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Abstract

The empirical saddlepoint distribution provides an approximation to the
sampling distributions for the GMM parameter estimates and the statistics
that test the overidentifying restrictions. The empirical saddlepoint distribu-
tion permits asymmetry, non-normal tails, and multiple modes. If identification
assumptions are satisfied, the empirical saddlepoint distribution converges to
the familiar asymptotic normal distribution. In small sample Monte Carlo sim-
ulations, the empirical saddlepoint performs as well as, and often better than,
the bootstrap.

The formulas necessary to transform the GMM moment conditions to the
estimation equations needed for the saddlepoint approximation are provided.
Unlike the absolute errors associated with the asymptotic normal distributions
and the bootstrap, the empirical saddlepoint has a relative error. The relative
error leads to a more accurate approximation, particularly in the tails.
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1 INTRODUCTION

The empirical saddlepoint density provides an approximation to the sampling distri-

bution for parameters estimated with the generalized method of moments and the

statistics that test overidentifying restrictions. Traditional GMM (Hansen (1982))

relies on a central limit theorem. The saddlepoint approach uses a generalization of

the central limit theorem and provides a more accurate approximation.

There are three key differences between the results using the commonly first order

normal approximation and the saddlepoint approximation. First, the parameters and

the statistics that test the overidentifying restrictions are no longer forced to be inde-

pendent. The asymptotic normal approximation uses a linear approximation that can

be orthogonally decomposed into the identifying space and the overidentifying space,

see Sowell (1996). The asymptotic normal approximation inherits the orthogonality

from the tangent space; hence, θ̂ and the J statistic are independent. In contrast, the

saddlepoint uses a different approximation at each parameter value. Each approxi-

mation generates an orthogonally decomposed tangent space. However, the union of

these approximations is not required to give an orthogonal decomposition over the

entire space. This lack of independence is a common feature in approximations with

higher orders of accuracy. In Newey and Smith (2004) and Rilstone, Srivastava and

Ullah (1996), the higher order bias for the parameter estimates involve the parameters

for the statistics that test the overidentifying restrictions and vice versa. The lack

of independence means the marginal densities are no longer equal to the conditional

densities. As simulations in section 5 demonstrate, it is informative to report both

the marginal density and the conditional densities (i.e. the sampling distribution for

the parameters conditional on the overidentifying restrictions being satisfied).

The second difference is the sampling density does not have to be unimodal. If the

GMM objective function has a unique local minimum, then the saddlepoint approxi-

mation will be unimodal. However, if the GMM objective function has multiple local

minima, then the saddlepoint approximation can have multiple modes and confidence

regions can be disjoint. The first order normal approximation using the location and

convexity of the global minimum will provide misleading inference concerning the

parameter values associated with the other local minima. However, the saddlepoint

approximation can be interpreted as the density for the location of local minima of

the GMM objective function and will more accurately summarize the available infor-

mation. These issues are not new to Econometrics. The s-sets of Stock and Wright
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(2000) can also lead to disjoint confidence intervals.

The third difference is that the saddlepoint approximation has a relative error

instead of the absolute error that occurs with the first order normal approximation.

When the underlying distribution is unknown and the empirical distribution is used,

the empirical saddlepoint approximation results in a relative error of order1 N−1/2.

The relative error results in an improvement over the absolute error in the tails of the

distribution. This is important in the calculation of p−values. If f(α) denotes the

density being approximated, the asymptotic approximation can be written

f̂A(α) = f(α) +O (
N−1/2

)
.

The empirical saddlepoint approximation can be written

f̂S(α) = f(α)
{
1 +O (

N−1/2
)}

.

When there is a relative error, the error gets small with the density in the tails of

the distribution. When the error is absolute, the same error holds in the tails as

at the modes of the density. Hall and Horowitz (1996) shows that the bootstrap

approximation results in an absolute error of order N−1. Hence, theoretically, neither

the empirical saddlepoint approximation nor the bootstrap approximation dominate.

The first contribution of this paper is a new procedure to use Economic moment

conditions (m moment conditions to estimate k parameters) to create a set of m es-

timation equations in m unknowns. The m equations permit the calculation of the

empirical saddlepoint distribution. The second contribution is the extension of the

saddlepoint approximation to include statistics to test the validity of the overidenti-

fying restrictions. Previous work only focused on the parameter estimates and testing

hypotheses concerning parameters. The third contribution is a saddlepoint approx-

imation that allows for models and samples where the GMM objective function has

multiple local minima. Multiple local minima are common for GMM objective func-

tions, see Dominguez and Lobato (2004). Previous saddlepoint distribution research

restricted attention to a unique local minimum. The final contribution is the interpre-

tation of the saddlepoint density as the joint density for the parameter estimates and

1When the underlying distribution is known, the relative error from the saddlepoint approxi-
mation is typically of order N−1. In some special cases, the relative error can be of order N−3/2.
These dramatic improvements cannot be realized with empirical applications in Economics when the
underlying distribution is unknown.
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the statistics that test the validity of the overidentifying restrictions. In finite sam-

ples these will not be independent. The saddlepoint distribution gives a well defined

density that accounts for this dependence.

The saddlepoint approximation’s history in the Statistics literature starts with Es-

scher (1932) and Daniels (1954). General introductions are available in Reid (1988),

Goutis and Casella (1999) and Huzurbazar (1999) and the books Field and Ronchetti

(1990), Jensen (1995) and Kolassa (1997). The saddlepoint distribution was first used

to approximate the sampling distribution of the sample mean when the underlying

distribution was known, e.g. Phillips (1978). It was then generalized to maximum

likelihood estimators. Field (1982) gives the saddlepoint approximation to the den-

sity for parameter estimates defined as the solution to a system of equations where

the underlying distribution is known. Ronchetti and Welsch (1994) presents the em-

pirical saddlepoint distribution where the known distribution is replaced with the

empirical distribution. In Economic applications the underlying distribution is typi-

cally unknown so the empirical saddlepoint distribution is appropriate. If there exists

a unique local minimum, this empirical saddlepoint approximation is an alternative

approximation to the GMM sampling density. Field (1982), Ronchetti and Welsch

(1994) and Almudevar, Field and Robinson (2000) are the natural bridges to the

results in this paper.

The closest paper to the current research is Ronchetti and Trojani (2003), denoted

RT. RT shows how to go from the GMM moment conditions to estimation equations

used in a saddlepoint approximation. RT also extends the parameter testing results

from Robinson, Ronchetti and Young (2003) to situations where the moment condi-

tions are overidentified.

This paper takes a different approach to the saddlepoint approximation that re-

sults in a system with only m equations. While the procedure presented in RT uses(
m
2

+ k
)
(m + 1) equations. In this paper, all the parameters are tilted instead of

only a subset. The resulting saddlepoint density approximates the joint density of

the parameter estimates and statistics that test the validity of the overidentifying

restrictions.

The next section reviews basic GMM notation and the assumptions necessary to

obtain first order asymptotic results. Section 3 is the derivation of the estimation

equations from the GMM moment conditions. Section 4 presents the saddlepoint ap-

proximation including extensions needed to apply the saddlepoint approximation to

the estimation equations built on moment conditions. Section 4 ends with an expla-
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nation of how the first order normal approximation is related to the empirical saddle-

point approximation. Section 5 presents Monte Carlo simulations, which demonstrate

the small sample performance of the empirical saddlepoint approximation. Situations

where the empirical saddlepoint approximation is superior to currently available alter-

natives are noted. Section 6 shows that the saddlepoint approximation is well defined

using the estimation equations presented in section 3. Section 7 concludes with addi-

tional interpretations, implementation issues, and directions for future work.

The random vector x will be defined on the probability space (Ω,B, F ). Let a

vector’s norm be denoted ‖x‖ ≡ √
x′x. Let a matrix’s norm be denoted ‖M‖ ≡

sup ‖Mx‖/‖x‖. A δ ball centered at x will be denoted, Bδ(x) ≡ {y : ‖x− y‖ < δ} for

δ > 0. Let m(·) denote the Lebesgue measure.

2 MODEL AND FIRST ORDER ASYMPTOTIC ASSUMPTIONS

The saddlepoint approximation requires stronger assumptions than those necessary for

the first order normal approximation. The basic assumptions for first order asymptotic

normality are recorded for the basic model.

Consider an m−dimensional set of moment conditions

gi(θ) ≡ g(xi, θ)

where θ is a k−dimensional set of parameters with k ≤ m. According to the Economic

theory, the moment conditions have expectation zero at the population parameter

value, i.e.

E [g(xi, θ0)] = 0.

The error process driving the system is assumed to be iid.

Assumption 1 . The p−dimensional series xi is iid from a distribution F (x).

The functions that create the moment conditions satisfy regularity conditions.

Assumption 2. g(x, θ) is continuously partially differentiable in θ in a neighborhood

of θ0. The functions g(x, θ) and ∂g(x,θ)
∂θ′ are measurable functions of x for each θ ∈ Θ,

and E
[
supθ∈Θ ‖∂g(x,θ)

∂θ′ ‖
]

< ∞. E
[
g(x, θ0)

′g(x, θ0)
]

< ∞ and E [supθ∈Θ ‖g(x, θ)‖] <

∞. Each element of g(x, θ) is uniformly square integrable.

Assumption 3. The parameter space Θ is a compact subset of Rk. The population

parameter value θ0 is in the interior of Θ.
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To obtain an estimate from a finite sample, the weighted inner product of the

sample analogue of the moment condition

GN(θ) =
1

N

N∑
i=1

g(xi, θ)

is minimized conditional on, WN , a given symmetric positive definite weighting matrix

θ̂ =
argmin

θ ∈ Θ
GN(θ)′WNGN(θ).

The foundation for the first order asymptotic results is a central limit theorem distri-

butional assumption.

Assumption 4. The moment conditions evaluated at the population parameter values

satisfy the central limit theorem

√
NGN(θ0) ∼ N(0, Σg).

Attention will be restricted to GMM estimates with minimum asymptotic variance.

Assumption 5. The weighting matrix is selected so

WN → Σ−1
g .

Assumption 5 is usually satisfied by performing a first round estimation using an

identity matrix as the weighting matrix.

Assumption 6. The matrix M(θ) ≡ E
[

∂g(xi,θ)
∂θ′

]
has full column rank for all θ in a

neighborhood of θ0. The matrix Σ(θ) ≡ E
[
g(xi, θ)g(xi, θ)

′ ] is positive definite for all

θ in a neighborhood of θ0.

The parameter can be identified from the moment conditions.

Assumption 7. Only θ0 satisfies E [g(xi, θ)] = 0.

These assumptions are sufficient to ensure that the GMM estimator is a root-N

consistent estimator of θ0. The GMM estimates are asymptotically distributed as

√
N

(
θ̂ − θ0

)
∼ N

(
0,

(
M(θ0)

′Σ−1
g M(θ0)

)−1
)

.
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The Economic theory implies all m moment conditions should equal zero. The first

order conditions

MN

(
θ̂
)′

WNGN

(
θ̂
)

= 0

set k of the moments to exactly zero, where MN (θ) = ∂GN (θ)
∂θ′ . The remaining (m−k)

moments can be used to test the Economic theory. The statistic

J = NGN

(
θ̂
)′

WNGN

(
θ̂
)

tests these overidentifying restrictions. The J−statistic is asymptotically distributed

χ2
m−k when the null hypothesis of the Economic theory being true is correct.

3 MOMENT CONDITIONS TO ESTIMATION EQUATIONS

The saddlepoint approximation uses a just identified system of estimation equations.

This section shows how a just identified system of equations can be created from the

moment conditions implied by the Economic theory. The estimation equations are

created by augmenting the parameters with a set of (m − k) parameters denoted λ.

The λ parameters are a local coordinate system2, spanning the space of overidentifying

restrictions. The λ parameters are selected so that under the null hypothesis of the

Economic theory being true, the population parameter values are λ0 = 0. Thus, the

overidentifying restrictions can be tested by the hypothesis H0 : λ = 0.

For each value of θ the sample moment conditions GN(θ) is an m−dimensional vec-

tor. As θ takes different values, the moment conditions create a k−dimensional man-

ifold. For a fixed value of θ the space spanned by the derivative of the k−dimensional

manifold will be called the identifying space. The orthogonal complement of the

identifying space is called the overidentifying space. This decomposition is a gener-

alization of the decomposition used in Sowell (1996) where the tangent space at θ̂

was decomposed into a k−dimensional identifying space and an (m−k)−dimensional

space of overidentifying restrictions. The generalization is defining the decomposition

at each value3 of θ, not only at θ̂.

For each value of θ, let MN(θ) denote the derivative of GN(θ) with respect to θ

2An introduction to the use of local coordinate systems can be found in Boothby (2003). Appli-
cation of these tools in Statistics and Econometrics can be found in Amari (1985) and Marriott and
Salmon (2000).

3When attention is restricted to the empirical saddlepoint approximation, then the decomposition
only needs to exist for parameters in neighborhoods of the local minima.
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scaled (standardized) by the Cholesky decomposition of the weighting matrix,

MN(θ) = W
1/2
N

∂GN(θ)

∂θ′
.

Using this notation, the GMM first order conditions can be written

MN(θ̂)′W 1/2
N GN(θ̂) = 0.

The columns of MN(θ̂) define the k linear combinations used to identify and estimate

θ.

The orthogonal complement of the space spanned by the columns of MN(θ̂) will

be the (m − k)−dimensional space used to test the validity of the overidentifying

restrictions and will be spanned by λ. The augmenting parameters are determined

by performing the decomposition for every value of θ. Denote the projection matrix

for the space spanned by MN(θ) as

PM(θ),N = MN(θ)
(
MN(θ)′MN(θ)

)−1

MN(θ)′.

PM(θ),N is a real symmetric positive semidefinite matrix, which is also idempotent.

Denote a spectral decomposition4

PM(θ),N = CN(θ)ΛCN(θ)′ =
[

C1,N(θ) C2,N(θ)
] [

Ik 0

0 0(m−k)

][
C1,N(θ)′

C2,N(θ)′

]

where CN(θ)′CN(θ) = Im. The column span of C1,N(θ) is the same as the column

span of MN(θ), and the columns of C2,N(θ) span the orthogonal complement at θ.

Hence, for each value of θ, the m−dimensional space containing GN(θ) can be locally

parameterized by

ΨN(θ, λ) =

[
C1,N(θ)′W 1/2

N GN(θ)

λ− C2,N(θ)′W 1/2
N GN(θ)

]
.

The first set of equations are the k−dimensions of W
1/2
N GN(θ) that locally vary with

θ. The parameters θ are local coordinates for these k−dimensions. The second set of

equations gives the (m− k)−dimensions of W
1/2
N GN(θ) that are locally orthogonal to

4The spectral decomposition is not unique, raising a potential concern. However, the invariance
of inference with respect to alternative spectral decompositions is documented in Theorem 2 and
Theorem 6.
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θ. The parameters λ are local coordinates for these (m − k)−dimensions. For each

value of θ, the parameters λ span the space that is the orthogonal complement of the

space spanned by θ.

This parameterization of the m−dimensional space can be used to obtain para-

meter estimates by solving

ΨN(θ, λ) = 0.

This set of estimation equations will be used in the saddlepoint approximation. This

function can also be written ΨN(θ, λ) = 1
N

∑N
i=1 ψ(xi, θ, λ) where

ψ(xi, θ, λ) =

[
C1,N(θ)′W 1/2

N gi(θ)

λ− C2,N(θ)′W 1/2
N gi(θ)

]
.

A generic value of ψ(xi, θ, λ) will be denoted ψ(x, θ, λ). These estimation equations

give a just identified system of m equations in m unknowns. The moment condi-

tions ψ(x, θ, λ) summarize the first order conditions for GMM estimation and the

overidentifying restrictions statistics.

The column span of C1,N(θ) and MN(θ) are the same. So, the system of equations

C1,N(θ)′W 1/2
N GN(θ) = 0

is equivalent to

MN(θ)′W 1/2
N GN(θ) = 0,

and both imply the same parameter estimates, θ̂. This system of equations is solved

independently of λ. The system of equations λ − C2,N(θ)′W 1/2
N GN(θ) = 0 imply the

estimate

λ̂ = C2,N

(
θ̂
)′

W
1/2
N GN

(
θ̂
)

.

An alternative differential geometric explanation of the estimation equations is

presented in the Appendix section 8.8.

3.1 NOTES

1. The inner product of ΨN(θ, λ) will be called the extended-GMM objective func-

tion. The estimates are the parameters that minimize the inner product, which
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can be rewritten

QN(θ, λ) = ΨN(θ, λ)′ΨN(θ, λ)

= GN(θ)′WNGN(θ)− 2λ′C2,N(θ)′W 1/2
N GN(θ) + λ′λ.

Because ΨN(θ, λ) is a just identified system of equations there is no need for an

additional weighting matrix. When λ = 0 the extended-GMM objective func-

tion reduces to the traditional GMM objective function. The extended-GMM

objective function is created from the traditional GMM objective function by

appending a quadratic function in the tangent spaces of overidentifying restric-

tions.

2. The parameter estimates using the extended-GMM objective function agree with

traditional results.

Theorem 1. If Assumptions 1-7 are satisfied, the asymptotic distribution for

the extended-GMM estimators is

√
N

(
θ̂ − θ0

λ̂

)
∼ N

([
0

0

]
,

[ (
M(θ0)

′Σ−1
g M(θ0)

)−1
0

0 I(m−k)

])
.

Proofs are in the appendix.

3. The estimates θ̂ and λ̂ are independent up to first order asymptotics.

4. The overidentifying restrictions can be tested with

Nλ̂′λ̂ = NGN(θ̂)′W 1/2 ′
N C2,N(θ̂)C2,N(θ̂)′W 1/2

N GN(θ̂)

= NGN(θ̂)′W 1/2 ′
N P⊥

M(θ̂)
W

1/2
N GN(θ̂)

= NGN(θ̂)′W 1/2 ′
N W

1/2
N GN(θ̂)

= NGN(θ̂)′WNGN(θ̂)

= J.

5. The asymptotic inference is invariant to the selection of the spectral decompo-

sition.

Theorem 2. For the extended-GMM estimators the asymptotic distribution for
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the parameters, θ, and the parameters that test the overidentifying restriction,

λ, are invariant to the spectral decomposition that spans the tangent space.

6. To reduce notation let α ≡
[

θ′ λ′
]′

. A generic element ψ(xi, α) will be de-

noted ψ(x, α). The estimation equations used in the saddlepoint approximation

can be denoted

ΨN(α) = 0.

The extended-GMM objective function will be denoted

QN(α) = ΨN(α)′ΨN(α).

7. The point of departure for the saddlepoint approximation is a system of m

estimation equations in m parameters. These will be the first order conditions

from minimization of the extended-GMM objective function.

The first order conditions imply

∂QN (α̂)

∂α
= 2

∂ΨN (α̂)′

∂α
ΨN (α̂) = 0.

Assuming M(θ) and WN are full rank implies the first order conditions are

equivalent to

ΨN (α̂) = 0.

8. A minimum or root of the extended-GMM objective function can be associated

with either a local maximum or a local minimum of the original GMM objective

function. Attention must be focused on only the minima of the extended-GMM

objective function associated with the local minima of the original GMM objec-

tive function. This will be done with an indicator function

Ipos(QN(θ)) =

{
1, if QN(θ) is positive definite

0, otherewise.

This indicator function uses the original GMM objective function not the extended-

GMM objective function.
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4 THE SADDLEPOINT APPROXIMATION

The saddlepoint density replaces the central limit theorem in the traditional GMM

distribution theory. The central limit theorem uses information about the location and

convexity of the GMM objective function at the global minimum. The saddlepoint

approximation uses information about the convexity of the objective function at each

point in the parameter space. The central limit theorem is built on a two-term Taylor

series expansion, i.e. a linear approximation, of the characteristic function about

the mean. A higher order Taylor series expansion about the mean can be used to

obtain additional precision. This results in an Edgeworth expansion. Because the

expansion is at the distribution’s mean, the Edgeworth expansion gives a significantly

better approximation at the mean of the distribution, O (N−1) versus O (
N−1/2

)
.

Unfortunately, the quality of the approximation can deteriorate significantly for values

away from the mean. The saddlepoint approximation exploits these characteristics of

the Edgeworth expansion to obtain an improved approximation. Instead of a single

Taylor series expansion, the saddlepoint uses multiple expansions to obtain improved

accuracy, one expansion at every value in the parameter space.

The significantly improved approximation of the Edgeworth expansion only occurs

at the mean of the distribution. To obtain this improvement at an arbitrary value in

the parameter space, a conjugate distribution is used. For the parameter value α the

conjugate density is

hN,β(x) =
exp

{
β′
N

ψ(x, α)
}

dF (x)
∫

exp
{

β′
N

ψ(w,α)
}

dF (w)
.

The object of interest is the distribution of Ψ(α) not an individual element ψ(α),

hence the parameter β is normalized by N .

At the parameter value of interest, α, the original distribution is transformed to a

conjugate distribution. The conjugate distribution is well defined for arbitrary values

of β. This is a degree of freedom, i.e., β can be selected optimally for a given α.

A specific conjugate distribution is selected so its mean is transformed back to the

original distribution at the value of interest. Thus, if β is selected to satisfy the

saddlepoint equation

∫
ψ(x, α) exp

{
β′

N
ψ(x, α)

}
dF (x) = 0.

13



Denote the solution to the saddlepoint equation as β(α). An Edgeworth expansion

is calculated for the conjugate distribution defined by β(α). This Edgeworth expan-

sion is then transformed back to give the saddlepoint approximation to the original

distribution at the parameter value of interest, α.

The basic theorems from the Statistics literature are in Almudevar, Field and

Robinson (2000), Field and Rochetti (1994), Field (1982) and Rochetti and Welsch

(1994). To date the saddlepoint distribution theory in the Statistics literature is

not well suited for empirical Economics. There are two problems. The first is the

assumption that the objective function has a single extreme value. The second is

the assumption that the saddlepoint equation has a solution for every value in the

parameter space. A common feature of GMM objective functions is the existence of

more than one local minimum. In addition, the nonlinearity of the moment conditions

can make it impossible to solve the saddlepoint equation for an arbitrary value in

the parameter space. The basic theorems from the Statistics literature need slight

generalizations to allow for multiple local minima and the non-existence of a solution

to the saddlepoint equation. The generalizations are contained in Theorems 3 and

4. The next two subsections elaborate.

4.1 DENSITY RESTRICTIONS

The empirical saddlepoint density applied to GMM moments requires two restrictions:

the local behavior of the objective function must be associated with a local minimum

and the parameters must be consistent with the observed data.

Identification for GMM implies there will only be one minimum, asymptotically.

However, in finite samples there may not be enough data to accurately distinguish

this asymptotic structure, i.e., often there are multiple local minima. Traditional

GMM ignores multiple minima and restricts attention to the global minimum. The

traditional asymptotic normal approximation to the GMM estimator is an approxi-

mation built on the local structure (location and convexity) of the global minimum.

The saddlepoint approximation takes a different approach. The saddlepoint density

approximates the sampling density for the location of solutions to the estimation

equations. These include both local maxima and local minima. As with traditional

GMM estimation, as the sample size increases one of the local minima will become

the unique minimum. For the empirical saddlepoint density, attention is focused on

the local minima by setting the saddlepoint density to zero if the first derivative of
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the estimation equation is not positive definite. The term

Ipos (QN(θ))

will be used to denote the indicator function for the original GMM objective function

being positive definite at the θ value in α. A similar restriction was used in Skovgaard

(1990)5.

The second restriction for the saddlepoint applied to the GMM estimation equa-

tions concerns the fact that the empirical saddlepoint equation may not have a solu-

tion. In this case the approximate density is set equal to zero. The lack of a solution

to the empirical saddlepoint equation means the observed data is inconsistent with

the selected parameter, α. The indicator

I (β(α))

equals one when the saddlepoint equation for α has a solution.

This type of restriction has occurred recently in the Statistics and Econometrics

literature. The inability to find a solution to the empirical saddlepoint equation is

equivalent to the restrictions on the sample mean in the selection of the parame-

ters in the exponential tilting/maximum entropy estimation of Kitamura and Stutzer

(1997). For the simple case of estimating the sample mean, the parameters must be

restricted to the support of the observed sample. It is impossible to select nonnegative

weights (probabilities) to have the weighted sum of the sample equal a value outside

its observed range.

4.2 ADDITIONAL ASSUMPTIONS

To justify the empirical saddlepoint approximation, four results are needed.

1. The distribution for the local minima of the extended-GMM objective function

associated with the local minima of the original GMM objective function.

2. The tilting relationship between the density for the zeros (local minima) of

the extended-GMM objective function associated with the local minima of the GMM

objective function when the observations are drawn from the population distribution

5In Skovagaard (1990) the restriction was applied to the equivalent of the extended-GMM objec-
tive function not the equivalent of the original GMM objective function, i.e., the Skovagaard (1990)
density would include both the local maxima and the local minima of the original GMM objective
function.
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and the density when the observations are drawn from the conjugate distribution.

3. The saddlepoint approximation, assuming the distribution for the observed

series is known.

4. The empirical saddlepoint approximation where the distribution for the ob-

served series is replaced with the empirical distribution.

The first three are achieved by minor changes to the results in Almudevar, Field

and Robinson (2000), denoted AFR. The changes concern the need to restrict at-

tention to solutions of the estimation equations associated with local minima of the

original GMM objective function. In AFR the density is for all solutions, even those

associated with local maxima. Another change is to set the approximation to zero if

the empirical saddlepoint equation does not have a solution.

The fourth result is achieved by minor changes to results in Ronchetti and Welsh

(1994). The first change is to set the approximation to zero if the empirical saddlepoint

equation does not have a solution. This is achieved by including an indicator function

for the existence of a solution to the empirical saddlepoint equation. The other change

is to allow multiple solutions to the estimation equations. This is achieved by applying

the result in Ronchetti and Welsh (1994) to each solution of the estimation equation

associated with a local minima of the original GMM objective function.

Unlike traditional Econometrics, the saddlepoint approximation is well defined

for some models lacking identification. Traditionally, it is assumed that the limiting

objective function uniquely identifies the population parameter, e.g. Assumption

7. The saddlepoint approximation does not require such a strong assumption. There

may be multiple solutions to the moment conditions associated with local minima

of the GMM objective function. Define the set T = {θ ∈ Θ : E [g(xi, θ)] = 0} . If

T is a singleton, then this reduces to the traditional identification assumption. An

individual element in T will typically be denoted θ∗0.

The empirical saddlepoint approximation requires stronger assumptions than the

assumptions needed for the first order normal approximation. These additional re-

strictions concern the existence and integrability of higher order derivatives of the

moments. The saddlepoint density requires that the asymptotic behavior in the

neighborhood of the global minimum of the GMM objective function also holds for

the neighborhood of each element in T . Assumptions are also needed to ensure that

the Edgeworth expansion of the conjugate density is well defined. Finally, the empir-

ical saddlepoint approximation requires the existence of higher order moments and

smoothness to ensure the sample averages converge uniformly to their limits.
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The following assumptions are stated in terms of the moment conditions. The

assumptions in AFR and RW are stated in terms of a just identified system of esti-

mation equations. The “proofs” in the appendix show that the following assumptions

are strong enough to ensure that the assumptions in AFR and RW are satisfied for

the estimation equations derived above in section 3.

Assumption 1’ . The p−dimensional series xi is iid from a distribution F (x).

The moment conditions satisfy regularity conditions.

Assumption 2’. The function g(x, θ) is uniformly continuous in x and has three

derivatives with respect to θ which are uniformly continuous in x.

The functions g(x, θ) and ∂g(x,θ)
∂θ′ are measurable functions of x for each θ ∈ Θ, and

E
[
supθ∈Θ ‖∂g(x,θ)

∂θ
‖
]

< ∞. E
[
g(x, θ0)

′g(x, θ0)
]

< ∞ and E [supθ∈Θ ‖g(x, θ)‖] < ∞.

Each element of g(x, θ) is uniformly square integrable.

Assumption 2’ implies that N times the GMM objective function will uniformly

converge to the nonstochastic function E [g(x, θ)]′ E [g(x, θ)].

Assumption 3’. The parameter space Θ is a compact subset of Rk.

θ0 ∈ T .

Each element of T is in the interior of Θ.

There exists a δ > 0 such that for any two unique elements in T , θ∗0,j and θ∗0,i,∣∣θ∗0,j − θ∗0,i

∣∣ > δ.

By Assumption 3’, the population parameter is in the set of minima of the

extended-GMM objective function associated with the local minima of the original

GMM objective function. This assumption also ensures that the limiting objective

function can be expanded in a Taylor series about each of its local minima. Finally,

this assumption requires that any identification failure results in disjoint solutions.

Assumptions 1’-3’ are sufficient to ensure that the GMM estimator is a root-N

consistent estimator of an element in T .

The traditional distributional assumption must hold for each local minima.

Assumption 4’. The moment conditions evaluated at θ∗0 ∈ T satisfy the central limit

theorem √
NGN(θ∗0) ∼ N(0, Σg(θ

∗
0))

where Σg(θ
∗
0) may be different for each value of θ∗0 ∈ T .
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Assumption 5’. The weighting matrix is selected so that it is always positive definite

and

WN → Σg(θ
∗
0)
−1

where θ∗0 ∈ T .

This assumption can be satisfied by performing a first round estimation using a

positive definite matrix as the weighting matrix. If T is a singleton this ensures the

first order distribution will be efficient.

The objective function must satisfy restrictions in a neighborhood of each solution

to the extended-GMM objective function associated with a local minima of the original

GMM objective function.

Assumption 6’. For each θ∗0 ∈ T ,

1. The matrix M(θ) ≡ E ∂g(x,θ)
∂θ′ is continuously differentiable and has full column

rank for all θ in a neighborhood of θ∗0.

2. The matrix Σ(θ) ≡ E
[
g(x, θ)g(x, θ)′

]
is continuous and positive definite for all

θ in a neighborhood of θ∗0.

3. The function ∫
∂g(x, θ)

∂θ′
exp {β′g(x, θ)} dF (x)

exists for β in a set containing the origin.

4. For 1 ≤ i, j, s1, s2, s3 ≤ m the integrals

∫ {
∂gi(x, α)

∂αs3

}2

dF (x),

∫ {
∂gi(x, α)

∂αs3

gj(x, α)

}2

dF (x),

∫ {
∂2gi(x, α)

∂αs2∂αs3

}2

dF (x),

∫ {
∂2gi(x, α)

∂αs2∂αs3

gj(x, α)

}
dF (x),

∫ {
∂3gi(x, α)

∂αs1∂αs2∂αs3

}
dF (x)

are finite.

Assumption 6’.1 and Assumption 6’.2 are straightforward. Assumption

6’.3 ensures the saddlepoint equation will have a solution in the neighborhood of
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θ∗0. Assumption 6’.4 with Assumption 2’ ensures the uniform convergence of the

sample averages to their limits.

The next assumption restricts attention to parameter values in a τ ball of a fixed

parameter value. Calculate the maximum distance between the derivative at α0 and

the derivative of any other parameter value in Bτ (α0). If the derivative is zero for any

parameter value in Bτ (α0), set the distance to infinity.

Define the random variable6

z(θ∗0, τ) =





supθ∈Bτ(θ∗0)

∥∥∥∂2g(x,θ∗0)′WNg(x,θ∗0)

∂θ′∂θ
− ∂2g(x,θ)′WNg(x,θ)

∂θ′∂θ

∥∥∥ , ∂2g(x,θ)′WNg(x,θ)
∂θ′∂θ

is

positive definite,

∀ θ ∈ Bτ (θ∗0)

∞, otherwise

Now define the events in Ω such that this maximum deviation between the first

derivative is below some value such as γ > 0.

H(θ∗0, γ, τ) = {z(θ∗0, τ) < γ} ⊂ Ω

This restricts attention to events where the objective function has an invertible deriv-

ative and is fairly smooth.

Now define

R∗(x, θ) =





(
∂2g(x,θ∗0)′WNg(x,θ∗0)

∂θ′∂θ

)−1
∂g(x,θ)′

∂θ
WNg(x, α), ∂2g(x,θ)′WNg(x,θ)

∂θ′∂θ
is positive

definite, ∀ θ ∈ Bτ (θ∗0)

∞, otherwise

and the density

fR∗(x,θ)(z; H(θ, γ, τ)) =
Pr {{R∗(x, θ) ∈ Bτ (z)} ∩H(θ, γ, τ)}

m(Bτ (z))
.

Assumption 7’. For any compact set A ⊂ A and for any 0 < γ < 1, there exists

τ > 0 and δ > 0 such that fR∗(x,θ)(z; H(θ, γ, τ)) exists and is continuous and bounded

by some fixed constant K for any α ∈ A and z ∈ Bδ(0).

6Almudevar, Field and Robinson (2000) uses ‖B−1A−I‖ as the distance between the two matrices,
A and B. This paper will use the alternative distance measure ‖A − B‖, which is defined for none
square matrices. This definition is more commonly used in the Econometrics literature, e.g., see
Assumption 3.4 in Hansen (1982).
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This is a high level assumption requiring the moment conditions have a bounded

density in the neighborhood of zero. This is required to establish the existence of the

density for the location of the local minima of the original GMM objective function.

The next assumption permits the moment conditions (and hence estimation equa-

tions) to possess a mixture of continuous and discrete random variables. For each

θ let Dθ ⊂ Rm be a set with Lebesgue measure zero such that by the Lebesgue

decomposition theorem,

Pr

{
∂g(x, θ)′

∂θ
WNg(x, θ) ∈ A

}
= Pr

{
∂g(x, θ)′

∂θ
WNg(x, θ) ∈ A ∩Dθ

}
+

∫

A

fθdm

where fθ may be an improper density. Let Iiθ = 0 if g(xi, θ) ∈ Dθ and 1, other-

wise. Assume the moment conditions can be partitioned into contributions from the

continuous components and the discrete components.

Assumption 8’. There are iid random vectors Uiθ =
(

Wiθ, V1iθ, V2iθ

)
, where Wiθ

are jointly continuous random vectors of dimension m and V1iθ and V2iθ are random

vectors of dimension m and m∗, respectively, such that

NT θ =
N∑

i=1

∂g(x, θ)′

∂θ
WNg(xi, θ) =

N∑
i=1

IiθWiθ +
N∑

i=1

(1− Iiθ) V1iθ

vec
(
NSθ

)
= vec

(
N∑

i=1

∂2g(xi, θ)
′WNg(xi, θ)

∂θ′∂θ

)
= Aθ

N∑
i=1

IiθUiθ,

where Aθ is of dimension m2 by 2m + m∗.

Let U ′
jθ =

(
W ′

jθ V ′
jθ

)
have the distribution of Ujθ conditional on Ijθ = 1 and

V ′′
1jθ have the distribution of V1jθ conditional on Ijθ = 0.

Define

Ũθ =
(

W̃ ′
jθ Ṽ ′

jθ

)
=

1

N

K∑
i=1

U ′
jθ,

where K is a draw from a binomial distribution with parameters N and ρ = Pr {Iiθ = 1}
conditional on being positive. Define

T̃θ =
1

N

K∑
j=1

W ′
jθ +

1

N

N∑
j=K+1

V ′′
1jθ
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when 0 < K < N . Finally, define

vec
(
NS̃θ

)
= Aθ

1

N

K∑
j=1

U ′
jθ.

Assumption 9’. det
(
S̃θ

)
6= 0 and that the transformation T̃θ to S̃−1

θ T̃θ given Ṽθ is

one-to-one with probability one.

Assumption 10’. E
[
exp

{
βT Uθ

}]
< ∞ for ‖β‖ < γ for some γ > 0 and for all θ.

Let

Λ(F ; θ′, θ) =





∥∥∥E
[

∂2g(x,θ∗0)′WNg(x,θ∗0)

∂θ′∂θ

]
− E

[
∂2g(x,θ)′WNg(x,θ)

∂θ′∂θ

]∥∥∥ , E
[

∂2g(x,θ)′WNg(x,θ)
∂θ′∂θ

]
is

positive definite,

∞, otherwise

and

Λ∗(F ; θ, τ) = sup
θ′∈Bτ (θ)

Λ(F ; θ′, θ).

Assumption 11’. Given 0 < γ < 1, there is a τ such that supθ∈B̃τ (θ0) Λ∗ (F0; θ, τ) <

γ.

Assumption 12’. For fixed θ ∈ Bτ (θ0), Λ∗ (·; ·, τ) is continuous at (F0, θ) in the

product topology.

Theorem 3. (Almudevar, Field and Robinson (2000)) Under Assumptions 1’-12’

for θ∗0 ∈ T , there is, with probability 1 − e−cN for some c > 0, a uniquely defined

M−estimate α̂ on Bτ (α
∗
0) which has a density, restricted to Bτ (θ

∗
0),

fN(α) = KN × Ipos(QN(θ))× I(β(α))

×
(

N

2π

)m
2 ∣∣∣ E [ψ′(x, α)]

∣∣∣
∣∣∣ E [ψ(x, α)ψ(x, α)′]

∣∣∣
−1/2

× exp {NκN(β(α), α)} (
1 +O (

N−1
))

where β(α) is the solution of the saddlepoint equation

∫
ψ(x, α) exp

{
β′

N
ψ(x, α)

}
dF (x) = 0,
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κN(β(α), α) =

∫
exp

{
β(α)′

N
ψ(x, α)

}
dF (x),

the expectations are with respect to the conjugate density

hN (x) =
exp

{
β(α)′

N
ψ(x, α)

}
dF (x)

∫
exp

{
β(α)′

N
ψ(w, α)

}
dF (w)

,

the term Ipos(QN(θ)) is an indicator function that sets the approximation to zero if the

original GMM objective function is not positive definite at the θ value in α, the term

I(β(α)) is an indicator function that sets the approximation to zero if the saddlepoint

equation does not have a solution, and KN is a constant ensuring the approximation

integrates to one.

This theorem shows how the saddlepoint approximation is calculated. The sad-

dlepoint approximation is nonnegative and gives a faster rate of convergence than the

asymptotic normal approximation.

The calculation of the saddlepoint density requires knowledge of the distribution

F (x). In most Economic applications this is unknown. Replacing the distribution

with the observed empirical distribution results in the empirical saddlepoint approx-

imation. This replaces the expectations with respect to the distribution F (x) with

sample averages, i.e., the expectation with respect to the empirical distribution. The

empirical saddlepoint density is defined to be

f̂N(α) = KN × Ipos (QN(θ))× I(β̂N(α))

×
(

N

2π

)m
2

∣∣∣∣∣
N∑

i=1

∂ψ(xi, α)′

∂α
pi(α)

∣∣∣∣∣

∣∣∣∣∣
N∑

i=1

ψ(xi, α)ψ(xi, α)′pi(α)

∣∣∣∣∣

−1/2

× exp

{
N ln

(
1

N

N∑
i=1

exp

{
β̂N(α)′

N
ψ(xi, α)

})}
,

where β̂N(α) is the solution of

N∑
i=1

ψ(xi, α) exp

{
β′

N
ψ(xi, α)

}
= 0
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and

pi(α) =
exp

{
β̂N (α)′

N
ψ(xi, α)

}

∑N
j=1 exp

{
β̂N (α)′

N
ψ(xj, α)

} .

The empirical saddlepoint approximation is scaled by its (numerical) integral, KN , to

give a density that integrates to one.

Using the empirical distribution instead of a known distribution gives a nonpara-

metric procedure. It results in a reduction in accuracy as noted in the next theorem.

The appropriate rate of convergence is achieved by restricting attention to parame-

ters in a shrinking neighborhood of the local minima of the estimation equations,

|α− α0| < ∆/
√

N for some ∆ < ∞. This can also be thought of as obtaining the

density for u =
√

N (α− α0) .

Theorem 4. (Ronchetti and Welsh (1994)) If Assumptions 1’-12’ are satisfied for

θ∗0 ∈ T ,

fN

(
α∗0 + u/

√
N

)

f̂N

(
α̂∗N + u/

√
N

) = 1 +Op

(
N−1/2

)

where the convergence is uniform for u in any compact set.

4.3 ASYMPTOTIC NORMAL AND EMPIRICAL SADDLEPOINT APPROX-

IMATIONS

This section compares the empirical saddlepoint approximation with the asymptotic

normal approximation. The two densities have similar structures. Their differences

concern the “means” and “covariances.”

From Theorem 2, the asymptotic normal approximation can be written

f̂A(α) = (2π)−
m
2

∣∣∣∣∣
Σ̂

N

∣∣∣∣∣

−1/2

exp



−

1

2

[
θ − θ̂

λ− λ̂

]′ (
Σ̂

N

)−1 [
θ − θ̂

λ− λ̂

]



where θ̂ is the GMM estimator, i.e. the global minima of the objective function,

λ̂ = C2(θ̂)W
−1/2GN(θ̂) and Σ̂ is the covariance matrix given Theorem 2.

The covariance matrix is the observed second derivative (convexity) of the extended-

GMM objective function at the global minima and can be estimated with Σ̂ =
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(A′B−1A)
−1

where

A =
1

N

N∑
i=1

∂ψ(xi, α̂)

∂α′
and B =

1

N

N∑
i=1

ψ(xi, α̂)ψ(xi, α̂)′.

The asymptotic normal approximation is built on the local behavior (location and

convexity) of the objective function at its extreme value. The asymptotic normal

approximation delivers a familiar, but restricted, structure for the approximation to

the sampling distribution: unimodal, symmetric with the thin tails associated with

the normal distribution. The asymptotic normal approximation is constructed from a

linear approximation to the first order conditions. Linear first order conditions occur

when the objective function is quadratic. So the asymptotic normal approximation is

built on a quadratic approximation to the objective function. This asymptotic normal

approximation is a poor approximation to the sampling distribution if the objective

function is not well approximated by a quadratic over relevant parameter values. The

local behavior (location and convexity) of the objective function at its extreme value

will not contain enough information to accurately approximate the objective function

in a large enough region.

Instead of focusing only on the global minimum, the saddlepoint approximation

summarizes the information in the sample using the global shape of the objective

function. The similar structure to the asymptotic normal approximation is shown in

the following theorem.

Theorem 5. The empirical saddlepoint approximation can be written

f̂S(α) = KN × Ipos(QN(α))× I(β(α))

×(2π)−
m
2

∣∣∣∣∣
Σ̂C(α)

N

∣∣∣∣∣

−1/2

exp



−

1

2

[
θ − θ∗(α)

λ− λ∗(α)

]′ (
Σ̂e(α)

N

)−1 [
θ − θ∗(α)

λ− λ∗(α)

]



×
{

1 +O
(
N− 1

2

)}
.

The empirical saddlepoint approximation uses the convexity of the objective func-

tion at each point in the parameter space: Σ̂C(α) and Σ̂e(α). The matrix Σ̂e(α) is

the convexity of the objective function at the parameter values estimated using the
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empirical distribution, i.e., Σ̂e(α) = (Ae(α)′Be(α)−1Ae(α))
−1

where

Ae(α) =
N∑

i=1

1

N

∂ψ(xi, α)

∂α′
and Be(α) =

N∑
i=1

1

N
ψ(xi, α)ψ(xi, α)′.

The matrix Σ̂C(α) is the convexity of the objective function at the parameter values

estimated using the conjugate distribution, i.e., Σ̂C(α) = (AC(α)′BC(α)−1AC(α))
−1

where

AC(α) =
N∑

i=1

pi(α)
∂ψ(xi, α)

∂α′
and BC(α) =

N∑
i=1

pi(α)ψ(xi, α)ψ(xi, α)′

and

pi(α) =
exp {β(α)′ψ(xi, α)}∑N

j=1 exp {β(α)′ψ(xj, α)} .

In addition, the empirical saddlepoint approximation uses each of the local minima

as the “mean” for the parameters connected by a path where the objective function

remains positive definite. This “mean” is denoted α∗(α) =

[
θ∗(α)

λ∗(α)

]
.

The saddlepoint approximation is a natural generalization of the asymptotic nor-

mal approximation. If the objective function is quadratic then the saddlepoint ap-

proximation will be equal to the asymptotic normal approximation. However, if the

objective function is not quadratic, the saddlepoint approximation will incorporate

the global structure of the objective function.

If the objective function is not quadratic, but T is a singleton, consistency implies

that the mass of the sampling distribution converges to a shrinking neighborhood of

the population parameter value. In this neighborhood the objective function converges

to a quadratic. Hence, the saddlepoint approximation will converge to the familiar

normal approximation.

The empirical saddlepoint approximation is the sampling distribution for the loca-

tion of the local minima of the GMM objective function. This may be asymmetric and

does not force the tails behavior associated with the normal approximation. A given

sample may not be informative enough to distinguish the general location of the pop-

ulation parameter values. If the GMM objective function does not have a unique local

minimum then the empirical saddlepoint approximation can have multiple modes.
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5 BEHAVIOR IN FINITE SAMPLES

Monte Carlo simulations demonstrate the performance of the empirical saddlepoint

distribution for the model presented in Hall and Horowitz (1996). Four different

confidence intervals/tests derived from the saddlepoint approximation are compared

with confidence intervals/tests created from the bootstrap, two-step GMM and the

s-sets. For these simulations, the empirical saddlepoint is superior to the alternatives.

Although, the bootstrap occasionally has performance comparable to the empirical

saddlepoint approximation.

The model presented in Hall and Horowitz (1996) has been used in Imbens, Spady

Johnson (1998), Kitamura (2001), Schennach (2007) and elsewhere. The one parame-

ter model is estimated with the two moment conditions

g(θ) =

[
exp {µ− θ (X + Z) + 3Z} − 1

Z
(

exp {µ− θ (X + Z) + 3Z} − 1
)

]

where θ0 = 3, X and Z are iid scalars drawn from N(0, s2) and µ is a known constant

set equal to θ2
0s

2/2. With one overidentifying restriction, λ is a scalar for these

simulations. The simulations consider sample sizes of N = 50 and 100 and s set

equal to .2, .3, .4, .5 and .6. The s parameter controls the noise in the system of

equations. For a fixed sample size and population parameter value, larger values

of s make inference more difficult. This model can possess multiple local minima,

a characteristic common in moment estimation. Regularly, two local minima occur

because the first moment condition does not uniquely identify θ0. The first moment

condition has two roots: θ = 0 and θ = θ0. The second moment condition has a

unique root at θ = θ0. Random variability frequently results in a GMM objective

function with two local minima.

In finite samples, the sampling distribution of the parameters of interest and the

statistics that judge the validity of the overidentifying restrictions are not indepen-

dent. Hence, both the marginal and conditional distributions are reported. Under

the null, the marginal and conditional distributions converge to the same asymptotic

distribution. However, in finite samples it is informative to report both. Asymptot-

ically the statistics that test the validity of the overidentifying restrictions converge

to zero. So the distribution of θ conditional on λ = 0 is reported. The simulations

demonstrate, this may generate appealing confidence intervals.

The empirical saddlepoint density is evaluated on an evenly spaced grid of 341×
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101 points on (θ, λ) ∈ [−7, 10] × [−1.5, 1]. The saddlepoint equation was declared

impossible to solve if its final objective function value was above .0001. The results

are robust to larger lengths for the grid and a finer grid. In addition, the results are

robust to the cutoff value for the saddlepoint equation taking values between .01 and

.000001.

The simulation results focus on the empirical size of tests for θ0 and the average

length of the associated confidence intervals. The confidence intervals/tests considered

are:

1. SP conditional short: The shortest confidence region from the empirical saddle-

point density conditional on λ = 0. This confidence region may be disjoint.

2. SP conditional sym: The symmetric confidence interval from the empirical sad-

dlepoint density conditional on λ = 0. The confidence interval will not be

disjoint.

3. SP marginal short: The shortest confidence region from the marginal empirical

saddlepoint density. This confidence region may be disjoint.

4. SP marginal sym: The symmetric confidence interval from the marginal empir-

ical saddlepoint density. The confidence interval will not be disjoint.

5. Bootstrap: The symmetrical bootstrap confidence interval. This is the proce-

dure presented in Hall and Horowitz (1996) with 100 bootstrap samples for each

simulated series.

6. GMM Wald: Wald statistic from optimal two-step GMM.

7. S-set: The s-set for the θ parameter. Stock and Wright (2000) shows how to

construct confidence intervals using the objective function from the continu-

ously updated GMM estimator. These confidence intervals are robust to weak

instruments. The inversion of the objective function results in the possibility of

disjoint confidence regions. Because the confidence regions may be infinite their

length is not reported.

The test was performed by comparing the scaled optimal value of the continu-

ously updated GMM objective function with the critical value for a chi-square

distribution with two degrees of freedom.
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The results are reported in Table 1. The empirical size is always above the nominal

size. Empirical sizes and relative confidence intervals are plotted7 in Figure 1 for

sample size N = 50 and in Figure 2 for sample size N = 100. The average lengths

are plotted relative to the average length of the bootstrap confidence intervals.

Table 1 gives the empirical size and average length of the confidence intervals.

Consider the results for sample size N = 50, when s = .4 and the tests were performed

with nominal size 1%. The GMM Wald test confidence interval is the shortest with

an average length of .64. However, these short confidence intervals did not contain

the population parameter value 13.8% of the time, instead of the 1% size that the test

should have achieved. The bootstrap confidence interval has an average length of 4.16

and an empirical size of 6.5%. The saddlepoint marginal symmetric confidence interval

has an average length of 2.99 and has the best empirical size of 3.7%. The saddlepoint

conditional confidence interval has an average length of 1.96 and an empirical size of

6.3%.

The GMM Wald test always results in the shortest confidence intervals. However,

the empirical size shows these confidence intervals are unrealistically short. The local

information used for the normal approximation in the Wald test does not accurately

summarize the information in the objective function, i.e. the objective function is not

quadratic. Because the saddlepoint and the bootstrap use global information, their

sampling distributions contain information about all local minima.

For s = .5 and s = .6, the saddlepoint marginal with symmetric confidence interval

is the only confidence interval with an empirical size close to the nominal size. As the

noise in the system increases (i.e. as s increases) the empirical size of the other confi-

dence intervals deteriorate. However, the saddlepoint marginal symmetric confidence

intervals are robust. This is demonstrated on the top panels of Figure 1 and Figure 2.

The bootstrap’s poor performance is driven by differences in the covariance estimates

for the bootstrap samples relative to the covariance estimate for the original sample.

For s = .2, .3 or .4, the empirical size of all the saddlepoint confidence intervals

and the bootstrap confidence intervals are similar; no estimation procedure domi-

nates. However, the saddlepoint conditional density with the shortest coverage region

achieves dramatically shorter confidence intervals, particularly for α = .01. Its length

is always smaller, sometimes by over 50 percent. This is demonstrated on the lower

7The s-set is not plotted because its empirical size is comparable to the GMM Wald test’s. The
saddlepoint conditional symmetric is not plotted because it is almost always dominated by the
saddlepoint conditional shortest. The saddlepoint marginal shortest is not plotted because it is
almost always dominated by the saddlepoint marginal symmetric.
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panels of Figure 1 and Figure 2.

The dramatically shorter confidence interval calculated from the conditional dis-

tribution is explained by the existence of two local minima in the GMM objective

function: one near 3 and the other near 0. The marginal distribution contains two

modes: one near 0 and one near 3. This bimodality results in relatively large con-

fidence intervals. A local minima near 0 usually has an overidentifying restriction

statistic value that is away from zero. The local minima near 3 usually has a sta-

tistic that tests the overidentifying restriction test statistic value closer to zero. The

saddlepoint density for θ conditional on λ = 0 is typically unimodal with most of its

mass near 3.
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N = 50 N = 100
α = .10 .05 .01 .10 .05 .01

s size length

.2

SP conditional short .144 1.29 .078 1.57 .027 2.21 .126 .91 .072 1.10 .019 1.49
SP conditional sym .155 1.32 .091 1.61 .033 2.28 .137 .91 .081 1.10 .023 1.49
SP marginal short .156 1.46 .094 1.80 .032 2.58 .137 .98 .075 1.18 .021 1.61
SP marginal sym .161 1.52 .094 1.88 .031 2.70 .141 .98 .079 1.19 .022 1.62
Bootstrap .137 1.66 .073 2.04 .024 3.08 .137 1.04 .080 1.25 .015 1.77
GMM Wald .196 .64 .117 .77 .049 1.01 .155 .30 .105 .36 .037 .47
S-Set .167 .104 .036 .135 .077 .023

.3

SP conditional short .160 1.21 .108 1.48 .047 2.06 .118 .87 .069 1.04 .025 1.41
SP conditional sym .177 1.24 .121 1.52 .055 2.12 .131 .86 .076 1.04 .031 1.41
SP marginal short .161 1.50 .105 1.86 .043 2.64 .114 .98 .068 1.19 .026 1.62
SP marginal sym .153 1.63 .093 1.99 .035 2.81 .121 1.00 .070 1.21 .026 1.66
Bootstrap .146 1.64 .099 2.06 .042 3.21 .126 1.05 .071 1.28 .023 1.87
GMM Wald .229 .50 .167 .59 .097 .78 .170 .25 .102 .30 .045 .39
S-Set .199 .139 .064 .145 .097 .047

.4

SP conditional short .185 1.17 .126 1.42 .063 1.96 .161 .84 .109 1.01 .043 1.36
SP conditional sym .204 1.20 .141 1.46 .071 2.01 .180 .84 .116 1.01 .051 1.37
SP marginal short .180 1.53 .128 1.90 .062 2.69 .152 1.00 .102 1.22 .042 1.68
SP marginal sym .148 1.79 .095 2.17 .037 2.99 .151 1.14 .095 1.37 .038 1.86
Bootstrap .154 1.89 .112 2.52 .065 4.16 .151 1.11 .098 1.44 .050 2.45
GMM Wald .254 .41 .197 .49 .138 .64 .226 .22 .158 .26 .084 .34
S-Set .255 .201 .131 .225 .170 .099

.5

SP conditional short .245 1.11 .186 1.35 .114 1.84 .195 .82 .133 .99 .074 1.32
SP conditional sym .266 1.14 .200 1.38 .125 1.88 .209 .82 .149 .99 .079 1.33
SP marginal short .219 1.59 .165 1.97 .098 2.78 .172 1.07 .115 1.31 .060 1.81
SP marginal sym .144 2.11 .099 2.50 .045 3.31 .151 1.44 .092 1.69 .040 2.20
Bootstrap .203 2.17 .150 3.03 .104 5.37 .153 1.43 .113 1.98 .069 3.66
GMM Wald .353 .33 .288 .39 .199 .51 .254 .18 .199 .22 .122 .28
S-Set .364 .297 .210 .269 .221 .131

.6

SP conditional short .341 1.06 .283 1.29 .200 1.75 .281 .80 .212 .97 .130 1.29
SP conditional sym .368 1.10 .305 1.33 .215 1.78 .296 .81 .228 .97 .140 1.30
SP marginal short .284 1.67 .230 2.06 .149 2.88 .224 1.17 .170 1.43 .104 1.96
SP marginal sym .155 2.47 .109 2.88 .053 3.66 .151 1.84 .099 2.12 .051 2.64
Bootstrap .258 2.71 .214 3.95 .166 7.05 .207 1.82 .157 2.68 .115 5.06
GMM Wald .455 .27 .380 .32 .308 .43 .355 .16 .305 .19 .214 .25
S-Set .450 .391 .283 .372 .312 .2430

Table 1: Empirical size and average length of different confidence intervals from 1000
simulations with sample size N . The s parameter controls the noise in the system.
The population parameter value is held fixed. Higher values of s make inference more
difficult. In this table α denotes the nominal size of the tests.
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6 ON THE SPECTRAL DECOMPOSITION

Using the spectral decomposition to determine the estimation equations raises two

questions. Are the approximate densities well defined? What is its derivative with

respect to θ? The spectral decomposition is not unique. Fortunately, the approxima-

tions are invariant to the spectral decomposition selected.

Theorem 6. The saddlepoint approximation is invariant to the spectral decomposition

of the tangent spaces.

The saddlepoint density possesses a large amount of symmetry similar to the

normal density. The value of an individual λ is not well defined. However, inference

is well defined in three cases (i) conditional on λ = 0, (ii) marginal, i.e. with λ

integrated, and (iii) inference built on the inner product λ′λ, such as the J statistic.

The estimation equations are built on the matrices Ci,N(θ) for i = 1, 2 from the

spectral decomposition of the projection matrix PM(θ). The proof of the asymptotic

normality of the extended-GMM estimators and the empirical saddlepoint density

require the differentiability of the estimation equations. This in turn requires differ-

entiation of the spectral decomposition, Ci,N(θ). This is demonstrated in the next

theorem. The result and method of proof are of interest in their own right.

Let D[•] denote taking the derivative wrt θ of the m × m matrix in the square

bracket, post multiplied by an m × 1 vector, say δ, e.g. D[B(θ)]δ ≡ ∂(B(θ)δ)
∂θ′ is an

m×m matrix.

Theorem 7. Let M(θ) be an m×k matrix with full column rank for every value of θ.

Let C(θ) =
[

C1(θ) C2(θ)
]

be the orthonormal basis of Rm defined by the spectral

decompositions

PM(θ) = M(θ)
(
M(θ)′ M(θ)

)−1

M(θ)′ = C1(θ)C1(θ)
′

and

P⊥
M(θ)

= Im − PM(θ) = C2(θ)C2(θ)
′.

The derivatives of Ci(θ)
′, i = 1, 2, times the constant vector δ, with respect to θ are

D [C1(θ)
′] δ = C1(θ)

′M(θ)
(
M(θ)′M(θ)

)−1
D

[
M(θ)′

]
C2(θ)C2(θ)

′δ

and

D [C2(θ)
′] δ = −C2(θ)

′D
[
M(θ)

] (
M(θ)′M(θ)

)−1
M(θ)′δ.
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7 FINAL ISSUES

7.1 IMPLEMENTATION AND NUMERICAL ISSUES

1. Calculations require a fixed orthonormal basis. To be specific,
[

C1(θ) C2(θ)
]

are determined by the Gram-Schmidt orthogonalization of

ME(θ) =
[

m1(θ) m2(θ) . . . mk(θ) e1 e2 . . . em−k

]
,

where mi(θ) is the ith column of M(θ) and ei is the ith standard basis element,

C1(θ) = diag


 1√

mj(θ)′P⊥
j−1(θ)mj(θ)


 [

P⊥
j−1(θ)mj(θ)

]

where P⊥
j (θ) denotes the projection onto the orthogonal complement of the space

spanned by the first j columns of ME(θ), for j = 1, 2, . . . ,m. Let P⊥
0 = Ik.

C2(θ) is

C2(θ) = diag


 1√

e′j−kP
⊥
j−1(θ)ej−k


 [

P⊥
j−1(θ)ej−k

]

for j = k + 1, k + 2, . . . , m.

2. The calculation of the saddlepoint density requires repeatedly solving systems

of m nonlinear equations in m unknowns. Each value in the grid over the

parameter space A requires the solution to a system of equations. Fortunately,

the continuity of the density implies that the solutions from nearby parameter

values will be excellent starting values for the nonlinear search.

3. The system of m equations in m unknowns has a structure that is similar to

the structure of an exponential regression. Regardless of the structure of the

original GMM moment conditions, the empirical saddlepoint equations have a

simple structure that allows the analytic calculation of first and second deriva-

tives. This results in significant time savings in the calculation of the empirical

saddlepoint density.

4. For highly parameterized problems the number of calculations can become large.

The saddlepoint for each value in the parameter space can be solved indepen-

34



dently. This structure is ideal for distributed computing with multiple proces-

sors.

7.2 EXTENSIONS

The local parameterization of the overidentifying space and the associated extended-

GMM objective function have applications beyond the saddlepoint approximation.

The S-sets of Stock and Wright (2000) can be applied to the estimation equations

to provide confidence intervals, which include parameters that test the validity of

overidentifying restrictions. Because the estimation equations are a just identified

system the associated S-sets will never be empty.

When a unique local minima exists, the formulas of Lugannani and Rice (1980)

can more efficiently evaluate the tail probabilities.

Recent results in saddlepoint estimation (see Robinson, Ronchetti and Young

(2003) and Ronchetti and Trojani (2003)) relate to using the saddlepoint parame-

ters β̂N(α) to test hypotheses about the parameters θ. It should be possible to extend

this to include new tests for the validity of the overidentifying restrictions, i.e. use

β̂N(α) to test the hypotheses H0 : λ0 = 0.

The saddlepoint approximations need to be extended to models with dependent

data. Recent work suggests that parameter estimates using moment conditions gen-

erated from minimum divergence criteria have better small sample properties. The

FOC’s from these estimation problems can be used to create estimation equations

suitable for saddlepoint approximations. This will replace the CLT’s with the saddle-

point approximations to provide more accurate inference in small samples.
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8 APPENDIX

8.1 THEOREM 1: ASYMPTOTIC DISTRIBUTION

Proof:

To reduce notation the matrices Ci,N(θ) dependence on sample size will be sup-

pressed. The first order conditions for the extended GMM estimator are

ΨN(θ̂, λ̂) =

[
C1(θ̂)

′W 1/2
N GN(θ̂)

λ̂− C2(θ̂)
′W 1/2

N GN(θ̂)

]
= 0.

Expand the estimation equations about the population parameter values and eval-

uate at the parameter estimates

ΨN(θ̂, λ̂) = ΨN(θ0, λ0) +
[

∂ΨN (θ0,λ0)
∂θ

∂ΨN (θ0,λ0)
∂λ

] [
θ̂ − θ0

λ̂

]
+Op

(
N−1

)
.

The first order conditions imply the LHS will be zero. For sufficiently large N it is

possible to solve for the parameters

[
θ̂ − θ0

λ̂

]
= −

[
∂ΨN (θ0,λ0)

∂θ
∂ΨN (θ0,λ0)

∂λ

]−1

ΨN(θ0, λ0) +Op

(
N−1

)

= −
[

plimN→∞
∂ΨN (θ0,λ0)

∂θ
plimN→∞

∂ΨN (θ0,λ0)
∂λ

]−1

ΨN(θ0, λ0) +Op

(
N−1

)
.

The θ parameters enter the first order conditions in both G(θ) and Ci(θ) for

i = 1, 2. The product rule implies

∂Ci(θ)
′W 1/2GN(θ)

∂θ′
= Ci(θ)

′W 1/2MN(θ) + D [Ci(θ)
′] W 1/2GN(θ).

The form of D [Ci(θ)
′] is explicitly given in Theorem 7. Sufficient assumptions are

made to ensure each term is finite in a neighborhood of θ0 hence the law of large

numbers implies plimN→∞D [Ci(θ)
′] W 1/2

N GN(θ) = 0. Use this result and substitute

terms
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[
θ̂ − θ0

λ̂

]

= −
[

C1(θ0)
′Σ−1/2

g M(θ0) 0

−C2(θ0)
′Σ−1/2

g M(θ0) I

]−1 [
C1(θ0)

′Σ−1/2
g GN(θ0)

C2(θ0)
′Σ−1/2

g GN(θ0)

]
+Op

(
N−1

)

= −



(
C1(θ0)

′Σ−1/2
g M(θ0)

)−1

0

−C2(θ0)
′Σ−1/2

g M(θ0)
(
C1(θ0)

′Σ−1/2
g M(θ0)

)−1

I




[
C1(θ0)

′Σ−1/2
g GN(θ0)

C2(θ0)
′Σ−1/2

g GN(θ0)

]
+Op

(
N−1

)

=


 −

(
C1(θ0)

′Σ−1/2
g M(θ0)

)−1

C1(θ0)
′Σ−1/2

g GN(θ0)

C2(θ0)
′Σ−1/2

g M(θ0)
(
C1(θ0)

′Σ−1/2
g M(θ0)

)−1

C1(θ0)
′Σ−1/2

g GN(θ0) + C2(θ0)
′Σ−1/2

g GN(θ0)




+Op

(
N−1

)
(1)

The first k elements of (1) can be written

− (
C1(θ0)

′Σ−1/2
g M(θ0)

)−1
C1(θ0)

′Σ−1/2
g GN(θ0)

= − (
C1(θ0)

′Σ−1/2
g M(θ0)

)−1
C1(θ0)

′PM(θ0)Σ
−1/2
g GN(θ0)

= − (
C1(θ0)

′Σ−1/2
g M(θ0)

)−1
C1(θ0)

′M(θ0)
(
M(θ0)

′M(θ0)
)−1

M(θ0)
′Σ−1/2

g GN(θ0)

= − (
C1(θ0)

′Σ−1/2
g M(θ0)

)−1
C1(θ0)

′Σ−1/2
g M(θ0)

(
M(θ0)

′M(θ0)
)−1

M(θ0)
′Σ−1/2

g GN(θ0)

= − (
M(θ0)

′M(θ0)
)−1

M(θ0)
′Σ−1/2

g GN(θ0)
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The last (m− k) elements of (1) can be written

C2(θ0)
′
((

P
M
⊥ + PM

)
Σ−1/2

g M(θ0)
(
C1(θ0)

′Σ−1/2
g M(θ0)

)−1
C1(θ0)

′ − I
)

Σ−1/2
g GN(θ0)

+Op

(
N−1

)

= C2(θ0)
′
(
PMΣ−1/2

g M(θ0)
(
C1(θ0)

′Σ−1/2
g M(θ0)

)−1
C1(θ0)

′ − I
)

Σ−1/2
g GN(θ0) +Op

(
N−1

)

= C2(θ0)
′
(
C1(θ)C1(θ)

′Σ−1/2
g M(θ0)

(
C1(θ0)

′Σ−1/2
g M(θ0)

)−1
C1(θ0)

′ − I
)

Σ−1/2
g GN(θ0)

+Op

(
N−1

)

= C2(θ0)
′ (C1(θ)C1(θ0)

′ − I) Σ−1/2
g GN(θ0) +Op

(
N−1

)

= C2(θ0)
′ (PM − I) Σ−1/2

g GN(θ0) +Op

(
N−1

)

= −C2(θ0)
′P⊥

M
Σ−1/2

g GN(θ0) +Op

(
N−1

)

= −C2(θ0)
′C2(θ0)C2(θ0)

′Σ−1/2
g GN(θ0) +Op

(
N−1

)

= −C2(θ0)
′Σ−1/2

g GN(θ0) +Op

(
N−1

)

Combining these gives

[
θ̂ − θ0

λ̂

]
=

[
− (

M(θ0)
′M(θ0)

)−1
M(θ0)

′Σ−1/2
g GN(θ0)

−C2(θ0)
′Σ−1/2

g GN(θ0)

]
+Op

(
N−1

)

Multiply both sides by
√

N and use the CLT to obtain the covariance.
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8.2 THEOREM 2: INVARIANCE OF ASYMPTOTIC DISTRIBUTION

The derivation of the estimation equations require the calculation of a spectral

decomposition for the matrix projection matrix

PM(θ),N = CΛC ′ =
[

C1,N(θ) C2,N(θ)
] [

Ik 0

0 0(m−k)

][
C1,N(θ)′

C2,N(θ)′

]
.

The spectral decomposition is not unique. Hence it is necessary to show that the final

results are invariant to the decomposition selected.

Proof:

Theorem 1 shows that the overidentifying restriction tests are asymptotically in-

dependent from the parameters of interests. The proof can be established by showing

the result separately for the parameters of interest and the statistics that test the

validity of the overidentifying restrictions.

First, consider the parameters of interest. The asymptotic distribution of θ does

not depend on the decomposition selected and is independent of the statistics that

test the validity of the overidentifying restrictions. Hence the decomposition selected

for the estimation equations does not affect the asymptotic distribution for θ.

Finally, consider the statistics that test the validity of the overidentifying restric-

tions. A key result is that two different decompositions are related by an m × m

unitary matrix. Recall for a unitary matrix, say U , that U ′U = Im and |U | = 1. Con-

sider two different decompositions C =
[

C1(θ) C2(θ)
]

and D =
[

D1(θ) D2(θ)
]
.

For PM = C1(θ)C1(θ)
′ and P⊥

M
= C2(θ)C2(θ)

′, the estimation equations are

[
C1(θ)

′W 1/2G(θ)

λ− C2(θ)
′W 1/2G(θ)

]

and the parameters for the overidentifying space are λ = C2(θ)
′W 1/2G(θ). For the

diagonalization PM = D1(θ)D1(θ)
′ and P⊥

M
= D2(θ)D2(θ)

′, the estimation equations

are [
D1(θ)

′W 1/2G(θ)

L−D2(θ)
′W 1/2G(θ)

]

and the parameters for the overidentifying space are L = D2(θ)
′W 1/2G(θ).
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The parameters λ and L are linearly related

λ = C2(θ)
′W 1/2G(θ)

= C2(θ)
′P⊥

M
W 1/2G(θ)

= C2(θ)
′D2(θ)D2(θ)

′W 1/2G(θ)

= C2(θ)
′D2(θ)L.

The matrix C2(θ)
′D2(θ) is unitary

(C2(θ)
′D2(θ))

′
C2(θ)

′D2(θ) = D2(θ)
′C2(θ)C2(θ)

′D2(θ)

= D2(θ)
′P⊥

M
D2(θ)

= D2(θ)
′D2(θ)

= Im−k.

To transform from the density for λ to the density for L, the Jacobian of the

transformation will be

dλ = |C2(θ)
′D2(θ)| dL

= dL

because C2(θ)
′D2(θ) is unitary, its determinant is one.

The asymptotic distribution for λ is standard normal hence

(2π)−
(m−k)

2 exp

{−λ′λ
2

}
= (2π)−

(m−k)
2 exp

{−λ′Im−kλ

2

}

= (2π)−
(m−k)

2 exp

{−λ′ (C2(θ)
′D2(θ))

′ C2(θ)
′D2(θ)λ

2

}

= (2π)−
(m−k)

2 exp

{−L′L
2

}

The last form is the asymptotic distribution for L. Hence, the same probability

statements are made regardless of the decomposition. Testing the overidentifying

restrictions with either Nλ′λ or NL′L will give the same test statistic value and the

same p-value from the asymptotic distribution.
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8.3 THEOREM 3: THE SADDLEPOINT APPROXIMATION

The proof is given in Almudevar, Field and Robinson (2000), denoted ARF. The

8 assumptions made in ARF are satisfied by Assumptions 1’-12’ for the estimation

equations derived in section 3.

There are two minor changes between the current model and the model considered

in ARF. The changes concern the need to restrict attention to only the solutions to the

estimation equations associated with the local zeros of the original GMM objective

function and addressing parameter values where the saddlepoint equation does not

have a solution. In ARF the density is for all solutions to the estimation equations

and hence it includes local maxima of the original GMM objective function. Using

the notation in ARF, this additional restriction is satisfied by setting Ψ∗(X, θ) and

z(θ0, τ) to infinity if Ψ′(X, θ) is not positive definite. With this change, the same steps

of the proof are satisfied. The other change in the model is setting the approximate

density to zero if the saddlepoint equation does not have a solution.

The model considered in this paper is built on a set of (overidentified) moment

conditions. The model in AFR is a just identified system of estimation equations.

The assumptions in the current paper concerning moment conditions imply that the

assumptions in AFR are satisfied for the set of estimation equations derived in section

3.

A1 Assumption A1 in ARF is satisfied by Assumption 2’, Assumption 5’ and

Assumption 6’.1. Assumption A1 in ARF is stated in terms of the estimation

equation and Assumption 2’ is stated in terms of the moment conditions. The

estimation equations are linear functions of the moment conditions. Assump-

tion 2’, Assumption 5’ and Assumption 6’.1 ensure that the coefficients in

the linear functions are finite. The diffeomorphism defined by

M(θ◦)θ and C1(θ
◦)t

ensures the differentiability of the estimation equations.

A2 Assumption A2 in ARF is satisfied by Assumption 7’, Assumption 5’ and

Assumption 6’.1. Assumption A2 in ARF is stated in terms of the estimation

equation and Assumption 7’ is stated in terms of the moment conditions. The

estimation equations are linear functions of the moment conditions. Assump-

tion 2’, Assumption 5’ and Assumption 6’.1 ensure that the coefficients

41



in the linear functions are differentiable; hence, the density for the estimation

equations can be obtained by a Jacobian transformation.

A3 Assumption A3 in ARF is satisfied by Assumption 5’, Assumption 6’.1

and Assumption 6’.2. Assumption A3 in ARF is stated in terms of the es-

timation equation and Assumption 6’.2 is stated in terms of the moment

conditions. The estimation equations are linear functions of the moment con-

ditions. Assumption 2’, Assumption 5’ and Assumption 6’.1 ensure that

the coefficients in the linear functions are finite.

A4 Assumption A4 in ARF is satisfied by Assumption 8’. Assumption A4 in ARF

is stated in terms of the estimation equation and Assumption 8’ is stated in

terms of the moment conditions. The estimation equations are linear functions

of the moment conditions. Assumption 2’, Assumption 5’ and Assumption

6’.1 ensure that the coefficients in the linear functions are finite and differen-

tiable. Hence the restriction on the moment conditions imply the restriction on

the estimation equations.

A5 Assumption A5 in ARF is satisfied by Assumption 9’. Assumption A5 in ARF

is stated in terms of the estimation equation and Assumption 9’ is stated in

terms of the moment conditions. The estimation equations are linear functions

of the moment conditions. Assumption 2’, Assumption 5’ and Assumption

6’.1 ensure that the coefficients in the linear functions are finite and invertible.

Hence the restriction on the moment conditions imply the restriction on the

estimation equations.

A6 Assumption A6 in ARF is stated in terms of the estimation equation and As-

sumption 10’ is stated in terms of the moment conditions. The estimation

equations are linear functions of the moment conditions. Assumption 2’, As-

sumption 5’ and Assumption 6’.1 ensure that the coefficients in the linear

functions are finite and invertible.

The existence of β for the moment conditions will imply the existence of a β̃ for
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the estimation equations

β′gi(θ) = β′W 1/2W−1/2gi(θ)

= β′W 1/2ImW−1/2gi(θ)

= β′W 1/2
(
PM(θ) + P⊥

M(θ)

)
W−1/2gi(θ)

= β′W 1/2PM(θ)W
−1/2gi(θ) + β′W 1/2P⊥

M(θ)
W−1/2gi(θ)

= β′W 1/2C1(θ)C1(θ)
′W−1/2gi(θ) + β′W 1/2C2(θ)C2(θ)

′W−1/2gi(θ)

= β′W 1/2C1(θ)C1(θ)
′W−1/2gi(θ)

−β′W 1/2C2(θ)
(
λ− C2(θ)

′W−1/2gi(θ)
)

+ β′W 1/2C2(θ)λ

= β′W 1/2
[

C1(θ) −C2(θ)
]
ψi(θ) + β′W 1/2C2(θ)λ.

The existence of β′ for the moment conditions implies β̃′ ≡ β′W 1/2
[

C1(θ) −C2(θ)
]

holds for the estimation equations. The term β′W 1/2C2(θ)λ does not depend on

x.

A7 Assumption A7 in ARF is stated in terms of the estimation equation and As-

sumption 11’ is stated in terms of the moment conditions. The estimation

equations are linear functions of the moment conditions. Assumption 2’, As-

sumption 5’ and Assumption 6’.1 ensure that the coefficients in the linear

functions are finite and differentiable. Hence the restriction on the moment

conditions imply the restriction on the estimation equations.

A8 Assumption A8 in ARF is stated in terms of the estimation equation and As-

sumption 12’ is stated in terms of the moment conditions. The estimation

equations are linear functions of the moment conditions. Assumption 2’, As-

sumption 5’ and Assumption 6’.1 ensure that the coefficients in the linear

functions are finite. Hence the restriction on the moment conditions imply the

restriction on the estimation equations.
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8.4 THEOREM 4: EMPIRICAL SADDLEPOINT APPROXIMATION

The steps of the proof are given in Ronchetti and Welsh (1994), denote RW. The

5 assumptions made in RW are satisfied by Assumptions 1’-12’ for the estimation

equations presented in section 3.

There are two minor changes between the current model and the model considered

in RW.

The first change is to set the saddlepoint approximation to zero if the empirical

saddlepoint equation does not have a solution. This is achieved by including an

indicator function for the existence of a solution to the empirical saddlepoint equation.

The second change is to allow for multiple solutions to the estimation equations.

This is achieved by applying the result in RW to each solution of the estimation

equation that is associated with a minimum of the original GMM objective function.

Just as with the previous proof, the model considered in this paper is built on a set

of (overidentified) moment conditions. The model in RW is a just identified system

of estimation equations. The assumptions in the current paper concerning moment

conditions imply that the assumptions in RW are satisfied for the set of estimation

equations derived in section 3.

(a) In RW it is assumed that there is only one solution to the estimation equations.

In this paper multiple solutions are allowed. The needed generalization of As-

sumption (a) in RW is that each local minima of the extended-GMM objective

function associated with a local minima of the original GMM objective function

converge at rate N−1/2 to an element in T . This “root-N consistency” is implied

by Assumption 1’, Assumption 2’ and Assumption 3’.

(b) Assumption (b) in RW is satisfied by Assumption 6’.3 and Assumption

10’. Assumption (b) in RW is stated in terms of the estimation equation as is

Assumption 10’.

Assumption (b) in RW is stated in terms of the estimation equation and As-

sumption 6’.3 is stated in terms of the moment conditions. The estimation

equations are linear functions of the moment conditions. Assumption 2’, As-

sumption 5’ and Assumption 6’.1 ensure that the coefficients in the linear

functions are finite.
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The existence of β for the moment conditions will imply the existence of a β̃ for

the estimation equations

β′gi(θ) = β′W 1/2W−1/2gi(θ)

= β′W 1/2ImW−1/2gi(θ)

= β′W 1/2
(
PM(θ) + P⊥

M(θ)

)
W−1/2gi(θ)

= β′W 1/2PM(θ)W
−1/2gi(θ) + β′W 1/2P⊥

M(θ)
W−1/2gi(θ)

= β′W 1/2C1(θ)C1(θ)
′W−1/2gi(θ) + β′W 1/2C2(θ)C2(θ)

′W−1/2gi(θ)

= β′W 1/2C1(θ)C1(θ)
′W−1/2gi(θ)

−β′W 1/2C2(θ)
(
λ− C2(θ)

′W−1/2gi(θ)
)

+ β′W 1/2C2(θ)λ

= β′W 1/2
[

C1(θ) −C2(θ)
]
ψi(θ) + β′W 1/2C2(θ)λ.

The existence of β′ for the moment conditions implies β̃′ ≡ β′W 1/2
[

C1(θ) −C2(θ)
]

holds for the estimation equations. The term β′W 1/2C2(θ)λ does not depend on

x.

(c) Assumption (c) in RW is satisfied by Assumption 6’.2 and Assumption

5’. Assumption (c) in RW is stated in terms of the estimation equation and

Assumption 6’.2 is stated in terms of the moment conditions. The estimation

equations are linear functions of the moment conditions. Assumption 2’,

Assumption 5’ and Assumption 6’.1 ensure that the coefficients in the linear

functions are finite.

(d) Assumption (d) in RW is satisfied by Assumption 2’ and Assumption 5’.

Assumption (d) in RW is stated in terms of the estimation equation and As-

sumption 2’ is stated in terms of the moment conditions. The estimation

equations are linear functions of the moment conditions. Assumption 2’, As-

sumption 5’ and Assumption 6’.1 ensure that the coefficients in the linear

functions are finite. The structure of the derivative of the coefficients wrt to the

parameters are given in Theorem 7.

(e) Assumption (e) in RW is satisfied by Assumption 6’.4, Assumption 5’ and

Assumption 2’. Note that Assumption (e) in RW is stated in terms of the

estimation equation and Assumption 6’.4 is stated in terms of the moment

conditions. The estimation equations are linear functions of the moment con-
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ditions. Assumption 2’, Assumption 5’ and Assumption 6’.1 ensure that

the coefficients in the linear functions are finite. The structure of the derivative

of the coefficients wrt to the parameters are given in Theorem 7.
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8.5 THEOREM 5: EMPIRICAL SADDLEPOINT DENSITY STRUCTURE

Proof:

The empirical saddlepoint density can be written

KN × Ipos(QN(θ))× I(β(α))

×
(

N

2π

)m
2

∣∣∣∣EC

[
∂ψ(α)′

∂α

]
(EC [ψ(β)ψ(β)′])−1

EC

[
∂ψ(α)

∂α′

]∣∣∣∣
− 1

2

exp {Nκ (β(α))}
= KN × Ipos(QN(θ))× I(β(α))

×
(

1

2π

)m
2

∣∣∣∣∣∣
EC

[
∂ψ(α)′

∂α

]
(EC [ψ(β)ψ(β)′])−1 EC

[
∂ψ(α)
∂α′

]

N

∣∣∣∣∣∣

− 1
2

exp {Nκ (β(α))}

where the expectations, EC , are wrt to the conjugate density. However, the cumulate

generating function is calculated with the distribution of the empirical distribution,

i.e. Ee.

The proof will be completed by showing that

exp {Nκ (β(α))}

= exp




−1

2
(α− α∗)

′


Ee

[
∂ψ(α)′

∂α

]
(Ee [ψ(β)ψ(β)′])−1 Ee

[
∂ψ(α)
∂α′

]

N



−1

(α− α∗)





×
{

1 +O
(
N− 1

2

)}

where α∗ denotes the local minima associated with α. This will be achieved by showing

that the cumulant generating function can be written

κ (β(α)) = −1

2
(α− α∗)

′
(

Ee

[
∂ψ(α)′

∂α

]
(Ee [ψ(β)ψ(β)′])−1

Ee

[
∂ψ(α)

∂α′

])−1

(α− α∗)+O
(
N− 3

2

)
.

The cumulate generating function for ψ(α) is

κ(β) = ln (Ee [exp {β′ψ(α)}])
= ln (M(β))

where M(β) is the moment generating function of ψ(α) under the distribution of the

observed data. Expand this in a three term Taylor series about β = β(α∗) = 0. Note

47



that

κ(β)|β=0 = ln (M(0))

= 0

κ(β)′|β=0 =
M ′(0)

M(0)

= Ee [ψ(α)]

κ(β)′′|β=0 =
M ′′(0)M(0)−M ′(0)M ′(0)T

M(0)2

= Ee[ψ(α)ψ(α)′]− Ee[ψ(α)]Ee[ψ(α)]′.

The expansion can be written

κ(β) = β′Ee [ψ(α)] +
1

2
β′

[
Ee[ψ(α)ψ(α)′] − Ee[ψ(α)]Ee[ψ(α)]′

]
β +O (|β|3) .

Linearize the saddlepoint equation about β = 0. Recall the expectation is wrt the

distribution of the observed data

Ee [ψ(α) exp {β′ψ(α)}] = Ee [ψ(α)] + Ee [ψ(α)ψ(α)′] β +O (|β|2) .

Evaluate this at β(α), solve for

β(α) = − (Ee [ψ(α)ψ(α)′])−1
Ee [ψ(α)] +O (|β(α)|2)

and substitute into the expansion

κ (β(α)) = −Ee [ψ(α)]′ (E [ψ(α)ψ(α)′])−1
Ee [ψ(α)]

+
1

2
E [ψ(α)]′ (Ee [ψ(α)ψ(α)′])−1

Ee [ψ(α)]

−1

2

(
E [ψ(α)]′ (Ee [ψ(α)ψ(α)′])−1

Ee [ψ(α)]
)2

+O (|β|3) +O (|β(α)|2 |Ee [ψ(α)]|) .

Expand the estimation equation about α and evaluate the expansion at the closest

local minimum that is connected by a path that is always positive definite8, denote

8If such a path does not exist, set the approximate density to zero.
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this local minimum by α∗

ψ(α∗) = ψ(α) +
∂ψ(α)

∂α′
(α∗ − α) +O (|α− α∗|2

)
.

Because α∗ is a local minimum, the estimation equations will be satisfied. This implies

ψ(α) = −∂ψ(α)

∂α′
(α∗ − α) +O (|α− α∗|2

)
.

Take the expectation wrt the distribution of the empirical distribution

Ee [ψ(α)] = −Ee

[
∂ψ(α)

∂α′

]
(α∗ − α) +O (|α− α∗|2

)

and substitute into the expansion

κ(β(α)) = −1

2
(α∗ − α)′ Ee

[
∂ψ(α)′

∂α

]
(Ee [ψ(α)ψ(α)′])−1

Ee

[
∂ψ(α)

∂α′

]
(α∗ − α)

+O (|β|3) +O (|β(α)|2 |α− α∗|
)

+O (|α− α∗|3
)
.

Because attention is restricted to a
√

N neighborhood of α∗ and because β(α) is

continuous with β(α∗) = 0, all the error terms can be collected into a single O
(
N− 3

2

)

term. As was to be shown.
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8.6 THEOREM 6: INVARIANCE OF SADDLEPOINT APPROXIMATION

Use the same notation introduced in Theorem 2. The solution to the saddlepoint

equation for the decomposition D(θ) is written in terms of the solution to the sad-

dlepoint equation for the decomposition C(θ). This is used to show that the different

terms that compose the saddlepoint density give the same value for both decomposi-

tions.

Proof:

The saddlepoint equation for the decomposition C(θ) =
[

C1(θ) C2(θ)
]

and λ

is

0 =

∫ [
C1(θ)

′W 1/2gi(θ)

C2(θ)
′W 1/2gi(θ)− λ

]
exp

{
β′(α)

N

[
C1(θ)

′W 1/2gi(θ)

C2(θ)
′W 1/2gi(θ)− λ

]}
dF (x)

=

∫ [
(D1(θ)

′C1(θ))
′ D1(θ)

′C1(θ) 0

0 (D2(θ)
′C2(θ))

′ D2(θ)
′C2(θ)

][
C1(θ)

′W 1/2gi(θ)

C2(θ)
′W 1/2gi(θ)− λ

]

× exp

{
β′(α)

N

[
(D1(θ)

′C1(θ))
′ D1(θ)

′C1(θ) 0

0 (D2(θ)
′C2(θ))

′ D2(θ)
′C2(θ)

]

×
[

C1(θ)
′W 1/2gi(θ)

C2(θ)
′W 1/2gi(θ)− λ

]}
dF (x)

=

∫ [
C1(θ)

′D1(θ) 0

0 C2(θ)
′D2(θ)

][
D1(θ)

′C1(θ)C1(θ)
′W 1/2gi(θ)

D2(θ)
′C2(θ)C2(θ)

′W 1/2gi(θ)−D2(θ)
′C2(θ)λ

]

× exp

{
β(α)′

N

[
C1(θ)

′D1(θ) 0

0 C2(θ)
′D2(θ)

]

×
[

D1(θ)
′C1(θ)C1(θ)

′W 1/2gi(θ)

D2(θ)
′C2(θ)C2(θ)

′W 1/2gi(θ)−D2(θ)
′C2(θ)λ

]}
dF (x)

=

[
C1(θ)

′D1(θ) 0

0 C2(θ)
′D2(θ)

]∫ [
D1(θ)

′W 1/2gi(θ)

D2(θ)
′W 1/2gi(θ)− L

]

× exp

{
β̃(α)′

N

[
D1(θ)

′W 1/2gi(θ)

D2(θ)
′W 1/2gi(θ)− L

]}
dF (x)

where

β̃(α)′ ≡ β(α)′
[

C1(θ)
′D1(θ) 0

0 C2(θ)
′D2(θ)

]
.
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The leading matrix is of full rank and hence the final equation implies

0 =

∫ [
D1(θ)

′W 1/2gi(θ)

D2(θ)
′W 1/2gi(θ)− L

]
exp

{
β̃(α)′

N

[
D1(θ)

′W 1/2gi(θ)

D2(θ)
′W 1/2gi(θ)− L

]}
dF (x).

So β̃(θ) will be the solution to the saddlepoint equation for the decomposition D(θ)

with parameter L. Use a superscript to denote the different spectral decompositions.

Then, it is possible to show the invariance of the conjugate density wrt the selection

of the spectral decomposition

h
C(θ)
N,β (x) =

exp
{

β(α)′
N

ψC(θ)(x, α)
}

dF (x)

∫
exp

{
β(α)′

N
ψC(θ)(w,α)

}
dF (w)

=
exp

{
β̃(α)′

N
ψD(θ)(x, α)

}
dF (x)

∫
exp

{
β̃(α)′

N
ψD(θ)(w, α)

}
dF (w)

= h
D(θ)

N,β̃
(x).

The saddlepoint approximation for C(θ) and λ with α =
[

θ′ λ′
]′

fN(α) =

(
1

2π

)m
2 ∣∣E [

ψC(θ)(α)ψC(θ)(α)′
]∣∣− 1

2

∣∣∣∣E
[
∂ψC(θ)(α)

∂α′

]∣∣∣∣ exp {Nκ(β(α), α)}

is composed of three terms, where β(α) is the solution to the saddlepoint equation

and the expectation is wrt the conjugate density h
C(θ)
N,β (x).

The approximation depends on three terms that contain C1(θ), C2(θ) and/or λ.

The proof will be completed once it is shown that each of the three terms is equal to

the value if D1(θ), D2(θ) and L had been used.
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1. Consider the term κ(β(α), α).

κ(β(α), α)

=

∫
exp

{
β′(α)

N

[
C1(θ)

′W 1/2gi(θ)

C2(θ)
′W 1/2gi(θ)− λ

]}
dF (x)

=

∫
exp

{
β′(α)

N

[
(D1(θ)

′C1(θ))
′ D1(θ)

′C1(θ) 0

0 (D2(θ)
′C2(θ))

′ D2(θ)
′C2(θ)

]

×
[

C1(θ)
′W 1/2gi(θ)

C2(θ)
′W 1/2gi(θ)− λ

]}
dF (x)

=

∫
exp

{
β(α)′

N

[
C1(θ)

′D1(θ) 0

0 C2(θ)
′D2(θ)

]

×
[

D1(θ)
′C1(θ)C1(θ)

′W 1/2gi(θ)

D2(θ)
′C2(θ)C2(θ)

′W 1/2gi(θ)−D2(θ)
′C2(θ)λ

]}
dF (x)

= exp

{
β̃(α)′

N

[
D1(θ)

′W 1/2gi(θ)

D2(θ)
′W 1/2gi(θ)− L

]}
dF (x)

= κ(β̃(α), α).

Hence this term is invariant to the decomposition selected.

2. Consider the term
∣∣∣E

[
∂ψC(θ)(α)

∂α′

]∣∣∣ . To reduce notation let U denote the unitary

matrix

U =

[
C1(θ)

′D1(θ) 0

0 C2(θ)
′D2(θ)

]
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and hence |U | = 1. Use Theorem 7 to write

∣∣∣∣Eβ

[
∂ψC(θ)(α)

∂α′

]∣∣∣∣

=

∣∣∣∣∣
∫ [

C1(θ)′M i(θ) + C1(θ)′M(θ)(M(θ)′M(θ))−1D[M(θ)′]P⊥
M(θ)

W 1/2gi(θ) 0

C2(θ)′M i(θ)− C2(θ)′D[M(θ)](M(θ)′M(θ))−1M(θ)′W 1/2gi(θ) −Im−k

]

× h
C(θ)
N,β (x)dx

∣∣∣

=

∣∣∣∣∣
∫ [

C1(θ)′M i(θ) + C1(θ)′M(θ)(M(θ)′M(θ))−1D[M(θ)′]P⊥
M(θ)

W 1/2gi(θ) 0

C2(θ)′M i(θ)− C2(θ)′D[M(θ)](M(θ)′M(θ))−1M(θ)′W 1/2gi(θ) −Im−k

]

× h
D(θ)

N,β̃
(x)dx

∣∣∣

= |U |
∣∣∣∣∣
∫ [

D1(θ)′M i(θ) + D1(θ)′M(θ)(M(θ)′M(θ))−1D[M(θ)′]P⊥
M(θ)

W 1/2gi(θ) 0

D2(θ)′M i(θ)−D2(θ)′D[M(θ)](M(θ)′M(θ))−1M(θ)′W 1/2gi(θ) −D2(θ)′C2(θ)

]

× h
D(θ)

N,β̃
(x)dx

∣∣∣

=

∣∣∣∣∣
∫ [

D1(θ)′M i(θ) + D1(θ)′M(θ)(M(θ)′M(θ))−1D[M(θ)′]P⊥
M(θ)

W 1/2gi(θ) 0

D2(θ)′M i(θ)−D2(θ)′D[M(θ)](M(θ)′M(θ))−1M(θ)′W 1/2gi(θ) −Im−k

]

× h
D(θ)

N,β̃
(x)dx

∣∣∣

=
∣∣∣∣Eβ̃

[
∂ψD(θ)(α)

∂α′

]∣∣∣∣ .

The first and last equalities come from the definitions of Eβ

[
∂ψC(θ)(α)

∂α′

]
, Eβ̃

[
∂ψD(θ)(α)

∂α′

]

and Theorem 7. The second equality is justified with the same steps used above

to derive β̃(α). The third equality is from the definition of U . The fourth equality

occurs because U and D2(θ)
′C2(θ) are unitary and hence |U | = |D2(θ)

′C2(θ)| =
1. Note that the upper right matrix being zero implies that the determinant will

be the product of the the determinant of the matrices on the main diagonal.

Hence this term is invariant to the decomposition selected.
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3. Finally consider the term
∣∣Eβ

[
ψC(θ)(α)ψC(θ)(α)′

]∣∣

Eβ

[
ψC(θ)(α)ψC(θ)(α)′

]

=

∫ [
C1(θ)

′W−1/2gi(θ)

C2(θ)
′W 1/2gi(θ)− λ

][
C1(θ)

′W−1/2gi(θ)

C2(θ)
′W 1/2gi(θ)− λ

]′
h

C(θ)
N,β (x)dx

=

∫ [
C1(θ)

′W−1/2gi(θ)

C2(θ)
′W 1/2gi(θ)− λ

][
C1(θ)

′W−1/2gi(θ)

C2(θ)
′W 1/2gi(θ)− λ

]′
h

D(θ)

N,β̃
(x)dx

= U

∫ [
D1(θ)

′W−1/2gi(θ)

D2(θ)
′W 1/2gi(θ)− L

][
D1(θ)

′W−1/2gi(θ)

D2(θ)
′W 1/2gi(θ)− L

]′
h

D(θ)

N,β̃
(x)dxU ′

= UEβ̃

[
ψD(θ)(α)ψD(θ)(α)′

]
U ′

The first and last equalities are from the definitions of Eβ

[
ψC(θ)(α)ψC(θ)(α)′

]

and Eβ̃

[
ψD(θ)(α)ψD(θ)(α)′

]
. The second equality is from the same steps that

were used to define β̃(α) and the equality κ(β(α), α) = κ(β̃(α), α). The third

equality is from the definition of U . Since, U is a unitary matrix, |U | = 1. So∣∣Eβ

[
ψC(θ)(α)ψC(θ)(α)′

]∣∣ =
∣∣Eβ̃

[
ψD(θ)(α)ψD(θ)(α)′

]∣∣. Hence the value is invari-

ant to the decomposition selected.

The saddlepoint density is invariant to the decomposition selected.

¥
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8.7 THEOREM 7: DERIVATIVE OF THE DECOMPOSITION

The sufficient conditions for the existence of the saddlepoint density require the deriv-

ative of the estimation equations with respect to the parameters. This requires the

derivative with respect to θ of the spectral decomposition, Ci(θ) for i = 1, 2. Recall

D[•] denotes taking the derivative wrt θ of the m ×m matrix in the square bracket

that is post multiplied by an m× 1 vector, say δ, where δ does not depend on θ.

Proof:

For C2(θ)
′ the proof is demonstrated by evaluating D

[
P⊥

M(θ)

]
δ two different ways.

These are then set equal to determine D [C2(θ)] δ.

Consider

D[P⊥
M(θ)

]δ = D[C2(θ)C2(θ)
′]δ

= C2(θ)D[C2(θ)
′]δ + D[C2(θ)]C2(θ)

′δ. (2)

Now consider the same derivative written as

D[P⊥
M(θ)

]δ = D[I −M(θ)
(
M(θ)′M(θ)

)−1
M(θ)′]δ

= −D
[
M(θ)

] (
M(θ)′M(θ)

)−1
M(θ)′δ

−M(θ)D
[(

M(θ)′M(θ)
)−1

]
M(θ)′δ

−M(θ)
(
M(θ)′M(θ)

)−1
D

[
M(θ)′

]
δ

= −D
[
M(θ)

] (
M(θ)′M(θ)

)−1
M(θ)′δ

+M(θ)
(
M(θ)′M(θ)

)−1
M(θ)′D

[
M(θ)

] (
M(θ)′M(θ)

)−1
M(θ)′δ

+M(θ)
(
M(θ)′M(θ)

)−1
D

[
M(θ)′

]
M(θ)

(
M(θ)′M(θ)

)−1
M(θ)′δ

−M(θ)
(
M(θ)′M(θ)

)−1
D

[
M(θ)′

]
δ

= −P⊥
M

D
[
M(θ)

] (
M(θ)′M(θ)

)−1
M(θ)′δ

−M(θ)
(
M(θ)′M(θ)

)−1
D

[
M(θ)′

]
P⊥

M
δ

= −C2(θ)C2(θ)
′D

[
M(θ)

] (
M(θ)′M(θ)

)−1
M(θ)′δ

−M(θ)
(
M(θ)′M(θ)

)−1
D

[
M(θ)′

]
C2(θ)C2(θ)

′δ. (3)
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Comparing equations (2) and (3) gives the result

D[C2(θ)
′]δ = −C2(θ)

′D
[
M(θ)

] (
M(θ)′M(θ)

)−1
M(θ)′δ

= −C2(θ)
′D

[
M(θ)

] (
M(θ)′M(θ)

)−1
M(θ)′PMδ

= −C2(θ)
′D

[
M(θ)

] (
M(θ)′M(θ)

)−1
M(θ)′C1(θ)C1(θ)

′δ.

Now consider C1(θ)
′. The derivative of the projection matrix gives

D[PM(θ)]δ = D[C1(θ)C1(θ)
′]δ

= C1(θ)D[C1(θ)
′]δ + D[C1(θ)]C1(θ)

′δ. (4)

For all θ

PM(θ) + P⊥
M(θ)

= I, PM(θ)δ + P⊥
M(θ)

δ = δ

and hence

D
[
PM(θ)

]
δ + D

[
P⊥

M(θ)

]
δ = 0.

This implies

D
[
PM(θ)

]
δ = −D

[
P⊥

M(θ)

]
δ.

Substitute from equations (3)

D[PM(θ)]δ = C2(θ)C2(θ)
′D

[
M(θ)

] (
M(θ)′M(θ)

)−1
M(θ)′δ

+M(θ)
(
M(θ)′M(θ)

)−1
D

[
M(θ)′

]
C2(θ)C2(θ)

′δ

= C2(θ)C2(θ)
′D

[
M(θ)

] (
M(θ)′M(θ)

)−1
M(θ)′PMδ

+PMM(θ)
(
M(θ)′M(θ)

)−1
D

[
M(θ)′

]
C2(θ)C2(θ)

′δ

= C2(θ)C2(θ)
′D

[
M(θ)

] (
M(θ)′M(θ)

)−1
M(θ)′C1(θ)C1(θ)

′δ

+C1(θ)C1(θ)
′M(θ)

(
M(θ)′M(θ)

)−1
D

[
M(θ)′

]
C2(θ)C2(θ)

′δ. (5)

Comparing equations (4) and (5) gives the result

D[C1(θ)
′]δ = C1(θ)

′M(θ)
(
M(θ)′M(θ)

)−1
D

[
M(θ)′

]
C2(θ)C2(θ)

′δ

= C1(θ)
′M(θ)

(
M(θ)′M(θ)

)−1
D

[
M(θ)′

]
P⊥

M(θ)
δ.

¥

56



8.8 A DIFFERENTIAL GEOMETRY PERSPECTIVE

W
1/2
N GN(θ) is a k−dimensional manifold in Rm. The m−dimensional tangent space

for each value in the parameter space can be decomposed into the k−dimensional

space spanned by M(θ) and its (m − k)−dimensional orthogonal complement. The

orthogonal complement spans an orthonormal basis, denoted C2(θ), with coefficient

λ ∈ R(m−k).

Let the columns of C1(θ) be an orthonormal basis spanning the k−dimensional

tangent space spanned by the columns of M(θ). The m columns of
[

C1(θ) C2(θ)
]

are an orthonormal basis for each value of θ. Typically, there are a continuum of

orthonormal bases, each equally valid.

For each parameter value, θ◦, a linear approximation to the limiting function

E
[
Σ
−1/2
g g(xi, θ)

]
is defined by

E
[
Σ−1/2

g g(xi, θ)
] ≈ E

[
Σ−1/2

g g(xi, θ
◦)

]
+ M(θ◦) (θ − θ◦) .

A reparameterization of the tangent space can be defined by an orthonormal basis of

the space spanned by the columns of M(θ◦). Let C1(θ
◦) define such an orthonormal

basis. Then, the new parameterization can be written

t = C1(θ
◦)′M(θ◦)θ.

The inverse of the reparameterization is given by

θ =
(
M(θ◦)′M(θ◦)

)−1
M(θ◦)′C1(θ

◦)t.

This gives a local diffeomorphism between θ and t. E
[
Σ
−1/2
g g(xi, θ)

]
is an element

of Rm but θ and t are elements of Rk the remaining dimensions (m− k)−dimensions

are spanned by the orthonormal basis C2(θ
◦).

At each value of θ the estimation equations have a natural interpretation. The

parameter θ is selected to set the normalized moment conditions projected onto C1(θ)

to zero. The parameters λ are the normalized moment conditions projected onto

C2(θ).
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8.9 STEPS TO A SADDLEPOINT APPROXIMATION

The steps to calculate the saddlepoint approximation for the θ parameters and the

λ statistics are listed below. The terms’ dependence on N will be suppressed in this

section.

1. Calculate an optimal weighting matrix using the original GMM objective func-

tion.

(a) Calculate the first step GMM estimate using an identity as the weighting

matrix.

(b) Calculate an estimate of the moments’ covariance matrix at the first step

GMM estimate, Ŵ .

(c) Calculate a Cholesky decomposition of the estimate, Ŵ 1/2.

2. Over A, the parameter space for α = [ θ′ λ′ ]′, select a grid on which the

approximation will be calculated.

3. Loop through the grid over the θ parameters.

(a) Determine the spectral decomposition Ci(θ) for i = 1, 2.

i. Calculate M(θ).

ii. Calculate M(θ) = Ŵ 1/2M(θ).

iii. Calculate PM(θ) = M(θ)
(
M(θ)′ M(θ)

)−1
M(θ)′.

iv. Calculate C1(θ).

v. Calculate P⊥
M(θ)

= I − PM(θ).

vi. Calculate C2(θ).

(b) Loop through the grid over the λ parameters.

i. Calculate the estimation equation

ΨN(α) =

[
C1(θ)

′Ŵ 1/2GN(θ)

λ− C2(θ)
′Ŵ 1/2GN(θ)

]
.

ii. Solve the saddlepoint equation to determine β(α).

iii. Evaluate Ae(α), Be(α), AC(α) and BC(α).
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iv. Evaluate the saddlepoint approximation for this value in the parameter

space.

v. End the loop over λ.

(c) End the loop over θ.

4. Scale the estimated density so that it integrates to one.
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