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Annotation

We formulate the problem of finding classes of kinetic dependencies
in irreversible thermodynamic and microeconomic systems for which
minimal dissipation processes belong to the same type. We show that
this problem is an inverse optimal control problem and solve it. The
commonality of this problem in irreversible thermodynamics and mi-
croeconomics is emphasized.

1 Introduction and problem formula-

tion

Analogy between reversible processes in thermodynamic and microe-
conomic systems has been long known [1], [2], [3],[5], [11], et al. This
analogy is based on the fact that both systems include large numbers
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of elementary subsystems (molecules, economic agents), which are not
directly controllable. Control here can only be applied on the macro
level. We shall call them macro controllable systems [4].

The Finite Time Thermodynamics (FTT) ([6],[7], [8], [9] et al)
studies limiting possibilities of thermodynamic systems subject to con-
dition that the average rates of some flows are given. These problems
can be roughly divided into three classes:
(A) the problems of limiting rate of objective flux (limiting power of
heat engine, limiting productivity of thermal processes of gas and liq-
uid separation, etc.),
(B) the problem of minimal energy use for given rate of objective flow
(limiting efficiency of heat engine with given power, minimal heat used
for separation with given rate, etc.),
(C) the problems of constructing realizability areas in a state space
where coordinates are the average rates of flows in the system.

Solutions of FTT problems (B), (C) are the minimal dissipation
processes [14], defined as processes with minimal entropy production
subject to given rates of flows. The conditions of minimal dissipation
jointly with thermodynamic balances on mass, energy and entropy,
determine these processes.

Similar problems arise in microeconomics -
(A) the problem of limiting rate of capital extraction from the system,
subject to some constraints of its structure,
(B) the problem of maximal norm of profit subject to given rate of
capital extraction,
(C) the problem of construction of realizability areas in the space of
flows of capital and goods.
The role of entropy here is played by the prosperity function. One
of the proofs of its existence is based on Ville’s axiom [10]. These
problems were considered in [4], where the notions of system’s pros-
perity and capital dissipation were introduced. The former is defined
as the amount of capital that can be potentially extracted from the
system, and the latter as the rate of reduction in profitability. It was
also shown there that microeconomic balances on assets and capital
and on the prosperity jointly with the conditions of minimal dissipa-
tion determine the boundary of the realizability area of microeconomic
systems.

In their turn, the conditions of minimal dissipation are determined
by the system’s kinetics, that is, by the dependence of the flows of
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mass, energy and assets between its subsystems on the driving forces
(differences in temperatures, concentrations, asset price estimates,
etc). Different kinetics can correspond to the same characteristic so-
lution of minimal dissipation problem. For example, the condition of
constant temperature ratio of contacting subsystems in minimal dis-
sipation process holds for a number of different laws of heat transfer.
This leads to the problem of finding classes of kinetic dependencies,
all members of which have minimal dissipation processes that belong
to the same class. We shall call it classification problem with respect
to conditions of minimal dissipation.

2 Dissipation in thermodynamic and

microeconomic systems

A thermodynamic system and a microeconomic system both are de-
scribed by variables that can be conveniently divided into two groups
- extensive and intensive. If two systems are combined into a new
system then the extensive variables of combined system are the sums
of the extensive variables of the initial systems. For instance, when
two identical systems are combined the volume of the resulting sys-
tem is twice the initial system’s volume. Capital and asset inventories
in microeconomic systems are summed similarly. Intensive variables
do not change when similar systems are combined. For instance, is
two systems with identical temperatures are combined then the com-
bined system’s temperature is the same. The asset price estimates in
microeconomics behave similarly.

Microeconomic subsystem (agent) with asset inventory N esti-
mates asset price p as the derivative of its prosperity function S on N
([2], [4])

p =
∂S

∂N
.

If contact between two microeconomic agents with different values of
intensive variables is established then they trade and exchange flow
arise. Asset price estimate p plays here the same role as the tempera-
ture in thermodynamics. The flow of asset depends on the difference
between the trading price and the asset price estimate in the same
way the heat flow between two bodies depends on their temperatures’
difference.
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Thus, non-zero difference between agent’s asset price estimate and
trading price is necessary to have non-zero rates of asset flows. In
thermodynamics dissipation is minimal in reversible processes with
infinitely small rates of exchange flows. Similarly, trading costs in
microeconomic systems are minimal where exchange is reversible and
exchange rates are infinitely small. If exchange rates’ are finite then
trading is conducted irreversibly and trading costs exceed the minimal-
possible ones. This additional cost is called capital dissipation. They
are similar to entropy production in thermodynamics. These and other
analogies between irreversible processes in thermodynamics and mi-
croeconomics are described in details in ([2]).

If contact is established between two subsystems with different val-
ues of intensive variables then exchange flows occur. One can control
these flows by controlling the values of subsystems’ intensive vari-
ables. It is useful to single out the class of subsystems whose intensive
variables are controllable. Heat engine’s working body with control-
lable volume (and therefore controllable temperature) belongs to this
class. Economic intermediaries, who set optimal (from their view-
point) prices, also belong to this class. We shall call such systems
active. Passive systems differ from active ones because their inten-
sive variables change only as a result of changes to their extensive
variables.

3 Problem formulation

We denote all extensive variables and the intensive variables of the
passive systems as x and the intensive variables of the active systems
as u. Variables u are the problem’s control variables. The depen-
dence of rate of flows on the driving forces is determined by kinetics
of the process and is described by the function n(x, u). This function
determines conditions of minimal dissipation [14]

F (n(x, u), x, u, nx, nu) = const, (1)

where nx, nu denote partial derivatives of the flow n on the corre-
sponding variables.

These conditions are obtained by solving optimal control problem
where dissipation is minimized subject to given average rates of ex-
change processes in the system. Any minimal dissipation process must
obey these conditions.
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Additional constrains can be imposed on the function n. For ex-
ample, the following condition can be used

n(x, u) = 0 for x = u. (2)

If the difference x− u changes sign then the flow n changes sign also.
A simple example of obtaining these conditions of optimality is

given in Section 4.1.
Suppose that the conditions of minimal dissipation (1) can be writ-

ten in the following form

ϕ(x∗, u∗) = const, (3)

where ϕ is some predefined function. In its turn, this function can
depend on n(x, u). We denote optimal (minimal dissipation) processes
and their parameters with superscript ∗.

The aim of this paper is to find the conditions that must be im-
posed on the kinetic function n(x, u) to guarantee that its conditions
of minimal dissipation (1) have the form (3) for a given function ϕ.

First we will describe the general schema of solution of the de-
scribed problem. It is based on the Statement 1: The solution of
minimal dissipation problem obeys condition (3) if and only if func-
tion n(x, u) is a solution of the equation

Fx

Fu
=

ϕx

ϕu
. (4)

Indeed, from the condition (3) follows that

ϕxdx = −ϕudu,

and from (3) it follows that

Fxdx = −Fudu,

therefore (4) holds. It is clear that the inverse is also true - if (1) holds
and (4) does not, then the condition (3) is also violated.

The left hand side of the equality (4) depends on the form of the
function n and its partial derivatives and can be used to derive par-
tial differential equation for the function n. Its general solution gives
the class of dependencies. We will consider a number of examples of
solution of this classification problem for particular systems, which
demonstrate the class of problems considered is general enough.
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4 Thermodynamic systems

It turned out that for many, but not all, minimal dissipation pro-
cesses in FTT the entropy production is constant (time and space
independent). We will derive conditions when minimal dissipation
thermodynamic process corresponds to constant entropy production.
We consider heat exchange first and then generalize the obtained re-
sults for a wider class of thermodynamic processes.

4.1 Irreversible heat exchange

Minimal dissipation heat exchange process is defined as a heat ex-
change during which given amount of heat Q is removed from a body
with the temperature T (t) and finite heat capacity in given time τ
in such a fashion that the resulting increase of system’s entropy S
is minimal. Temperature of the coolant T0(t) is the control variable.
The dependence of the heat flow n(T0, T ) between the body that is
cooled and the coolant on their temperatures T and T0 is called the
law of heat transfer.

Formally the problem is stated as

∆S =
∫ τ

0
n(T0, T )(1/T0 − 1/T )dt → min

subject to constraints
∫ τ

0
n(T0, T )dt = Q,

C
dT

dt
= −n(T0, T ), T (0) = T0.

where C is the heat capacity of body that is being cooled.
Because T is a monotonic function and we can replace t as inde-

pendent variable with T . We get dt = − C
n(T0,T )dT and the minimal

dissipation problem takes the form
∫ T (τ)

T0

(
1
T

− 1
T0

)dT → min

subject to given duration of the process τ

−
∫ T (τ)

T0

C

n(T0, T )
dT = τ.
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The Lagrange function of the transformed problem has the form

L =
∫ T (τ)

T0

(
1
T

− 1
T0

− λ
C

n(T0, T )
)dT.

λ here is a Lagrange multiplier, that is independent on T .
The conditions of optimality for the transformed problem are re-

duced to the condition that the derivative of the integrand of this
Lagrange function on T is equal zero on the optimal solution for all
T . That is, the conditions (1) here take the following form [12]

T 2

n2(T0, T )
∂n

∂T0
= const, n(T0, T0) = 0. (5)

Condition of constant temperature difference. What is re-
quired from the law of heat transfer n(T0, T ), to guarantee that the
condition (3) with the function ϕ(T0, T ) = T0 − T holds? That is,
for which laws of heat transfer the condition of minimal dissipation
corresponds to constancy of the temperature differences? The answer
to this question is given by the Statement 2: The condition of minimal
dissipation corresponds to constant temperature difference for such and
only such laws of heat transfer that can be represented in the following
form

n(T0, T ) =
M(T0 − T )T 2

1 + R(T )M(T0 − T )
. (6)

The proof of this and other statements are given in Appendix.
The following law of heat transfer gives an example of heat transfer
law with temperature dependent heat transfer coefficient that obeys
(6)

n(T0, T ) = αT 2(T0 − T ).

4.2 When minimal dissipation thermodynamic

process corresponds to constant entropy pro-
duction?

The minimal dissipation problem for thermodynamic process with the
scalar variable x has the following form:

σ =
1
τ

∫ τ

0
n(x, u)R(x, u)dt → min

u
(7)
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subject to constraints

ẋ = f(x, u), x(0) = x0, (8)
∫ τ

0
n(x, u)dt = ∆N. (9)

Here σ is the entropy production. The condition (8) characterizes the
rate of change of the intensive variable of the system (temperature,
pressure, chemical potential), R(x, u) is the driving force of the process
and n(x, u) is the flow. The condition (9) determines the average rate
of the flow. The derivation of the necessary condition of optimality for
the problem (7)–(9) is similar to the derivations in Section 3.1. The
conditions of optimality here have the following form [14]

F = ϕ(x, u) =
n2(x, u)

nu
Ru = Const. (10)

It is required to determine for which dependencies n(x, u) the entropy
production is constant on the optimal solution, that is, where

ϕ(x, u) = n(x, u)R(x, u) = Const,

Thus, for this function ϕ we seek conditions on the kinetic function
n(x, u) that guarantee that on minimal dissipation processes (3) with
this ϕ holds. After taking into account (4) we obtain

2
nx

n
+

Rux

Ru
− nux

nu

2
nu

n
+

Ruu

Ru
− nuu

nu

=
ϕx

ϕu
=

Rnx + nRx

Rnu + nRu
. (11)

The condition (11) singles out the class of minimal dissipation pro-
cesses for which entropy production is independent on time and length.
It is clear that this condition holds for both Newton and Fourier heat
transfers.

It is been suggested that entropy production in minimal dissipation
processes is always constant. From the condition (11) it is clear that
for heat transfer this assumption is true for many but not all laws of
heat transfer.
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5 Microeconomic systems

Consider a market when one asset is traded and where only one in-
termediary (monopolist) buys and resells this commodity. This in-
termediary chooses the price c(t) to minimize the price it pays (or
to maximize the price is received) to acquire the inventory ∆N in
the given period of time τ . The dependence n(x, u) describes the de-
mand/supply (for buying/selling) function. The asset price estimate
p is the minimal price for which the flow of purchasing is zero. The
condition of minimal capital dissipation (3) can be interpreted as the
condition of minimal trading costs. It holds if the trading costs are
minimal subject to the given average rates of trading.

5.1 Conditions of constancy of optimal pre-
mium

Formally the problem of optimal trading has the form

I =
τ∫

0

n(c, p)cdt → min
c

subject to constraints
τ∫

0

n(c, p)dt = ∆N, n > 0,

Ṅ = −n(c, p), N(0) = N0.

Here c(t) is the trading price and p(N) is a given function. The con-
ditions of optimality of this problem has the following form [13]

F =
1

n2(p, c)
∂n

∂c
= const, n(c, p) = 0 for c = p. (12)

It’s derivation is very similar to condition of optimality for heat trans-
fer in section 4.1 It is clear that if n(p, c) leads to the condition of
optimality

ϕ(c, p) = c − p = const. (13)

then it is guaranteed that the optimal premium (the difference between
offered price and price estimate δ = c(t) − p) is constant and time-
independent.
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The condition (12) is identical to (21) and the solution of the prob-
lem of finding the optimal constant premium price is identical to the
solution of the problem of optimal irreversible heat exchange up to
multiplier 1/T 2. Therefore, the class of function n(c, p) that guaran-
tees the fulfilment of (13) has the form

n(c, p) =
M(c − p)

1 + R(p)M(c − p)
, (14)

The condition (14) singles out the dependencies of flows on trading
prices and asset price estimates for which the optimal premium is
constant.

The expression (14) can be rewritten as

n(c, p) =
µ(δ)

1 + R(p)µ(δ)
.

Since
τ∫

0

n(c, p)dt = ∆N,

we get

µ(δ) =
∆N

τ∫
0

dt

1 + R(p(t))µ(δ)

. (15)

This condition determines the premium δ.
The process’s irreversibility is characterized by the integral

∆S =
τ∫

0

δn(c, p)dt = δ∆N.

The average dissipation (trading costs) is

σ =
∆S

τ
=

δ∆N

τ
. (16)

The equalities (15), (16) determine the irreversibility of the process
for any function n(c, p), which has the form (14).
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5.2 Conditions of constancy of the optimal flow
of goods

The condition of optimality for trading (12) leads to the condition of
constancy of the flow n(p, c) on the optimal solution c∗(p) if the left
hand side of the equality (12) depends on n only

F (p, c) = ϕ(n(p, c)),

where ϕ is an arbitrary function or, which is the same, when nc is a
function of n

nc(p, c∗) = ζ(n(p, c∗)) ∀p. (17)

The Statement 3 holds that: The minimal cost of trading corresponds
to a constant time-independent flow of commodity if and only if the
demand function can be represented as

n(c, p) = (c − p)M(c − p). (18)

Here M is an arbitrary nonnegative function of price difference.
The optimal dependence c∗(p) is determined by the condition

(c∗ − p)M(c∗ − p) = n∗ =
∆N

τ
. (19)

Example.
Suppose the dependence n(c, p) is defined as

n(c, p) = α · arctg(c − p), for c > p.

Because this expression obeys the condition (18), we obtain the fol-
lowing dependence of the optimal price c∗(t) on time

c∗(t) = p(N∗) + tg
∆N

τα
,

here
N∗(t) = N0 − ∆N

τ
t.

The optimal flow of commodity is constant and equal to ∆N
τ .
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Conclusion

In this paper the problem of thermodynamic systems’ classification
on the basis of the type of their minimal dissipation processes is for-
mulated and solved. The minimal dissipation processes correspond
to minimal-possible energy consumption and single out the boundary
of thermodynamically feasible processes - realizability area. Minimal
dissipation processes are obtained by solving optimal control problem
for given kinetics. In this paper the inverse problem of finding kinetics
using given conditions of optimality is solved.
The class of processes where minimal dissipation corresponds to a con-
stant rate of entropy production is constructed.
Similar problems are solved for microeconomic systems. Capital dissi-
pation here describes dissipation and can be interpreted as trade cost
resulted from finite rate of trade. The results obtained in this pa-
per allow us to find the class of demand functions for which optimal
trading obeys some a priory given condition (e.g. the condition of
constant optimal premium, that is, constant difference between equi-
librium price and trading price).
The obtained results allow us to divide thermodynamic and microeco-
nomic processes into classes of equivalent processes that have common-
type minimal dissipation processes.
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7 Appendix.

7.1 Proof of the Statement 2.

Suppose that the function m(T0, T ) is defined as

m(T0, T ) =
n(T0, T )

T 2
, (20)
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Suppose m and n(T0, T ) are continuously differentiable. Substitution
into (5) yields

F =
1

m2(T0, T )
∂m

∂T0
= const, m(T0, T0) = 0 (21)

and
FT

FT0

=
ϕT

ϕT0

= −1, (22)

or
FT + FT0 = 0. (23)

Let us obtain FT and FT0

FT = 1
m2(T0,T )

∂2m
∂T0∂T − 2

m3(T0,T )
∂m
∂T

∂m
∂T0

,

FT0 = 1
m2(T0,T )

∂2m
∂T0∂T0

− 2
m3(T0,T )

∂m
∂T0

∂m
∂T0

.

(24)

After substitution (24) into (23) we obtain

mT0T + mT0T0 =
2
m

mT0(mT0 + mT ),

or
∂

∂T0
(mT + mT0) =

2
m

mT0(mT + mT0). (25)

Formula (25) can be rewritten as

∂

∂T0
(mT0 + mT )

mT0 + mT
= 2

mT0

m
,

or
∂

∂T0
ln |mT0 + mT | = 2

∂

∂T0
ln |m|.

Thus
∂

∂T0
ln |mT + mT0

m2
| = 0. (26)

From (26) it follows that the expression under the derivative is an
arbitrary continuous function of T

ln |mT + mT0

m2
| = ξ(T ).
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or
mT + mT0

m2
= −f(T ). (27)

We will solve the equation (27) using the method of characteristics

Ṫ0 = 1, Ṫ = 1, ṁ = −f(T )m2.

The solutions of these equations are

T0(t) = t + r1, T (t) = t + r2,

ṁ = −f(t + r2)m2 ⇒ 1
dt

(
1
m

)
= f(t + r2),

⇒ m(t) =
1∫

f(t + r2)dt + c
, (28)

where c is a constant, f(t) is a continuous function. After taking into
account (28), eliminating t and replacing dt with dT , we obtain its
common solution in the following form

m(T0, T ) =
1∫

f(T )dT + µ(T0 − T )
, (29)

where f and µ are arbitrary functions. We took into account here
that because of (28) the difference (T0 −T ) and any function of it are
constant.

Suppose the function µ(T0 − T ) has the form

µ(T0 − T ) =
1

M(T0 − T )
.

Since functions f and µ in (28) are arbitrary functions, this solution
can be rewritten in equivalent form

m(T0, T ) =
M(T0 − T )

1 + R(T )M(T0 − T )
, (30)

where R(T ) =
∫

f(T )dT is differentiable on all of its arguments.
In order to take into account the condition m(T0, T ) = 0 for T0 =

T , we impose additional condition M(0) = 0 on the function M(T0 −
T ). After taking into account (20) and (30) we obtain the dependence
n(T0, T ) of the general form (6).
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7.2 Proof of the Statement 3.

After taking into account (4) from the condition (17) we obtain

ncc

ncp
=

nc

np
⇒ ∂

∂c
ln

∣∣∣∣∣
nc

np

∣∣∣∣∣ = 0 ⇒ nc

np
= r(p),

where r is an arbitrary function. This yields the following equation,
which determines the form of the function n,

nc − r(p)np = 0, n(p, c) = 0 for p = c. (31)

The equation of characteristic is

ċ = 1, ṗ = −r(p).

Thus
c(t) = c0 + t, µ(p) = t − t0, (32)

where µ(p) is an arbitrary diffeerentiable function such that

dµ

dp
= − 1

r(p)
.

Elimination of t from (32) yields the first integral of the equation (31)

µ(p) − c = t0 − c0 = const,

therefore the general solution is

n(c, p) = M [µ(p) − c].

After taking into account that n(p, c) = 0 for c = p we obtain a class
of demand function (18), for which the flow asset is constant at the
optimal solution.
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