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Abstract

This paper examines the effects of imperfect competition in unreg-
ulated electricity markets from a general equilibrium perspective, and
demonstrates that horizontal market power can explain both the large
peak-period price spikes observed recently in California and elsewhere,
and the marked reduction in additions to capacity that have also occurred
during the transition to competitive markets.

1 Introduction1

A primary economic rationale for restructuring of the electricity industry has
been the promise of lower prices and more efficient power generation through
market competition made possible by technological innovations that are allow-
ing power generation to be separated from distribution. A key assumption
behind this premise is that the technologies in question will result in compet-
itive markets, rather than markets in which small numbers of firms exercise
market power.
The recent events in the California electricity market — the large peak-load

price spikes in the wholesale electricity markets, downstream bankruptcies of the
regulated distribution utilities, rolling blackouts, and underinvestment in new
generating capacity — have tarnished the promise of deregulation and raised the
issue of imperfect competition in a particularly stark way. The analysis of these
events by Borenstein, Bushnell, and Wolak [3] provides empirical support for
the contention that the process of deregulation has not (at least as yet) been
successful in creating the kind of competitive environment that will deliver the

1I am grateful to Yves Balasko, Alex Farrell, David Kelly, and to an anonymous referee
and Associate Editor at the Journal of Economic Theory for many helpful comments and
suggestions.
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benefits that economists have been promising. While the Borenstein, Bush-
nell and Wolak study focuses on the California power markets, the problems
of price spikes and under-investment in new generating capacity have also ap-
peared in the Midwest and New England electricity markets as well, suggesting
that horizontal market power may be a significant side-effect of deregulation in
markets for electricity generally. Given the fact of imperfect competition in
newly deregulated markets for electricity, then, one of the goals of this paper
will be to develop a model of electricity pricing in imperfectly competitive mar-
kets and to explore the relationship between pricing during off-peak and peak
periods of demand. A second goal of the paper will be to examine the incen-
tives for expanding capacity that face producers in an imperfectly competitive
market setting.
This is certainly not the first paper to examine issues of market power in

newly deregulated markets for electricity (see, e.g. Gans, Price and Woods [4],
Green and Newbery [5], Hogan [6], or Rudkevich, Duckworth and Rosen [9]),
although it appears to be the first to examine the issue of horizontal market
power in markets for electricity using the general equilibrium framework of the
Shapley-Shubik market game. The development of the model closely follows
that of Balasko [1] for the competitive model, which also examines the market
for electricity from the general equilibrium perspective. A key feature of this
framework is that of treating electricity delivered at different times as differ-
ent commodities, thus permitting explicit consideration of demand differences
occurring at different times of day or different months of the year. This ap-
proach is also a natural one given the fact that electricity must be generated
as it is consumed. In addition, the general equilibrium approach allows one to
model demand interactions across the different demand periods with respect to
changes in electricity prices in each period, or with respect to changes in relative
prices of non-electricity goods. These effects cannot be captured in a partial
equilibrium setting, since demand in these models is specified exogenously. It is
also well-known that in a general equilibrium setting, profit maximization is not
the correct objective for an imperfectly competitive firm, since the production
and pricing decisions of these firms affect relative prices, and hence the choice
decisions of the firm’s owners. Of course, capturing these effects in a partial
equilibrium setting is impossible.2 Finally, we note that Balasko’s analysis of
the competitive electricity market demonstrates the possibility of multiple equi-
libria, which may be a possible explanation for observed deviations of prices
from marginal cost in real world electricity markets. We show here that im-
perfect competition in the same general equilibrium framework can also deliver
these results under very simple assumptions about preferences.

2The general equilibrium approach provides an interesting parallel with several of the more
sophisticated partial equilibrium approaches in the literature on imperfect competition in
markets for electricity, which examine models of supply function equilibria. These equilibria
have firms specifying quantities of power to provide in each of a sequence of periods, together
with prices at which they are willing to supply these quantities. As our development of the
general equilibrium model will show, the market game captures many of the features of the
supply-function models. (See, e.g. Green and Newbery [5] or Rudkevich, Duckworth and
Rosen [9] for details.)

2



The specific model we adopt is a version of the Shapley-Shubik market game.
In Section 2, we lay out the general model, based on the formulation of Peck,
Shell and Spear [8]. Since the complexity of the general model precludes the
kinds of equilibrium calculations that bear on the policy issues of pricing and
long-run investment in capacity, we turn in Section 3 to the study of an ex-
tended, but simplified, example of the model. The simplifications involve the
specification of preferences and consideration of symmetric, deterministic equi-
librium only. Finally, Section 4 discusses policy implications of the model.

2 The Electricity Market Game

The modeling strategy we adopt is based on the framework introduced by Bal-
asko [1] which embeds the market for electricity in a simple general equilibrium
setting in which all production and consumption activities take place at the same
location. As in Balasko’s paper, we assume that electricity can be produced
and distributed over T < ∞ periods, so that electricity is a dated commodity.
Furthermore, because of the unique physical properties of electric power, we as-
sume that electricity available in one period cannot be stored for consumption
in any later period.
In addition to electricity, we assume there is also a single consumption good

(which we will frequently refer to as the numeraire good, following Balasko’s
terminology) which can either be consumed directly, or used in the production
of electricity.

2.1 Electricity Production

Following Balasko, we assume that electricity producers have access to a con-
stant returns to scale electricity generation technology. The installed capacity
of a given power plant is denoted K. In the short-run, the installed capacity
is fixed and constitutes a constraint on the producer’s supply of power. In
the long-run, capacity is variable and will be determined endogenously in the
model. A producer’s installed capacity can be increased by one unit (measured
in kilowatts) by an investment of ρ units of the numeraire good. To supply one
unit of electrical energy (measured in kilowatt hours), a producer must ”burn”
γ units of the numeraire.

With these definitions, we can characterize a typical producer’s short- and
long-run production sets as the collection of technically feasible activity vectors.
An activity vector will be denoted by (q, ς), where q0 =

£
q1, ..., qT

¤
is the vector

of kilowatt hours of energy the producer supplies to the market, and λ is the
amount of numeraire good used to produce this power. Adopting the usual
general equilibrium convention on signing inputs and outputs, we assume that
ς ≤ 0. The producer’s short-run production set corresponding to installed
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Figure 1: Short- and long-run production sets

capacity K is then given by

Y (K) =

(
(q, ς) ∈ RT+1 | 0 ≤ q1, ..., qT ≤ K and − ς ≥ γ

TX
t=1

qt

)
.

The long-run production set is defined similarly, as

Y =

(
(q,K, ς) ∈ RT+2 | 0 ≤ q1, ..., qT ≤K and − ς ≥ ρK + γ

TX
t=1

qt

)
.

Figure 1 illustrates the two production sets for the case of a single power output.

2.2 The Market Game

The model is populated by two types of agents. Producer agents own power
plants and can produce electricity. We assume there are P agents of this type
and index them by j = 1, ..., P. Agents who cannot produce electricity will be
called standard agents. These agents are endowed only with the numeraire good.
We assume there are M agents of this type and index them by h = 1, ...,M.
Since the demand for electricity occurs (as in the competitive model) over T ≥ 1
periods, fully flexible pricing of demand in each period requires, in the market
game setting, that transactions for power in each period and for the consumption
good occur in T +1 ”trading posts”. The assumption of flexible pricing over all
periods of demand is obviously unrealistic if we interpret the model as being lit-
erally one in which producers sell directly to consumers with prices established
under long-term contracts that do not allow for peak-load pricing. Hence, if
we view the periods in the model as different times of day, it probably doesn’t
have much to say about the real world, although as smart houses and factories
evolve, this scenario becomes more realistic. On the other hand, if we view the
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time periods as months, which correspond more closely to actual billing periods,
the model becomes more germane, particularly in the kinds of deregulated en-
vironments that have evolved in the United States and Europe over the past 15
years. The flexible price assumption is also obviously at odds with the partially
regulated structure of the California electricity markets, although even here, if
we interpret consumers as utilities who know the preferences of their customers,
and who may have to ration power during the peak periods defined by these
preferences, the model does have some predictive power in terms of explaining
the kinds of price spikes observed in the California market during the summer
of 2000. It clearly has explanatory power for explaining these phenomena in
the Midwest and New England power markets during the same time frame.
The formulation of the model below follows the Peck, Shell, and Spear [8]

specification in which bids are made in some unit of account (inside money)
rather than in terms of the numeraire good. This formulation avoids some
well-known problems that can occur if the availability of the numeraire ends up
constraining agents’ access to credit in the market. We can still make direct
price comparisons of the results for the imperfectly competitive market with
those for competitive markets by renormalizing the prices appropriately.

2.2.1 Standard Agents

Standard agents are endowed only with the numeraire good. Agent h0s en-
dowment is denoted by ωh À 0 for h = 1, ...,M. These agent’s preferences
are given by a standard utility function uh : R

T+1
++ → R, h = 1, ...,M which

is assumed to be at least twice continuously differentiable, strictly increasing,
strictly quasi-concave, and satisfies the Inada conditions

lim
x→∂RT+1+

kDuhk = +∞

where x ∈ RT+1 denotes the agent’s consumption bundle. In the market
game, standard agents offer numeraire on the numeraire trading post in order
to make bids on the electricity and numeraire trading posts. We denote agent
h’s bid on electricity trading post t by bth, and let b

0
h =

£
b1h, ..., b

T
h

¤
. Agent

h’s bid on the numeraire trading post is denoted by ξh. In order to avoid the
indeterminacies identified by Peck, Shell and Spear [8] (and to focus attention
on the role of producers in the imperfectly competitive environment), we impose
a ”sell-all” assumption on the standard consumers, so that each of them offers
her full endowment on the trading post for the consumption good. Strategies
for agents h = 1, ...,M are then given by

Sh =
n
[(bh, ξh) , (0,ωh)] ∈ R2(T+1)+

o
.

In keeping with the assumption that standard agents have no power production
capabilities and offer all of their endowment of the consumption good on the
market, h’s quantity offer is just (0,ωh) .
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Agents face budget constraints on what they may bid on each of the trading
posts. For agents h = 1, ...,M, the budget constraint is

TX
t=1

bth + ξh ≤
B0

Ω
ωh (1)

where

B0 =
M+PX
k=1

ξk

and

Ω =
MX
h=1

ωh.

The constraint states that the amount that agent h can bid (in units of account)
on each trading post must be less than or equal to the total amount of money
available to the agent from the sale of her endowment. For standard agents,
this is given by a share of the total bid on the numeraire trading post, with the
share determined by the agent’s offer of endowment (ωh) relative to the total
offer of the numeraire (Ω). Note that the total bid on the numeraire trading
post derives both from the bids of standard agents and from those of electricity
producers.
Since the aggregate bid for the numeraire includes agent h’s bid, which also

appears on the left-hand side of the constraint, the budget constraint can be
simplified further by isolating all of agent h’s bids on the left, yielding

TX
t=1

bth +
Ω−h
Ω

ξh ≤
B0−h
Ω

ωh (2)

where

Ω−h = Ω− ωh

and

B0−h = B
0 − ξh.

2.2.2 Producers

Producers are endowed only with the technology to produce electricity, and
make offers of power on each of the electricity trading posts in the amount
qtj ≥ 0 for j = M + 1, ...,M + P and t = 1, ...T. Let q0j =

£
q1j , ..., q

T
j

¤
. These

agents make bids to purchase numeraire both for consumption and as inputs to
production, as well as for electricity. We let b0j =

£
b1j , ..., b

T
j

¤
denote agent j’s
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bids for electricity, and ξj the bid for numeraire. Producer j’s strategy set is
then given by

Sj =
n£¡

bj, ξj
¢
, (qj, 0)

¤ ∈ R2(T+1)+

o
for j =M + 1, ...,M + P.

Producers face budget constraints on what they may bid on the electricity
and numeraire trading posts. Agent j’s budget constraint takes the form

TX
t=1

btj + ξj ≤
TX
t=1

Bt

Qt
qtj (3)

for j =M + 1, ...,M + P , where

Bt =
M+PX
k=1

btk

and

Qt =
PX
j=1

qtj .

As was the case for standard consumers, producer j’s budget constraint will
have his bids for electricity on both the left-hand and right-hand sides of the
budget constraint, so that the constraint can be simplified by collecting the
agent’s own bids on the left-hand side. Doing this yields

TX
t=1

Qt−j
Qt

btj + ξj ≤
TX
t=1

Bt−j
Qt

qtj (4)

where

Qt−j = Q
t − qtj

and

Bt−j = B
t − btj .

2.2.3 Allocations

With the specifications of agents strategies given above, we now specify the
allocations that agent’s receive of electricity and the numeraire good. An agent’s
allocation of electricity in any period t will be denoted xti where i denotes either
a standard agent or a producer, and t = 1, ..., T. An agent’s allocation of the
numeraire good will be denoted x0i . With this notation, allocations are given
as follows.
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For h = 1, ...,M and t = 1, ..., T

xth =
bth
Bt
Qt (5)

and

x0h =
ξh
B0
Ω. (6)

For j =M + 1, ...,M + P allocations are given by

xtj =
btj
Bt
Qt (7)

for t = 1, ..., T , and

x0j =
ξj
B0
Ω− γι · qj (8)

where ι denotes a sum vector. Note that for producer agents, the sell-all re-
quirement implies that they cannot directly consume their own output of elec-
tricity, but rather, must purchase it on the open market. Similarly, they cannot
contract to sell electricity and then make good on the contract by purchasing
electricity in the spot market. As we noted above, the sell-all requirement is
imposed to restrict the kind of indeterminacy found by Peck, Shell and Spear,
although the effects of such indeterminacies (when they exist) is clearly an in-
teresting issue for future consideration. Similarly, relaxing the assumptions
that producers cannot import power from other markets also poses interesting
questions for future research.
The allocations rules are quite intuititive, stating that each agent’s allocation

of a commodity is determined by giving the agent the fraction of the total offer of
the good on the trading post, with the share determined by the agent’s bid on the
trading post as a fraction of the total bid. These rules can also be interpreted
as giving the agent her bid divided by the price of the good determined on
the trading post (which is given by the ratio of total bid to total quantity
offered). These specifications of the allocations are standard for h = 1, ...,M .
For producer agents, the allocation rules incorporate the constraints imposed
by production. Agent j’s allocation rule for electricity reflects that fact that
he need not offer the full short-run capacity on the market at any point in
time, although the amount he does offer must be less than capacity. The
specification of j’s allocation of the consumption good reflects the fact that agent
j produces electricity, and hence must allocate his purchases of the consumption
good between his own consumption and the input requirements for producing
the output vector qj . Finally, it is easy to verify that summing allocations over
all the agents uses exactly the quantities of all goods offered on the markets, so
that all markets clear.
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2.2.4 Best Responses

Both types of agent in the model choose their bid and offer strategies as best
responses to the bids and offers of other agents, that is, so as to maximize utility
subject to the budget constraints, taking other agents’ actions as given.
For agents h = 1, ...,M , their optimization problems are

max
(bh,ξh)

uh

µ
b1h
B1
Q1, ...,

bTh
BT

QT ,
ξh
B0
Ω

¶
subject to

TX
t=1

bth +
Ω−h
Ω

ξh ≤
B0−h
Ω

ωh.

For producer agents j =M + 1, ...,M + P the optimization problem is

max
(bj ,ξj,qj)

uj

Ã
b1j
B1
Q1, ...,

bTj
BT

QT ,
ξj
B0
Ω− γι · qj

!

subject to

TX
t=1

Qt−j
Qt

btj + ξj ≤
TX
t=1

Bt−j
Qt

qtj

and

qj ≤ Kι
First-order conditions for agents h = 1, ...,M are

uht
Bt−hQ

t

(Bt)2
− λ = 0 for t = 1, ..., T (9)

uh0
B0−hΩ

(B0)2
− λ
Ω−h
Ω

= 0. (10)

Those for agents j =M + 1, ...,M + P are

ujt
Bt−jQ

t

(Bt)2
− λ

Qt−j
Qt

= 0 for t = 1, ..., T (11)

uj0
B0−jΩ

(B0)2
− λ = 0 (12)
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ujt
btj
Bt
− γuj0 + λ

BtQt−j
(Qt)

2 − µt = 0 (13)

µ· £Kι− qj¤ = 0 (14)

where µ0 =
£
µ1, ..., µT

¤
. This last equation is just the complementary slack-

ness condition from the Kuhn-Tucker conditions stating that if some producer’s
capacity constraint in period t is not binding, then the multiplier µt associated
with the constraint must be zero.
Finally, we adopt the standard definition of the Nash equilibrium as any

collection of bids and offers for all agents each of which is a best response to the
bids and offers of other agents.
The model as specified here is significantly more complex than the standard

market game, because of the presence of production. Hence, at an abstract level,
issues of existence and uniqueness of equilibria arise. While we will not pursue
these issues in full generality here, we do note that establishing existence for the
case where the marginal cost of producing power is small should be reasonably
straightforward. The argument is as follows.
In the absence of capacity constraints, if γ = 0, then electricity producers

will find it optimal to produce as much as they possibly can, since the marginal
utility of producing an extra kilowatt hour is

ujt
btj
Bt
+ λ

BtQt−j
(Qt)2

which is always positive as long as the aggregate bid for time t electricity is
positive. Assuming, then, that Bt > 0, when the capacity constraints are
present, they will bind when γ = 0, so that the last set of first-order conditions
above becomes

ujt
btj
Bt
+ λ

Bt

K
= µt.

Note next that when all producers supply K to the market with γ = 0
the model reduces to a sell-all market game in which electricity producers are
endowed with K for each of the t periods. Hence, we now have an almost stan-
dard market game model in the sense that it corresponds to the standard market
game specification (with the sell-all assumption), except for the assumption that
some agents have zero endowment of some goods.
This assumption poses a potential problem since the argument Peck, Shell,

and Spear used to show that aggregate bids cannot be zero in equilibrium breaks
down here. This argument was based on using the fact that when all agents
have strictly positive endowments of all goods, the set of individually rational,
feasible allocations is compact and bounded from below. This fact can then be
used to show that any equilibrium must have all agents making strictly positive
bids. Without some condition which will guarantee that equilibrium bids are
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strictly positive, it is possible to have equilibria in which because no other agents
make positive bids, agent h’s budget constraint then forces her to post a zero
bid.
One possible way around this is to modify the individual rationality condi-

tion from one based on guaranteeing agents at least the same utility as they
receive at their endowment (which may be −∞ in our framework) to one that
guarantees that each agent is able to purchase at least her endowment. This
assumption is certainly consistent with the sell-all specification since without
it, agents could end up being forced to put all their endowment on the relevant
trading posts, and receive nothing in return. With this assumption, an aggre-
gate bid B0 = 0 for the consumption good is not consistent with equilibrium.
Given the Inada conditions on preferences, this will then imply that all standard
agents make positive bids for electricity, so that for all t, Bt > 0 in equilibrium.
Hence, we are guaranteed an interior equilibrium. Application of the kinds of
regularity techniques developed in Peck-Shell-Spear can then be used to show
that equilibrium will continue to exist if the marginal cost γ is greater than
zero, but sufficiently close to zero.
Since our fundamental interest in this paper is to compare competitive and

imperfectly competitive outcomes in the electricity market, we forego a more
detailed analysis of the issues of existence and uniqueness of equilibria in the
electricity market game in favor of an in-depth examination of a more tractable
example of the model.

3 An Extended Example: The Log-linear Econ-
omy

In order to get concrete results, we will simplify the model laid out above by fo-
cusing on a particular specification of preferences, and by confining our attention
to the symmetric Nash equilibria of the model. The fundamental simplification
we make is to assume that standard agents, who are endowed with the numeraire
good, derive no utility from consuming the numeraire. All these agents care
about is electricity consumption. Producer agents, on the other hand, own
the means for producing electricity, but care only about the consumption of the
numeraire good. This specification of the model greatly simplifies the market
interactions in the model, since producer agents are the only ones bidding on
the trading post for the numeraire good, while only standard agents bid on the
electricity markets.

For the example, all agents have log-linear preferences. Standard agents’
utility functions are given by

uh (x) =
TX
t=1

αt ln
¡
xt
¢
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while those of producer agents are given by

uj (x
o) = ln

¡
x0
¢
.

Note that we are assuming that all agents of the same type have the same utility
function. This assumption allows us to restrict attention to symmetric equilibria
in the model, where agents of the same type make the same bids and offers.
Finally, we also assume that all standard agents have the same endowment
ωh = ω and that all producer agents have access to the same technology and
face the same short-run capacity constraints.
With this specification of preferences, the marginal utilities that enter into

the first-order conditions for the optimal bids and offers are given by

uht =
αt
xt
=

αtB
t

btQt
for t = 1, ..., T

and

uj0 =
1

x0
=

1

ξ ΩB0 − γι · q .

3.1 Best Response Functions and Symmetric Equilibrium

We use the first-order conditions calculated in the previous section to determine
the best response functions of each of the agents for the example economy.

3.1.1 Standard Agents

For standard agents, the general first-order conditions are

uht
Bt−hQ

t

(Bt)2
− λ = 0 for t = 1, ..., T.

Substituting uht from the expression above then yields

αtB
t
−h

btBt
= λ

or

bt =
αtB

t
−h

λBt
.

Substituting into the budget constraint

TX
t=1

bth =
B0−h
Ω

ω
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yields

1

λ

TX
t=1

αtB
t
−h

Bt
=
B0−h
Ω

ω.

Solving for λ gives

λ̂ =
Ω

ωB0−h

TX
t=1

αtB
t
−h

Bt
.

Hence, we obtain the standard agent’s optimal bid as

b̂t =
αtB

t
−h

Bt
B0−hω
Ω

"
TX
t=1

αtB
t
−h

Bt

#−1
.

We now impose the requirement that bids be symmetric (offers for the standard
agents are already symmetric, given the assumption that agents have the same
endowment and the requirement that they offer it all on the market). With M
standard agents and P producer agents, we have

Bt = Mbt

Bt−h = (M − 1) bt
B0−h = Pξ

Ω = Mω

Making these substitutions on the right-hand side above, we get

b̂t =
(M − 1)
M

αt · Pξ
M

"
TX
t=1

αt (M − 1)
M

#−1
=

P

M

αtP
t αt

ξ.

3.1.2 Producers

For producer agents, the general first-order conditions for the choice of q and
x0 are

uj0
B0−jΩ

(B0)
2 − λ = 0

λ
BtQt−j
(Qt)2

− γuj0 − µt = 0

µ· £Kι− qj¤ = 0.
13



Substituting for uj0 in the first-expression, we have"
1

ξ Ω
B0 − γι · q

#
B0−jΩ

(B0)2
= λ

or ·
1

ξΩ−B0γι · q
¸
B0−jΩ
B0

= λ.

For the time being, we focus on the case where the capacity constraint is not
binding, so that µt = 0. In this case, substituting for uj0 in the second first-
order condition yields

λ
BtQt−j
(Qt)2

− γB0

ξΩ−B0γι · q = 0.

Substituting for λ from the first equation gives·
1

ξΩ−B0γι · q
¸
B0−jΩ
B0

· B
tQt−j
(Qt)2

=
γB0

ξΩ−B0γι · q
or

B0−jΩ
B0

· B
tQt−j
(Qt)2

= γB0

which implies that

BtQt−j
(Qt)2

=
γ
¡
B0
¢2

B0−jΩ
.

Now, imposing the assumption that we are at a symmetric equilibrium, this
expression becomes

Mb̂t (P − 1)
P 2qt

=
γP 2ξ

(P − 1)Mω
.

Hence,

q̂t =
(P − 1)2M2ω

γξP 4
b̂t.

Substituting for b̂t from the expression derived above, we get

q̂t =
(P − 1)2Mω

γP 3
αtP
t αt

.
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Finally, we may normalize the bid ξ = 1 since the budget constraint for a
producer agent

ξ =
TX
t=1

Bt−j
Qt

qt

when evaluated using the bids and offers obtained above yields an identity. This
also makes sense from an economic perspective, since bids are denominated in
units of account, and until we specify how much of this unit of account is
available, price (or bid) levels are undetermined.

3.2 Off-peak Electricity Prices

Having determined the optimal bids and offers for the example, we can now
compute the price of electricity (in units of account) in any off-peak period as

p̂t =
Bt

Qt
=

h
P αtP

t αt

i
(P−1)2Mω

γP2
αtP
t αt

=
γP 3

M (P − 1)2 ω .

In order to make comparisons between this result and the corresponding pricing
results for the competitive market (see, e.g. Balasko [1]), we need to convert
this price (which is in terms of units of account) into one which is in terms of
the numeraire good. To do this, we divide p̂t by the price of the numeraire
good, which is p̂0 = P/Mω. This yields

π̂t =
p̂t

p̂0
=

γP 3

M (P − 1)2 ω
Mω

P
= γ

·
P

P − 1
¸2
.

There are several things to note about this result. First, it represents a mark-up
of marginal cost that depends on the number of producers — but not consumers
— in the market. As the number of producers gets large, the mark-up factor
approaches one, consistent with the standard result that in perfectly compet-
itive environments, off-peak prices equal marginal costs. Secondly, from the
pricing expression, it is easy to calculate the mark-up over marginal cost due to
imperfect competition in the electricity market:

m̂t =
π̂t
γ
− 1

=

·
P

P − 1
¸2
− 1

=
2P − 1
(P − 1)2 .

For this example, if we take P = 7 (as in California), then m̂t = 13/36
.
= 0.36.

This number is about twice the annual mark-up estimated by Borenstein, Bush-
nell and Wolak [3] of 18.3% for the California market in 1998. As these authors

15



note, however, the number of producers operating in the California market
changes between peak and off-peak periods, with power imports from other
states accounting for the supply differences. While the mark-up percentage for
the California market is fairly large, the corresponding numbers for other regions
of the country are more reasonable. In the New England pool, for example,
there are 29 generators, implying a mark-up of only 7.2% in that market. Sim-
ilarly, in the Missouri-Kansas region, with 22 generators, the implied mark-up
is 9.6%. These numbers are significantly smaller than the 10% to 25% dead-
weight losses due to regulatory inefficiency3 estimated by Maloney, McCormick
and Sauer [7]. We also note that if there are 40 power providers in our model,
the predicted mark-up over marginal cost is about 5.2% which is certainly in
the ballpark for the Justice Department’s benchmark for determining whether
a market is competitive. We conclude from this, then, that while deregulated
markets will almost never be perfectly competitive, reasonable amounts of com-
petition will lead to efficiency improvements over the regulated environment, at
least for off-peak periods.

3.3 Peak-period Electricity Prices

The results obtained above are applicable to off-peak periods, that is, periods in
which offers are such that the capacity constraints are not binding. Hence, we
turn next to the case where some capacity constraint binds. For this section,
it will be convenient to let δt = αt/

P
αt. Then

q̂t =
(P − 1)2Mω

γP 3
δt.

Now, suppose q̂t ≥ K so that the capacity constraint is binding. Then the
first-order conditions for a producer agent become"

1

ξ ΩB0 − γι · q

#
B0−jΩ

(B0)2
= λ

and

λ
BtQt−j
(Qt)

2 −
γB0

ξΩ−B0γι · q − µ
t = 0.

Substituting for λ from the first equation in the second yields"
1

ξ ΩB0 − γι · q

#
B0−jΩ

(B0)2
BtQt−j
(Qt)2

− γB0

ξΩ−B0γι · q − µ
t = 0

3The inefficiencies identified by Maloney, McCormick and Sauer stem from the fact that
regulated off-peak prices are generally higher than the marginal cost of generating electricity,
because of guaranteed capital recovery allowances and related administrative overhead. See
Balasko [1] for a comparison of off-peak and peak-period pricing relative to capital recovery
in a competitive market.
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or

BtQt−j
(Qt)2

=
γ
¡
B0
¢2

B0−jΩ
+

B0

B0−jΩ
£
ξΩ−B0γι · q¤µt.

At the symmetric equilibrium, we have

M (P − 1)
P 2qt

b̂t =
ξγP 2

(P − 1)Mω
+

ξP

(P − 1)Mω
[Mω − Pγι · q]µt.

Substituting for b̂t and solving this for qt yields

qt =
(P − 1)2Mωδt

γP 3 + P 2 (Mω − Pγι · q)µt .

We note in passing that when the capacity constraint does not bind, so that
µt = 0, this reduces to the expression derived above for qt. Now, since qt = K
when the capacity constraint is binding, we may use the expression above to
solve for the multiplier µt as

µ̂t =
(P − 1)2Mωδt − γKP 3

KP 2 (Mω − Pγι · q) .

Note that to fully determine µ̂t we need to calculate ι · q. For this, let T =
{1, ..., T} , H = {t|qt =K} and L = T\H. Then

ι · q =
X
t∈L

qt +
X
t∈H

qt

=
(P − 1)2Mω

γP 3

X
t∈L

δt +
X
t∈H

K

=
(P − 1)2Mω

γP 3

X
t∈L

δt + (#H)K.

With qt = K, it follows that the peak-period price is

p̂tH =
Bt

Qt
=
Pδt

PK
=

δt

K
.

Renormalizing this to put it in terms of the numeraire, we get

π̂tH =
Mωδt

KP
.

Note that the period t budget share δt such that K is the optimal quantity for
an electricity producer to offer is given by

q̃t =
(P − 1)2Mω

γP 3
δt = K

⇒ δ̃t =
γKP 3

(P − 1)2Mω
.
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At this budget share, the peak-load price is

π̂tH =
Mωδ̃t
KP

=
γKP 3Mω

KP (P − 1)2Mω

= γ

µ
P

P − 1
¶2

in agreement with the off-peak price at this demand level.
One thing to note about the peak price is that for a fixed number of producer

agents P, the peak price increases linearly with the number of electricity con-
sumers, so that the larger the total demand, the larger the peak-load price. This
is in contrast with the fact that off-peak prices depend only on the marginal cost
of producing power and on the number of producer agents in the market. The
validity of this statement obviously depends on holding per capita endowments
of agents constant as we change the actual number of agents on the demand
side of the market, but this seems a reasonably way of asking how peak period
prices related to the total demand in the market.
The fact that the peak-period price of electricity in units of account depends

only on the capacity and the budget share going to power in period t is something
of an artifact of the strong assumptions on preferences in the example. It
seems likely that when both producers and standard agents are bidding for
the numeraire good, the number of standard consumers will likely enter into
the determination of this price. In any case, the example does deliver the
clear message that the relative price of electricity during peak periods can be
arbitrarily large — even orders of magnitude larger than the off-peak relative
price. Thus, the model is consistent with the appearance of large price spikes
during peak periods of the kind observed on the California wholesale power
markets recently. Finally, we also note that if we let the number of producers
and standard agents go to infinity at the same rate, we obtain the competitive
equilibrium relative price for the associated competitive log-linear economy

πtCH =
ωδt

K
(15)

which will be smaller than that of the imperfectly competitive model whenever
there are more electricity consumers than producers. Balasko [1] notes that in
a competitive environment, peak-period equilibrium prices necessarily exceed
marginal cost, and need not be unique. Hence, the observation that peak
prices exceed marginal cost, or that they differ in similar circumstances is not
incompatible with the market being competitive. It is an open question, how-
ever, whether reasonable specifications of competitive markets will deliver the
kinds of spikes in relative prices that emerge from the imperfectly competitive
model. Some answer to this question would appear to be important, consider-
ing the views in the media that the price spikes constitute prima facia evidence
of ”market manipulation”. If we take ”market manipulation” to mean illegal
collusive behavior by firms in the market, then the results presented here are
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a counter-example to the popular conception, because the imperfectly compet-
itive environment does deliver the observed peak-period price spikes, but they
occur as non-cooperative outcomes of the market game, which in no way involve
collusion to monopolize the market. They are simply a consequence of the
optimizing behavior of the small number of firms in the market, and hence, an
attribute of the market itself.

3.4 Long-run Analysis

According the publications of the California Public Utilities Commission, elec-
tricity demand in California is growing at rates that significantly exceed the
growth in generation capacity of electricity suppliers. Indeed, additions to
generation capacity during the 1998-99 period plunged by over 90% from their
1996-98 levels. While California’s problems have been the most visible, the
United States as a whole has suffered from a failure of new generating capacity
to keep up with the growth in demand for electricity. Hence, in this section, we
develop some results on industry incentives to expand capacity over the long-run
when markets are imperfectly competitive.
There are two ways to approach this question. The first involves comparing

the equilibrium quantity offers of producers with those that would be offered
in a competitive setting. While this comparison is straightforward to make in
the model, the interpretation of the result is sensitive to the way in which we
evaluate the limits as the number of producers and consumers gets large. To
see this, note that the competitive quantity offer of a producer is given by

q̂tcomp =
ω

γ
δt (16)

as long as we evaluate the limit by letting M and P approach infinity at the
same rate. The ratio of the competitive offer to the imperfectly competitive
offer is then given by

q̂tcomp
q̂t

=
P 3

M (P − 1)2 . (17)

If we examine this ratio along a sequence of M’s and P ’s at which M = P,
we will conclude that imperfectly competitive producers always offer less to the
market than would their competitive market counterparts. On the other hand,
for any fixed P , by takingM sufficiently large, we can make the ratio above less
than 1, in which case, if there is adequate capacity for producers to produce the
associated output, we are forced to conclude that the imperfectly competitive
firms produce more than their competitive counterparts. Because of this ambi-
guity in interpreting the relationship between the imperfectly competitive and
competitive quantity offers, we turn to an examination of the incentives pro-
ducers have at any given symmertic equilibrium to either expand or contract
generating capacity over the long-run in the model. We note that this provides
only a partial answer to the question of long-run incentives facing the industry,

19



since it does not address the question of whether an individual producer has in-
centives to deviatiate unilaterally (by expanding or contracting capacity) given
that other producers keep their capacity fixed. We will show, however, that
the industry as a whole not only has no incentive to expand capacity, they have
positive incentives to reduce capacity. Hence, in the long-run, the possibility
exists that firms in the industry may collude and withhold capacity from the
market. Alternatively, if we view the decision on whether to expand capacity
in a repeated game setting, one of the possible non-cooperative outcomes (as-
suming sufficient patience on the part of the firms) is for capacity to remain
stagnant relative to demand, or even to contract.
To characterize the incentives facing producers at the symmetric equilibrium,

we examine producer consumption, since (given the monotonicity of the utility
function) the incentive to expand or contract capacity turns on how this affects
consumption. For this analysis, we order the peak-demand budget shares δt

from lowest to highest and let

Hτ =
©
t ∈ H | δt ≤ δτ

ª
.

When the capacity constraint is binding at some levelK0, a producer agent’s
consumption is given by

x̂0H =
Mω

P

"
1−

µ
P − 1
P

¶2X
t∈L

δt
#
− γ (#H)K0.

It should be clear from this expression that if capacity expands only marginally
(so that no peak period is converted into an off-peak period), then this capacity
expansion only reduces consumption for producers. Hence, we assume that
capacity expansion actually covers at least one peak period of demand. So,
if the producer expands capacity to K1 = K0+ ∆K to cover the first τ peak-
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periods of demand, her consumption is

x̂0Hτ =
Mω

P

"
1−

µ
P − 1
P

¶2ÃX
t∈L

δt +
X
t∈Hτ

δt

!#
− γ (#H− τ)K1 − ρ∆K

=
Mω

P

"
1−

µ
P − 1
P

¶2X
t∈L

δt
#
− γ (#H) (K1)−

−Mω

P

µ
P − 1
P

¶2 X
t∈Hτ

δt + γτK1 − ρ∆K

=
Mω

P

"
1−

µ
P − 1
P

¶2X
t∈L

δt

#
− γ (#H)K0 −

−Mω

P

µ
P − 1
P

¶2 X
t∈Hτ

δt + γτK1 − [γ (#H) + ρ]∆K

= x̂0H −
Mω

P

µ
P − 1
P

¶2 X
t∈Hτ

δt + γτK1 − [γ (#H) + ρ]∆K

= x̂0H − γ
X
t∈Hτ

q̂t + γτK1 − [γ (#H) + ρ]∆K.

The gain to expanding capacity is then

x̂0Hτ − x̂0H = γτK1 − [γ (#H) + ρ]∆K − γ
X
t∈Hτ

q̂t.

This will be non-negative as long as

γτK1 ≥ [γ (#H) + ρ]∆K + γ
X
t∈Hτ

q̂t

or

γτK1 − γ
X
t∈Hτ

q̂t ≥ [γ (#H) + ρ]∆K.

Since the capacity K1 covers the demands in the sub-periods Hτ , it follows that
K1 = sup [q̂

t]t∈Hτ
. Let t∗ be the period in which the supremum is attained, so

that K1 = q̂
t∗ . The condition above can then be written as

q̂t
∗ − 1

τ

X
t∈Hτ

q̂t ≥ [γ (#H) + ρ]

γτ
∆K.

Now, let

q̄τ =
1

τ

X
t∈Hτ

q̂t.
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Then, since ∆K = q̂t
∗ −K0, we have

q̂t
∗ − q̄τ ≥ [γ (#H) + ρ]

γτ
q̂t
∗ − [γ (#H) + ρ]

γτ
K0

or ·
γ (#H) + ρ

γτ
− 1
¸
q̂t
∗
+ q̄τ ≤ [γ (#H) + ρ]

γτ
K0

or

K0 ≥
·
1− γτ

γ (#H) + ρ

¸
q̂t
∗
+

γτ

γ (#H) + ρ
q̄τ .

Since the right-hand-side is a convex combination of things strictly larger than
K0, it follows that no producer will wish to expand capacity. In fact, as the
following calculation shows, the industry will generally have incentives to reduce
capacity if it can.
As before, a producer’s consumption given some capacity K0 is

x̂0H =
Mω

P

"
1−

µ
P − 1
P

¶2X
t∈L

δt

#
− γ (#H)K0.

If the producer reduces capacity just sufficiently to make the highest off-peak
demand a peak demand, then

K1 = sup
t∈L

©
q̂t
ª
= q̂t

∗
.

The producer’s consumption after the capacity reduction will be

x̂0H+ =
Mω

P

"
1−

µ
P − 1
P

¶2 X
t∈L−

δt
#
− γ (#H− 1)K1.

Here, we use H+ to denote the expanded set of peak periods, and L− to denote
the reduced set of off-peak periods. Note also that we are assuming that there
is no after-market for capacity, so that if a producer reduces capacity by one
kilowatt-hour, she does not recover the investment cost ρ. Now, rewrite this
expression as

x̂0H+ =
Mω

P

"
1−

µ
P − 1
P

¶2 X
t∈L−

δt −
µ
P − 1
P

¶2 h
δt
∗ − δt

∗i#−
−γ (#H− 1) [K0 −∆K]

=
Mω

P

"
1−

µ
P − 1
P

¶2X
t∈L

δt +

µ
P − 1
P

¶2
δt
∗
#
−

−γ (#H)K0 + γK0 + γ (#H)∆K − γ∆K

= x̂0H +
Mω

P

µ
P − 1
P

¶2
δt
∗
+ γK0 + γ [#H− 1]

h
K0 − q̂t∗

i
= x̂0H + γq̂t

∗
+ γ [#H]K0 − γ [#H− 1] q̂t∗

= x̂0H + γ [#H]K0 − γ [#H− 2] q̂t∗ .
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It now follows that

x̂0H+ − x̂0H = γ [#H]K0 − γ [#H− 2] q̂t∗ .
Hence, the gain to consumption will be non-negative as long as

γ [#H]K0 − γ [#H− 2] q̂t∗ ≥ 0
or

K0 ≥ #H− 2
#H

q̂t
∗

which is always true. Hence, the industry always has an incentive in the long-
run to reduce capacity.
The analysis presented here obviously depends heavily on the assumption

that the technology exhibits constant returns to scale, and the results on long-
run incentives to expand capacity will change if such expansion exhibits any
kind of increasing returns effect. On the other hand, the constant returns to
scale assumption does appear to be consistent with the emergence of relative
low cost simple and combined cycle gas turbine generation technologies.
Given the constant returns assumption, one question we can ask is how

competition affects the incentive to expand capacity. While the current model
doesn’t give a complete answer to this question, it can provide some partial
answers. In particular, if we keep the level of demand fixed by fixing the
number of electricity consumers M , then as the number of producers increases,
the outputs qt of each producer decrease. If the number of producers is large
enough, then, the capacity constraints in the model will not bind, and each
producer’s consumption becomes independent of her investment in generating
capacity. Hence, to the extent that entry into the generation market provide
sufficient capacity to cover all demand periods, the incentive to reduce capacity
goes away. Of course, the question the current model cannot answer is where
new entrants to the generating sector come from and in response to what incen-
tives. Thus, one subject of future research will be to model the entry decision
by allowing standard agents to pay a certain cost in exchange for transforming
themselves from electricity consumers to electricity producers.

3.5 Robustness Issues

An obvious question about the specification of the model outlined here is whether
the results it yields are robust to perturbations in the specification of the model.
The simplifying assumption that producer agents don’t themselves directly con-
sume electricity is useful in that it provides an explicit separation of the supply
and resulting pricing decisions of producers from their interests as consumers.
This does not seem unreasonable, since, in a real world setting, the supply and
pricing decisions would be corporate, and while corporate employees might not
be happy (as consumers) with the resulting outcomes, this would not be likely
to have much effect on the corporate entity. On the other hand, the fact that
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only producers purchase the numeraire good makes it impossible to examine
the limiting case of a monopoly producer, since the model has a singularity at
P = 1. The additive separability in the specification of preferences seems to be
fairly standard in the empirical literature which tries to estimate time-of-day
electricity demands from micro data, and seems reasonably innocuous as an as-
sumption about short-run demand. It is also straightforward to show that the
specific log-linear specification can be relaxed to allow for additively-separable
CRR preferences of the form

uh =
TX
t=1

αt
[xth]

1−η

1− η

without changing the basic results derived above, except for a re-weighting of
the budget shares δt. Similarly, because producers only consume the numeraire
good, their optimal bids and offers are independent of the actual specification of
the utility function (since monotonic transformations yield the same demands).
Hence, in the context of the extended example, we can view producers are caring
only about profit maximization, although this will not be robust in more general
environments. There are obvious directions in which these specifications can be
relaxed, for example by eliminating the homotheticity assumption and allowing
the exponents in the CRR specification above to differ over time periods, or by
permitting producers to consume electricity, but each of these generalizations
comes at the price of reduced tractability of the model.

4 Conclusions and Policy Implications

The general equilibrium analysis of horizontal market power in the market for
electricity via the market game model has a number of important implications
for the on-going process of deregulating electricity markets.
The model examined here suggests that limited competition among genera-

tors during off-peak periods will lead to prices which exceed marginal cost, in
line with a number of other studies of horizontal market power in electricity
markets based on partial equilibrium frameworks. The extent of the mark-up
depends on the number of generating firms in the market; when there are 20
producers in the model, the mark-up is around 11%. With 50 firms, this drops
to below 5%.
A more interesting feature of the model is its ability to match the peak-

period price-spike phenomenon observed in a number of wholesale electricity
markets. These spikes can be quite large if the number of peak-period electricity
consumers is large relative to the number of producers. As in the case of off-
peak prices, having more producers reduces the price spike effect, although
some spiking of prices will always be present (even in perfectly competitive
environments) during peak periods since these prices are the only mechanism
by which demand is rationed during these periods.
Finally, the model also demonstrates a clear incentive for producers to re-

duce capacity when possible, which may in part explain the extreme drop in
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additions to new capacity in California and elsewhere in the period following
implementation of deregulation.
From a policy perspective, horizontal market power in markets for electric-

ity poses a challenge to the process of deregulation, and raises the question of
whether deregulation is proceeding too quickly or even whether it should be
rolled back. If the deregulation process results in a shake-out in which gen-
erating capacity ends up concentrated in the hands of a few large firms, then
recent events in California may prove to be the norm rather than the exception.
This scenario could occur, for example, if policymakers end up encouraging re-
liance on large fixed cost generating technologies, such as coal-fired or nuclear
power plants. A similar result could obtain if the natural gas industry becomes
significantly concentrated and ends up increasing the price of natural gas for
combined cycle gas turbine generators, making the older but larger plants more
economical. An obvious question here is whether increased diligence by an-
titrust authorities can reduce these problems. While attention to such obvious
abuses as taking generators offline for unneeded maintenance is warranted, the
fact remains that most of the undesired effects in the model (such as peak-
period price spikes or the incentive to reduce capacity) are simply the result
of agent’s looking after their own interests in an imperfectly competitive, but
non-cooperative environment.
Perhaps the clearest policy implication to come out of the model is the

need to encourage competition as the electricity industry restructures itself.
Competition has beneficial effects both on pricing and on the long-run deci-
sion to invest in new capacity. Fostering competition can be accomplished
during restructuring by requiring not only divestiture of generation assets by
utilities during the phase when generation is separated from distribution, but
also by maximizing the number of new generating firms created in the pro-
cess, subject, of course, to the technical constraints imposed by the num-
ber and nature of existing generating plants. While it isn’t clear whether a
broader divestiture could have been organized in the California market, there
was at least one instance in which generating assets from different utilities
(Pacific Gas and Electric, and Southern California Edison) were sold to the
same company (NRG Energy; see the California Energy Commission’s web site
http://www.energy.ca.gov/electricity/divestiture.html). There have also been
indications in the business press that continued regulatory impediments to new
power plant construction (based on community siting and environmental con-
cerns) significantly raised the cost of entry into the California generation in-
dustry. Even so, the fact that other regions of the country which impose less
regulatory burden on new power plant construction have experienced similar
reductions in new investment in generating capacity suggests that policymakers
need to pay increased attention to fostering competition as part of the deregu-
latory process.4

4The issue of stranded costs obviously also has important implications for competitiveness
in the electricity market, since the deadweight cost increases associated with compensating
utilities for prior investments which are no longer economically viable also adds to the cost of
entry for new (and more efficient) generators.

25



References

[1] Balasko, Y., ”Theoretical Perspectives on Three Issues of Electricity Eco-
nomics”, GSIA Working Paper 2001-E18, Carnegie Mellon University,
Pittsburgh, PA 15218 (June 2001)

[2] Baumol, W., ”Proper Investment Incentives, Stranded Cost Recov-
ery and Difference Among Industries”, The Inaugural Telecommuni-
cation Policy and Law Symposium, published by The Law Review
of Michigan State University Detroit College of Law (available at
http://www.dcl.edu/lawrev/2000-1/)(Spring 2000)

[3] Borenstein, S., J. Bushnell, and F. Wolak, ”Diagnosing Market Power in
California’s Restructured Wholesale Electricity Market”, NBER Working
Paper 7868 (September 2000)

[4] Gans, J.S., D. Price, and K. Woods, ”Contracts and Electricity Poool
Prices”, Australizan Journal of Management, 23, 1, 83-96 (June 1998)

[5] Green, R.J., and D.M. Newbery, ”Competition in the British Electricity
Spot Market”, Journal of Political Economy, 100,5 929-953 (1992)

[6] Hogan, W.W., ”A Market Power Model with Strategic Interaction in Elec-
tricity Networks”, Energy Journal, 18, 4, 107-41 (1997)

[7] Maloney, M. T., R. E. McCormick, and R. D. Sauer, ”Customer Choice,
Consumer Value: An Analysis of Retail Competition in America’s Electric
Industry”, preprint prepared for Citizens for A Sound Economy Founda-
tion, Washington, D.C. (1996)

[8] Peck, J., K. Shell, and S. Spear, ”The Market Game: Existence and Struc-
ture of Equilibrium”, Journal of Mathematical Economics, 21, 271-299
(1992)

[9] Rudkevich, A., M. Duckworth, and R. Rosen, ”Modeling Electricity Pricing
in a Deregulated Generation Industry: The Potential for Oligopoly Pricing
in a Poolco”, Energy Journal, 19(3), 19-48 (1998)

[10] Smith, V. and S. Rassenti, ”Turning on the Lights: Deregulating the Mar-
ket for Electricity”, NCPA Policy Report No. 228, (October 1999)

26


