer part of the real number z.

To provide sufficient flexibility for our estimation approach we consider, at the
observation times 7y, 71, 7, . . ., the original data

Kooy Xyy Xrgy e - - (2.3)
and the transformed data
U(Toy Xro; Xi), U1, X Ai), U2, Xy Ai),y - - - (2.4)

fori € {1,2,...,p}. Here U(-,;+) : [0,00) X R X A = R is a smooth real valued
function with respect to ¢ € [0,00) and z € R, where A C R

The function U(-,-; ;) for i € {1,2,...,p}, is called the ith transform function,
and is used to transform the data in a manner that allows us to obtain good
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estimates of the unknown parameters. In principle, for each i € {1,2,... ,p}, a
different function could be used to estimate the parameters. For fixed \; € A we
obtain, by the It6 formula, the following SDE for the transformed data

dU(t, Xg; M) = LYU(t, Xg; i) dt + LU (t, X3 A;)dW; (2.5)

for ¢ € [0,00). Here we have used the operators

2

9] 9] 1 9]
Lju(t,z) = (au(t, z) + b(t, z; 0)£u(t, z)+ 502(15, z; 0)@u(t, x)) (2.6)

and

Lyu(t,z) = o(t, x; G)aa—xu(t, ). (2.7)

For n € {1,2,...}, 4 € {1,2,...,p} and \; € A we introduce the normalized
difference

1
Dy = ————(U(Tn, Xr5 Mi) = U(Tno1, Xr 5 M) (2.8)

Tn — Tn—1
and the normalized squared increment

1
Q)\i,n,A = 7([](7—”7 XTn; )‘Z) - U(Tn—h 'XTn—l; )‘Z))2 (29)

Tn — Tn-1

By a truncated Wagner-Platen expansion, see Kloeden & Platen (1999), the in-
crement of U in (2.8) and (2.9) can be expressed in terms of multiple stochastic
integrals. Thus, we obtain

U(TTH XTn7 )\Z) - U(Tn—h XTn_l; )\Z)
= LéU(Tn—ly X'Tn_l; )\Z)(WTn - WTn_l) + LgU(Tn—ly X'Tn_l; )\z)(Tn - Tn—l)

1
+ LéLéU(Tn—lv D, G AZ)E((WTn - WTn—1)2 - (Tn - Tn—l))

_ 2
+ LngU(Tn—lv X'Tn—l; )\z) w

+L5L2U(Tn_1,XTn_l;)\i)/ / dzdW;

Tn—1 Y Tn—1

+ LYLyU (To1, X3 Ni) / / dW,ds
Tn—1 ¥ Tn—1

+ RAi,n,e(TnaTn—laXTn)a (2.10)

where R, 5.0(Tn, Tn—1, Xr,) is the corresponding remainder term, as follows from
Kloeden & Platen (1999). The expansion (2.10) can also be obtained by applica-
tion of the Itd formula to U and then repeated to L)U and LyU. The first term
in (2.10) has mean zero and is the leading term of the expansion. Note that the
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third, fifth and sixth terms also have mean zero but are of a higher order than
the first term. In (2.10) the order of the first term is v/A, that of the second and
third term is A and that of the fourth term is A%, The order of the fifth and
sixth term is A2. The remainder term has mean and variance of order A3

Using (2.8) and (2.9) we can construct estimating functions exploiting the struc-
ture of the first and second term of the above increment (2.10). To do this define

Fo(0) = (FV(0)T, B2(0)T)T with EO(0)T = (F(0),..., F9)), j € {1,2}
where F{})(0) = Dx,na — L3U(Tae1, Xru_i3 M), 0 € {1,2,... ,q} and F2(0) =
Qaina — (LpU (To-1, Xr_13 20))% 1 € {1,2, ... ,q} for 0 € © and suitably chosen
values of \; € A, i € {1,2,...,¢}. It is not necessary that the number of A;’s is
the same for F,Sl)(ﬁ) and F,?)(G) and they need not have the same value for the

two functions. This assumption simplifies the exposition.

A class of estimating functions is then given by

K(0,t,A) ZM (2.11)

where the p x 2¢ matrix valued function M(0) = M (0, 7n—1,X+,_,,A) is free to
be chosen appropriately. Throughout the paper the dependence of a weighting
matrix and its elements on 7,,_1, X, _, and A will be suppressed. The estimating
function K(fy,t,A), where 6y is taken to be the true parameter value, has ex-
pectation of order A. Thus, when the observation interval A is sufficiently small,
the expectation of K(6y,t,A) is approximately zero. Essentially, the approach
adopted here is to approximate the conditional moments of the transformed dif-
fusion process using the expansion in (2.10). This is similar to the approach in
Kessler (1997), where closed form approximations for the first two conditional
moments are derived and used to construct a contrast estimator for parameters

in the drift and diffusion functions.

The estimating function (2.11) is slightly biased. To determine the optimal
weighting matrix M*(6), we consider the unbiased estimating function K°(,t, A)
obtained by compensating K (6, t, A) such that

°(6,1,A) ZM — F,(6)). (2.12)

Here F,(0) = Ep(F,(0)|X,,_,) is the compensator for F,(f) and is of order A.
The optimal choice for the weighting matrix M () in the unbiased estimating
equation (2.12), in the sense of Godambe & Heyde (1987), can be derived using
the method outlined in Heyde (1997). For details regarding the case of diffusion
processes, see Sgrensen (1997), where the optimal weighting matrix is given by

M*(0) = B*(0) V*(6) (2.13)
where V*(#) is the 2¢ x 2¢ conditional covariance matrix

V*(e) = V*(ev Tn—1, Xrn_1) = E0 ((Fn(e) - Fn(e))(Fn(e) - Fn(e))—r‘ X’Tn—l)
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and B*(9) = (B*V(0), B*®(0)) with B*®)(¢), k € {1,2}, denoting the p x ¢
matrix where the (4, j)th entry is

I,

)
B®0) = B*® (9,7, 1, X, )i E0<am[

F5(6) - 75 6)] \ X..).

The values of the A;’s should be chosen in such a way that the conditional covari-
ance matrix V*(6) is invertible.

Keeping only the leading terms, we obtain

A) M(# :
K(8,t, 7%§: (2.14)

where M(0) = B(0)V(0)~'. Here B() = (B (6), B?(#)), where the (,7)th
entry of the p x ¢ matrices BY(9) and B®(9) are

BW(6);, = 20 LYyU(Tn-1,Xr,_1; Aj) (2.15)
and
(2) 0 1 2
BZ(0)is = 54 (LU (Tn—1, X7, 13 A5)) (2.16)

respectively. Moreover,

_ [ VIHe) V)
V(e) - { V21(0) V22(0) }7

where the (4, j)th entry of the ¢ x ¢ matrices V! (6), V#2(9) and V'2(9) are

Vu(e) = LeU(Tn—lv KXot )\i)LéU(Tn—la KXot )‘j)7 (2-17)

2

V22(0)i,j =2 [LéU(Tn—leTn_ﬁ )\i)LéU(Tn—laXTn—ﬁ )‘j)] ) (2-18)
and

Vu(e)i,j = 2L(§U(7—n—17 'XTn—l; )\i)LéU(Tn—la 'XTn—l; )‘j)LgU(Tn—la 'XTn—l; )‘j)
+ LYLU (Taet, X3 A) [LAU (Tats X3 )] (2.19)

while V21(8) = (V'2(9))T.

The weighting matrix M(0) in (2.14) is optimal in what is referred to as the fixed
sample sense, see Godambe & Heyde (1987) and Heyde (1997). This means, the
weighting matrix results in an estimating function (2.14), that is, to the order of
approximation used, closest within the class of estimating functions of the form
(2.11) to the corresponding, usually unknown, score function. In this sense, this
gives the most efficient estimator for a fixed number of observations within the
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class of estimators considered. Under appropriate assumptions, for example, if
the diffusion process is ergodic, it can be proved that a fixed sample optimal
martingale estimating function is also asymptotically optimal, see Heyde (1997).
Asymptotic optimality results in an estimator that has the smallest asymptotic
confidence intervals within the class of estimators considered. The estimating
functions proposed in this paper are approximations of martingale estimating
functions to the order A.

For given transform functions U, with parameters A\; € A, 7 € {1,...,q}, we have
now obtained a p-dimensional estimating equation

K(0,t,A) =0

for ¢t > 7, see (2.14). Assuming that the resulting system of p equations
has a unique solution, we obtain for the particular SDE (2.1) an estimator
§ = (01 .,07)T for the parameter vector §. Note that the vector of estima-
tors, 6, depends on t, A, Ai,..., Ay, and the observed data. Appropriate values
of \; for i € {1,2,...,p} can be found by exploiting asymptotic properties of the
estimating functions as described in the next section. The choice of the A; for
i € {1,2,...,p} determines the resulting system of equations.

A simpler, although less efficient, estimation procedure can be used when the
parameter # can be written as § = («, ). Here it is assumed that the p;-
dimensional parameter « appears only in the drift coefficient, while the diffusion
coeflicient depends only on the py-dimensional parameter 3. In this case we first
estimate 8 by solving H(3,t,A) = 0, where

H(B,t,A) = ZB B)VE(B)LEP(B) (2.20)

with the p, x ¢ matrix B® () given by

9
)oK
and V**(8) = V**(6) given by (2.18). Note that H(B,t, A) does not depend on

. Next estimate o by solving G(&, §,t,A) = 0, where 3 is the estimator of 3
previously obtained, and

BP(B)ij = = (LU (Tne1, Xru i A1) (2.21)

Gla, ,t,A) = ZB (a, B)V" (a, ) F) (ax, B) (2.22)

with the p; x ¢ matrix BM(q, 3) given by

D, B)i; = a LOU(Tn_l,XTn_I;)\j). (2.23)



and V'!(e, B) = V''(6) given by (2.17). The estimating functions G(c, 8,t, A)
and H(B,t,A) are, to the order of approximation used, optimal within the classes

G(a, B,t,A) = ZM (o, B) F, (a7ﬂ)
and
1
H(B,t,A) = ntZM (B)

for estimating o« and (3, respectively. The optimal martingale estimating function
for the form (2.12) is the optimal combination of the optimal martingale estimat-
ing functions to which (2.20) and (2.22) are approximations, see Heyde (1997)
and Bibby (1994).

3 Asymptotics

The proposed transform function method is designed to encompass both station-
ary and nonstationary diffusion processes. Despite this, it is advantageous to
analyze the asymptotic behaviour and bias of the parameter estimates for some
given class of real valued diffusion processes. We assume in this section that
X is ergodic and described by the SDE (2.1) with time homogeneous coefficient
functions

b(t, z;0) = b(x,0) (3.1)
and
o(t,z;0) = o(z;0) (3.2)

fort > 0,z € Rand # € ©. We use as state space the interval (¢,7) where
—o00 < 4 < r < oo. For given parameter vector § € O, the density of the scale
measure s : (£,7) — [0,00) is given by the expression

5(z:0) = exp (-2 /y :2%90)) dy) (3.3)

for z € (£, r) with some reference value y, € (¢,r). If the following two conditions

/y: s(z; 0)ds = /eyo s(z; 0)ds = o0 (3.4)

T 1
/e —s(:v; 502z 0) dr < oo (3.5)

and



are satisfied, then it is well known that X is ergodic with stationary density

#(z,0) = %exp (2 /y %w) (3.6)

for x € (¢,7) and § € ©. The constant C(#) results from the normalization
condition

/e (2, 0)dz = 1. (3.7)

To prove the existence, consistency and asymptotic normality of the estimators
we introduce the following conditions and notation where, essentially, we follow
Sgrensen (1999). We denote by 6 the true parameter value, where 6, is an
interior point of ©. The true probability measure is denoted by F,,. Further, let
p(A, z,y;6) be the true transition density of the observed diffusion process X
for a transition from x to y over a time period of length A > 0. Throughout the
remainder of this section we take A to be fixed. We consider estimating functions
of the form

1 &
Gi(6) = - ;g(A, X015 Xr30), (3.8)
for t > 0 and where G; and ¢ = (g1, 92,--- ,9p) ' are p-dimensional. Furthermore,

we assume that X is stationary and impose the condition that X is geometrically
c~-mixing. For a definition of this concept, see, for instance, Doukhan (1994).
For a given one-dimensional, ergodic diffusion process X there are a number of
relatively simple criteria ensuring a-mixing with exponentially decreasing mixing
coefficients. We cite the following straightforward and rather weak set of con-
ditions used in Genon-Catalot, Jeantheau & Laredo (2000) on the coefficients b
and o that are sufficient to ensure geometric a-mixing of X.

Condition 3.1

(i) The function b is continuously differentiable and o is twice continuously
differentiable with respect to x € (L,r), a(z;6y) > 0 for all x € (L,71),
and there ezists a constant K > 0 such that |b(z;6)| < K(1 + |z|) and
0?(z;0p) < K(1+2?) for all z € (¢,7).

(it) o(z;00)p(x,00) = 0 asz Ll andx T r.

(iii) m has a finite limit as v | £ and z T r, where

Y(;60) = Op0(z;60) — — 1~
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Each pair of neighboring observations (X, _,, X, ) has the joint probability den-
sity
ais (2, y) = B(; 00)p(A, 2, y; 6o)

on (£,7)%. For a function f : (¢,7)> — R, where we assume that the following
integral exists, we introduce the functional

qé‘o(f)=/e /e f(@,y)p(A, z,y;00)p(z; 0o)dy da.

For our purposes, we cannot assume that the estimating function in (3.8) is
unbiased. Instead we make the following assumption.

Condition 3.2  There exists a unique parameter value 8 that is an interior
point of © such that

quo (g(A,G)) =0.

We can now impose our conditions on the estimating function (3.8), see Barndorft-
Nielsen & Sgrensen (1994) and Sgrensen (1999).

Condition 3.3
(i) The function ¢;(A, z,y;-) : © = R is twice continuously differentiable with
respect to 0 € © for all z,y € ({,7), and i € {1,2,...,p}.

(ii) The function g;(A,-,+0) : (€,r) x ({,r) — R is such that there exists a
6 > 0 with g (gi(A,0)*™°) < oo for all§ € © and i € {1,2,...,p}.

(iii) For the partial derivatives %gi(A,x,y; 6) and %gi(A,x,y; 6), i,5,k €
{1,2,...,p}, there exists for every 68* € O a neighborhood N (6*) C © of
6* and a non-negative random variable L(0*) with Eg (L(6*)) < oo such
that |559i(A, z,y;0)| < L(6*) and |%gi(A,x,y; 8)| < L(#*) for all § €
N(0*), (z,y) € (£,7)%, and 4,5,k € {1,2,...,p}.

(iv) The p X p matriz

A(6,0) = {qé (%gi@’ k ';§)> }p

i,j=1

18 tnvertible.

Theorem 3.4 Suppose Conditions 3.2 and 3.3 are satisfied. Then for every t >
A, there exists an estimator 6y, that solves the estimating equation Gy(6,,) = 0
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with a probability tending to one as ny — oo. Moreover, we have the limit in
Py, -probability

. Py =
lim 6,, =6
Ng— 00

and under Py, the limit in distribution

lim +/ne(0n, — 0) £ R,

NE— 00

where
R~ N (0, A(fo,8) " v(80, 8) (A(6,6) ™))

is a p-dimensional, zero mean Gaussian distributed random variable with covari-
ance matriz A(6y, 0)"1v(0y, 0)(A(0y,0)"1) T, where

v(00,0) = qpl9(A,0)g(A,0)7) (3.9)
+ Z{E,,o( (A, Xrgy Xry30)9(A, Xy Xy 11 0)7)

+ Egy (9(A, Xrp, Xopy 13 0)9(A, X, X5 0)7) b

Th+1?

Under the conditions imposed, the covariances in the infinite sum in (3.9) tend to
zero exponentially fast as kK — oo, so the sum converges quickly and can usually
be well approximated by a finite sum with relatively few terms.

The theorem can be proved in complete analogy with the proof of Theorem 3.6
in Sgrensen (1999). The only difference is that the martingale limit theory used
in that paper must be replaced by results for a-mixing processes because the
estimating functions considered here are not martingales. Let us briefly outline
the necessary limit results. By the ergodic theorem one has

- . a.:s. A
n11—1>noo nt Zg Tn 17 Tn’ 0) qao (g(A, 0)) (3'10)

Note from Condition 3.2 the limit is zero for 8 = 8.

Under the conditions imposed, we have the following central limit theorem:

lim X, X, 0 LF (3.11)

nt—00 4 /T Z g
under P, where

F ~ N(0,v(6,,8))
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denotes a p-dimensional Gaussian random variable with mean zero and covariance
matrix v(6y, f) given by (3.9), provided that the matrix v(6y, §) is strictly positive
definite. This follows from Theorem 1 in Section 1.5 of Doukhan (1994) by
application of the Cramér-Wold device. The condition that X is geometrically
o-mixing is actually stronger than what is needed for the central limit theorem to
hold. Minimal, but more technical, conditions can be found in Doukhan, Massart

& Rio (1994).

It is clearly desirable to use estimating functions for which @ is close to the true
parameter value . Let us discuss this for the estimating function G given by
(2.22). In this case it follows from (2.10) that the leading term in an expansion
in powers of A of g (g(A,#)), from Condition 3.2, is 3Am(6,,6), where

mi(6,9) = Eay (B (0, B) Vi (0 ) LHLGU (71, Xr 3 N)) - (312)

We could choose the transform function U and the value of \; to make m;(6p, 6) as
small as possible in an attempt to minimize the bias of the estimating function.
However, we can expect to achieve a good approximation to # by solving the
equation m(fy, #) = 0 with respect to §. By an expansion of m in # around 6,
we find that

= 3m(90, 00) -1

Here W denotes the p x p-matrix, where the (¢,7)th entry is W. To
reduce the distance between 6 and 6, it therefore seems appropriate to choose
the transform function U and the values of A,..., A, in a way that makes the
right-hand side of (3.13) as small as possible. The estimating functions H and K
can be treated in a similar manner, however, the resulting expressions for m (6, 6)

are more complicated.

A different asymptotic scenario could have been considered, namely that A goes
to zero sufficiently fast as n, tends to infinity, see, for instance, Prakasa Rao (1988)
and Kessler (1997). In such a scenario the estimators proposed here would be
consistent. However, the kind of asymptotics studied in this section shows more
clearly the advantage of the transform function approach.

4 Affine Diffusions

We now introduce a specific class of affine diffusions that will aid us in highlight-
ing the features of the methodology proposed above. Consider the affine SDE for
the shifted square root process

dXt == (01 + 02Xt)dt + V 03 + 04Xtth (41)
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for ¢t > 0, where the drift function b(t,z; ) = ' + 02z is affine, as is the squared
diffusion coefficient function o2(¢, z; §) = #*+60*z. In the following, the parameter
vector = (0',6%,6%,0)T € R* shall be chosen such that the process X =
{X},t > 0} is ergodic. This happens when either

'=0, 6*<0 and >0 (4.2)
or
2 0%6°
9'>0, 6°<0 and P (01 - W) > 1. (4.3)

In the first case, the Ornstein-Uhlenbeck process, the process X lives on the whole
real line and the stationary distribution is Gaussian with mean —2—2 and variance
03

oy 1o the latter case the process X lives on the interval E = (yo,00) with

Yo = —Z—Z. The stationary density for such an ergodic affine diffusion is of the
form
2 01_ﬁ 2 01_ﬁ -1
(@ ()" ()T e (3 (24 5)) W)
plr) = .
L (7 (0" = %))

for x € E = (yo,00), where I'(-) denotes the Gamma function. In this case the
stationary mean is

oo ~ 01
/ zp(z)dr = — 5 (4.5)
Y0
and the stationary second moment has the form

o© 20" + 61)0' — 9362
/y *p(x)dr = —( 2(0)2)2 ) (4.6)
0

Note that the stationary density in (4.4) is a shifted Gamma distribution.

5 Power Transform Function

To illustrate the transform function method for affine diffusions we need to specify
a class of transform functions. Let us consider the power transform function,
which is one of the most tractable transforms. We set

Ult,z; \) = 2 (5.1)

for t € [0,00), z € E with A > 0. Setting o = (6',6%) and 3 = (63,6%) for
constant weighting functions

B(l)(a, BV, B) =1 (5.2)
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and

BEB)VE(8) " =1, (5:3)

we obtain from (2.20) and (2.22), the estimating functions

Hy(3,t,A) = nz (5.4)

with
F2(8) = (Quma — (LSU (a1, Xru_i; A))?)

for i € {3,4} and

(0,8, A) = ~ Z F)(a, (5.5)

where
F(a, 8) = (Dryma — LYU (a1, X _13 M)

for ¢ € {1,2}. For the affine diffusions we have by (2.6)

Tn—1

(5.6)

1
LoU(To—1, Xrp_ i3 M) = (0" + 0° X, _)AX)T + 5(03 +0' X, ) — 1) X2

and by (2.7)

LoU(To1, Xrp_ iy M) = NXDTN /03 + 04X, . (5.7)

We obtain from (2.9), (2.20), (5.4) and (5.7) the estimating function
Hy(8,t, ) = A3 (0) — P )PATTY - 0100740 (59)
for i € {3,4} for two different values A3, Ay > 0. Here we have used the notation

A = 23 (X ) (@ana) (Dasma)’ (5.9)

n
tnl

and A, = AR*°();), which refers to an equidistant time discretization of step
size A.

Similarly, we obtain from (2.8), (2.22), (5.5) and (5.6) the estimating function

Gi(a, B,t,A) = Ca(N;, 0%,0%) — 0PN ANT! — 020, AN (5.10)
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with

Ai( A — 1)

Ca(Xi, 0%, 0%) = AL () = =5

(PANT2 + 0 AN (5.11)

for i € {1,2} for two different values Ay, Ay > 0.

It follows from (2.10), properties of multiple stochastic integrals, and the existence
of all moments of positive order for X that

N —>00 ng—>00 Tt 1 A
n—

lim E(H;(8,t,A)) = lim E (izi[(LSU(Tn_l,XTn_I;Ai))%?

2 A%
2

+ LyU (Tt Xr_ 3 M) L LU (Tr— 1, X3 A)

+ (LéLéU(Tn—lv Xruli3 M)

AQ

2
AQ

+ LéU(Tn—h XTn_l; )\Z)LgLéU(Tn—h XTn_l; AZ)?] )

+ A%R(0,t, A N)

= A/ ((LSU(l,y; M)+ %(LéLéU(l,y; Ai))?
Yo

1

1
+ SLU(L ALV, ) o)
+ A%Ry(0,1,A, )). (5.12)

Here p(y) is given by (4.4), and R;(6,¢, A, N;), for j € {1,2} and i € {3,4} are
some finite functions. Similarly, we obtain

lim E(Gi(a, 8,1, A)) =A/°°

n:— 00
¢ Yo

1
(UL, 050) ) o)y + ATRA0,1,8,),
(5.13)

where R4(0,t,A, )\;), for i € {1,2} are finite functions.

Note that if the time between observations A tends to zero, then the expectation
of the functions H; and G; will approach zero. By setting the estimating functions
to zero we obtain the linear system of four estimating equations

0 =A%) — B3 ()2 AN Y _ g4(x)2 A% (5.14)
for i € {3,4} and
0= Ca(Xi, 03,04 — ' NANT! — 620, 4% (5.15)
for i € {1,2}.
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As discussed in a previous section, the values of \;, i € {1,2, 3,4} should ideally
be chosen such that the estimator bias is minimized. Here we will choose them
based on a more practical consideration. Intuitively, the values chosen for the
i, 1 € {1,2,3,4} should remain small, since large values of A; would result in
transform functions that produce unstable estimating functions with terms that
may increase rapidly over time. Furthermore, simple explicit solutions of the
system of equations (5.14) and (5.15) can be obtained by choosing small integer
values. A convenient choice is A\; = A3 = 1, Ay = Ay = 2. Using these values for
A for i € {1,2,3,4} we obtain the following four equations for the estimators,

61+ ALG® = Oa(1, 6, 6%
ALQY 4+ 4202 = %oA@, 3, 6%

0° + AL9* = A% (1)
AZ0° + A% 6" = EA&LO@)' (5.16)

This system has the explicit solution

' = Ca(1,6°,0") — AL
5 _ 1082 6%,6%) — ALCA(1,6%,6%
AR — (44)?
9° =AY (1) — AL 4"
i 14X (2) - AR AL (1)
A3 — AL A2

(5.17)

Here we have derived explicit expressions for the estimators of the given class of
affine diffusions using power transform functions. The illustrated transform func-
tion method can be extended to other classes of diffusions including nonergodic
and multi-dimensional diffusions. If no explicit solution of the system of estimat-
ing equations is available, then numerical solution techniques can be applied to
identify their solution.

6 Example

To illustrate the practical applicability of the proposed transform function method,
we consider an example for the above affine diffusion given in (4.1). Sample paths
of this process were simulated using two different simulation schemes. Firstly, a
Wagner-Platen order 1.5 strong scheme, see Kloeden & Platen (1999), was used.
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The scheme has the form

X,

=X+ (00 + 07X, A+ \/WAWTL
1 1

T SO0 + 0, AR O AWE — A) + 6%/ + 01X, AZ,
(04(01 + 02X7'n_1) _02

(AW, A — AZ,), (6.18)
2/ + 04X, . 8 /P +0'X, |

V)

where AW,, = v/Ae,, and AZ, = AT(eln-l—Q—g). Here €, and €, are independent,
standard Gaussian random variables. Additionally, the balanced implicit scheme,
introduced by Milstein, Platen & Schurz (1998), was also used to simulate the

affine diffusion. This scheme has the form

X, =X, + (0" + 60X, _ A+ /B +0X, AW, +Cp(X,_, — X,.)
(6.19)

with AW,, as above. Here the function C,, was chosen to be
C,, = (6 + 0| AW, |. (6.20)

The affine diffusion was simulated with 20,000 steps over the time period [0, 7],
with the parameters set to ' = 0.01, #2 = —0.01, #% = 0.01, * = 0.01, T = 20
and X (0) = 1, see Figure 1. There was no significant difference in the paths ob-
tained when simulated by the different numerical schemes. The parameters were
then estimated from the path shown in Figure 1 by application of the estimators
given in (5.17), using every tenth observation only in the estimation procedure.
Thus A = 0.009, so we expect the estimator to be consistent.

1%\“ M
0.8 ! = uwmu

0 5 10 15 20

Figure 1: Sample path of the affine diffusion with §' = 0.01, §* = —0.01, 3 = 0.01
and 6* = 0.01.
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The evolution of the estimators through time is shown in Figures 2 and 3. There
is substantial variability of the drift estimators as they evolve over time. The
estimates of the diffusion parameters are relatively stable as can be seen from
Figure 3.

theta 1

theta 2

gt Y
5]

1
20

Figure 2: Estimates of the drift parameters ' and 62.

theta 3

0.014 ¢

theta 4

0.012 ¢

0. 008 ,WJP\\}VMJ\\%[%MV X

1 1 1
0 5 10 15 20

Figure 3: Estimates for the diffusion parameters 6% and 6.

To study the variability of the estimators, results from the estimation of 1,000
simulated paths are shown in Table 1. As before, we have used every tenth ob-
servation and for comparison also every twentieth and fiftieth observation for the
estimation where A = 0.019 and A = 0.049, respectively. The corresponding
number of observations used are given in the first column of Table 1. The mean
and standard deviation of the estimators are given in the corresponding columns
of Table 1. It is clear that, on average, the estimates are reasonably accurate. We
see that the accuracy of the estimators for the drift parameters increases as the

19



time between observations is decreased. Additionally, there is a clear decrease
in the variance of the estimates for the parameters of the diffusion coefficient.
Note that the standard deviation for the estimates of the drift parameters is sig-
nificantly greater than that of the estimates of the diffusion parameters. This
phenomenon is usually seen for diffusion processes sampled at a high frequency,
and is caused by the large amount of information contained in the sample path
about the diffusion coefficient. The quadratic variation also reflects such infor-

mation.

e o 92 E 9
2220 | 0.0101 |-0.02087 | 0.0080 | 0.0081
(0.0286) | (0.0394) | (0.0006) | (0.0009)
1050 | 0.0102 | -0.0291 | 0.0090 | 0.0090
(0.0301) | (0.0411) | (0.0010) | (0.0012)
408 | 0.0102 | -0.0292 | 0.0097 | 0.0096
(0.0309) | (0.0420) | (0.0016) | (0.0018)

Table 1: Mean and standard deviation of estimators for the drift and diffusion

coefficients when 7' = 20.

e Iz 92 E Iz
1110 | 0.0104 | -0.0192 | 0.0086 | 0.0088
(0.0407) | (0.0482) | (0.0009) | (0.0008)
525 | 0.0109 | -0.0194 | 0.0094 | 0.0091
(0.0421) | (0.0506) | (0.0014) | (0.0018)
204 | 0.0110 | -0.0198 | 0.0096 | 0.0096
(0.0442) | (0.0521) | (0.0019) | (0.0023)

Table 2: Mean and standard deviation of estimators for the drift and diffusion
coefficients when 7' = 10.

The estimation of the affine diffusion process described by (4.1) was repeated for
a wide range of other parameter settings with similar outcomes indicating that
the derived estimation procedure is reasonably robust.

Additionally, the estimation was performed for the shorter observation period
T = 10. The diffusion process in (4.1) was simulated with 10,000 steps with
the parameter settings as above. In order for the time between observations
to be unchanged, the number of simulated points was simply halved. Results
using the estimating equations in (5.17) for 1,000 simulated paths are given in
Table 2. It is clear that there is little change in the accuracy of the estimates
for the diffusion coefficients. The standard deviation and mean of the estimators
of the diffusion parameters are relatively unchanged. However, there was an
increase in the standard deviation for the drift estimates. The need for a long
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observation interval to reliably estimate the drift coefficients reflects the reliance
of the estimation technique on the ergodic theorem. Simulation results indicate
that to accurately estimate the drift coeflicient a much longer observation period
than either 7' = 10 or 7" = 20 is required.

32 ©
(=} o
| S I I | Il

=
o1 ©
1|

—_
|

Figure 4: Gaussian quantile plot for 4.

The estimators in Figures 2 and 3 and Tables 1 and 2 appear to have some bias. In
particular the diffusion coefficient parameters are underestimated. In theory, this
could be rectified by simply using the compensated estimating functions in (2.12).
However, when A is small, the effect in practice on the estimated parameter
values is minimal due to the presence of A in the compensators. Alternatively,
it may be possible to eliminate the leading error term, which is a factor of the
time between observations, by combining estimating functions in a way that the
resulting expectation is small. This was tested and the results suggest that such
bias reduced estimators overcompensate the estimators for the bias in the given
example.

Another, rather simple way of correcting for the bias in the method is to simulate
artificially the affine diffusion with the biased parameter estimates. By correcting
for the observed bias, new estimates are obtained that can be used for an improved
simulation. One can repeat this procedure until the biased parameter estimates
are reasonably matched by the simulated results. The parameter estimates of the
artificially simulated diffusion may then be interpreted as good proxies for the
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-50 0 50

Figure 5: Gaussian quantile plot for 62.

The normality of the estimators is illustrated in Gaussian quantile plots shown
in Figures 4, 5, 6 and 7 for the case T' = 20. The quantile plots, which also
show 95% confidence intervals, indicate that the distributions of the parameter
estimates §', 63 and #* are close to Gaussian. The distribution of 62 exhibits
some larger deviations from a Gaussian distribution. These deviations are also
reflected in the estimates given in Tables 1 and 2.
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Figure 6: Gaussian quantile plot for §3.

-20 -10 0 10

Figure 7: Gaussian quantile plot for 6%,
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7 Conclusion

We have proposed a simple and rather general estimation technique that is ca-
pable of estimating the drift and the diffusion coefficient functions of discretely
observed diffusions. The transform function method presented has the advantage
that it is easy to implement and does not need either explicit expressions for
moments, conditional moments or transition densities of the original process nor
for the transformed observations. For the case of affine diffusions the method has
been demonstrated.
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