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ABSTRACT. This paper studies a class of models in which agents’ expectations influ-

ence the actual dynamics while the expectations themselves are the outcome of some

learning process. Under the assumptions that agents have homogeneous expectations

(or beliefs) and that they update their expectations by least-squaresL- and general

aL-processes, the dynamics of the resulting expectations and learning schemes are

analyzed. It is shown how the dynamics of the system, including stability, instability

and bifurcation, are affected by the learning processes. The cobweb model with a

simple homogeneous expectation scheme is employed as an example to illustrate the

stability results, the various types of bifurcations and the routes to complicated price

dynamics.
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1. INTRODUCTION

Many dynamic economic models form an expectations feedback system. Expec-

tations affect actual outcomes, actual outcomes affect expectations through learning,

and so on. The standard economic models, such as the capital asset pricing model and

the Black-Scholes option valuation model, rely on the assumption of rational homo-

geneous expectations. However, the past decade has witnessed a rapidly increasing

interest in work on boundedly rational expectations. Boundedly rational agents use

simple learning schemes to form their expectations. In the boundedly rational world,

stability of expectations and learning schemes becomes important in many models of

finance and economics.

Among various learning schemes that boundedly rational agents may use, the prop-

erties of least-squares learning processes1 under homogeneous expectations have been

studied extensively (see, for example, Balasko and Royer (1996), Bray (1983), Evans

and Honkapohja (1999), Evans and Ramey (1992), Lucas (1978) and Marcet and Sar-

gent (1989)). In his survey paper, Grandmont (1998) considers stability and conver-

gence to self-fulfilling expectations in large socioeconomic systems and suggests a

kind of general‘Uncertainty Principle’ – Learning is bound to generate local insta-

bility of self-fulfilling expectations, if the influence of expectations on the dynamics

is significant. When learning processes are involved, as pointed out by Balasko and

Royer (1996),‘the properties of the (Walrasian) equilibrium with respect to the conver-

gence of least-squares learning processes and, more generally, of recursive processes

have hardly been studied’. This paper intends to add to the literature on this prob-

lem. In particular, the dynamics of the (Walrasian) equilibrium is analyzed when the

learning processes follow the least-squaresL- and the generalaL-processes (see the

following section for the definition).

1The term learning is being used in a very particular, and perhaps restricted sense here. It refers to a
situation in which agents adopt a rule to come of with an expectation of next period’s price. A broad
use of the term learning would envisage a situation in which agents are able to switch strategies in light
of prediction errors, for example as in Brock and Hommes (1997).
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This paper considers a deterministic (nonlinear) framework and focuses on an ex-

tremely simple case, in which the state of the system is completely described at every

date by a single real numberxt. Depending upon the context, the state variablex may

stand for a price, a rate of inflation, a real rate of interest etc. Traders plan one period

ahead. To abstract from all forms of uncertainty, the traders’ expectations or forecasts

follow finite least-squaresL- or generalaL-processes.

Balasko and Royer (1996) consider local stability under a homogeneous least-squares

L-learning process, which is formed from the pastL values of the state variable. They

determine a relationship between stability and the parameterL. Intuition would sug-

gest that the larger is the number of observationsL, the more stable is the equilibrium,

and they show that this intuition is essentially correct for the least squaresL-process.

As in Balasko and Royer (1996), this paper tries to determine the stability properties

associated with different values ofL and differentaL-processes and it is seen to what

extent Balasko and Royer’s result still holds. The learning processes considered are of

finite memory (i.e.L � 1 is finite). Related studies on homogeneous learning can be

found in Barucci et.al. (1999), Grandmont (1985) and Grandmont and Laroque (1986)

for finite memory and Balasko and Royer (1996), Bischi and Gardini (2000), Chiarella

(1988) and Hommes (1991), (1994) for infinite memory.

Under homogeneous expectations, this paper concentrates on how the stability of

the system is affected differently by the least-squaresL and the generalaL learning

processes with different lag lengthL and weight vectora. In particular, it is shown

that, with the least-squares (learning)L-process, the (local) stability region of the fixed

equilibrium can be completely characterized by the lag lengthL and the parameters

of the system, while the instability of the fixed equilibrium generates a1 : L + 1

resonance.2 However, for the generalaL-process, much more rich dynamics arise. In

the simplest cases ofL = 2 and3, it is found that, depending on the weight vector

a, the stability region can be different and the instability of the fixed equilibrium can

generatep : q-resonances (for almost anyp; q) and quasi-periodic orbits.

2The sense in which the term resonance is being used in this paper will be explained below.
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The paper is organized as follows. Section 2 introduces first a temporary equilibrium

relation with homogeneous beliefs and, following Balasko and Royer (1996), describes

homogeneous least-squaresL-processes and generalaL-processes. As an example, a

nonlinear cobweb model under a homogeneous least-squaresL-process and a simple

aL-process is then presented. Under the assumption of homogeneous expectations,

Section 3 investigates the dynamics of the system, including stability, instability and

bifurcations, when the agents follow least-squaresL-processes. An analysis of the dy-

namics of the generalaL-process then follows in Section 4. In Section 5, we apply

the results obtained in the previous sections to the nonlinear cobweb model introduced

in Section 2. Various bifurcation phenomena and routes to chaos are analyzed in de-

tail. Section 6 concludes. The proofs of the various propositions are gathered in the

appendix.

2. HOMOGENEOUSBELIEFS AND LEARNING

In this section, least squaresL- and general homogeneousaL-processes as learn-

ing processes for a general temporary equilibrium model are introduced first, then a

nonlinear cobweb model under a homogeneous least-squaresL-process is presented.

Stability and bifurcation of the (Walrasian) equilibrium of the general model with these

processes are studied in the following sections.

For the convenience of the discussion, the state variablext is treated as the price at

periodt. In this section, all traders’ expectations at datet about the future state are

assumed to be identical and denoted asxet+1. Assume that the current equilibrium state

xt depends on the common forecast through the temporary equilibrium relation3

T (xt; x
e
t+1) = 0: (2.1)

This paper focuses on the casexet+1 = t�1x
e
t+1, indicating that the information set used

to form the expectations includes information only up to and including timet� 1. The

conditioning on information up to and including(t� 1) arises in situations where the

3To be more precise,xet+1 = t�1x
e
t+1 if xt is not included in the information set andxet+1 = tx

e
t+1 if

xt is in the information set.
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equilibrium price is a result of the Walrasian auctioneer process. Agents are assumed

to form expectations before the auctioneer announces the equilibrium price.

Let the expectation function be defined by

t�1x
e
t+1 = 	(xt�1; � � � ; xt�L): (2.2)

Assume there existsx� such thatT (x�; y�) = 0 with y� = 	(x�; x�; � � � ; x�), that isx�

is a fixed equilibrium ofT (x;	(x; � � � ; x)) = 0. It is also assumed that the mapT is

well defined and continuously differentiable locally at(x�; y�), the expectation func-

tion 	 is well defined and continuously differentiable locally near(x1; x2; � � � ; xL) =

(x�; x�; � � � ; x�). Denote

B =
@T (x; y)

@x

����
(x�;y�)

; C =
@T (x; y)

@y

����
(x�;y�)

; dj =
@	(x1; � � � ; xL)

@xj

����
(x�;��� ;x�)

with j = 1; � � � ; L and assumeB; C 6= 0. Then the linearization of (2.1) and (2.2) at

the fixed pointx� is given by

B(xt � x�) + C
LX

j=1

dj(xt�j � x�) = 0: (2.3)

ConsiderL real numbersaj � 04 satisfying
PL

j=1 aj = 1 and denote byaL =

(a1; a2; � � � ; aL) the (L-dimensional) weight vector. The following definition is intro-

duced in Balasko and Royer (1996).

Definition 2.1. Thegeneral homogeneous5 recursive (finite) aL-processis defined

by (2.2) and

	(x1; � � � ; xL) = g(a1x1 + � � �aLxL); 0 � aj � 1;
LX
j=1

aj = 1 (2.4)

4Hereaj are treated as the weights (or probabilities) of the past states and therefore are assumed to be
nonnegative.
5Note the double use of the word homogeneous in this paper. Earlier to indicate that all agents have
identical expectations. Here to indicate a particular expectation formation rule.
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with some (locally nearx�) continuously differentiable functiong. Thehomogeneous

least-squaresL-processis simply theaL-process defined by the weight vectoraL =

(1=L; 1=L; � � � ; 1=L).

Wheng(x) = x andaL = (1; 0; � � � ; 0), the expectation corresponds to the naive

expectation—the expected price equals the most recently observed pricext�1. In gen-

eral, any forecast or expectation of future prices will be some function of past prices

and in this context the generalaL-process is the simplest expectations scheme. This

expectation is also known asLinear Backward-Looking Expectationsor Distributed

Lag Expectations(e.g. Hommes (1998)). There are many possibilities for the dis-

tribution of weightsaj. Whenaj = 1=L, weights are distributed evenly and the ex-

pectations scheme corresponds to the least-squaresL-process as already stated. In

adaptive learning schemes, more weight is given to more recent observations, that is

aj � aj+1; 1 � j � L � 1, e.g. the arithmetic and geometric weights considered in

Section 4. For more related discussion, the reader is referred to Balasko and Royer

(1996) and Hommes (1998).

Following from (2.3) and (2.4), the linearization of (2.1) and (2.2) (nearx�) with the

general homogeneous recursive (finite)aL-process becomes

B(xt � x�) + Cgo

LX
j=1

aj(xt�j � x�) = 0; (2.5)

wherego = g0(x�) = [dg(x)=dx]jx=x�
6. Replacingxt � x� by xt in (2.5), the local

stability of the fixed equilibriumx� of (2.5) is then equivalent to the stability of the

zero solution of the equation

xt + �
LX
j=1

ajxt�j = 0 with � = Cgo=B: (2.6)

The parameter� measures the combined influence of both the expectation (through

C=B) and extrapolation (throughgo) on the pricext locally (nearx�). Therefore the

6In the context of Grandmont (1998), the parametergo may be referred to as the extrapolation rate and
B;C as the parameters of the system. In particular,C=B measures the local (near the fixed equilibrium
x�) dependence of the price (xt) on the expectation (xet+1).



HOMOGENEOUS BELIEFS AND LEARNING 7

local stability of the general homogeneous recursive (finite)aL-process is generically

governed by the eigenvalues of the characteristic polynomial of (2.6)

�L(�) � �L + �
LX
j=1

aj�
L�j = 0: (2.7)

Equation (2.7) is anL-th order polynomial and hence the zero solution of (2.6) is Lo-

cally Asymptotically Stable (LAS hereafter) if and only if all roots�j(j = 1; � � � ; L)

of (2.7) satisfyj�jj < 1 (j = 1; � � � ; L). It is in general difficult to obtain explicit nec-

essary and sufficient conditions in terms of the coefficients of�(�). However, for the

homogeneous least-squaresL-process, an explicit necessary and sufficient condition

is derived in terms of the coefficients of�(�) in the following section. A complete

analysis of the stability and bifurcation ofa2 anda3 is carried out in Section 4. For the

more generalaL processes, it only seems possible to obtain some sufficient conditions

about stability.

As both an illustration of the results obtained in the following sections and an im-

portant application in its own right, consider a general cobweb class of models where

the market equilibrium price is determined by (see Hommes (1998)) for details)

D(pt) = S(t�1p
e
t+1); (2.8)

andD andS are demand and supply functions. Let price expectations be given by

t�1p
e
t+1 = H(

�!
P t�1); (2.9)

where
�!
P t�1 = (pt�1; pt�2; � � � ; pt�L) is a vector of past prices (with lagL) andH is

called the expectation function or the perceived law of motion. Combining (2.8) and

(2.9) yields

D(pt) = S(H(
�!
P t�1)): (2.10)

To keep the model as simple as possible, throughout the paper a linear demand function

is assumed, namely

D(pt) = a� bpt: (2.11)
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Following Chiarella (1988) and Hommes (1998), a nonlinear, but monotonic,S-shaped

supply curve

S(x) = Tanh(�x) =
e�x � e��x

e�x + e��x
(2.12)

is selected, where the parameter� tunes the steepness of theS-shape.7 Also, assume

that

H(
�!
P t�1) = go

LX
j=1

ajpt�j (2.13)

with aj � 0;
PL

j=1 aj = 1; go 2 R for j = 1; � � � ; L. The parametergo is allowed

to be both positive (trend chasing expectations) and negative (contrarian expectations).

Then, the resulting nonlinear difference equation is given by

pt =
1

b
[a� S(go

LX
j=1

ajpt�j)]: (2.14)

Following the notation in (2.1),

T (x; y) = bx + S(y)� a: (2.15)

The fixed equilibriump� satisfies

a� bp� = S(g(p�)) = Tanh(�gop
�): (2.16)

For go � 0, the fixed equilibrium is unique. However, forgo < 0, there existsg�o <

0 such that there is unique positive fixed equilibriump� for go 2 (g�o ; 0) and three

equilibria p�j (j = 1; 2; 3) satisfyingp�3 < p�2 < 0 < p�1. Whengo = g�o , there are

two equilibriap�2 < 0 < p�1. Accordingly, the characteristic equation of the linearized

equation of (2.14) at the fixed equilibriump� has the form of (2.7) with

B = b; C =
4�

(e�gop� + e��gop�)2
; � =

Cgo
B

=
4�go=b

e�gop� + e��gop�2
and g0(p�) = go:

7We are indebted to an anonymous referee for pointing out that application of the results developed in
the following two sections to the cobweb model is independent from the functional forms for both the
demand and supply.
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HereB andC are the slopes of the demand and supply function at the fixed equilibrium

p�, respectively.

3. DYNAMICS OF HOMOGENEOUSLEAST-SQUARESL-PROCESSES

This section investigates the dynamics of the system with the least-squaresL-process,

focusing in particular on the local stability and bifurcation analysis in the parameter

space of the system and the lag length.

3.1. Local Stability. The following Lemma 3.1, obtained in Chiarella and He (2000c),

is used to characterize the local stability.

Lemma 3.1. Let

QL(�) � �L + 
�L�1 + 
�L�2 + � � �+ 
�+ 
: (3.1)

Then the zeros ofQL(�) lie inside the unit circle if and only if

�
1

L
< 
 < 1: (3.2)

The simple condition (3.2) characterizes completely the stability of the correspond-

ing higher order difference equation and, more importantly, the condition connects

the parameter
 to the orderL of the system. For the homogeneous least-squares

L-process,aj = 1=L for j = 1; � � � ; L, the corresponding characteristic polynomial

�L(�) has the form of (3.1) with
 = �=L = Cgo
BL

. Applying Lemma 3.1 leads to the

following result on the LAS of the homogeneous least-squaresL-process.

Proposition 3.2.The fixed (Walrasian) equilibriumx� of the homogeneous least squares

L-process is locally asymptotically stable (LAS) if and only if

�1 < � =
Cgo
B

< L: (3.3)

Denote byDL(�) = f� : �1 < � < Lg the stability region for the parameter� cor-

responding to the homogeneous least-squaresL-process. Then, for the homogeneous



10 CARL CHIARELLA AND XUE-ZHONG HE

least-squaresL-process, the LAS of the fixed equilibriumx� is completely character-

ized byDL(�). Obviously,DL(�) � DL0(�) for L < L0, that is,L-stability implies

L0-stability for L < L0. In other words, the larger is the number of observationsL

(used in the least-squares learning process) the more stable is the fixed equilibrium.

This is in particular the case when� > 0. However, when� < 0, the condition (3.3) is

independent ofL and hence increasing the lag lengthL does not necessarily improve

the local stability of the fixed equilibrium.

Proposition 3.2 improves the related result obtained in Balasko and Royer (1996).

Through a delicate analysis, they obtain an inclusion relation on the geometry of the

stability domainsDL of the 1-dimensionalcomplex valuedlinear least-squaresL-

process and show thatL-stability impliesL0-stability for L < L0. However, under

their assumption, the geometry of the stability domainsDL is in fact characterized by

1-dimensionalreal valued, instead of complex valued, processes and therefore Proposi-

tion 3.2 can be applied and the stability regionsDL(�) can be characterized explicitly.

Consequently, the inclusion relationship thatL-stability impliesL0-stability forL < L0

is easily established.

3.2. Bifurcation Analysis. Under the homogeneous least squaresL-process, the char-

acteristic polynomial has the form

�L(�) � �L +
�

L
[�L�1 + � � �+ �+ 1] = 0: (3.4)

It follows from Proposition 3.2 that the fixed pointx� becomes unstable for� =2

(�1; L). Therefore� = �1 andL are the critical bifurcation values.

For � = �1, �L(�) = �L � [�L�1 + � � � + � + 1]=L. Obviously,� = 1 is an

eigenvalue. It can be shown that the remainingL � 1 eigenvalues satisfyj�j < 1.

Thus, for� = �1, the fixed pointx� becomes unstable and� = 1 corresponds to a

fold bifurcation in general.

For � = L, �L(�) = �L + �L�1 + � � � + � + 1. Obviously,� = 1 is not an

eigenvalue. In fact,�L(�) = [�L+1 � 1]=[�� 1], which implies that theL eigenvalues
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of �L(�) satisfy�L+1 = 1 with � 6= 1, that is�k = e2kw�i with w = p=q, p =

1; q = L + 1 andk = 1; 2; � � � ; L. Geometrically, theL eigenvalues correspond to

theL + 1 unit roots distributed evenly on the unit circle, excluding� = 1. When

L = 1, a flip or period-doubling bifurcation occurs. WhenL = 2, p = 1 andq = 3

the system is a map inR2 . In such a case, according to Kuznetsov (1995) (pages

104 and 350),� = L = 2 leads to a1 : 3 strong resonance.8 The dynamics of a

strong resonance can be exceedingly complicated (see Kuznetsov (1995)). In general,

for L � 2, according to Sonis (2000),� = L lead theL-dimensional map to have

1 : L + 1 periodic resonances. Theoretical analysis for such types of bifurcation of

higher dimensional discrete systems can be exceedingly complicated and are not yet

completely understood. In Section 5, a numerical approach is employed for the cobweb

model to demonstrate a range of complicated dynamics caused by such resonance

bifurcations.

4. DYNAMICS OF GENERAL HOMOGENEOUSaL-PROCESSES

Now turn to the stability of the general homogeneousaL process. As mentioned

earlier, it seems in general impossible to derive explicit necessary and sufficient condi-

tions. However, Rouche’s theorem (which is stated in Appendix A.1) can be employed

to obtain some sufficient conditions for LAS.

Proposition 4.1. For the general homogeneousaL-process (2.1), (2.2) and (2.4),

� the fixed equilibriumx� is LAS if

j�j < 1: (4.1)

8For a map inR2 , when all the eigenvalues are on the unit circle, there is no“(strong) resonance”if
there is an eigenvalue, say��, satisfying��q 6= 1 for q = 1; 2; 3; 4. Otherwise, we say the map has a
1 : q (strong) resonance(q = 1; 2; 3; 4). When the nonresonance condition is satisfied, for aR

2 map
depending on one parameter, as the eigenvalues of the fixed equilibrium move off the unit circle, there
appears a closed invariant curve — all the iterates of any point on the curve remain on the curve —
encircling the fixed point. Such a bifurcation corresponds to the Poincare-Andronov-Hopf bifurcation,
see also Hale and Kocak (1991) for more discussion. When the nonresonance condition is not satisfied,
a 1 : q (strong) resonance bifurcation inR2 can generate a two orbits of periodq — one orbit is a sink
and the other is a saddle. For the cobweb model, based on the analysis in Section 5, as� increases
through2, the fixed equilibrium is bifurcated to a1 : 3 resonance bifurcation, which means that two
orbits of period3 bifurcate from the fixed point: a sink and a saddle, as shown in Fig.5.2.
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� the fixed equilibriumx� is unstable if there exists at least oneaj : 1 � j � L

such that

2j�jaj > 1 + j�j: (4.2)

The proof of Proposition 4.1 is given in Appendix A.2. Following a different argu-

ment, a more general sufficient condition on the local stability is derived in Grandmont

(1998). Our sufficient condition on the stability can also be obtained from the Proposi-

tion 2.2 in Grandmont (1998). However, our instability result is quite different to that

of Proposition 2.1 in Grandmont (1998), which relates the eigenvalues of the actual

system to the perfect foresight eigenvalues.

Comparing the conditions (3.3) and (4.1), one can see that the LAS of the least-

squares 1-process implies the LAS of the generalaL-processes for anyL. However

the stability regions defined by the least-squaresL-process and the generalaL-process

can be independent of each other in general9, as shown in the following analysis of

the homogeneousa2; a3-processes. If� < 0, the LAS of the least-squaresL-process

implies the LAS of the generalaL-process, but if� > 0 this is not true in general.

Denote byDL(�; a) the region, in terms of the parameter� and weight vectora, for

the LAS of the fixed equilibriumx� of the generalaL-process. As the parameters move

across the boundaries of the (local) stability regionDL(�; a), various bifurcations can

be generated. When� = �1, it follows from (2.7) that� = 1 is an eigenvalue for

any lagL. Therefore, when� = �1 belongs to part of the stability boundaries (which

is the case forL = 2; 3 based on the following discussion), a fold bifurcation occurs.

The dynamics of the generalaL-process can be very complicated, as indicated by the

numerical results for the cobweb model in Section 5.

To understand the dynamics, in the following, consider the simple casesL = 2 and

3 so that the stability region and bifurcation can be characterized explicitly. In these

cases, related discussions on the stability region have been considered in Hommes

9Note that the condition (4.2) can be written as[2aj � 1]j�j > 1, so, if either the parameter� or one of
the weightsaj is large enough (such that this condition holds) then the equilibriumx� is unstable. This
indicates that certain selections of the weightsaj of the generalaL-process can lead the equilibrium to
be unstable, while at the same time it can be stable under the least-squaresL-process.
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(1998) (forL = 2) and Grandmont and Laroque (1990)) (forL = 3). However,

the following analysis, in particular on the bifurcation, gives further insights into the

dynamics and how they lead to periodic resonances, quasi-periodic orbits and chaotic

behavior.

4.1. Stability and Bifurcation of the a2-Process.ForL = 2, the characteristic poly-

nomial has the form

�2(�) = �2 + �[a1�+ a2]; 0 � a1; a2 � 1; a1 + a2 = 1: (4.3)

4.1.1. Local Stability.

Proposition 4.2. For L = 2 anda2 = (a1; a2) = (1� a2; a2),

D2(�; a) = f(�; a2) : � > �1; a2� < 1; �(1� 2a2) < 1g:

It is easy to check that in the case of the homogeneous least-squares2-process (so

a2 = 1=2), Proposition 4.2 leads toD2(�) = f� : �1 < � < 2g. Consider more

closely the regionD2(�; a).

D2(�; a) =
�
(�; a2) : �1 <� <

1

1� 2a2
for 0 �a2 �

1

3
and

�1 <� <
1

a2
for

1

3
�a2 � 1

	
:

The stability regionD2(�; a) is plotted on the(a2; �)-plane in Fig.4.1.

Fig.4.1 indicates that, when the homogeneous expectation follows thea2-process

(i.e. t�1x
e
t+1 = g(a1xt�1 + a2xt�2) with 0 � a1; a2;� 1 anda1 + a2 = 1), the stability

region, in terms of�, of the fixed equilibrium depends on the weight vectora =

(a1; a2). Whena1 = 0, the stability region is given by� 2 (�1; 1). As a1 increases,

the stability region of� becomes larger (� 2 (�1; 1=(1� a1))). Whena1 = 2=3, the

largest stability region� 2 (�1; 3) is attained. However, asa1 increases further, the

stability region of� becomes smaller and ends up as� 2 (�1; 1) whena1 = 1. This
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1
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1
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E

FIGURE 4.1. Local stability region of the fixed equilibrium of the
homogeneousa2-process

indicates that, fora1 2 (0; 2=3) an increasinga1 enlarges the stability region of�, but

this is no longer the case fora1 2 (2=3; 1). Compared with the homogeneous least-

squares2-process, the generala2-process generates smaller (larger) stability region of

� for a2 2 (0; 1=4) [ (1=2; 1) (a2 2 [1=4; 1=2]).

4.1.2. Bifurcation Analysis.The stability region of the homogeneousa2-process in

Fig.4.1 shows that the fixed equilibrium is LAS in the regionABCDE. However,

when the parameters(a2; �) moves out of the region (alongAB or CDE), the fixed

equilibrium becomes unstable and various types of bifurcation occur. AlongAB, the

eigenvalues are�1 = 1 and�2 = �a2 and this implies that, when the parameters

(a2; �) move acrossAB, a flop bifurcation is generated in general. The curveAB

is called adivergence (or flop) curve. Along DE, the eigenvalues are�1 = �1 and

�2 = �a1=(1 � 2a2). So, when the parameters(a2; �) move acrossDE, a flip (or

period doubling) bifurcation occurs. This curve is called aflip curve.

Along CD, the eigenvalues�1;2 2 C satisfyj�jj = 1. That is,�j = cos(2w�) �

i sin(2w�) for j = 1; 2 and0 � w � 1. If w is a rational fraction:w = p=q then

so-calledp : q-periodic resonances10 occur. Indeed, alongCD the system hasp : q-

periodic resonances for(p; q) =(1,2), (1,3), (1,4), (2,5), (2, 7), (3,7), (4,9), (3,10), (3,

11), (4,11)11. In particular,a2 = 1=3 corresponds to a period doubling bifurcation

10See Sonis (2000) for the details.
11The existence ofp : q-periodic resonance is determined by the value of� � �1 + �2 = 2 cos(2w�)
and hence the value ofa2. In fact,� � �1 + �2 = 2 cos(2w�) = ��a1. AlongCD, � = 1=a2 and
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(with (p; q) = (1; 2)), a2 = 1=2 leads to a strong 1:3-periodic resonance anda2 = 1

leads to a strong 1:4-periodic resonance. Other rational fraction (ofw = p=q) rep-

resents fixed points of weak resonances. For example,a2 = 0:38197 corresponds to

a 2:5-periodic weak resonance anda2 = 0:69202; 0:35689 correspond to a 2:7, 3:7-

periodic weak resonance, respectively. Ifw is irrational, one obtains quasi-periodic

orbits. The curveCD is thus called aflutter-saddle curve. Therefore, along the flutter-

saddle curve, the system generates various types of resonances and quasi-periodic or-

bits, while only1 : 3 strong resonance occur for the least-squares 2-process.

4.2. Stability and Bifurcation of the a3-Process.ForL = 3, the characteristic equa-

tion has the form

�(�) � �3 + �[a1�
2 + a2�+ a3] = 0: (4.4)

Following a recent bifurcation analysis for three-dimensional discrete dynamical sys-

tems by Sonis (2000), the local stability region can be characterized completely (see

Appendix A.3 for the proof).

Proposition 4.3. For L = 3 anda3 = (a1; a2; a3) = (1� a2 � a3; a2; a3),

D3(�; a) = f(�; a2; a3) : 0 � a2; a3 � 1; a2 + a3 � 1;

� > �1; (1� 2a2)� < 1; 1� a2� + a3(1� a2 � 2a3)�
2 > 0g:

Furthermore,a = (3=7; 3=7; 1=7) leads to the largest stability interval for� 2 (�1; 7).

The bounded stability regionD3(�; a) in the (a2; a3; �)-space is shown in Fig.4.2.

In particular, fora3 = 0, it reduces to the stability regionD2(�; a) in Fig.4.1. As

a3 increases, the stability region in terms of(�; a2) becomes more peaked. When

a3 = 1=7, the surface reaches its peak. In particular, witha = (3=7; 3=7; 1=7), �

has the largest stability region� 2 (�1; 7), which enlarges the stability region (� 2

(�1; 3)) of the least-squares 3-process significantly. However, asa3 increases further,

hence� = �(1� a2)=a2 for a2 2 [1=3; 1]. Thereforea2 = 1=(1� �) 2 [1=3; 1] iff � 2 [�2; 0]. Then,
checking with the Table 1 in Sonis (2000), one can find various types of periodicity.



16 CARL CHIARELLA AND XUE-ZHONG HE

the stability region in terms of(�; a2) shrinks and ends up with� 2 (�1; 1) when

a3 = 1; a2 = 0.

b

b

b

a2

a3

�

FIGURE 4.2. Local stability regions, in terms of(a2; a3; �), of the
homogeneousa3-process

The boundaries ofD3(�; a) constitute the bifurcation surfaces of the fixed equilib-

rium x� given by�j = 0 for j = 1; 2; 3, where

�1 � 1 + �; �2 � 1� (1� 2a2)�; �3 � 1� a2�+ a3(1� a2 � 2a3)�
2

and0 � a2; a3 � 1; a2 + a3 � 1. In fact, on the plane�1 = 0, at least one of the

eigenvalues is equal to1, i.e., the dynamics become divergent – this is adivergence

plane. On the surface�2 = 0 at least one of the eigenvalues is equal to�1, i.e., the

dynamics become oscillatory – this is aflip surface. Each point on the flip surface

corresponds to a two-period cycle, and the movement of the fixed point through it

generates the Feigenbaum type period doubling sequence in three dimensions, leading

to chaos (Feigenbaum (1978)). On the surface�3 = 0, the eigenvalues satisfy

�1;2 = cos(2w�)� i sin(2w�); �3 = ro; ro 2 [�1; 1] w 2 [0; 1]: (4.5)

Let � = 2 cos(2w�), then� 2 [�2; 2]. Similar to the discussion for thea2-process, if

w is a rational fraction:w = p=q, p : q-periodic resonances occur, which corresponds

to a continuous curve on the surface�3 = 0. For a given(p; q), � is determined by
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� = 2 cos(2�p=q), and the corresponding weights that generate ap : q resonance

bifurcation can be identified in the following way.

From the characteristic polynomial (4.4) and (4.5),

8>>><
>>>:

a1� = �(�1 + �2 + �3) = �2cos(2w�)� ro = ��� ro

a2� = �1�2 + �1�3 + �2�3 = 1 + 2rocos(2w�) = 1 + ro�

a3� = ��1�2�3 = �ro;

i.e.

(1� a2 � a3)� = ��� ro; a2� = 1 + ro�; a3� = �ro:

Eliminatingro from the equations, one has

a2 =
1 + (�2 � 2�� 2)a3

1� �
for � 6= 1: (4.6)

Hence, for given�, equation (4.6) gives the corresponding condition on the weight

vectora = (1� a2 � a3; a2; a3). In particular, for(p; q) = (1; 3), � = �1 and hence

the weights satisfyinga2 = [1 + a3]=2 with a3 2 [0; 1=3] correspond to the strong

1:3-periodic resonance. For(p; q) = (1; 4), � = 0 and hence the weights satisfying

a2 = 1� 2a3 with a3 2 [0; 1=2] correspond to the strong 1:4-periodic resonance. For

the period doubling bifurcation (i.e.,(p; q) = (1; 2), � = �2), the weights satisfy

a3 = (1 + 6a3)=3 with a3 2 [0; 2=9]. Fig.4.3 indicates those weights for(p; q) =

(1; 2); (1; 3); (1; 4). Other rational fractions represent weak resonances, for example,

w = 1=q with q = 5; 6; � � � . Similarly, one can derive the weight equations for any

given p andq (and hence�). If w is irrational, quasi-periodic orbits are generated.

Hence the surface�3 = 0 is called aflutter-saddle surface.

4.3. Remark. The previous analysis leaves open many interesting and important ques-

tions. Among which, two questions are of particular interest:

(a). Is there always anaL process which can generate a larger stability region than

the least-squaresL-process does?

(b). Is it possible to characterize the stability and bifurcation asL!1?
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q = 4

q = 2
q = 3

a2

a3

FIGURE 4.3. The weights which give the periodic doubling bifur-
cation ((p; q) = (1; 2)) and strong 1:3 or 1:4 periodic resonances
(p = 1; q = 3; 4) for the homogeneousa3-process

To have complete answers to these two questions is not a easy task. We attempt to gain

some insights by selecting two special weighting processes — arithmetic weights and

geometric weights.

Consider first thearithmetic weights (e.g. Hommes (1998))

aj =
2(L+ 1� j)

L(L + 1)
; j = 1; 2; � � � ; L (4.7)

so that the weights form a declining arithmetic sequence summing to 1. With such

selections, one can verify that12

D2(�; a) = D3(�; a) = f� : �1 < � < 3g;

D4(�; a) = D5(�; a) = f� : �1 < � < 5g;

D6(�; a) = D7(�; a) = f� : �1 < � < 7g;

D8(�; a) = D9(�; a) = f� : �1 < � < 9g:

(4.8)

That is, the arithmetic weights produce larger stability regions for the generalaL-

process than for the least-squaresL-process whenL = 2; 4; 6; 8, while forL = 3; 5; 7,

their stability regions are the same. This observation would suggest the possibility

of a general result on the stability region for the generalaL process with arithmetic

12The results here can be verified by using Jury’s test (e.g. Elaydi (1996) (pages 180–181)) and
MapleTM.
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weights:

D2L(�; a) = D2L+1(�; a) = f� : �1 < � < 2L+ 1g (4.9)

for L = 1; 2; � � � . However, whether this conjecture holds or not is still an open ques-

tion.

One can see from the stability regions ofa2 anda3-processes that, unlike the least-

squares process, the inclusion relationDL(�; a) � DL0(�; a) for L < L0 is not true, in

general.

Consider now thegeometric weights

a1 = a; aj = a!j�1 for j = 2; � � � ; L;

where! 2 (0; 1). That is, the weight associated with the past observations decay geo-

metrically. From
PL

j=1 aj = 1, we havea = (1�!)=(1�!L). Applying Propositions

4.2 and 4.3 forL = 2; 3, respectively, we obtain the local stability regions of the fixed

equilibrium

D2 � f(�; !) : �1 < � < minf1 + 1=!; (1 + !)=(1� !)gg

D3 � f(�; !) : �1 < �; � < 1+!+!2

1�!+!2
;

1� !
1+!+!2

� + !2(1�!2)
(1+!+!2)2

�2 > 0g:

for L = 2 and3, respectively. In both cases, the local stability region of the fixed

equilibrium is bounded, see Fig.4.4(a), (b).

To consider the limit case ofL ! 1, we introduce a new variableyt for the geo-

metric moving average:

yt�1 = a[xt�1 + !xt�2 + !2xt�3 � � �+ !L�1xt�L]:

Then

yt = !yt�1 + a[xt � !Lxt�L]: (4.10)

Since! 2 (0; 1), asL!1, the limiting equation of (4.10) is given by

yt = !yt�1 + (1� !)xt: (4.11)
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FIGURE 4.4. Local stability of fixed equilibrium with geometric
weights and (a)L = 2, (b)L = 3 and (c) the limiting caseL =1.

This, together with (2.6), leads to a two-dimensional system

8<
:

xt = ��yt�1

yt = [! � �(1� !)]yt�1:
(4.12)

Thus the zero solution of the system (4.12) is LAS if and only if

�1 < � <
1 + !

1� !
:

In this case, the local stability region of the fixed equilibrium is unbounded, see

Fig.4.4(c). One can see that, in terms of the parameter�, the stability region be-

comes larger as the weight,!, associated with the most recent observation increases.

Furthermore,� = �1 corresponds to fold bifurcations and� = 1+!
1�!

corresponds to

period doubling bifurcations.

5. COBWEB DYNAMICS WITH HOMOGENEOUSLEARNING PROCESS

As application of the results obtained in the previous sections and illustration of

the complex global dynamics generated by various types of bifurcations, the cobweb

model introduced in Section 2 is considered in this section.

5.1. The Homogeneous Least-Squares Process.Applying Proposition 3.2 to the

cobweb model leads to the following stability result.
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Corollary 5.1. The fixed equilibriump� of (2.14) with the homogeneous least squares

L-process is LAS if and only if

�1 < � =
4�go
b

[e�gop
�

+ e��gop
�

]�2 < L: (5.1)

To undertake a numerical bifurcation analysis, leta = 0:65; � = 1; b = 1: The focus

of the analysis will be on the sensitivity of the dynamics to the parametergo. Table 1

shows the critical valueg�� of g�13 for � = �1 and� = 1; 2; 3; 4:

� -1 1 2 3 4
g�� -5.87499... 1.12915... 2.52289... 4.06055... 5.67050....

TABLE 1. Critical values ofg� for � = �1; 1; 2; 3; 4

The number of the fixed equilibria depends ongo. It can be shown that forg0 >

g��1 = �5:87499::: (corresponding to� = �1), there is a unique positive equilibrium

p�, which is LAS for�1 < � < L. Whengo < g��1, there exist three equilibria

p�j (j = 1; 2; 3) satisfyingp�1 < p�2 < 0 < p�3 with bothp�1 andp�3 locally stable andp�2

unstable. Whengo = g��1, there are two equilibriap�1 andp�2 satisfyingp�1 < 0 < p�2

(with p�2 locally stable). ForL = 1; 2 and 3, numerical simulations on the nonlin-

ear model suggest the stability and bifurcation behavior nearg��1 indicated as in Fig.

5.1. Therefore, asgo decreases further fromg��1, a saddle-node bifurcation14 appears

— the stability of the positive fixed equilibrium continues to hold, however two new

(negative) fixed equilibria appear with one stable and the other unstable. Therefore,

� = �1 (so that one of the eigenvalues is 1) does not generate a flop bifurcation in this

case.

13Theg�� is calculated in the following way. Letp� be the fixed equilibrium and lety� = �gop
�; A =

b=�go. Theny� andA satisfyAy�+tanh y� = a and�A[ey
�

+e�y� ]2 = 4. For given�, solving fory�

from the equation�[a� tanh y�][ey
�

+ e�y� ]2 = 4y� leads tog�� = b=(�A) = by�=[�(a� tanh y�)].
14The saddle-node bifurcation results from a symmetry breaking of the map. In fact, fora = 0, the map
T satisfiesT (�x;�y) = �T (x; y) and the type of bifurcation of fixed equilibrium for such symmetry
maps is a pitchfork. However, this symmetry no longer holds whena 6= 0, leading to a saddle-node
bifurcation.
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go

pt

g��1

FIGURE 5.1. Saddle-node bifurcation diagram: solid lines indicate
local stable fixed equilibria and the dotted line indicates an unstable
fixed equilibrium.

ConsiderL = 1. Numerical simulations show that, forgo nearg�1 corresponding

to � = 1, all the solutionspt (locally) converge to the fixed pointp� for go < g�1.

However, asgo increases aboveg�1, a locally stable period doubling is generated.

0 .0 0.4 0.8

0 .0

0 .4

0 .8

P o

S_1

S_2

S_3

P_1

P_2

P_3

FIGURE 5.2. Phase plot of(pt; pt�1) for the least-Squares 2-process:
an LAS fixed equilibriumPo for go < g�2 and 2 sets of three-cycles with
fS1; S2; S3g unstable andfP1; P2; P3g (locally) stable.

ConsiderL = 2. For go neargo = g�2 corresponding to� = 2, all the solutions

converge to the fixed point forg < g�2. For go = g�2, a strong 1:3-periodic resonance

appears. Asgo increases aboveg�2, there is bifurcation to two sets of period three

cycles, one set of the three period cyclefP1; P2; P3g is (locally) stable and the other

setfS1; S2; S3g is unstable (see Fig. 5.2). The dynamics are very similar to those

found in the analysis of the cobweb learning model investigated in Chiarella and He

(2000c) where a normal form analysis is used to investigate the stability of the strong

3-periodic resonance.
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For L = 3; 4, go = g�3; g
�
4 lead to strong 1:4 and 1:5 periodic resonances, respec-

tively. Similar dynamics near the critical valuesg�3, g
�
4 are found except that the bifur-

cated cycles are period four and five cycles, respectively.

5.2. The Homogeneousa2-Process.The cobweb model under the homogeneousa2-

process is studied in Hommes (1998) where various strange attractors have been ob-

tained through different combinations of the parameters� anda = (a1; a2). The

following bifurcation and numerical analysis give further insights into the dynamics

of the cobweb model as the extrapolation ratego and learninga = (a1; a2)-process

change. In particular, the routes to various resonances and quasi-periodic orbits, even

chaotic behavior are investigated.

As before, leta = 0:65; b = 1 and� = 1. With � defined by (5.1), the stability

region is given by Fig.4.1. When the parameters(a2; �) move crossAB, the flop (or

divergence) curve, from the stability region, two new equilibria appear and the system

has similar dynamics as the case with the least-squares process (see Fig. 5.1).
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FIGURE 5.3. (a) Phase plot of (pt; pt�1) for a =
(0:1; 0:9); (0:3; 0:7); (0:5; 0:5); (1:8; 0:2) respectively; (b) Bifurca-
tion diagram fora1 and� = 2.

Now go is selected so that� = 2. Then, across the line� = 2 (hence different

a2, a = (a1; a2)-processes), lead to various-types of periodic resonances and quasi-

periodic orbits. Fig. 5.3(a) shows the phase plot fora = (0:1; 0:9), (0:3; 0:7); (0:5; 0:5)



24 CARL CHIARELLA AND XUE-ZHONG HE

2 4 6 8 10
g_o

-0 .5

0 .0

0 .5

1 .0

1 .5

2 .0

p_
t

(a)

2 4 6 8 10
g_o

-0 .5

0 .0

0 .5

1 .0

1 .5

2 .0

p_
t

(b)

FIGURE 5.4. Bifurcation diagram for (a):a = (0:76; 0:24) and (b):
a = (0:35; 0:65).

and(0:8; 0:2), respectively. They correspond to strong 1:4 periodic resonance, quasi-

periodic (almost closed) orbit, strong 1:3 periodic resonance and period doubling, re-

spectively. With the fixed� (hencego), the bifurcation diagram fora1 is plotted in Fig.

5.3(b). Fig. 5.3 shows that there are two different types of bifurcation whena2 moves

out of the stable region (which is (1/4, 1/3) for� = 2). Whena2 crossesDE – the

flip curve, a period doubling bifurcation is generated. However, whena2 crossesCD

– the flutter saddle curve, various resonances and quasi-periodic orbits occur. For ex-

amplea2 = 0:5 corresponds to a strong 1:3 periodic resonance (the solutions converge

(locally) to a 3-cycle). Whena2 moves further, saya2 = 0:7, the solutions converge to

either higher periodic or quasi-periodic cycles, indicated by the (almost) closed curve

on the phase plot of(pt; pt�1) for (a1; a2) = (0:3; 0:7). Whena2 is close to 1 (that is,

almost all weight is onpt�2), the solutions converge to 4-cycles.

Based on the analysis of thea2-process in the last section, along the flutter-saddle

curveCD, there existp : q resonances with(p; q) = (1; 2); (1; 3); (1; 3); (2; 5); (2; 7),

(3; 7); (10; 3) and so on. For example, for(p; q) = (2; 7); (3; 7) the corresponding

(a2; �) = (0:69202:::; 1:44504:::); (0:35689:::; 2:80193:::) and hencego =1.724513...,

3.748733..., respectively15. Numerical simulations show (not reported here) that, in

15For a given(p; q), on the curveCD, a2 = 1=(1 � �) and� = 1=a2 with � = 2 cos(2�p=q). From
which, the correspondinggo can be calculated (as before)
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both cases, periodic 7 orbits appear for different initial values, they either tend to the

fixed equilibrium or form piece-wise or (almost) closed orbits on the phase plane.

Also, for fixeda2, further increasinggo leads the price(xt; xt�1) to different attractors

for p = 2 and3. Forp = 2, the attractors appear chaotic, while forp = 3, the attractors

are either piece-wise, or (almost) closed orbits, or regular circles.

The dynamics caused by the extrapolation ratego can be seen in the bifurcation dia-

grams plotted in Fig. 5.4 (a) fora = (0:76; 0:24) and (b) fora = (0:35; 0:65), respec-

tively. They show different bifurcation routes from stability to complicated (and then

to a simple) dynamics. In fact, the complicated price dynamics of the cobweb model

caused bygo has been investigated numerically by Hommes (1998). For many param-

eter values the cobweb model witha2-process has a strange attractor. Numerically,

he shows that there are two different bifurcation routes to chaos whengo increases —

one is the well known period doubling route and the other is the breaking of an in-

variant circle. Our analysis gives some theoretical insight into these different routes

to chaos. In particular, the second route to chaos is through various resonances and

quasi-periodic orbits.

5.3. The Homogeneousa3-Process.As analyzed in the previous section, various bi-

furcations occur when the parameters(a2; a3; �) cross either the divergence, or flip,

or flutter saddle surface. In particular, bifurcation from the flip surface can lead to

chaos by the period doubling route. While the bifurcation from the flutter saddle sur-

face leads to variousp : q resonances and quasi-periodic orbits, which in turn lead

to complicated dynamics and chaos. To illustrate the dynamics of the homogeneous

a3-process, a bifurcation diagram in terms ofa2 is shown in Fig.5.5, wherea; b and

� are selected as before andgo = 9:5 , a3 = 0:21 anda2 2 [0; 0:79]. In general,

thea3-process can have all types of bifurcations generated from thea2-process. Fur-

thermore, the switching between simple and complicated price dynamics can be more

interesting, as shown in Fig.5.5.
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FIGURE 5.5. Bifurcation diagram for the homogeneousa3-process
with go = 9:5; a3 = 0:21 anda2 2 [0; 0:79]

6. CONCLUSION

This paper investigates the dynamics of agents’ learning via least-squaresL-processes

and generalaL-processes. In the case of homogeneous beliefs, it provides an explicit

study of how the local stability of the equilibrium is affected by the least-squaresL-

process andaL-process and shows various types of bifurcation routes, in the case of

the cobweb model, to complicated dynamics. Our results might be summarized as

follows:

� When the agents follow the homogeneous least-squaresL-process, a complete

picture can be drawn in terms of (local) stability and bifurcation: the stability

region of the fixed equilibrium is completely characterized by the lag length

L of the least-squares learning process and the parameters of the model, in

particular the parameter�, which is related to the extrapolation rate of the

traders in the cobweb model. When the fixed equilibrium becomes unstable, a

1 : L+ 1 resonance is generated.

� When the agents follow the general homogeneousaL-process, the stability of

the fixed equilibrium and bifurcations depends essentially upon the weight vec-

tor aL. In the simplest cases ofL = 2 and3, it is found that, depending on the

weight vectora, the stability region can be different and the instability of the

fixed equilibrium can generate various resonances and quasi-periodic orbits,

which in turn lead to complicated dynamics and chaos by different routes.
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The expectations functions considered in this paper are some of the simplest learning

processes in which all the weights on the past states are constants. However, they yield

very rich dynamics in terms of the stability, bifurcation and routes to complicated

dynamics. In reality economies are populated by heterogeneous agents who form their

expectations and learning processes differently. Furthermore these agents revise their

expectations by adapting the weights in accordance to their observations of how the

other agents are performing. How heterogeneous expectations and learning affects

the dynamics in this situation is studied to some extent in Chiarella and He (2000a),

(2000b). However many interesting questions remain for future research.

APPENDIX A

A.1. Rouche’s Theorem. If the complex functionsf(z) andg(z) are analytic inside

and on a simple closed curve
, and if jg(z)j < jf(z)j on
, thenf(z) andf(z)+ g(z)

have the same number of zeros inside
.

A.2. Proof of Proposition 4.1. To prove the first part, letf1(z) = zL andg1(z) =

�[a1z
L�1 + a2z

L�2 + � � � + aL�1z + aL]. Then, followingaj � 0 and
PL

j=1 aj = 1,

on jzj = 1, jf1(z)j = 1 andjg1(z)j � j�j
PL

j=1 aj = j�j. Thus, under the condition

j�j < 1, jg1(z)j < jf1(z)j on jzj = 1. Note thatf(z) hash zeros insidejzj = 1. It

follows from Rouche’s Theorem that bothf1(z) and�(z) = f1(z) + g1(z) have the

same number of zeros insidejzj = 1, which implies that all the eigenvalues of�(z) lie

insidejzj = 1. Therefore,x� is LAS.

To prove the second part, letf2(z) = ajz
L�i andg2(z) = �(z) � f2(z). Note that

aj � 0;
PL

j=1 aj = 1 andf2(z) hasL � i zeros insidejzj = 1. Also, under the

condition (4.2),jg2(z)j � 1 + j�j
PL

j=1;j 6=i aj < ajj�j = jf2(z)j on jzj = 1. Then,

following Rouche’s Theorem,�(z) = f2(z)+g2(z) has onlyL� i zeros insidejzj = 1

(hence there exists at least one zero satisfyingjzj � 1). Therefore, the equilibriumx�

is not LAS. Q.E.D

A.3. Proof of Proposition 4.3. It follows from Sonis (2000) that all the eigenvalues

� of the characteristic polynomial�3 + c1�
2 + c2� + c3 = 0 satisfy j�j < 1 iff
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bo � 1+ c1+ c2+ c3 > 0; b3 � 1� c1+ c2� c3 > 0 and�2 � 1� c2+ c1c3� c23 > 0.

Applying this result to thea3-process gives us the stability regionD3(�; a) defined in

Proposition 4.3.

The largest stability interval for� is given by� 2 (�1; ��), where�� = minf�1; �2g

and�j solve the equations�2 = �3 = 0. Eliminatea2 from the equations�2 = �3 =

0,

�j =
(1� a3)� j1� 7a3j

2a3(1� 4a3)
:

Obviously, whena3 = 1=7, �� has its largest value of7. Correspondingly,a1 =

a2 = 3=7. Therefore,a = (3=7; 3=7; 1=7) leads to the largest stability interval for

� 2 (�1; 7). Q.E.D
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