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ABSTRACT. This paper studies a class of models in which agents’ expectations influ-
ence the actual dynamics while the expectations themselves are the outcome of some
learning process. Under the assumptions that agents have homogeneous expectations
(or beliefs) and that they update their expectations by least-squiiarasd general
ay-processes, the dynamics of the resulting expectations and learning schemes are
analyzed. It is shown how the dynamics of the system, including stability, instability
and bifurcation, are affected by the learning processes. The cobweb model with a
simple homogeneous expectation scheme is employed as an example to illustrate the
stability results, the various types of bifurcations and the routes to complicated price
dynamics.
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1. INTRODUCTION

Many dynamic economic models form an expectations feedback system. Expec-
tations affect actual outcomes, actual outcomes affect expectations through learning,
and so on. The standard economic models, such as the capital asset pricing model and
the Black-Scholes option valuation model, rely on the assumption of rational homo-
geneous expectations. However, the past decade has witnessed a rapidly increasing
interest in work on boundedly rational expectations. Boundedly rational agents use
simple learning schemes to form their expectations. In the boundedly rational world,
stability of expectations and learning schemes becomes important in many models of
finance and economics.

Among various learning schemes that boundedly rational agents may use, the prop-
erties of least-squares learning processager homogeneous expectations have been
studied extensively (see, for example, Balasko and Royer (1996), Bray (1983), Evans
and Honkapohja (1999), Evans and Ramey (1992), Lucas (1978) and Marcet and Sar-
gent (1989)). In his survey paper, Grandmont (1998) considers stability and conver-
gence to self-fulfilling expectations in large socioeconomic systems and suggests a
kind of general'Uncertainty Principle’ — Learning is bound to generate local insta-
bility of self-fulfilling expectations, if the influence of expectations on the dynamics
is significant When learning processes are involved, as pointed out by Balasko and
Royer (1996),the properties of the (Walrasian) equilibrium with respect to the conver-
gence of least-squares learning processes and, more generally, of recursive processes
have hardly been studiedThis paper intends to add to the literature on this prob-
lem. In particular, the dynamics of the (Walrasian) equilibrium is analyzed when the
learning processes follow the least-squatesnd the generad, -processes (see the

following section for the definition).

The term learning is being used in a very particular, and perhaps restricted sense here. It refers to a
situation in which agents adopt a rule to come of with an expectation of next period’s price. A broad
use of the term learning would envisage a situation in which agents are able to switch strategies in light
of prediction errors, for example as in Brock and Hommes (1997).
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This paper considers a deterministic (nonlinear) framework and focuses on an ex-
tremely simple case, in which the state of the system is completely described at every
date by a single real numbey. Depending upon the context, the state variabheay
stand for a price, a rate of inflation, a real rate of interest etc. Traders plan one period
ahead. To abstract from all forms of uncertainty, the traders’ expectations or forecasts
follow finite least-squares- or generah;,-processes.

Balasko and Royer (1996) consider local stability under a homogeneous least-squares
L-learning process, which is formed from the pastalues of the state variable. They
determine a relationship between stability and the paranietémtuition would sug-
gest that the larger is the number of observatibyhe more stable is the equilibrium,
and they show that this intuition is essentially correct for the least squiapescess.

As in Balasko and Royer (1996), this paper tries to determine the stability properties
associated with different values bfand differenta; -processes and it is seen to what
extent Balasko and Royer’s result still holds. The learning processes considered are of
finite memory (i.e.L > 1 is finite). Related studies on homogeneous learning can be
found in Barucci et.al. (1999), Grandmont (1985) and Grandmont and Laroque (1986)
for finite memory and Balasko and Royer (1996), Bischi and Gardini (2000), Chiarella
(1988) and Hommes (1991), (1994) for infinite memory.

Under homogeneous expectations, this paper concentrates on how the stability of
the system is affected differently by the least-squdresd the generald; learning
processes with different lag lengfhand weight vecton. In particular, it is shown
that, with the least-squares (learnidgprocess, the (local) stability region of the fixed
equilibrium can be completely characterized by the lag ledgtnd the parameters
of the system, while the instability of the fixed equilibrium generatds:al + 1
resonancé.However, for the general, -process, much more rich dynamics arise. In
the simplest cases df = 2 and3, it is found that, depending on the weight vector
a, the stability region can be different and the instability of the fixed equilibrium can

generate : g-resonances (for almost apyq) and quasi-periodic orbits.

2The sense in which the term resonance is being used in this paper will be explained below.
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The paper is organized as follows. Section 2 introduces first a temporary equilibrium
relation with homogeneous beliefs and, following Balasko and Royer (1996), describes
homogeneous least-squareprocesses and geneegl-processes. As an example, a
nonlinear cobweb model under a homogeneous least-sqligrescess and a simple
a;-process is then presented. Under the assumption of homogeneous expectations,
Section 3 investigates the dynamics of the system, including stability, instability and
bifurcations, when the agents follow least-squdrgzocesses. An analysis of the dy-
namics of the general;-process then follows in Section 4. In Section 5, we apply
the results obtained in the previous sections to the nonlinear cobweb model introduced
in Section 2. Various bifurcation phenomena and routes to chaos are analyzed in de-
tail. Section 6 concludes. The proofs of the various propositions are gathered in the

appendix.

2. HOMOGENEOUSBELIEFS AND LEARNING

In this section, least squards and general homogeneoag-processes as learn-
ing processes for a general temporary equilibrium model are introduced first, then a
nonlinear cobweb model under a homogeneous least-sqligyescess is presented.
Stability and bifurcation of the (Walrasian) equilibrium of the general model with these
processes are studied in the following sections.

For the convenience of the discussion, the state varighiketreated as the price at
periodz. In this section, all traders’ expectations at datbout the future state are
assumed to be identical and denotedf@as. Assume that the current equilibrium state

x, depends on the common forecast through the temporary equilibrium rélation
Ty, 5,1) = 0. (2.1)

This paper focuses on the casg, = ,_;z7,, indicating that the information set used
to form the expectations includes information only up to and including timé. The

conditioning on information up to and includirig— 1) arises in situations where the

3To be more precises;,, = (—1z{,, if ; is notincluded in the information set angl, | = ,z{,, if
x; is in the information set.
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equilibrium price is a result of the Walrasian auctioneer process. Agents are assumed
to form expectations before the auctioneer announces the equilibrium price.

Let the expectation function be defined by

t*1x§+1 = \Ij(xtfla T 7xt*L)' (22)
Assume there exists® such that'(z*, y*) = 0 with y* = U (a*, z*, --- | 2*), that isz*
is a fixed equilibrium of’(z, ¥(z,--- ,x)) = 0. Itis also assumed that the m#ps

well defined and continuously differentiable locally(at, y*), the expectation func-

tion ¥ is well defined and continuously differentiable locally neaf, =5, - - - ,z;) =
(x*,z*,---,z*). Denote
B T (z,y) o= T (z,y) d = oV(zy,---,xp)
0 |y 2/ T O, (%, 2°)

with j = 1,---, L and assumé, C' # 0. Then the linearization of (2.1) and (2.2) at
the fixed pointz* is given by
L
B(xy — ") + C’Zdj(xt_j —z") = 0. (2.3)
7=1
ConsiderL real numbers:; > 0* satisfyingZJL.:1 a; = 1 and denote by; =

(ay,as9,--- ,ar) the (L-dimensional) weight vector. The following definition is intro-

duced in Balasko and Royer (1996).

Definition 2.1. The general homogeneousrecursive (finite) a,-processis defined

by (2.2) and

L
U(wy,---,2p) = glarzy +---aper), 0<a; <1, Zaj = (2.4)

J=1

4Herea]~ are treated as the weights (or probabilities) of the past states and therefore are assumed to be
nonnegative.

S5Note the double use of the word homogeneous in this paper. Earlier to indicate that all agents have
identical expectations. Here to indicate a particular expectation formation rule.
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with some (locally near*) continuously differentiable functiom Thehomogeneous
least-squaresL-processis simply thea;-process defined by the weight vectgy =

(1/L,1/L,--- ,1/L).

Wheng(z) = z anda, = (1,0,---,0), the expectation corresponds to the naive
expectation—the expected price equals the most recently observed pricén gen-
eral, any forecast or expectation of future prices will be some function of past prices
and in this context the genera) -process is the simplest expectations scheme. This
expectation is also known dsnear Backward-Looking Expectatiomns Distributed
Lag Expectationge.g. Hommes (1998)). There are many possibilities for the dis-
tribution of weightsa;. Whena; = 1/L, weights are distributed evenly and the ex-
pectations scheme corresponds to the least-squapscess as already stated. In
adaptive learning schemes, more weight is given to more recent observations, that is
a; > ajp1,1 < j < L —1,e.g. the arithmetic and geometric weights considered in
Section 4. For more related discussion, the reader is referred to Balasko and Royer
(1996) and Hommes (1998).

Following from (2.3) and (2.4), the linearization of (2.1) and (2.2) (néxwith the
general homogeneous recursive (findg}process becomes

L
B(zy —z*) 4+ Cg, Zaj(xt_j —z%) =0, (2.5)

7j=1
whereg, = ¢'(z*) = [dg(z)/dz]|,—.-°. Replacingz, — z* by z, in (2.5), the local
stability of the fixed equilibriunx* of (2.5) is then equivalent to the stability of the

zero solution of the equation

L
Ty + aZajxt_j =0 with a = Cg,/B. (2.6)

7=1
The parametery measures the combined influence of both the expectation (through

C'/B) and extrapolation (throug,) on the pricer; locally (nearz*). Therefore the

8In the context of Grandmont (1998), the paramegtemay be referred to as the extrapolation rate and
B, C as the parameters of the system. In particdlgl3 measures the local (near the fixed equilibrium
x*) dependence of the price,( on the expectationi, , ).



HOMOGENEOUS BELIEFS AND LEARNING 7
local stability of the general homogeneous recursive (fimifeprocess is generically

governed by the eigenvalues of the characteristic polynomial of (2.6)

L
LL(A) =M +a) e\ =0 (2.7)

j=1
Equation (2.7) is arL-th order polynomial and hence the zero solution of (2.6) is Lo-
cally Asymptotically Stablel(AS hereafter) if and only if all roots,;(j = 1,--- , L)
of (2.7) satisfy|\;| < 1(j = 1,---, L). Itis in general difficult to obtain explicit nec-
essary and sufficient conditions in terms of the coefficientis(a. However, for the
homogeneous least-squaregprocess, an explicit necessary and sufficient condition
is derived in terms of the coefficients Bf)) in the following section. A complete
analysis of the stability and bifurcation af anda; is carried out in Section 4. For the
more generah;, processes, it only seems possible to obtain some sufficient conditions
about stability.

As both an illustration of the results obtained in the following sections and an im-
portant application in its own right, consider a general cobweb class of models where

the market equilibrium price is determined by (see Hommes (1998)) for details)

D(pt) = S(t_1pf+1), (2.8)
andD andS are demand and supply functions. Let price expectations be given by
-1Piy1 = H(Po), (2.9)

where?H = (pt_1,pt2, -+ ,pi_1) IS @ vector of past prices (with la) and H is
called the expectation function or the perceived law of motion. Combining (2.8) and
(2.9) yields

D(p) = S(H(P,_1)). (2.10)

To keep the model as simple as possible, throughout the paper a linear demand function
is assumed, namely

D(p:) = a — bp;. (2.11)
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Following Chiarella (1988) and Hommes (1998), a nonlinear, but monotsrsbaped

supply curve
efr — e=he

S(w) =Tanh(Bz) = 55

(2.12)

is selected, where the parametetunes the steepness of theshap€’. Also, assume

that
L

HPw) =00y apie (2.13)

j=1
with a; > 0, Zle a; =1,¢9, € Rforj =1,---,L. The parametey, is allowed

to be both positive (trend chasing expectations) and negative (contrarian expectations).
Then, the resulting nonlinear difference equation is given by

L

b=l = S0 am) 214)
j=1
Following the notation in (2.1),
T(z,y) =bx+ S(y) — a. (2.15)
The fixed equilibriunp* satisfies
a—bp* = S(g(p")) = Tanh(Bg.p"). (2.16)

For g, > 0, the fixed equilibrium is unique. However, fgy < 0, there existg;} <

0 such that there is unique positive fixed equilibrigimfor g, € (g:,0) and three
equilibriap; (j = 1,2,3) satisfyingp; < p; < 0 < pj. Wheng, = g7, there are
two equilibriap; < 0 < p;. Accordingly, the characteristic equation of the linearized

equation of (2.14) at the fixed equilibriuph has the form of (2.7) with

Ap Cyg, 4Bg,/b
 © (eB90P™ + e~ Bg0p™)2” “ B eB9op™ | o—Bgop*? g'¥") = go

"We are indebted to an anonymous referee for pointing out that application of the results developed in
the following two sections to the cobweb model is independent from the functional forms for both the
demand and supply.
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HereB andC are the slopes of the demand and supply function at the fixed equilibrium

p*, respectively.

3. DYNAMICS OF HOMOGENEOUSLEAST-SQUARES L-PROCESSES

This section investigates the dynamics of the system with the least-sdupresess,
focusing in particular on the local stability and bifurcation analysis in the parameter

space of the system and the lag length.

3.1. Local Stability. The following Lemma 3.1, obtained in Chiarella and He (2€)00

is used to characterize the local stability.

Lemma 3.1. Let
QLA = AT+ AN 4 Ay (3.1)
Then the zeros @), ()\) lie inside the unit circle if and only if

1
—— 1. 3.2
7 <7< (3.2)

The simple condition (3.2) characterizes completely the stability of the correspond-
ing higher order difference equation and, more importantly, the condition connects
the parametery to the orderL of the system. For the homogeneous least-squares

L-processp; = 1/L for j = 1,---, L, the corresponding characteristic polynomial

I'z()\) has the form of (3.1) withy = a/L = $%. Applying Lemma 3.1 leads to the

following result on the LAS of the homogeneous least-squarpsocess.
Proposition 3.2. The fixed (Walrasian) equilibriuni* of the homogeneous least squares

L-process is locally asymptotically stable (LAS) if and only if

Cgo
g <I. (3.3)

—1l<a=

Denote byD, («) = {a: —1 < a < L} the stability region for the parametercor-

responding to the homogeneous least-squarpsocess. Then, for the homogeneous
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least-square&-process, the LAS of the fixed equilibriumi is completely character-

ized by Dy, («). Obviously,Dy(a) C Dy (a) for L < L', that is, L-stability implies
L'-stability for L < L'. In other words, the larger is the number of observatibns
(used in the least-squares learning process) the more stable is the fixed equilibrium.
This is in particular the case when> 0. However, whemv < 0, the condition (3.3) is
independent of. and hence increasing the lag lendtlioes not necessarily improve

the local stability of the fixed equilibrium.

Proposition 3.2 improves the related result obtained in Balasko and Royer (1996).
Through a delicate analysis, they obtain an inclusion relation on the geometry of the
stability domainsD;, of the 1-dimensionatomplex valuedinear least-squares-
process and show thdt-stability implies L'-stability for L < L'. However, under
their assumption, the geometry of the stability domdinsis in fact characterized by
1-dimensionafeal valuedinstead of complex valued, processes and therefore Proposi-
tion 3.2 can be applied and the stability regidns(a) can be characterized explicitly.
Consequently, the inclusion relationship tihastability implies.Z’-stability for L < L'

is easily established.

3.2. Bifurcation Analysis. Under the homogeneous least squdrgsocess, the char-
acteristic polynomial has the form

FL()\)E)\L+%[)\L_1+---+)\+1]:0. (3.4)

It follows from Proposition 3.2 that the fixed poimt becomes unstable for ¢
(—1,L). Thereforen = —1 andL are the critical bifurcation values.

Foraw = —1, () = AP — [A*=! 4+ ... + XA + 1]/L. Obviously,A = 1 is an
eigenvalue. It can be shown that the remaining- 1 eigenvalues satisfjA| < 1.
Thus, forae = —1, the fixed pointz* becomes unstable anld= 1 corresponds to a
fold bifurcation in general.

Fora = L, T (\) = A+ At 4+ ...+ X + 1. Obviously,A = 1 is not an

eigenvalue. Infact';(\) = [A“T' — 1]/[\ — 1], which implies that the. eigenvalues
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of Tz ()\) satisfy \!+! = 1 with A # 1, that is\, = e*v™ with w = p/q, p =

1, = L+1andk = 1,2,---, L. Geometrically, the. eigenvalues correspond to

the L + 1 unit roots distributed evenly on the unit circle, excludikg= 1. When

L =1, aflip or period-doubling bifurcation occurs. Whén= 2, p = 1 andq = 3

the system is a map iR?. In such a case, according to Kuznetsov (1995) (pages
104 and 350)pr = L = 2 leads to al : 3 strong resonance The dynamics of a
strong resonance can be exceedingly complicated (see Kuznetsov (1995)). In general,
for L > 2, according to Sonis (2000) = L lead theL-dimensional map to have

1 : L + 1 periodic resonances. Theoretical analysis for such types of bifurcation of
higher dimensional discrete systems can be exceedingly complicated and are not yet
completely understood. In Section 5, a numerical approach is employed for the cobweb
model to demonstrate a range of complicated dynamics caused by such resonance

bifurcations.

4. DYNAMICS OF GENERAL HOMOGENEOUSa, -PROCESSES

Now turn to the stability of the general homogeneaysprocess. As mentioned
earlier, it seems in general impossible to derive explicit necessary and sufficient condi-
tions. However, Rouche’s theorem (which is stated in Appendix A.1) can be employed

to obtain some sufficient conditions for LAS.
Proposition 4.1. For the general homogeneoug-process (2.1), (2.2) and (2.4),

e the fixed equilibrium* is LAS if

la| < 1. (4.1)

8For a map inR2, when all the eigenvalues are on the unit circle, there i§(stvong) resonanceit

there is an eigenvalue, say satisfying\? # 1 for ¢ = 1,2,3,4. Otherwise, we say the map has a

1 : ¢ (strong) resonandg = 1,2, 3,4). When the nonresonance condition is satisfied, f&& anap
depending on one parameter, as the eigenvalues of the fixed equilibrium move off the unit circle, there
appears a closed invariant curve — all the iterates of any point on the curve remain on the curve —
encircling the fixed point. Such a bifurcation corresponds to the Poincare-Andronov-Hopf bifurcation,
see also Hale and Kocak (1991) for more discussion. When the nonresonance condition is not satisfied,
al : g (strong) resonance bifurcation R¥ can generate a two orbits of perigd— one orbit is a sink

and the other is a saddle. For the cobweb model, based on the analysis in Sectienibcraases
through?2, the fixed equilibrium is bifurcated to &: 3 resonance bifurcation, which means that two
orbits of period bifurcate from the fixed point: a sink and a saddle, as shown in Fig.5.2.
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e the fixed equilibriuny* is unstable if there exists at leastong: 1 < j < L
such that

2lala; > 14 |al. (4.2)

The proof of Proposition 4.1 is given in Appendix A.2. Following a different argu-
ment, a more general sufficient condition on the local stability is derived in Grandmont
(1998). Our sufficient condition on the stability can also be obtained from the Proposi-
tion 2.2 in Grandmont (1998). However, our instability result is quite different to that
of Proposition 2.1 in Grandmont (1998), which relates the eigenvalues of the actual
system to the perfect foresight eigenvalues.

Comparing the conditions (3.3) and (4.1), one can see that the LAS of the least-
squares 1-process implies the LAS of the genafaprocesses for anj,. However
the stability regions defined by the least-squdrgsocess and the genetgl-process
can be independent of each other in gendrals shown in the following analysis of
the homogeneous;, a;-processes. lft < 0, the LAS of the least-squardsprocess
implies the LAS of the general, -process, but iftv > 0 this is not true in general.

Denote byD; («, a) the region, in terms of the parameteand weight vectoa, for
the LAS of the fixed equilibrium* of the generah, -process. As the parameters move
across the boundaries of the (local) stability region«, a), various bifurcations can
be generated. Whem = —1, it follows from (2.7) that\ = 1 is an eigenvalue for
any lagL. Therefore, whem = —1 belongs to part of the stability boundaries (which
is the case fol. = 2,3 based on the following discussion), a fold bifurcation occurs.
The dynamics of the genera) -process can be very complicated, as indicated by the
numerical results for the cobweb model in Section 5.

To understand the dynamics, in the following, consider the simple daseg and
3 so that the stability region and bifurcation can be characterized explicitly. In these

cases, related discussions on the stability region have been considered in Hommes

®Note that the condition (4.2) can be written[2s; — 1]|a| > 1, so, if either the parameteror one of
the weightsz; is large enough (such that this condition holds) then the equilibsiita unstable. This
indicates that certain selections of the weight®f the generah -process can lead the equilibrium to
be unstable, while at the same time it can be stable under the least-sfyan@sess.
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(1998) (for L = 2) and Grandmont and Laroque (1990)) (fbr= 3). However,
the following analysis, in particular on the bifurcation, gives further insights into the
dynamics and how they lead to periodic resonances, quasi-periodic orbits and chaotic

behavior.

4.1. Stability and Bifurcation of the a,-Process.For L. = 2, the characteristic poly-

nomial has the form
FZ()\) :)\2+a[a1)\+a2], OS ap, ag S 1, a; + ag = 1. (43)

4.1.1. Local Stability.

Proposition 4.2. For L = 2 anday, = (ay,a2) = (1 — ag, as),
Dy(a,a) = {(a,a9) o > =1, aax < 1, a(l —2ay) < 1}.

It is easy to check that in the case of the homogeneous least-s@uaresess (So
as = 1/2), Proposition 4.2 leads th,(«) = {a : —1 < a < 2}. Consider more

closely the regiorD;(«a, a).

1
D = -l <a< for 0<ay, <= and
2 (e, a) {(a,aQ) o< 20, <ay < 3
1 1
—l<a< — for - <a, <1}
(05} 3

The stability regionD,(«, a) is plotted on théa,, o)-plane in Fig.4.1.

Fig.4.1 indicates that, when the homogeneous expectation follows,tpeocess
(ie.q2f,, = glarxi 1 + asxy o) With 0 < ay, a, < 1 anda; + a, = 1), the stability
region, in terms ofy, of the fixed equilibrium depends on the weight vecior
(a1, as). Whena; = 0, the stability region is given by € (—1,1). As a; increases,
the stability region ofv becomes larger( € (—1,1/(1 — ay))). Whena, = 2/3, the
largest stability regiomv € (—1,3) is attained. However, ag increases further, the

stability region ofc becomes smaller and ends upras (—1,1) whena; = 1. This
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FIGURE 4.1. Local stability region of the fixed equilibrium of the
homogeneous,-process
indicates that, for; € (0,2/3) an increasing, enlarges the stability region of, but
this is no longer the case fag € (2/3,1). Compared with the homogeneous least-
squareg-process, the generaj-process generates smaller (larger) stability region of

aforas € (0,1/4) U (1/2,1) (az € [1/4,1/2)).

4.1.2. Bifurcation Analysis.The stability region of the homogeneoas-process in
Fig.4.1 shows that the fixed equilibrium is LAS in the regid®C'DE. However,
when the parameters,, «) moves out of the region (alongB or C DE), the fixed
equilibrium becomes unstable and various types of bifurcation occur. Adnghe
eigenvalues are; = 1 and )\, = —a, and this implies that, when the parameters
(ay, ) move acrossAB, a flop bifurcation is generated in general. The cuA®
is called adivergence (or flop) curveAlong DF, the eigenvalues arg = —1 and
Ay = —a1/(1 — 2a3). So, when the parametefs,, o) move acrosdF, a flip (or
period doubling) bifurcation occurs. This curve is calleffi@curve

Along CD, the eigenvalues, , € C satisfy|)\;| = 1. Thatis,\; = cos(2wr) +
isin(2wr) for j = 1,2 and0 < w < 1. If w is a rational fractionw = p/q then
so-calledp : ¢-periodic resonancésoccur. Indeed, along'D the system hag : ¢-
periodic resonances fdp, ¢) =(1,2), (1,3), (1,4), (2,5), (2, 7), (3,7), (4,9), (3,10), (3,

11), (4,11¥%. In particular,a; = 1/3 corresponds to a period doubling bifurcation

105ee Sonis (2000) for the details.
UThe existence o : g-periodic resonance is determined by the valug &f A\; + A = 2 cos(2wm)
and hence the value af. Infact,p = Ay + Ay = 2cos(2wn) = —aay. AlongCD, o = 1/a» and
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(with (p, q) = (1,2)), a2 = 1/2 leads to a strong 1:3-periodic resonance ane- 1

leads to a strong 1:4-periodic resonance. Other rational fractiow (ef p/q) rep-

resents fixed points of weak resonances. For example; 0.38197 corresponds to

a 2:5-periodic weak resonance and= 0.69202, 0.35689 correspond to a 2:7, 3:7-
periodic weak resonance, respectively.ulfis irrational, one obtains quasi-periodic
orbits. The curve’ D is thus called dlutter-saddle curveTherefore, along the flutter-
saddle curve, the system generates various types of resonances and quasi-periodic or-

bits, while only1 : 3 strong resonance occur for the least-squares 2-process.

4.2. Stability and Bifurcation of the az-Process.For L = 3, the characteristic equa-
tion has the form

L(\) = A* + afaiA? + ag\ + a3] = 0. (4.4)

Following a recent bifurcation analysis for three-dimensional discrete dynamical sys-
tems by Sonis (2000), the local stability region can be characterized completely (see

Appendix A.3 for the proof).

Proposition 4.3. For L = 3 andaz = (ay, as,a3) = (1 — ay — as, as, as),

Ds3(a,a) = {(o,ag,a3) :  0<ag,a3 <1, as+asz<1,

a>-1, (1—-2a)a<1, 1—ax+as(l—ay—2a3)a®>0}.

Furthermorea = (3/7,3/7,1/7) leads to the largest stability interval far € (—1, 7).

The bounded stability regioRs;(«, a) in the (a2, as, «)-space is shown in Fig.4.2.
In particular, fora; = 0, it reduces to the stability regioD,(«, a) in Fig.4.1. As
az increases, the stability region in terms (ef, a;) becomes more peaked. When
az = 1/7, the surface reaches its peak. In particular, vaite= (3/7,3/7,1/7), «
has the largest stability region € (—1, 7), which enlarges the stability region (€
(—1, 3)) of the least-squares 3-process significantly. However; &screases further,

hencep = —(1 — az)/as for as € [1/3,1]. Thereforeu, = 1/(1 — p) € [1/3,1]iff p € [-2,0]. Then,
checking with the Table 1 in Sonis (2000), one can find various types of periodicity.
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the stability region in terms ofa, a;) shrinks and ends up with € (—1,1) when

a3:1,a2:0.

as

a2

FIGURE 4.2. Local stability regions, in terms @f., a3, ), of the
homogeneoua;-process

The boundaries 0D;(«, a) constitute the bifurcation surfaces of the fixed equilib-

rium z* given byll; = 0 for j = 1, 2, 3, where
I, =1+a, My =1—(1-2a)a, I3=1-aya+as(l—ay— 2a3)a?

and0 < ag,a3 < 1,as + a3 < 1. In fact, on the planél, = 0, at least one of the
eigenvalues is equal tb i.e., the dynamics become divergent — this idi@ergence

plane On the surfacél, = 0 at least one of the eigenvalues is equat i.e., the
dynamics become oscillatory — this isflgp surface Each point on the flip surface
corresponds to a two-period cycle, and the movement of the fixed point through it
generates the Feigenbaum type period doubling sequence in three dimensions, leading

to chaos (Feigenbaum (1978)). On the surfdge= 0, the eigenvalues satisfy
A1 = cos(2wm) £ isin(2wm), A3 = T, ro € [—1,1] w € [0,1]. (4.5)

Let p = 2 cos(2wm), thenp € [—2,2]. Similar to the discussion for th&-process, if
w is a rational fractionw = p/q, p : ¢-periodic resonances occur, which corresponds

to a continuous curve on the surfalde = 0. For a given(p, q), p is determined by
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p = 2cos(27p/q), and the corresponding weights that generage :aq resonance
bifurcation can be identified in the following way.

From the characteristic polynomial (4.4) and (4.5),

aee = —(A + Ao+ A3) = —2cosum) —r, = —p—1,
asr = Mg + MA3+ AoA3 =14 2r,c08(2wm) =1+ 1yp

aza = —A Aoy = =1y,

(1 — a2 — a’3)a = —pP — Ty, a0 = 1 + TopP, azte = —Typ.
Eliminatingr, from the equations, one has

14 (0> —2p—2
a0y = +(p1_;’ )% or p#£1. (4.6)

Hence, for giverp, equation (4.6) gives the corresponding condition on the weight
vectora = (1 — ay — a3, as, a3). In particular, for(p, ¢) = (1, 3), p = —1 and hence

the weights satisfying, = [1 + a3]/2 with a3 € [0,1/3] correspond to the strong
1:3-periodic resonance. Fop,q) = (1,4), p = 0 and hence the weights satisfying

as = 1 — 2a3 with a3 € [0, 1/2] correspond to the strong 1:4-periodic resonance. For
the period doubling bifurcation (i.e(p,q) = (1,2), p = —2), the weights satisfy

as = (1 + 6a3)/3 with a3 € [0,2/9]. Fig.4.3 indicates those weights f@, ¢) =
(1,2),(1,3),(1,4). Other rational fractions represent weak resonances, for example,
w = 1/q with ¢ = 5,6,---. Similarly, one can derive the weight equations for any
givenp andq (and hencep). If w is irrational, quasi-periodic orbits are generated.

Hence the surfacH; = 0 is called aflutter-saddle surface

4.3. Remark. The previous analysis leaves open many interesting and important ques-

tions. Among which, two questions are of particular interest:

(a). Is there always am; process which can generate a larger stability region than
the least-squarels-process does?

(b). Is it possible to characterize the stability and bifurcation as co?
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FIGURE 4.3. The weights which give the periodic doubling bifur-
cation (p,q) = (1,2)) and strong 1:3 or 1:4 periodic resonances
(p =1, q = 3,4) for the homogeneous;-process

To have complete answers to these two questions is not a easy task. We attempt to gain
some insights by selecting two special weighting processes — arithmetic weights and
geometric weights.

Consider first tharithmetic weights (e.g. Hommes (1998))

2(L +1— )

=1,2,--,L 4.7
L(L+1) ) ] ) ) ) ( )

a]‘:

so that the weights form a declining arithmetic sequence summing to 1. With such

selections, one can verify tHat

Dy(a,a) = D3(a,a) ={a: -1 < a<3};
Dy(a,a) = Ds(a,a) ={a: -1 < a<5b}; 4.8)
D¢(a,a) = D7(o,a) ={a:-1<a< T}
Dg(aya) = Dg(a,a) = {a: —1 < a < 9}.

That is, the arithmetic weights produce larger stability regions for the geagral
process than for the least-squafeprocess whe, = 2, 4, 6, 8, while for L = 3,5, 7,
their stability regions are the same. This observation would suggest the possibility

of a general result on the stability region for the genaraprocess with arithmetic

12The results here can be verified by using Jury’'s test (e.g. Elaydi (1996) (pages 180-181)) and
MapIeTM .



HOMOGENEOUS BELIEFS AND LEARNING 19

weights:

Dy (a,a) = Dypq(a,a) = {a: =1 <a<2L+1} (4.9)
for L =1,2,---. However, whether this conjecture holds or not is still an open ques-
tion.

One can see from the stability regionsagfandas-processes that, unlike the least-
squares process, the inclusion relation(«, a) C Dy («, a) for L < L’ is not true, in
general.

Consider now thgeometric weights
a =a, a; =aw’t for j=2,---,L,

wherew € (0, 1). That is, the weight associated with the past observations decay geo-
metrically. Frome:1 a; =1, we haven = (1 —w)/(1 —w"). Applying Propositions

4.2 and 4.3 forl, = 2, 3, respectively, we obtain the local stability regions of the fixed

equilibrium
Dy = {(,w): -1 <a<min{l+1/w,(1+w)/(1—-w)}}
D3;= {(qyw):—1<a, a< %,
w w2(1-w?)
L= TFwtw? & + (T+wtw?)Z o? > 0}

for L = 2 and3, respectively. In both cases, the local stability region of the fixed
equilibrium is bounded, see Fig.4.4(a), (b).
To consider the limit case di — oo, we introduce a new variablg for the geo-

metric moving average:
Yo1 = a[r; 1 +wr o+ w5+ wr )

Then

Yr = WY1 + alzy — WL?Ut—L]- (4.10)

Sincew € (0,1), asL — oo, the limiting equation of (4.10) is given by

Yo = wyp1 + (1 —w)zy. (4.11)



20 CARL CHIARELLA AND XUE-ZHONG HE
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FIGURE 4.4. Local stability of fixed equilibrium with geometric
weights and (a). = 2, (b) L = 3 and (c) the limiting casé = oo.

This, together with (2.6), leads to a two-dimensional system

Ty = —QYi—

(4.12)
= [w—a(l—w)ly 1.

Thus the zero solution of the system (4.12) is LAS if and only if

1+w

—1l<ax< .
@ 1—w

In this case, the local stability region of the fixed equilibrium is unbounded, see
Fig.4.4(c). One can see that, in terms of the parametehe stability region be-
comes larger as the weighit, associated with the most recent observation increases.
Furthermorep = —1 corresponds to fold bifurcations and= 1 corresponds to

period doubling bifurcations.

5. CoBWEB DYNAMICS WITH HOMOGENEOUSL EARNING PROCESS

As application of the results obtained in the previous sections and illustration of
the complex global dynamics generated by various types of bifurcations, the cobweb

model introduced in Section 2 is considered in this section.

5.1. The Homogeneous Least-Squares Proces8pplying Proposition 3.2 to the

cobweb model leads to the following stability result.
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Corollary 5.1. The fixed equilibriunp* of (2.14) with the homogeneous least squares

L-process is LAS if and only if

4 0 * *
~l<a= %[eﬂgo” +e PP 72 < L, (5.1)

To undertake a numerical bifurcation analysisglet 0.65, 5 = 1,b = 1. The focus
of the analysis will be on the sensitivity of the dynamics to the paramgtérable 1

shows the critical value;: of g,**for « = —1 anda = 1,2, 3, 4

« -1 1 2 3 4
gr | -5.87499..) 1.12915.. 2.52289..] 4.06055..| 5.67050...

TaBLE 1. Critical values ofy, fora=-1,1,2,3,4

The number of the fixed equilibria depends @n It can be shown that fog, >
g%, = —5.87499... (corresponding tax = —1), there is a unique positive equilibrium
p*, which is LAS for—1 < o« < L. Wheng, < g¢*,, there exist three equilibria
p; (j = 1,2,3) satisfyingp; < p; < 0 < p; with bothp} andp; locally stable angh;
unstable. Whery, = ¢*,, there are two equilibrig; andp; satisfyingp} < 0 < p;
(with p} locally stable). For = 1,2 and 3, numerical simulations on the nonlin-
ear model suggest the stability and bifurcation behavior peamdicated as in Fig.
5.1. Therefore, ag, decreases further fromt |, a saddle-node bifurcatidf appears
— the stability of the positive fixed equilibrium continues to hold, however two new
(negative) fixed equilibria appear with one stable and the other unstable. Therefore,
«a = —1 (so that one of the eigenvalues is 1) does not generate a flop bifurcation in this

case.

Theg* is calculated in the following way. Let* be the fixed equilibrium and lgt* = Bg,p*, A =
b/Bg,. Theny* andA satisfy Ay* +tanhy* = a andaA[e?” +e~ ¥ ]* = 4. For givena, solving fory*
from the equatiom[a — tanh y*][e?” + e~¥ ]> = 4y* leads tog* = b/(BA) = by*/[3(a — tanh y*)].
1%The saddle-node bifurcation results from a symmetry breaking of the map. In fact=dy, the map

T satisfiesI'(—z, —y) = —T'(z,y) and the type of bifurcation of fixed equilibrium for such symmetry
maps is a pitchfork. However, this symmetry no longer holds whef 0, leading to a saddle-node
bifurcation.
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-

9o

-

FIGURE 5.1. Saddle-node bifurcation diagram: solid lines indicate
local stable fixed equilibria and the dotted line indicates an unstable
fixed equilibrium.

Consider, = 1. Numerical simulations show that, fgt, nearg; corresponding
to o = 1, all the solutions; (locally) converge to the fixed point* for g, < ¢7.

However, agj, increases abovg, a locally stable period doubling is generated.

\P72
0.8 %
5,

FIGURE 5.2. Phase plot ofp;, p; 1) for the least-Squares 2-process:
an LAS fixed equilibriumP, for ¢, < g5 and 2 sets of three-cycles with
{S1, Ss, S5} unstable and P, P,, P;} (locally) stable.

ConsiderL = 2. For g, nearg, = g5 corresponding tax = 2, all the solutions
converge to the fixed point for < ¢;. Forg, = ¢5, a strong 1:3-periodic resonance
appears. Agj, increases abovg;, there is bifurcation to two sets of period three
cycles, one set of the three period cy¢l, P», Ps} is (locally) stable and the other
set{S, S», S3} is unstable (see Fig. 5.2). The dynamics are very similar to those
found in the analysis of the cobweb learning model investigated in Chiarella and He

(200@) where a normal form analysis is used to investigate the stability of the strong

3-periodic resonance.
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For L = 3,4, g, = g3, g; lead to strong 1:4 and 1:5 periodic resonances, respec-
tively. Similar dynamics near the critical valugs g; are found except that the bifur-

cated cycles are period four and five cycles, respectively.

5.2. The Homogeneous,-Process. The cobweb model under the homogeneaus
process is studied in Hommes (1998) where various strange attractors have been ob-
tained through different combinations of the parametemnda = (a;,a2). The
following bifurcation and numerical analysis give further insights into the dynamics
of the cobweb model as the extrapolation rgteand learninga = (ay, ay)-process
change. In particular, the routes to various resonances and quasi-periodic orbits, even
chaotic behavior are investigated.

As before, leta = 0.65,6 = 1 andg = 1. With « defined by (5.1), the stability
region is given by Fig.4.1. When the parameters «) move crossd B, the flop (or
divergence) curve, from the stability region, two new equilibria appear and the system

has similar dynamics as the case with the least-squares process (see Fig. 5.1).

a=(0.1,0.9) T afesdn U7 =

0.0 -

] “"
umu,ulmlhlllllﬂlllmlhuf'“m

) ) s T o o o B 0.0 0.2 0.4 0.6 0.8 1.0
a=(0.5,05) a=(0.8,02) a1

(@) (b)

FIGURE 5.3. (@) Phase plot of(p,p._1) for a =
(0.1,0.9),(0.3,0.7),(0.5,0.5), (1.8,0.2) respectively; (b) Bifurca-
tion diagram fora; anda = 2.

Now g, is selected so that = 2. Then, across the line = 2 (hence different
as, a = (a1, az)-processes), lead to various-types of periodic resonances and quasi-

periodic orbits. Fig. 5.3(a) shows the phase plotfer (0.1,0.9), (0.3,0.7), (0.5,0.5)
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p_t
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0.0 -

-0.5

(b)

FIGURE 5.4. Bifurcation diagram for (a)a = (0.76,0.24) and (b):
a = (0.35,0.65).

and(0.8,0.2), respectively. They correspond to strong 1:4 periodic resonance, quasi-
periodic (almost closed) orbit, strong 1:3 periodic resonance and period doubling, re-
spectively. With the fixed (hencey,), the bifurcation diagram far; is plotted in Fig.
5.3(b). Fig. 5.3 shows that there are two different types of bifurcation whemoves

out of the stable region (which is (1/4, 1/3) far= 2). Whena, crossesDFE — the

flip curve, a period doubling bifurcation is generated. However, whetrosses”' D

— the flutter saddle curve, various resonances and quasi-periodic orbits occur. For ex-
amplea, = 0.5 corresponds to a strong 1:3 periodic resonance (the solutions converge
(locally) to a 3-cycle). When, moves further, say, = 0.7, the solutions converge to
either higher periodic or quasi-periodic cycles, indicated by the (almost) closed curve
on the phase plot dfp;, p; 1) for (a1, as) = (0.3,0.7). Whena, is close to 1 (that is,
almost all weight is om,_»), the solutions converge to 4-cycles.

Based on the analysis of tlag-process in the last section, along the flutter-saddle
curveC D, there exisp : ¢ resonances witkp, ¢) = (1, 2), (1,3), (1, 3),(2,5), (2,7),
(3,7),(10,3) and so on. For example, fdp,q) = (2,7), (3,7) the corresponding
(ag, @) = (0.69202...,1.44504...), (0.35689..., 2.80193...) and hencgy, =1.724513...,

3.748733..., respectivéy Numerical simulations show (not reported here) that, in

5For a given(p, ¢), on the curveC' D, as = 1/(1 — p) ander = 1/ay with p = 2 cos(27p/q). From
which, the corresponding, can be calculated (as before)
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both cases, periodic 7 orbits appear for different initial values, they either tend to the
fixed equilibrium or form piece-wise or (almost) closed orbits on the phase plane.
Also, for fixedas, further increasing, leads the pricéz;, ;1) to different attractors
for p = 2 and3. Forp = 2, the attractors appear chaotic, while for 3, the attractors
are either piece-wise, or (almost) closed orbits, or regular circles.

The dynamics caused by the extrapolation rgtean be seen in the bifurcation dia-
grams plotted in Fig. 5.4 (a) far = (0.76,0.24) and (b) fora = (0.35, 0.65), respec-
tively. They show different bifurcation routes from stability to complicated (and then
to a simple) dynamics. In fact, the complicated price dynamics of the cobweb model
caused by, has been investigated numerically by Hommes (1998). For many param-
eter values the cobweb model wish-process has a strange attractor. Numerically,
he shows that there are two different bifurcation routes to chaos whenreases —
one is the well known period doubling route and the other is the breaking of an in-
variant circle. Our analysis gives some theoretical insight into these different routes
to chaos. In particular, the second route to chaos is through various resonances and

quasi-periodic orbits.

5.3. The Homogeneouss-Process. As analyzed in the previous section, various bi-
furcations occur when the parametéts, as, o) cross either the divergence, or flip,

or flutter saddle surface. In particular, bifurcation from the flip surface can lead to
chaos by the period doubling route. While the bifurcation from the flutter saddle sur-
face leads to varioug : ¢ resonances and quasi-periodic orbits, which in turn lead
to complicated dynamics and chaos. To illustrate the dynamics of the homogeneous
az-process, a bifurcation diagram in termsafis shown in Fig.5.5, where, b and

[ are selected as before apgd = 9.5, a3 = 0.21 anday, € [0,0.79]. In general,

the az-process can have all types of bifurcations generated fromtipgocess. Fur-
thermore, the switching between simple and complicated price dynamics can be more

interesting, as shown in Fig.5.5.
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FIGURE 5.5. Bifurcation diagram for the homogeneausprocess
with g, = 9.5, a3 = 0.21 anda, € [0,0.79]

6. CONCLUSION

This paper investigates the dynamics of agents’ learning via least-sdupresesses
and generah; -processes. In the case of homogeneous beliefs, it provides an explicit
study of how the local stability of the equilibrium is affected by the least-squares
process aneh-process and shows various types of bifurcation routes, in the case of
the cobweb model, to complicated dynamics. Our results might be summarized as

follows:

¢ When the agents follow the homogeneous least-squamscess, a complete
picture can be drawn in terms of (local) stability and bifurcation: the stability
region of the fixed equilibrium is completely characterized by the lag length
L of the least-squares learning process and the parameters of the model, in
particular the parameter, which is related to the extrapolation rate of the
traders in the cobweb model. When the fixed equilibrium becomes unstable, a
1: L + 1 resonance is generated.

e When the agents follow the general homogeneguprocess, the stability of
the fixed equilibrium and bifurcations depends essentially upon the weight vec-
toray. In the simplest cases @f = 2 and3, it is found that, depending on the
weight vectora, the stability region can be different and the instability of the
fixed equilibrium can generate various resonances and quasi-periodic orbits,

which in turn lead to complicated dynamics and chaos by different routes.
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The expectations functions considered in this paper are some of the simplest learning
processes in which all the weights on the past states are constants. However, they yield
very rich dynamics in terms of the stability, bifurcation and routes to complicated
dynamics. In reality economies are populated by heterogeneous agents who form their
expectations and learning processes differently. Furthermore these agents revise their
expectations by adapting the weights in accordance to their observations of how the
other agents are performing. How heterogeneous expectations and learning affects
the dynamics in this situation is studied to some extent in Chiarella and Heg2000

(200M). However many interesting questions remain for future research.

APPENDIX A

A.1l. Rouche’s Theorem. If the complex functiong(z) andg(z) are analytic inside
and on a simple closed curveand if|g(z)| < |f(z)| on~, thenf(z) andf(z) + g(z)

have the same number of zeros inside

A.2. Proof of Proposition 4.1. To prove the first part, lef,(z) = z andg,(z) =
alar 2zt + agz""? + -+~ 4+ ag 12 + ar]. Then, followinga; > 0 andezl a; =1,
on|z| =1, |fi(2)| = 1and|g(2)| < |of Z]L.Zl a; = |a|. Thus, under the condition
la] < 1, |g1(2)| < |fi(2)] on|z| = 1. Note thatf(z) hash zeros insiddz| = 1. It
follows from Rouche’s Theorem that bogh(z) andI'(z) = fi(z) + ¢g1(z) have the
same number of zeros insifg = 1, which implies that all the eigenvaluesiofz) lie
inside|z| = 1. Thereforez* is LAS.

To prove the second part, I¢t(z) = a;2%~" andgs(z) = I'(z) — f2(z). Note that
a; > 0, Z]L.Zl a; = 1 and fy(2) hasL — i zeros insidgz| = 1. Also, under the
condition (4.2),[g2(2)| < 1+ o]0, . a5 < ajla| = |f2(z)| on|z| = 1. Then,
following Rouche’s Theoreni;(z) = fa(z) +¢2(z) has onlyL —i zeros insidez| = 1
(hence there exists at least one zero satisfyihg- 1). Therefore, the equilibriun*

is not LAS. Q.E.D

A.3. Proof of Proposition 4.3. It follows from Sonis (2000) that all the eigenvalues

A of the characteristic polynomial® + ¢;\? + ¢\ + ¢3 = 0 satisfy |\| < 1 iff



28 CARL CHIARELLA AND XUE-ZHONG HE
bo=1+ci+et+ce3>0bs3=1—ci+c—c3>0andAy =1—cy+ciec3—c2 > 0.
Applying this result to thexs-process gives us the stability regién(«, a) defined in
Proposition 4.3.

The largest stability interval far is given bya € (—1, o*), wherea* = min{ay, as}
ando; solve the equationd, = II; = 0. Eliminatea, from the equationsl, = II; =

0,
(]_ - CL3) + |]_ - 7a3|
2@3(1 — 4@3)

Oéj:

Obviously, whena; = 1/7, o has its largest value of. Correspondinglya; =
ay = 3/7. Therefore,a = (3/7,3/7,1/7) leads to the largest stability interval for
a€ (—1,7). Q.E.D
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