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Abstract

We identify a common default risk premia (DRP ) factor in the risk-adjusted

excess returns on pure default-contingent claims. Asset pricing tests using

almost 50 corporate bond portfolios sorted on rating, maturity or industry

suggest that the DRP factor is priced in the corporate bond market. For

index put option portfolios sorted on maturity and moneyness, both average

returns and DRP beta estimates become more negative with decreasing time

to maturity. There is little to no evidence of the DRP factor being priced

in equity markets. Most of the variation in DRP is explained by the portion

DRP JtD due to common jump-to-default risk premia. A theoretical framework

where DRP JtD is part of the pricing kernel supports our empirical findings.
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1 Introduction

Recent empirical studies in financial economics suggest that the price for bearing

exposure to U.S. corporate default risk, after controlling for expected default losses,

is substantial and that it varies dramatically over short horizons of time. Driessen

(2005) finds that instantaneous risk-neutral default probabilities are 1.8 times higher

than their rating-based counterparts. He assumes that a firm’s default probability is

the average historical default frequency of firms with the same credit rating. Berndt,

Douglas, Duffie, Ferguson, and Schranz (2005) and Saita (2006) use firm-specific

estimates of conditional physical default probabilities instead and estimate the median

ratio of risk-neutral to physical default intensities to be 2.0 and 3.7, respectively.

Berndt, Douglas, Duffie, Ferguson, and Schranz (2005) show that for a given default

probability, credit spreads exhibit substantial time variation. They peaked in the

third quarter of 2002 and then declined steadily and dramatically through late 2003

to roughly 50% of the value at their peak.1

If credit markets are close to being in equilibrium most of the time, any preference-

based asset pricing theory will predict that investors demand risk premia on traded

assets to compensate for bearing systematic risk. While investor preferences might

change over time, it is quite unlikely that they would change dramatically enough

over short horizons to induce a time variation in observed default risk premia of the

magnitude reported in the aforementioned studies. Alternatively, investors might

demand higher compensation for being more exposed to certain systematic factors

which suddenly become more important relative to other systematic factors.

This is the first paper to extract a common risk factor from credit markets and

investigate its contribution towards explaining average returns observed in corporate

bond, equity and index option markets. Our data consist of weekly at-market credit

default swap (CDS) rates provided by Markit for 112 firms from 9 different industries,

ranging from January 2002 to October 2006. We use these observation to estimate,

for each firm and week, the price of a pure default-contingent claim that pays one

unit of account if default does not occur before the maturity of the contract (in

our applications, one year), and zero otherwise. We form a credit-market portfolio

consisting of these pure credit-contingent claims, equally-weighted across all firms

in our sample. The sample correlations between the weekly excess returns on this

credit-market portfolio and the three stock-market factors MKT , SMB and HML

in Fama and French (1993) are 0.22, 0.21 and 0.16, respectively. To investigate the

1Berndt and Obreja (2007) discover similar findings for European credit markets.
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marginal contribution of a new credit-market risk factor, we identify that portion of

the weekly excess returns on the credit-market portfolio that cannot be explained by

linear combinations of systematic risk factors. We refer to it as the default risk premia

factor, or simply the DRP factor. Besides the Fama-French stock-market factors we

also control for the momentum factor introduced by Jagadeesh and Titman (1993) and

the TERM factor in Fama and French (1993) which proxies the common risk in bond

returns that arises from unexpected changes in interest rates. The systematic risk

factors explain 25% of weekly realized excess returns on the credit-market portfolio.

At the firm level, between 4% and 59% of the excess returns on pure default-contingent

claims can be associated with known systematic risk factors. For the median firm in

our sample, 20.4% of the variation in the residuals can be attributed to the DRP

factor.

Results using Bloomberg-NASD corporate bond indices generated from actual

transaction prices of actively traded issues suggest that the DRP factor is priced

in the corporate bond market. A cross-sectional analysis of Merrill Lynch corporate

bond portfolios, sorted on industry, maturity or rating, supports these findings. We

also construct 16 portfolios of delta-hedged European put options written on the S&P

500 index, sorted on moneyness and maturity. We find that both average returns and

the beta estimates for our default risk premia factor become more negative as time to

maturity decreases. Although less pronounced, a similar overall trend can be observed

along the moneyness dimension for portfolios of first- and of second-to-expire index

put options. The DRP factor contributes little towards explaining the time variation

in equity portfolio returns.

To further test the hypothesis that DRP is a priced factor, we implement the two-

pass procedure in Fama and MacBeth (1973) using a total of 214 test assets from all

three markets. In particular, we include the IG and HY Bloomberg-NASD corporate

bond portfolios, a total of 47 Merrill Lynch corporate bond portfolios, the 100 Fama

and French equity portfolios sorted on size and book-to-market, the 49 Fama and

French industry equity portfolios, and the 16 index put options portfolios sorted on

moneyness and time to maturity. Our results show that the weekly risk premia on the

DRP factor is about 3 basis points, and that this estimate is statistically significant.

In order to account for the possibility that some of the co-movement in risk-

adjusted excess returns on pure default-contingent claims is due to reasons other

than the common variation in covariances, we also test for firm characteristics such

as the firm’s default probability and recovery rate, its leverage ratio and implied

volatility. We find that the common variation in default risk premia is not likely to
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be due to these firm characteristics.

To offer additional insights into our empirical findings we use estimates of condi-

tional default probabilities provided by Moody’s KMV to decompose the DRP factor

into a portion associated with common changes in expected default losses (DRP L),

a portion due to common variation in jump-to-default risk premia (DRP JtD), and

a portion due to common variation in the market price of default risk (DRP MPR).

For our model specification, the first two components account for most of the time

variation in the DRP factor, with R2’s ranging between 87% for the first quarter

of 2003 and almost 100% during the first quarter of 2002 and the second quarter of

2005. For corporate bonds, the loadings on DRP JtD are statistically significant and

increase with increasing average excess returns, indicating that market-wide jump to

default risk is priced in the corporate bond market. For the equity portfolios, none

of the factors by themselves appear to be significant in explaining the time variation

of returns. For the index put options, the DRP JtD factor is estimated consistently

to have the correct (negative) sign. The beta estimates line up with average excess

returns within each moneyness bin. They are estimated to be lower (more negative)

for out-of-the-money options than for at-the-money contracts. For short-term index

put options, both average returns and the loadings on DRP L become more negative

as options move out of the money. With regard to the cross-sectional results, weekly

risk premia on DRP L, DRP JtD and DRP MPR are estimates to be 1, 2 and 1 basis

points, respectively. The latter two are significant at the 5%-level.

Next, we develop a theoretical framework in which DRP JtD arises naturally in the

pricing kernel and show that it captures the jump-to-default risk premia associated

with market-wide credit events. Within this framework, unlike risk premia on corpo-

rate bonds and index put options, equity risk premia are only marginally affected by

DRP JtD. This result is based on the observation that DRP JtD has a much stronger

impact on the returns of assets with a non-degenerate payoff structure in the default

states.

Finally, we address the practical issue of building trading strategies based on the

DRP factor. The pure default-contingent claims used to construct the DRP factor

are not actually traded. To give the reader a sense of how a trading strategy based

on the same motivation as for our default risk premia factor could be implemented,

we compute an alternative CDS-based DRP factor, named CDRP , by replacing the

holding returns on pure default-contingent claims by negative changes in logarithmic

default swap rates. Although with different magnitudes, similar conclusions can be

drawn from asset pricing tests that use CDRP and its components.
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Related Literature

Fama and French (1993), Collin-Dufresne, Goldstein, and Martin (2001) and Elton,

Gruber, Agrawal, and Mann (2001), among others, have shown that systematic stock-

market factors are insufficient to explain returns on corporate bonds. The first paper

introduces a corporate bond market factor DEF to account for shifts in economic

conditions that change the price of default risk. It is defined as the difference between

the return on a portfolio of long-term corporate bonds and the long-term government

bond return. Because returns on corporate bonds are contaminated by tax and liq-

uidity effects (see, for example, Elton, Gruber, Agrawal, and Mann (2001), Delianedis

and Geske (2001) and Longstaff, Mithal, and Neis (2005)), DEF is not a clean mea-

sure of the reward for exposure to default risk. Our DRP factor, on the other hand, is

constructed exclusively using pricing information from credit markets and should be a

better measure of the return on default risk. We disentangle DEF into default-related

components (DRP L, DRP JtD and DRP MPR) and a non-default-related component

to gain additional insights into the pricing of different classes of assets.

A number of papers have studied whether default risk is priced in equity markets.

They differ in the choice of variables used to predict bankruptcy and the methodology

employed to estimate the likelihood of default. The Altman Z-score (Altman (1968))

and Ohlson O-score (Ohlson (1980)) are based on accounting variables and have

emerged as popular measures of financial distress. They are used, for example, by

Dichev (1998), Griffin and Lemmon (2002) and Ferguson and Shockley (2003) to

explore the risk and average return of distressed firms. Vassalou and Xing (2004)

and Da and Gao (2005) rely on the distance to default, an asset-volatility-adjusted

leverage measure of the firm. More recently, Campbell, Hilscher, and Szilagyi (2007)

construct their own empirical measure of financial distress by estimating a dynamic

panel model using a logit specification. Except for Vassalou and Xing (2004), these

studies generally find that the equity market has not properly priced distress risk.

Our approach differs from this body of literature in that instead of sorting portfolios

on estimates for actual default risk, we construct a risk factor that is based on returns

observed in credit markets. Focusing only on expected default losses only ignores the

effect of jump-to-default risk on asset returns, which we identify to be important

when pricing corporate bonds and index put options.

To date only a few papers have investigated whether jump-to-default risk is priced,

and the existing studies focus on solving the credit spread level (and volatility) puzzle.

Collin-Dufresne, Goldstein, and Helwege (2003) propose a reduced-form model where
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jumps to default are priced because they generate a market-wide jump in credit

spreads. While this framework is consistent with a counterparty risk interpretation

as in Jarrow and Yu (2001), it is more naturally interpreted as an updating of beliefs

due to unexpected events. Cremers, Driessen, and Maenhout (2006) use a structural

jump-diffusion firm model with systematic and firm-specific jumps to generate option-

implied jump-risk premia. By means of a calibration exercise, the authors show that

incorporating option-implied jump risk premia brings predicted credit spread levels

much closer to observed levels. Amato and Remolona (2005) argue that idiosyncratic

jump-to-default risk is highly priced in the corporate bond market because there are

not enough liquid names to allow investors to significantly diversify that risk in the

sense of Jarrow, Lando, and Yu (2005). They point to the fact that credit indices

have only 125 names and argue that there is so much skewness in bond returns that

idiosyncratic risk may be difficult to diversify with exposure to less than 500 corporate

issuers. In contrast, Saita (2006) documents that there is ample compensation in

corporate debt portfolios for skewness and kurtosis, in part because there are indeed

significant opportunities for diversification even in moderately sized portfolios, and

in part because of the large compensation for the individual issuer risk.

The remainder of this paper is structured as follows. Section 2 describes our

data, comprised of credit default swap rates, Moody’s KMV EDF estimates for ac-

tual default probabilities, OptionMetrics option pricing information and other ac-

counting and market price data. Section 3 introduces our measure of model-implied

holding-period returns on pure default-contingent claims, and Section 4 presents a

methodology for extracting a latent common factor from the associated firm-specific

risk-adjusted excess returns. Section 5 describes our results from the asset pricing

tests, and Section 6 takes a closer look at the DRP components. Section 7 proposes

a the theoretical framework of the relevant pricing kernel that is consistent with our

empirical findings, and Section 8 summarizes our findings and discusses an alternative

DRP factor that can be traded.

2 Data

This section describes our data sources for (i) default swap rates, (ii) conditional

default probabilities, (iii) returns on equity, option and corporate bond portfolios,

and (iv) firm characteristics.
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2.1 Credit Default Swaps

Credit default swaps (CDS) are over-the-counter credit derivatives that provide bond

insurance. Fueled by participation from commercial banks, insurance companies,

and hedge funds, CDS markets have grown exponentially over the past ten years,

reaching an estimated outstanding notional value of more than $34.4 trillion dollars in

2006.2 The buyer of protection in a CDS contract pays a quarterly insurance premium

until the expiration of the contract or until default by the reference entity, whichever

occurs first. In return, the seller of protection pays to the buyer of protection the

difference between the face value and the market value of the referenced debt. This

compensation can be through physical delivery or cash delivery, with the former being

more common.

For our data, default events are triggered by bankruptcy, failure by the obligor

to make payments on its debt, or a debt restructuring that is materially adverse

to the interests of the creditors. For the latter, the “modified” ISDA contractual

standards apply. In the case of physical settlement, modified debt restructuring

restricts deliverable obligations to have a maturity within 30 months of the CDS

contract’s maturity. This significantly decreases heterogeneity at a debt restructuring

event in the maturity, and hence the market value, of the various deliverables.

CDS rates are quoted as annualized percentages of the notional value of the

debt covered. Using an actual 360-day convention, they are equal to four times the

quarterly premia. Default swap data are provided by Markit and consist of weekly

(Wednesday) 1-year and 5-year at-market CDS rates for senior-unsecured U.S. dollar-

denominated debt with modified restructuring. Here, “at-market” denotes the pre-

mium rate at which the market value of the CDS contract at initiation is equal to zero.

Our observations are for 112 firms from 9 different industries, including 9 firms from

the Basic Materials sector, 15 Consumer Goods firms, 9 Consumer Services firms, 14

Health Care firms, 17 Industrials firms, 17 Oil and Gas firms, 8 Technology firms, 9

Telecommunications firms, and 14 Utilities. The sample period ranges from January

2, 2001 to October 11, 2006, with a total of 250 weeks. Table 1 in Appendix A

lists the firms covered in our sample, sorted by industry. For the median firm, the

average 1-year and 5-year CDS rates are 41 and 68 basis points, respectively. It has

250 weekly 5-year CDS observations, and 247 1-year CDS observations. Figure 1

shows the distribution of median Moody’s senior rating during the sample period. It

2According to the ISDA (International Swaps and Derivatives Association) market survey avail-
able at http://www.isda.org/statistics/historical.html.
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Figure 1: Distribution of firms by median Moody’s senior rating during the sample
period. Source: Moody’s DRS.

indicates that the range of credit scores of the included firms is concentrated around

medium credit quality, with the majority of the firms having a Baa rating. Credit

ratings at the firm level were obtained from Moody’s Default Risk Service (DRS)

data base.

Figure 7 in Appendix A displays the time series of median recovery rates by

industry as reported by Markit, for each week in our sample period. We find that there

is little variation over time in the magnitude of the recovery rates, with median sector

recovery rates ranging between 36% and 45%. At the firm level, a similar observation

regarding the limited amount of time variation for recovery rates holds true. Our

understanding from conversations with Markit is that the reported recoveries are

indicative of the values used by their contributors when pricing CDS contracts. We

therefore compute firm-specific estimates for the risk-neutral mean fractional loss

given default as one minus the average of the recovery rates reported by Markit over

the sample period.

The CDS data used in this study are composites. Markit re-distribution rules

stipulate that there are at least three contributors to each composite quote.3 The

median firm in our sample has 10 contributors for the 5-year CDS rate quotes. Fig-

ure 2 plots the distribution of firms by median number of quote contributors. In our

sample, the median firm has a sample median of 10 contributors for the 5-year CDS

rate quotes.

3See http://www.markit.com for further details on the CDS pricing data.
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Figure 2: Distribution of firms by median number of quote contributors during the
sample period. Source: Markit.

2.2 EDF Data

We use one-year EDF
TM

(Expected Default Frequency) data provided by Moody’s

KMV as our estimates of conditional actual default probabilities. The concept of the

EDF measure is based on the structural credit risk framework of Black and Scholes

(1973) and Merton (1974). In these models, equity is viewed as a call option on the

firm’s asset value, with the strike price being equal to the liabilities of the firm. The

“distance-to-default”, defined as the number of standard deviations of asset growth

by which its assets exceed a measure of book liabilities, is a sufficient statistic of the

likelihood of default. In the EDF release underlying the default probabilities used in

this study, the liability measure is equal to the firm’s short-term book liabilities plus

one half of its long-term book liabilities. EDF values are reported with a floor of 2

basis points and a cap of 20%.4

The Moody’s KMV EDF measure is extensively used in the financial services in-

dustry as most of the world’s 100 largest financial institutions are subscribers. Crosbie

and Bohn (2001) and Kealhofer (2003) provide more details on the model implemen-

tation and the fitting procedures for distance to default and EDF. Moody’s KMV

uses a non-parametric mapping from the distance to default to EDF that is based on

a rich history of actual defaults, where the same definition of a default event is used

4The forthcoming EDF 8.0 release expands the range of meaningful EDF values by lowering the
floor to 1 bp and by raising the cap to 35%. For more details, refer to http://www.moodyskmv.com.
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as for our default swap data.5 The EDF measure is therefore less sensitive to model

mis-specification. The accuracy of the EDF measure as a predictor of default, and

its superior performance compared to rating-based default prediction, is documented

in Bohn, Arora, and Korbalev (2005). Duffie, Saita, and Wang (2007) propose a

default prediction model in which they construct their own measure of distance to

default and include other covariates such as the trailing 1-year stock return of the

firm, the current 3-month Treasury rate, and the trailing 1-year return of the S&P

500. The authors find that the variation in their distance-to-default measure has a

substantially greater effect on future default hazard rates when compared to a simi-

larly significant change in any of the other covariates, suggesting that EDF is a useful

proxy for the physical probability of default.

We obtain weekly (Wednesday) one-year EDF rates from Moody’s KMV, for the

same set of firms and for the same time period as described in Section 2.1. Table 1

in Appendix A provides summary statistics for the EDF data at the firm level. The

median firm in our sample has 247 weekly 1-year EDF observations, and an average

1-year EDF rate of 24 basis points. Figure 3 shows the time series of the median

1-year EDF rates across all firms in our sample, together with the median 1-year and

5-year CDS rates. Both EDF and CDS rates vary considerably over time. EDF rates

peaked during the third quarter of 2002 and then declined steadily until the end of

our sample period in October 2006. The temporal pattern of CDS rates looks similar,

with an additional spike in default swap premia shortly after the Ford and General

Motors downgrade in May 2005.

2.3 Returns on Equity, Option and Corporate Bond Portfo-

lios

We obtain daily data on Fama-French portfolios and the stock-market factors from

Kenneth French’s website. Daily returns are compounded from Wednesday to Wednes-

day to obtain weekly returns.

We also collect return information for the investment-grade (IG) and high-yield

(HY) Bloomberg-NASD corporate bond indices.6 Rebalanced on a monthly basis,

5This is different from the Merton model, where the likelihood of default is the inverse of the
normal cumulative distribution function of distance to default.

6The name of these indices has recently been changed to FINRA-Bloomberg Corporate Bond
Indicies. FINRA stands for Financial Industry Regulatory Authority, and was created in July
2007 through the consolidation of NASD and the member regulation, enforcement and arbitration
functions of the New York Stock Exchange.
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Figure 3: Time series of median 5-year and 1-year CDS rates, and of median 1-year EDF
rates across the 112 firms in Table 1. Sources: Markit and Moody’s KMV.

these indices are comprised of the most frequently traded fixed-coupon bonds repre-

sented by NASD’s TRACE (Trade Reporting and Compliance Engine), which collects

and publicly disseminates transaction data on all over-the-counter activity in the sec-

ondary corporate bond market.7 Bloomberg-NASD indices are the first and to our

knowledge the only corporate bond indices generated solely from the actual transac-

tion prices of actively traded bonds, and do not rely on any quotes or estimated prices.

We compute holding-period returns using weekly (Wednesday) index prices that we

download from the NASD website at www.nasdbondinfo.com. The Bloomberg-NASD

indices are calculated as of 5:15 p.m every trading day. On October 11, 2006, there

were 720 bond issues of 161 firms in the NBBI index, and 259 issues of 127 firms

in the NBBH index. Using the SIC industry classifications, the majority of firms in

the IG index belong to the manufacturing industry (41%), to Transportation Com-

munications Electric Gas and Sanitary Services (TCEGSS, 21%), and to the finance,

insurance, and real estate sector (23%). For the high-yield index, the members’

industry distribution is somewhat different, with 11%, 41%, 23% and 15% of the

corporations represented belonging to the mining-and-construction, manufacturing,

7Index membership is comprised of TRACE-eligible fixed-coupon corporate bonds, excluding all
zero coupon bonds, 144As, convertible bonds, and bonds set to mature before the last day of the
month for which index re-balance occurs. All bonds must have traded on average at least 3 times
per day, with at least one trade on 80% of the 60 trading days prior to the re-balance calculation
date, and have a total issued amount outstanding available publicly.
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TCEGSS, and the services sector, respectively.

Furthermore, we obtain weekly return data for Merrill Lynch corporate bond port-

folios. Using Datastream as our source, we download 7 portfolios sorted on Standard

& Poor’s (S&P) credit rating (AAA, AA, A, BBB, BB, B, and C), 6 portfolios sorted

on time to maturity (1-3yrs, 3-5yrs, 5-7yrs, 7-10yrs, 10-15yrs and more than 15yrs),

4 IG portfolios sorted on broad industry (Industrials BBB-A 1-10yrs, Banks BBB-A

1-10yrs, Financials AA-AAA 1-10yrs, and Gas and Electrics BBB-A 1-10yrs), and

30 HY industry portfolios.8 All corporate bond returns are available throughout our

sample period from January 2, 2002 until October 11, 2006, except the Bloomberg-

NASD indices which are available only starting October 2002 (index initiation) to

September 2005.

Using OptionMetrics as our source for option data, we form portfolios of Euro-

pean put options written on the S&P 500 index based on moneyness and time to

maturity. We define moneyness as the present value of the strike price divided by the

current value of the S&P 500 index. To form portfolios, we first classify the options

into 4 maturity bins consisting of options that expire within one month (first-to-

expire options), two months (second-to-expire options), three to five months (third to

fifth-to-expire options), and more than five months. Options with less than 10 days

remaining until expiration are not used since trading at the very short end occurs

less frequently and bid and ask quotes are therefore less reliable. In a second step,

we split each maturity bin into 4 sub-bins based on moneyness. The deepest out-

of-the-money (OTM) bin consists of options with moneyness between 0.85 and 0.9,

followed by bins with moneyness ranging from 0.9 to 0.95, 0.95 to 1, and greater than

1. This results in 16 different portfolios sorted on maturity and moneyness. Every

week (Wednesday) t, we assign each index put option to a particular bin based on its

maturity and moneyness as of that time, and compute Black-Scholes delta-hedged re-

turns as of one week later. The return of any particular maturity-moneyness portfolio

at time t + h, where h equals one week, is computed as the value-weighted average

of the buy-and-hold returns of all delta-hedged option positions associated with this

particular portfolio as of time t. Table 2 in Appendix A shows sample averages for

moneyness and time to maturity as well as the number of observations for each of

the 16 option portfolios. Average value-weighted portfolio excess returns are reported

in the first part of Table 10 in Appendix C. When weighting returns by value, we

8The list of Datastream symbols for all ML portfolios is available from the authors upon request.
The mnemonic for each of the 30 HY industry portfolios begins with “MLHY”, followed by an
abbreviation for the industry.
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use market prices of the delta-hedged option positions as of time t to compute the

weights. Option prices are computed as daily mid prices, that is, the average of the

best bid and best offer prices.

We restrict ourselves to options with standard settlement. To eliminate prices

with large errors, we only use observations that satisfy all of the following criteria:

both the bid and the offer price are positive, the offer price is at least as high as

the bid price, open interest is positive, the sum of the option price plus the spread

is at least as high as the intrinsic value, the mid price is at least as high as twice

the bid-ask spread, and the implied volatility is 1% or higher. The intrinsic value is

calculated as the larger of the present value of the strike price plus the present value

of future dividends minus the closing value of the S&P 500 index and zero. The price

of the option should exceed its intrinsic value based on no-arbitrage arguments. To

allow for non-synchronous reporting of the value of the underlying and of the option,

we use a looser constraint, and only require that the price plus spread exceeds the

intrinsic value. As in Jones (2006), we also use an implied volatility cutoff to remove

options prices that appear suspect.

2.4 Firm Characteristics Data

The firm characteristics used in Section 5.5 include firm-level recovery rates, implied

volatilities and leverage ratios, all at a weekly (Wednesday) frequency. Recovery rates

at the firm level are provided by Markit and were described in Section 2.1. We use

the Standardized Options table in OptionMetrics to access firm-specific call-option-

implied volatilities with 30 days until expiration. Leverage is computed as book

liabilities divided by the market price of equity plus book liabilities. Book liabilities

are equal to short-term plus long-term debt, where short-term debt is estimated as the

larger of items DATA45 and DATA49 from the quarterly Compustat files. Long-term

liabilities are taken from item DATA51. After calculating the leverage ratios at the

end of each quarter, we interpolate to obtain leverage ratios at a weekly frequency.

The market value of equity is computed using the daily CRSP files. For each week

and every firm, we multiply the closing stock price (data item PRC) with the number

of outstanding shares recorded in millions (data item SHROUT divided by 1,000).
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3 Measuring Returns on Defaultable Debt

This section describes how we measure the compensation that investors in U.S. credit

markets demand for taking on default risk. The goal is to compute, at the firm level,

holding-period returns on pure default-contingent claims that pay one unit of account

if default does not occur before the maturity of the contract (in our applications, 1

year), and zero otherwise. In the existing literature, pricing information for credit risk

has either been estimated using corporate bond prices or, more recently, CDS quotes.

Firm-by-firm time-series data on realized returns on corporate bonds is very sparse.9

Even if it were readily available, it is contaminated by tax and liquidity effects (see,

for example, Elton, Gruber, Agrawal, and Mann (2001)). The advantage of using

at-market CDS rates, on the other hand, is that each of our CDS observations is

effectively a new constant-maturity par-coupon credit spread on the underlying firm

that is much less corrupted by tax and liquidity issues. It is therefore important to

stress that we exclusively use pricing information from the CDS market to estimate

returns on defaultable debt. We believe this yields a cleaner measure of the compen-

sation for exposure to default risk than can be extracted from corporate bond price

data.

We take as given a probability space (Ω,F , P ) and an information filtration {Ft :

t ≥ 0} that satisfies the usual conditions. The default intensity of a firm is the

instantaneous mean arrival rate of default, conditional on all current information.

More precisely, we suppose that default of an obligor occurs at the first event time τ

of a (non-explosive) counting process N with intensity process λP , relative to (Ω,F , P )

and {Ft : t ≥ 0}. In this case, so long as the firm survives, we say that its default

intensity at time t is λP
t . Under mild technical conditions this implies that, given

survival to time t and all information available at t, the probability of default between

times t and t+∆ is approximately λP
t ∆ for small ∆. We adopt the simplifying doubly-

stochastic, or Cox-process, assumption under which the conditional probability at

time t that a currently surviving obligor survives for an additional time ∆ is

p(t, ∆) = Et

(

e−
R t+∆

t
λP

s ds
)

. (1)

Here, Et denotes expectation conditional on information available up to and including

time t.

9Time-series data on realized returns on corporate bonds at the issue level can be accessed via the
TRACE (Trade Reporting and Compliance Engine), starting July 2002. In the secondary market,
the majority of corporate bonds trade only a few times a year on average.
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Under the absence of arbitrage and market frictions, and under mild technical

conditions, there exists a “risk-neutral” probability measure, also known as an “equiv-

alent martingale” measure, as shown by Harrison and Kreps (1979) and Delbaen and

Schachermayer (1999). In our setting, markets should not be assumed to be com-

plete, so the martingale measure is not unique. This pricing approach nevertheless

allows us, under its conditions, to express the price at time t of a security paying

some amount, say Z, at some bounded stopping time τ > t, as

St = EQ
t

(

e−
R τ

t
rs ds Z

)

, (2)

where r is the short-term interest-rate process and EQ
t denotes expectation conditional

on information available up to and including time t with respect to an equivalent

martingale measure Q that we fix.10 One may view (2) as the definition of such a

measure Q. The idea is that the actual (or physical) measure P and the risk-neutral

measure Q differ by an adjustment for default risk premia.

We measure holding-period returns on pure default-contingent claims by compar-

ing the time-t price P (t, T−t) of a risky zero-coupon zero-recovery bond with maturity

T > t to the price of that same security one period h earlier. (Recall that h equals one

week in our applications.) From (2) we derive P (s, ∆) = EQ
s exp(−

∫ s+∆

s
ru + λQ

u du),

for all s and times to maturity ∆. If the firm has not defaulted by time t, the realized

holding-period return Rt,h(T ) over an interval of length h is given by

Rt,h(T ) =
P (t, T − t)

P (t− h, T − (t − h))
− 1 =

EQ
t

(

e−
R T

t
rs+λ

Q
s ds
)

EQ
t−h

(

e−
R T

t−h
rs+λ

Q
s ds
) − 1.

Throughout this paper we assume independence between the short-term interest rate

process and default times under the risk-neutral measure. Even though the magnitude

of the correlation is generally found to be negative (see, for example, Duffee (1998)),

we have verified that its role is negligible for our parameter estimates. This allows us

to rewrite the last equation as

Rt,h(T ) =
d(t, T − t)

d(t, T − (t − h))

EQ
t

(

e−
R T

t
λ

Q
s ds
)

EQ
t−h

(

e−
R T

t−h
λ

Q
s ds
) − 1, (3)

10Here, r is a progressively measurable process with
∫ t

0
|rs| ds < ∞ for all t, such that there exists

a “money-market” trading strategy, allowing investment at any time t of one unit of account, with

continual re-investment until any future time T , with a final value of e
R

T

t
rs ds.
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where d(t, ∆) = EQ
t exp(−

∫ t+∆

t
rs ds) is the default-free market discount factor.

Given Rt,h(T ), we are now in a position to compute risk-adjusted excess returns

on pure default-contingent claims. In Section 4, we extract our default risk premia

factor as the common component in these firm-specific returns, and we describe how

to decompose the DRP factor into three different components. The first component

captures changes in expected default losses, the second accounts for jump-to-default

risk premia, and the third is due to the market price of risk associated with random

fluctuations in the risk-neutral default intensity (MPR). To isolate the first compo-

nent, we compute holding-period returns RPP
t,h (T ) that would have applied in the

absence of any risk premia related to default. They are given by

RPP
t,h (T ) =

d(t, T − t)

d(t, T − (t − h))

EP
t

(

e−
R T

t
λP

s ds
)

EP
t−h

(

e−
R T

t−h
λP

s ds
) − 1. (4)

The first P in the double-P superscript for the return variable indicates that there is

no jump-to-default risk premia, in other words that λQ in (3) is replaced by λP . The

second P in the superscript points to the fact that the market price of risk associated

with random fluctuations in the risk-neutral default intensity is set to zero, implying

that the survival probabilities in (3) should now be computed under the P measure.

To separate the MPR component, we compare Rt,h(T ) to model-implied holding-

period returns RQP
t,h (T ) that would have applied if only the market price of risk as-

sociated with random fluctuations in the risk-neutral default process was turned off.

The latter are computed as

RQP
t,h (T ) =

d(t, T − t)

d(t, T − (t − h))

EP
t

(

e−
R T

t
λ

Q
s ds
)

EP
t−h

(

e−
R T

t−h
λ

Q
s ds
) − 1, (5)

where Q in the QP superscript is a reminder of the compensation for jump-to-default

risk premia, whereas P has the same interpretation of zero MPR as before.11 The

remaining component of the risk-adjusted excess returns on defaultable bonds, which

is due to jump-to-default risk premia, can be also be extracted from RQP
t,h (T ), after

accounting for changes in expected default losses using RPP
t,h (T ). Details will be

provided in Section 4.

If pure default-contingent claims were actively traded, we could observe their

prices Pt,T−t directly and it would be possible to compute holding-period returns on

11According to this notation, Rt,h(T ) in (3) could also be referred to as RQQ
t,h (T ). To keep notation

simple, we use the former.
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defaultable securities as in (3). As this is not the case, we proceed by estimating a

time-series model for λQ using CDS data, which enables us to compute model-implied

returns Rt,h(T ) according to (3). As a by-product of the estimation, we also obtain

estimates for RQP
t,h (T ) in (5). Using Moody’s KMV EDF rates, we then follow a

similar procedure to estimate the model-implied returns RPP
t,h (T ) in (4). Details on

the specification of the time-series models for λP and λQ, as well as our estimation

techniques, are discussed in the next section.

4 Extracting the Default Risk Premia Factor

In this section, we first describe the time-series models for both actual and risk-

neutral default intensities and explain our estimation procedure. Once the firm-

specific model-implied values for λQ and λP are obtained, in a second step we compute

estimates for the realized holding-period returns Rt,h(T ) in (3). Next we explain how

to extract the DRP factor as the common component in firm-specific risk-adjusted

excess returns on defaultable debt. Lastly, we turn our attention to decomposing the

DRP factor into components that are due to common changes in (i) expected default

losses, (ii) jump to default risk premia, and (iii) market price of default risk.

We specify a model under which the logarithm of a firm’s physical default intensity

λP
t satisfies the Ornstein-Uhlenbeck equation

d log(λP
t ) = κ(θ − log(λP

t )) dt + σ dBt, (6)

where Bt is a standard Brownian motion, and θ, κ, and σ are constants to be es-

timated. The behavior of λP is called a Black-Karasinski (BK) model, according

to Black and Karasinski (1991). Berndt (2007) performs a diagnostic analysis of

the EDF data and shows that (6) offers a good compromise between goodness-of-fit

and model simplicity. The author uses non-parametric specification tests developed

in Hong and Li (2005) to evaluate several one-factor reduced-form credit risk models

for actual default intensities. She finds that the BK specification outperforms popular

affine jump-diffusion models for λP , such as the Ornstein-Uhlenbeck or Vasicek model

(Vasicek (1977)), the CIR model (Cox, Ingersoll, and Ross (1985)), and the CIR model

with jumps in Duffie and Garleanu (2001). For the BK default intensity model, there

is generally no closed-form solution available for 1-year EDFs, 1 − p(t, 1), from (1).

We therefore compute p(t, 1) numerically as a function of λP
t by implementing the

two-stage lattice-based Hull and White (1994) procedure for constructing trinomial
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trees.

Using the EDF data described in Section 2.2, we obtain sector-by-sector maximum-

likelihood estimates for κ and σ in (6), while allowing for a firm-specific long-run mean

parameter θi. (The superscript i is used to identify parameters specific to firm i.)

Sector-specific parameters have two important advantages over estimating a different

set of parameters κi and σi for each firm i. First, it reduces the small-sample bias in

the MLE estimators, especially for the estimates of the mean-reversion parameter κ.

(Monte Carlo evidence to that effect was given in Berndt, Douglas, Duffie, Ferguson,

and Schranz (2005), Appendix B.) Second, it allows us to model a joint distribution

of EDF rates across firms in a given industry sector. In particular, we impose joint

normality of the Brownian motions driving each firm’s default intensity, with a flat

cross-firm correlation structure within the sector. In other words, for each firm i

within a given sector we rewrite (6) as

d log λP,i
t = κ

(

θi − log λP,i
t

)

dt + σ
(√

ρ dBc
t +

√

1 − ρ dBi
t

)

, (7)

where Bc and Bi are independent standard Brownian motions, independent of {Bj}j 6=i,

and ρ denotes the constant pairwise within-sector correlation coefficient.

Routine maximum-likelihood estimation of the sector-by-sector estimates of the

extended parameter vector

Θ =
(

{θi}, κ, σ, ρ
)

is not available because of missing data points, and because EDF rates are cen-

sored from above at 20%. Both issues are explicitly accounted for by using an EM

(Expectation-Maximization) algorithm with Gibbs sampling.12 As mentioned in Sec-

tion 2.2, EDF rates are also truncated below at 2 basis points. To avoid the problem

of integer-based granularity in the EDFs for firms with exceptionally good credit

quality, we removed all firms with a sample average of 1-year EDFs of less than 5

basis points from the data set initially provided by Moody’s KMV. They are not part

of the 112 names in Table 1. The remaining 2-basis-point observations in our sample

are treated as “true” data points. Since the majority of the firms in our sample are of

median credit quality (see Figure 1), we do not expect this simplification to introduce

any significant bias to the parameter estimates.

Results are shown in Table 3 in Appendix B. To improve the interpretability

of our parameter estimates, we have imposed the overriding restriction that θQ,i is

12Details are available form the authors upon request. The Matlab code is available online at
www.andrew.cmu.edu/user/aberndt/software/.
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equal to the model-implied sample mean of log λP,i
t , for each firm i. The estimated

mean-reversion parameter is lowest for oil-and-gas firms at 10.9%, and highest for

consumer-goods firms at 120%, implying a half time of 6 years 4 months and of

7 months, respectively. Annualized volatilities, on the other hand, range between

96.3% for telecommunication firms and 157.4% for consumer-goods firms. Note that

the pairwise correlation among the log-default intensities is lowest for health-care

firms (17.2%) and almost twice that for utilities (33.5%).

With regard to risk-neutral default intensities, we assume that

d log λQ,i
t = κQ(θQ,i − log λQ

t ) dt + σQ
(

√

ρQ dBQ,c
t +

√

1 − ρQ dBQ,i
t

)

, (8)

where BQ,c
t and BQ,i

t are independent standard Brownian motions with regard to the

physical measure P , independent of {BQ,j}j 6=i. The parameters κQ, {θQi}, σQ and ρQ

are scalars to be estimated. The risk-neutral distribution of λQ,i is specified as

d log λQ,i
t = κ̃Q(θ̃Q,i − log λQ,i

t ) dt + σQ
(

√

ρQ dB̃Q,c
t +

√

1 − ρQ dB̃Q,i
t

)

, (9)

with constants κ̃Q and θ̃Q,i. B̃Q,c
t and B̃Q,i

t are independent standard Brownian mo-

tions with regard to Q, independent of {B̃Q,j}j 6=i. The market-price-of-default-risk

process, Λi, characterizes the change in the drift parameter of d log λQ,i
t when replacing

the physical by the risk-neutral measure. It is given by
√

ρQ dBQ,c
t +

√

1 − ρQ dBQ,i
t =

−Λi
t dt +

√

ρQ dB̃Q,c
t +

√

1 − ρQ dB̃Q,i
t . According to (8) and (9), we have

dΛi
t =

κQθQ,i − κ̃Qθ̃Q,i

σQ
+

κ̃Q − κQ

σQ
log λQ,i

t . (10)

Given a set of parameters (θ̃Q,i, κ̃Q, σQ) for firm i plus its risk-neutral loss-given-

default rate, we can compute 1-year and 5-year CDS rates as a function of λQ,i. Since

estimation of the model (8) and (9) is a necessity but not the focus of our paper,

we refer the reader to Section 5.1 in Berndt, Douglas, Duffie, Ferguson, and Schranz

(2005) for a detailed explanation of the computations involved. Note, however, that

we use firm-specific instead of industry-specific loss-given-default values as discussed

in Section 2.1 and listed, for each firm, in Table 1.

Based on 5-year CDS observations, we employ maximum likelihood estimation

(MLE) to obtain sector-by-sector estimates for the parameters

ΘQ =
(

{θQ,i}, κQ, σQ, ρQ, {θ̃Q,i}, κ̃Q
)
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that govern the processes {λQ,i}. We impose two overriding conditions to improve the

interpretability of our parameter estimates. First, we make use of the term-structure

information contained in 1-year CDS rates to pin down the risk-neutral long-run-

mean parameters {θ̃Q,i}. In particular, given (κ̃Q, σQ), we determine θ̃Q,i so that the

sample mean of the model-implied risk-neutral mean-loss rates for firm i is equal to

the sample mean of its 1-year CDS rates. Second, for each firm i, we set θQ,i equal to

the model-implied sample mean of log λQ,i
t . Note that in contrast to Berndt, Douglas,

Duffie, Ferguson, and Schranz (2005), we do not impose a functional form that links

risk-neutral to actual default intensities. Besides limiting our exposure to model mis-

specifications in that regard, it also allows us to estimate the parameters that drive

λQ and the parameters for λP in two separate MLE procedures.

Estimates for the parameters in (8) and (9) are listed in Table 4 in Appendix B. We

find that the estimated mean-reversion parameters under the risk-neutral measure,

κ̃Q, are substantially smaller than their physical counterparts, κQ, except for firms

in the telecommunications sector. According to (8) and (9), d logλQ,i
t has a drift

term that is higher under Q than under P whenever the market price of default risk

Λi
t in (10) is less than zero. For values of log λQ,i

t close to its long-run mean, this

holds true as long as κ̃Qθ̃Q,i > κ̃QθQ,i. This relationship is satisfied, on average,

for all industries in our sample except for the health-care and technology sectors.

Annualized volatilities range from 125.5% (Consumer Goods) to 183.6% (Consumer

Services, whereas within-sector correlations are estimated to be between 8.2% (Health

Care) and 35.5% (Telecommunications). For the majority of the sectors, estimates

for both σQ and ρQ are higher than for their physical counterparts.13

Figure 4 plots the time series of median yield spreads of pure default-contingent

claims with a maturity of one year, across all firms in our sample. Because we as-

sume independence between the short-term interest rate process and default times

under the risk-neutral measure, the price P (t, ∆) corresponds to a yield spread

s(t, ∆) = −[log EQ
t exp(−

∫ t+∆

t
λQ

s ds)]/∆. We find that yield spreads peaked in the

third quarter of 2002, and then declined quite dramatically until the end of 2003.

They have stayed at fairly low levels since then. A second spike in default insur-

ance rates occurred, however, immediately after Ford and General Motors (GM) debt

was reduced to junk bond status in early May of 2005. We also compute the yield

13Berndt (2007) shows that the pairwise correlation between λQ,i
t+h and λQ,j

t+h, conditioned on λQ,i
t

and λQ,j
t , does not depend on θQ,i, θQ,j or the level of λQ,i

t or λQ,j
t . It is a function of ρQ, σQ

and h only. A similar observation holds true for their physical counterparts. This implies that
within-sector correlations between risk-neutral default intensities are estimated to be higher than
correlations between actual default intensities.
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Figure 4: Time series of median yield spreads for pure default-contingent claims with a
maturity of one year, across all firms. s − sQP and sQP − sPP measure compensation for
exposure to diffusive default risk and to jump-to-default risk, respectively.

spreads sQP (t, ∆) and sPP (t, ∆) that would have applied if the market price of risk

associated with random fluctuations in λQ was turned off and in the absence of any

risk premia related to the default event, respectively. They are given by sQP (t, ∆) =

−[log EP
t exp(−

∫ t+∆

t
λQ

s ds)]/∆ and sPP (t, ∆) = −[log EP
t exp(−

∫ t+∆

t
λP

s ds)]/∆. Fig-

ure 4 shows that the time series of sQP (t, 1) follows that of s(t, 1) closely, in particular

after the first 15 months of our sample. According to (10), the drift parameter of

d log λQ under Q increases relative to that under P as λQ increases (for all sectors

with κ̃Q < κQ), which explains why s(t, 1) is larger than sQP (t, 1) during 2002 and

the first quarter of 2003, when credit spreads were high. The yield spreads linked to

expected default losses, sPP (t, 1), also peaked in the second half of 2002, and subse-

quently declined steadily to a median of about 4 basis points at the end of our sample.

Interestingly, we do not observe any significant widening of conditional default rates

in May 2005, implying that the actual downgrade of Ford and GM did not lead to a

surprise reaction in EDFs.

Using the model-implied values for λQ
t , we can now compute estimates for the

realized holding-period returns Rt,h(T ) in (3), which in turn enables us to compute

risk-adjusted excess returns on pure default-contingent claims. We will refer to the

latent common component in these firm-specific risk-adjusted excess returns as the

default risk premia factor, or simply the DRP factor. Let F S
t denote the vector
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of h-period returns on known systematic factors.14 Among the factors we account

for are those in Fama and French (1993), including their term (but not the default)

factor, and the momentum factor introduced by Jagadeesh and Titman (1993). Let

RFt denote the risk-free rate compounded over the interval [t − h, t] from the Fama-

French T-bill daily returns. Using superscript i to indicate returns specific to firm i,

we regress the excess returns on an equally weighted portfolio on F S according to

1

N

N
∑

i=1

Ri
t,h(T ) − RFt = α + βS · F S

t + εt, (11)

where N is the number of firms in our sample. In our applications, h equals one week

and T = t − h + 1.

The residuals εt absorb any common variation in firm-specific risk-adjusted ex-

cess returns on pure default-contingent claims that cannot be explained by linear

combinations of the systematic factors F S. If {α̂} and {ε̂t} denote the least-squares

estimates for (11), the default risk premia factor is given by

DRPt = α̂ + ε̂t. (12)

Figure 5 plots the time series of the DRP factor. It shows that most of the time

variation occurs during January and February of 2002 (a record amount of corporate

debt fell into default the first month of 2002, led by Kmart and Global Crossing), the

second half of 2002 (following the Worldcom scandal), and in May 2005 (in response

to the Ford and General Motors downgrade to junk status). This is in line with our

observations in Figure 4.

In Section 5, we use the time series of returns on the DRP factor and employ the

Fama-MacBeth methodology to test whether this factor is priced in the cross-section

of corporate bond, option and stock returns. We offer additional insights into our

empirical findings by decomposing the DRP factor into three different components.

The goal is to write the default risk premia factor as

DRPt = DRP L
t + DRP JtD

t + DRP MPR
t , (13)

where DRP L is the portion associated with common changes in expected default

losses, DRP JtD accounts for common changes in jump-to-default risk premia and

DRP MPR captures the common variation in the market price of default risk.

To this end, we first compute firm-specific estimates for RPP
t,h (T ) in (4) and for

14To simplify notation, we suppress the reference to h and T in the return variables.
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Figure 5: Time series of the DRP factor as extracted from (11) and (12), together with
the DRPPP and DRPQP processes.

RQP
t,h (T ) in (5). Let DRP PP denote the latent common component of risk-adjusted

excess returns on defaultable bonds that would have applied in the absence of any risk

premia related to default. Likewise, let DRP QP be the latent common component

if only the market price of default risk were turned off (but not the jump-to-default

risk premia). These two processes can be then extracted using (11) and (12), after

replacing Ri
t,h(T ) by RPP,i

t,h (T ) and RQP,i
t,h (T ), respectively. Figure 5 shows the time

series of DRP PP and DRP QP in comparison with DRP . We find that DRP PP

displays a large amount of time variation only at the beginning of our sample period,

and that DRP QP tracks DRP quite closely, especially after the first quarter of 2003.

Note that the latter is not surprising given the evidence in Figure 4.

To further scrutinize how much of the time variation in the common component

of risk-adjusted excess returns on defaultable debt can be explained without the

help of any risk premia related to the default event, we compute the coefficient of

determination when regressing DRP on DRP PP , for each quarter in our sample. The

results are displayed in Figure 6. They indicate that DRP PP captures almost 95% of

the variation in DRP in the first quarter of 2002, with confirms the conclusions drawn

based on Figure 5. For the rest of the sample period, however, DRP PP explains a

substantially smaller percentage, with a median of 24%. When controlling for DRP QP

in addition to DRP PP , we are able to account for most of the time variation in the

DRP factor, with R-squares ranging between 87% for the first quarter of 2003 and

almost 100% during the first quarter of 2002 and the second quarter of 2005. This
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Figure 6: Portion of variation explained by quarter. Blue bars show the coefficient of
determination when regressing DRP on DRPPP , whereas the sum of the blue plus the red
bar equals the R2 from regressing DRP on both DRPPP and DRPQP . Green bars equal
the amount of variation in DRP that cannot be explained by DRPPP and DRPQP .

implies that, for most of our sample period, jump-to-default risk premia account for

the main portion of the time variation in DRP .15 For the model specification in (10),

variation in the market price of default risk only makes a minor marginal contribution

towards explaining risk-adjusted excess returns on the 1-year pure default-contingent

claims considered here.16 It accounts for an average 5% of the time variation during

the first 15 months of our sample, and for an average of only 1% in the remaining

quarters, which is consistent with the observations in Figures 4 and 5.

Having identified both DRP PP and DRP QP in addition to DRP allows us to

define DRP JtD = DRP QP −DRP PP and DRP MPR = DRP−DRP QP . With DRP L

equal to DRP PP , equation (13) follows. Based on the findings in Figure 6, instead of

performing asset pricing tests that use all three components in (13) simultaneously,

we will focus on the specification

DRPt = DRP L
t + DRP−L

t , (14)

where DRP−L = DRP − DRP PP = DRP JtD + DRP MPR is the common compo-

nent in risk-adjusted excess returns on defaultable debt after accounting for common

15Note that height of the second bar in Figure 6 is not necessarily equal to the amount of variation
explained by DRPQP alone. The reason is that DRPPP and DRPQP are likely to exhibit non-zero
within-quarter correlations.

16For small values of h we have DRPPP ≈ −BPP λP , DRPQP −DRPPP ≈ −(BQP λQ−BPP λP ),
and DRP −DRPQP ≈ −(B−BQP )λQ for some positive constants BPP , BQP and B. Hence, with
regard to the time variation in DRP , most of the information is contained in DRPL and DRP JtD.
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changes in expected default losses.

5 Asset Pricing Tests

In this section, we investigate whether the common variation in risk-adjusted excess

returns on pure default-contingent claims with a maturity of one year, as captured by

our DRP factor in (12), is priced in the cross-section of asset returns. We do so using

one of two approaches. The first method, referred to as (M1), is designed for small sets

of test assets. It simply inspects the relationship between the time-series loadings on

the DRP factor and the average returns on the test assets, in the spirit of Fama and

French (1993). The second method, labeled (M2), implements Fama-MacBeth two-

pass approaches to estimating beta-pricing models (see Fama and MacBeth (1973)).

It relies on large sets of test assets.

In principle, test assets should have two important features. First, they are sup-

posed to be representative of all capital markets, and second they should exhibit

a high degree of variation in average returns. The first condition is important in

defining the generality of the test, while the second feature ensures that the cross-

section of expected returns is sufficiently rich. As a compromise between meeting

these conditions and data availability, we focus on a set of test assets that consists

of the 100 Fama-French portfolios formed on size and book-to-market equity, the 49

Fama-French equity portfolios sorted on industry, the investment-grade and the high-

yield Bloomberg-NASD corporate bond portfolio, plus a total number of 47 Merrill

Lynch corporate bond portfolios. The latter include 7 portfolios sorted on S&P credit

ratings (AAA to C), 6 portfolios sorted by time to maturity (1-3yrs to more than

15yrs), as well as 30 HY and 4 IG portfolios sorted on industry. We also construct

16 portfolios of put options on the S&P 500 index sorted on time to maturity and

moneyness. For a more detailed description of these test portfolios and how they are

composed, refer to Section 2.3.

In Section 4, we decompose the systemic behavior of defaultable securities (DRP )

into portions associated with common changes in expected default losses (DRP L),

common changes in jump-to-default risk premia (DRP JtD), and common variation

in the market price of default risk (DRP MPR). The second component explains most

of the time variation in DRP (see Figure 6). Test assets which are likely to be

exposed to jump-to-default risk, such as corporate bonds and put options that are

(far) out of the money, should therefore load significantly on DRP JtD, as well as on

DRP , in a time-series regressions. Using sets of corporate bond and put index option
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portfolios, we will implement (M1) to investigate whether the DRP factor is priced by

such assets. In particular, the sets of test assets include the two Bloomberg-NASD

corporate bond portfolios, the ML corporate bond portfolios sorted on rating, the

ML corporate bond portfolios sorted on time to maturity, the ML corporate bond

portfolios sorted on industry (both IG and HY), and the index put option portfolios

double-sorted on time to maturity and moneyness. For comparison, we also perform

time-series regressions for the Fama-French 100 equity portfolios sorted on size and

book-to-market. If we find a set of test assets for which the average returns line up

with their DRP -factor loadings, it will be interpreted as evidence in support of the

hypothesis that the DRP factor is priced by the assets at hand.

To estimate the loadings on the default risk premia factor, we regress excess

returns of the test assets on DRP , after controlling for common factors that proxy

for macroeconomic risk. More formally, for each test asset i, we estimate the linear

model

Ri(t) − RF (t) = αi + βi
MKT MKT (t) + βi

SMBSMB(t) + βi
HMLHML(t)

+ βi
UMDUMD(t) + βi

TERMTERM(t) + βi
NDEF NDEF (t)

+ βi
DRP DRP (t) + εi(t). (15)

Ri(t) denotes the return on asset i over the time period [t − h, t], where h in our

applications is one week. As defined in Section 4, RF (t) measures the risk-free rate,

compounded weekly from the Fama-French T-bill daily returns. MKT , SMB and

HML denote the three stock-market factors from Fama and French (1993), UMD is

the momentum factor defined in Jagadeesh and Titman (1993), and TERM is the

label for the treasury bond market factor. The latter, together with the corporate

bond market factor DEF , was introduced in Fama and French (1993) as well.17 The

factor NDEF denotes that component of DEF that is orthogonal to DRP L, DRP JtD

and DRP MPR (and hence, by construction, to DRP ). To be precise, we estimate the

model

DEFt = −0.00002 + 0.1343DRPL
t + 1.8289DRP JtD

t − 0.8031DRPMPR
t + εNDEF

t ,

(0.00030) (0.1988) (0.3290) (0.5843)

with standard errors reported in parentheses. The coefficient of determination is

17.8%. We set NDEF = −0.00002 + εNDEF
t . This factor will absorb the time

17We measure TERM as the difference between the weekly returns on the 20-year Treasury bond
and on the 3-month T-bill. DEF is set equal to the weekly returns on a market portfolio of corporate
bonds with more than 10 years to maturity (Datastream mnemonic MLUCO10(RI)) minus those on
20-year Treasury bonds.
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variation in the corporate bond market factor DEF that cannot be explained by any

linear combination of default-related components.

To further test the hypothesis that DRP is a priced factor, we make use of method

(M2) and implement a variant of the Fama-MacBeth approach to estimating beta-

pricing models on larger sets of test assets. Our sample has 250 weeks, from January

2, 2002 to October 11, 2006. We use the first 50 weeks, called the pre-testing period,

to compute the time-series factor loadings for each of the test assets. As suggested

in Fama and MacBeth (1973), we estimate these loadings directly using the formula

cov(Ri(t), F (t))/var(F (t)), where Ri(t) and F (t) denote returns on test asset i and

on some factor, respectively, rather than running (15) for the first 50 weeks of our

sample.18 Fama and MacBeth (1973) first compute the factor loadings for every stock

and then, in a second step, use the estimated loadings to form equity portfolios. A

number of reasons prevent us from performing a similar construction of new portfolios

that are sorted on betas. On the one hand, our test assets are actual portfolios,

meaning we do not necessarily have to form portfolios again. More importantly, even

if we wanted to re-sort our portfolios that were grouped prior to any estimation,

this would not be possible for the corporate bond portfolios since weekly (or, more

generally, regularly spaced) pricing data is not available at the individual issue level.

Using portfolios that were formed before any estimation of factor loadings is performed

differs from the typical econometric approach. Going forward, the asset pricing test

results for (M2) should be interpreted with this caveat in mind.

After computing the time-series factor loadings for the first 50 weeks, we compute

the returns of our test asset portfolios for the following 50 weeks. We call this later

50-week period the testing period. The cross-sectional regressions are run in this

period, using the implementation described next. For each of the first 10 weeks of

the testing period, we run cross-sectional regressions of the test assets returns on the

time-series factor loadings computed in the 50-week pre-testing period. Specifically,

for every week t, we run

Ri(t) − RF (t) = γ0(t) + γMKT (t)βi
MKT (t − l) + γSMB(t)βi

SMB(t − l)

+ γHML(t)βi
HML(t − l) + γUMD(t)βi

UMD(t − l)

+ γTERM (t)βi
TERM (t − l) + γNDEF (t)βi

NDEF (t − l)

+ γDRP (t)βi
DRP (t − l) + εi(t), (16)

where t− l < t implies that the factor loadings are computed l-weeks ago, 1 ≤ l < 10.

18The latter might yield different results because factors are not necessarily orthogonal during the
first 50 weeks of our sample.
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For each of the following 10 weeks of the testing period, we again run cross-

sectional regressions as in (16), the only difference being that the time-series factor

loadings are re-computed to incorporate additionally the first 10 weeks of the testing

period. In other words, the factor loadings are now computed on the sample con-

taining the 50-week pre-testing period plus the first 10 weeks of the testing period.

As we advance to the next 10 weeks of the testing period, the factor loadings are

re-computed again, and the cross-sectional tests are implemented just as before. This

testing procedure continues until we reach the end of the 50-week testing period. At

this point, we replace the initial 50-week pre-testing period with the 50-week testing

period, and implement the cross-sectional tests just as before. We continue with this

procedure until we reach the end of our 250-week sample. To indicate that the factor

loadings βi
· are updated every 10-week period, they now carry a time label (t − l) in

specification (16).

Inferences about whether the DRP factor is priced will be based on the first

and second moments of the series γDRP (t), adjusted for heteroscedasticity. We im-

plement (16) for a number of sets of test assets. The first three sets each contain

portfolios from only a single market. To be precise, we form one set of test assets

that includes all 52 corporate bond portfolios, a second set that includes the 149 eq-

uity portfolios considered in this study, and a third set comprised of the 16 index put

option portfolios described in Section 2.3. We also perform cross-sectional tests using

sets of test assets that span across multiple markets. In particular, we investigate the

set of test assets that includes all corporate bond and equity portfolios, and the set

that encompasses all available test assets from all three markets. We now present our

asset pricing test results.

5.1 Corporate Bonds

We start by investigating whether the DRP factor is priced in the corporate bond

market. Our test assets consist of corporate bond portfolios sorted on characteristics

such as credit quality (IG and HY Bloomberg-NASD portfolios, 7 ML portfolios

sorted on S&P ratings), time to maturity (6 ML portfolios) and industry (30 HY and

4 IG ML portfolios). Details on the construction of these portfolios were provided in

Section 2.3.

Table 5 in Appendix C summarizes the results of time-series regressions related

to (15) for the investment-grade and the high-yield Bloomberg-NASD corporate bond

portfolios. The table consists of two parts. The first panel shows the estimation
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results for the case where the explanatory variables include only factors that are

known in the existing literature to capture common variation in equity, treasury

or corporate bond markets, and are likely to account for macroeconomic risk. To be

precise, we estimate (15) after replacing the last two covariates, NDEF and DRP , by

the Fama and French (1993) corporate bond market factor DEF . The latter captures

an important part of the common time-series variation in the returns on the corporate

bond portfolios that were considered in the aforementioned study. We confirm that

the same holds true with regard to the Bloomberg-NASD portfolios. We find that

the three stock-market factors, momentum and the treasury-market factor combine

to explain 43.3% and 69.2% of the time variation in HY and IG portfolio returns,

respectively.19 Adding the DEF factor as a covariate increases these coefficients

of determination to 62.3% and 81.6%. The results in Table 5 show that the DEF

factor loads positively and significantly on both Bloomberg-NASD corporate bond

portfolios, and that the estimated slope coefficient is higher for high-yield bonds, and

lower for investment-grade debt.

The second panel in Table 5 shows the results of estimating the model (15) as

stated, for both the HY and the IG Bloomberg-NASD portfolios. Using the first panel

of results as a benchmark, this allows us to understand whether the explanatory power

of the corporate bond market factor stems from a default-risk-premia component

(DRP ), a non-default-related component (NDEF ), or both. In the latter scenario,

replacing DEF by DRP and NDEF should also yield a sizeable increase in the

regression R2’s.20

We find that both portfolios load significantly on our DRP factor. The slope

coefficient for the HY portfolio is estimated to be more than twice the size of that for

the IG portfolio. This difference in exposures to the default risk premia factor helps to

explain, at least to some extent, the large difference in average returns for the HY and

the IG portfolios. The former earns an average weekly excess return of 24 basis points

during our sample period, while the latter earns about 5 basis points. Interestingly,

for the non-default-related component of DEF the findings are somewhat different:

the estimated slope coefficients for NDEF are comparable for high-credit-quality

bonds and high-yield debt. Both are statistically significant. As a result, we find that

replacing the DEF factor by DRP and NDEF makes a substantial contribution

towards explaining the time-variation in the Bloomberg-NASD portfolios, even after

19These results are not reported in Table 5.
20Recall from (13) and (16) that DRP and NDEF are orthogonal for our sample period. However,

they do not have to add up to DEF .
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controlling for known systematic factors. The R2 increases from 62.3% to 70.2% and

from 81.6% to 87.8% for the HY and IG portfolio, respectively. This suggests that

bonds are exposed to both the default-risk-premia component and the non-default-

related component (likely due to illiquidity risk) of corporate bond returns, although

it seems that the latter is relatively more important for IG debt.

Lastly we find that replacing the DEF factor by a default-risk-premia and a non-

default-related component makes a significant contribution to reducing the pricing

errors of the HY portfolio, lowering them from 6 to 1 basis points per week. Pricing

errors are not statistically different from zero, except for the IG portfolio where the

size of the error is not trivial relative to the weekly average excess return of about 5

basis points.

The evidence in Table 5 supports the hypothesis that the DRP factor is priced

by the Bloomberg-NASD corporate bond portfolios. We now investigate whether

this applies more generally to the corporate bond market. Table 6 in Appendix C

reports the results of the time-series regression in (15) for 7 Merrill Lynch corporate

bond portfolios sorted on S&P credit ratings. We find that the DRP factor loading

is estimated to be substantially higher for portfolios below investment-grade status

than for portfolios of good and medium credit quality. Given that average returns are

higher for high-credit-quality bonds and lower for speculative-grade debt, the cross-

sectional relation between the slope coefficient on the DRP factor and the average

returns on the rating portfolios is quite striking, both economically and statistically.

It suggests that risk exposure to the DRP factor can partially explain the average

returns earned by these portfolios, supporting the price behavior already documented

in Table 5. The pricing errors of all portfolios are relatively small compared to the

corresponding average excess returns, and they are statistically insignificant.

Next, we perform similar time-series regressions for 6 ML corporate bond portfolios

sorted on time to maturity. The results are reported in Table 7. Note that average

portfolio returns increase monotonically with time to maturity. From a rational-

asset-pricing-model point of view this pattern makes perfect sense because longer

maturities in bonds are typically associated with a larger exposure to inflation risk.

Irrespective of the actual sources of risk impacting these portfolios, if higher average

returns represent compensation for bearing more risk, then our goal is to understand

whether part of this risk exposure can be attributed to the DRP factor. The DRP

coefficient estimates in Table 7 confirm that portfolios with longer maturities tend to

be also more exposed to the DRP factor. In addition, all of the pricing errors are

small relative to the corresponding average returns, and none are statistically different
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from zero. The evidence from the maturity portfolios adds to that in Tables 5 and 6

in supporting the hypothesis that the DRP factor is priced in the corporate bond

market.

Further evidence is provided in Table 8, where the test assets consist of 30 high-

yield and 4 investment-grade ML corporate bond portfolios sorted by sector and

broad industry, respectively. Again, both the median high-yield and investment-grade

portfolios load significantly on the DRP factor. The median of the average weekly

portfolios excess returns earned by HY portfolios is 14 basis points compared to 6

basis points for IG portfolios. This difference in returns can be partially explained

by the fact that the estimated median loading for the HY portfolios is more than

twice the size of that for the IG portfolios. The median pricing errors for both classes

of portfolios are again relatively small in comparison to the corresponding median

average returns, and not statistically different from zero.

We conclude this section by implementing the Fama-MacBeth two-pass procedure

described as method (M2). The results, shown in Table 11, present more in-depth

evidence in support of the hypothesis that the DRP factor is priced in the corporate

bond market. The first panel reports the results when the set of test assets consists

of the two Bloomberg-NASD portfolios and all 47 Merrill Lynch corporate bond

portfolios. We find that the DRP beta alone explains about 13.5% of the cross-section

of returns. Adding in the market beta increases the coefficient of determination to

30.3%. In both scenarios, the estimates for the risk premia on the DRP factor, as

extracted from this set of test assets, are positive (although not statistically significant

for the latter case).21 For both models presented in the first panel of Table 11, the

intercept is statistically insignificant, which is as expected if the underlying asset

pricing model is correct.

The second part of Table 12 uses a richer set of test assets, including equity

and equity options portfolios. We will postpone a discussion of these results until

Section 5.4.

5.2 Equity

We now turn our focus to the equity market. The first panel in Table 9 presents the

results of the time-series regression (15) for the Fama-French 100 equity portfolios

sorted on size and book-to-market equity. Consistent with the results in Fama and

21Given the 52 test assets, we do not have enough power to estimate the model in (16) as stated
(that is, with all 7 explanatory variables).
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French (1993), we find that the three Fama-French stock-market factors enter with

positive coefficient estimates, accompanied by high Newey-West t-statistics (especially

for MKT and SMB). The slope coefficients for both the treasury and the corporate

bond market factors are estimated to be positive. They contribute little, however,

towards explaining the time variation of these equity portfolios, which is also in line

with the aforementioned study.

In contrast to what was observed for corporate bond portfolios, replacing the

DEF factor by DRP and NDEF does not improve matters. The second panel in

Table 9 shows that neither slope coefficient is statistically significant for the median

equity portfolio. (The former even enters (15) with the wrong sign.) We also ex-

perimented with the 49 Fama-French industry portfolios as well as the Fama-French

decile portfolios sorted on book-to-market equity, with similar results.

5.3 Options

Next we test whether our DRP factor is priced in the equity options market. Coval

and Shumway (2001) show that something besides market risk is important for pricing

the risk associated with option contracts. The authors offer some evidence that

systematic stochastic volatility may be an important factor in explaining the time-

series variation in option portfolio returns. Jones (2006) argues that a third, so-called

“jump” factor accounts for an additional fraction of the option returns, although

even such a three-factor model is insufficient to explain the magnitude of expected

returns, especially the negative average returns for short-term out-of-the-money put

options. The latent jump factor in Jones (2006) is difficult to characterize in terms

of any observable series, although it seems to be associated in some way with large

one-day returns in the stock market which are usually negative. The fact that the

jump factor seems to capture risk associated with rare negative events appears to be

helpful in capturing some of the well-documented skew in the returns on index option

portfolios.

Unexpected default events with market-wide impact (such as Enron’s demise or

the Worldcom scandal) are certainly one form of rare events that will lead to large

losses in the equity market. Recall that the jump-to-default-risk component of our

DRP factor captures the common component in returns on pure default-contingent

claims that is due to the risk of such unexpected defaults. DRP JtD is therefore

an excellent candidate to be informative about the shape of the return distribution

of index options. Compared to Jones’ jump factor, it has the advantage that it is
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intuitive and that it can be measured in a straightforward fashion from credit market

data.

According to Figure 6, DRP and DRP JtD are closely linked. It is thus reasonable

to examine whether the DRP factor contributes towards explaining the cross-sectional

variation in the returns on our put option test portfolios.22 We conduct asset pricing

tests in the spirit of method (M1), using as test assets the 16 portfolios sorted on

time to maturity and moneyness that were introduced in Section 2.3. To account for

systematic volatility risk premia, we include weekly changes in the logarithm of the

stock-market volatility index V IX as an additional covariate in (15).

The results are reported in Table 10. Note that the loadings on the V IX factor line

up almost perfectly with the average returns on the portfolios. The price impact of

market-wide volatility risk on equity options is well documented in the literature, and

our results are consistent with previous findings. With regard to the DRP factor, we

discover that both average returns and the estimated slope coefficients for short- and

medium-term index put options exhibit an increasing trend in magnitude (decreasing

in absolute value) as they move closer to the money. In other words, portfolios

that are further away from the money generally have more negative returns and also

load more negatively on DRP . Even though we observe the anticipated directional

relationship between average returns and beta estimates, the slope coefficients for

DRP are not statistically significant during our sample period. For each moneyness

bin, both average returns and the beta estimates for our DRP factor increase with

increasing time to maturity.

5.4 Cross-Sectional Regressions

Finally, we implement the Fama-MacBeth two-pass procedure using test assets from

all three markets, that is, from the corporate bond, equity and option markets. The

second panel in Table 12 shows the results, which are based on a total number of 214

test assets. In particular, we include the IG and HY Bloomberg-NASD corporate bond

portfolios, all 47 Merrill Lynch corporate bond portfolios described in Section 2.3,

the 100 Fama and French equity portfolios sorted on size and book-to-market, the 49

Fama and French industry equity portfolios, and the 16 index put options portfolios

sorted on moneyness and time-to-maturity. We find that the DRP beta contributes

to the cross-sectional fit of regression (16), even when it is extracted from test assets

which span not only the corporate bond market but also the equity and the equity

22The results for DRP JtD are described in Section 6.
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option markets. Our results show that the weekly risk premia of the DRP factor is

about 3 basis points, and that this estimate is statistically significant.

5.5 Test for Firm Characteristics

We conclude this section with a test based on firm characteristics. Following Daniel

and Titman (1997), we study the extent to which the common component in firm-

specific risk-adjusted excess returns on pure default-contingent claims is due to firm

characteristics which may behave very similarly, across firms, over time. To investi-

gate whether the time variation in DRP is solely driven by certain firm characteristics,

say ϑ(t), we estimate the linear model

Ri
t,h(T ) − RFt = αi + βi

MKT MKT (t) + βi
SMB SMB(t) + βi

HML HML(t)

+ βi
UMD UMD(t) + βi

TERM TERM(t) + βi
NDEF NDEF (t)

+ βi
DRP DRP (t) + βi

Char ϑi(t − h) + εi
ϑ(t).

The dependent variables are the firm-specific excess returns on pure default-contingent

claims of firm i with a maturity of one year, as defined in (3) in Section 3. On the

right-hand side, we have the usual factors, including DRP and NDEF , plus a time-

varying firm characteristic. Should ϑi(t− h) explain a significant portion of the time

variation in Ri
t,h(T )−RFt, then DRP will depend on the time-varying characteristic

according to (11) and (12). In that case, the common variation in risk-adjusted excess

returns on pure default-contingent claims could be due to firm characteristics moving

together.

Results are reported in Table 13 in Appendix C, where we consider four different

firm characteristics including the firm’s 1-year EDF rate, recovery rate, 30-day implied

call volatility, and leverage ratio. We find that the common variation in risk-adjusted

excess returns on pure default-contingent claims is very unlikely to be due to one of

these characteristics. Moreover, for each of the tests, the estimated loading on the

DRP factor is always highly significant, both economically and statistically.

6 A Closer Look at the DRP Components

In the previous section, we showed that the DRP factor is priced in corporate bond

markets and that for index put options the time-series loadings on the default risk

premia factor align with the average returns along the time-to-maturity dimension,
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for each moneyness bin. According to (13), the DRP factor can be decomposed

into three components. These are the portions associated with common changes in

expected default losses (DRP L), common changes in jump-to-default risk premia

(DRP JtD) and common variation in market prices of default risk (DRP MPR). It is

natural to ask to what extent each of these three components contribute to explaining

the time variation and the cross-section of asset returns.

To answer this, we reproduce the results in Tables 5 through 12, after replacing the

DRP factor in (15) and (16) by each of DRP L, DRP JtD and DRP MPR. The results

for corporate bonds are summarized in columns 2 to 4 of Table 14 in Appendix D. We

only report the loading estimates for the default-related factor. For corporate bonds,

the loadings on both DRP JtD and DRP MPR are statistically significant and line up

nicely with average excess returns. For the market-price-of-default-risk component,

this is not surprising since given our model specifications it captures much of the

same variation as DRP itself (see Footnote 16). The results for DRP JtD indicate

that corporate bonds with higher loadings on the jump-to-default risk component have

higher average returns, implying that jump to default risk is priced in the corporate

bond market in the sense of method (M1). For the equity portfolios, none of the

factors by themselves appear to be significant in explaining the time variation of

returns. The results for the index put options are more interesting. The DRP JtD

factor is estimated consistently to have the right (negative) sign. For each moneyness

bin, the beta loading estimates line up with the average excess returns. They are

estimated to be lower (more negative) for out-of-money options than for at the money

contracts. Also, the loadings for on DRP L line up along the moneyness direction for

the short-term put options. The negative coefficient estimate for the deepest OTM

puts is significant at the 10% level, showing that common changes in expected default

losses are useful in predicting returns for deep-OTM put options. The results for the

MPR component are again similar to those for DRP itself, except that the levels

of statistical significance are higher and that the loadings have the correct sign also

for the long-term options. With regard to the cross-sectional results, Table 16 shows

that the risk premia on DRP L, DRP JtD and DRP MPR are 1, 2 and 1 basis points,

respectively. The latter two are significant at the 5%-level. It is of interest to note

that for the index put options, most of the risk premia is associated with the jump-

to-default component of DRP .

Next, we investigate the scenario where we replace DRP by its components,

DRP L and DRP−L in (14). The results are summarized in the last two columns

of Tables 14 and 16, and the second panel of Table 15. We find that the explanatory
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power of DRP for returns on corporate debt and on index put options mainly stems

from the portion DRP−L of the default risk factor that is not explained by changes

in expected default losses. The estimated risk premia on DRP−L amounts to 3 ba-

sis points per week, after controlling for all other known systematic risk factors. In

the next section, we develop a theoretical framework for a pricing kernel that is in

line with our empirical finding that DRP−L is priced for assets with a non-degenerate

payoff structure in the default states (such as corporate bonds and index put options).

7 A Model Framework Explaining Our Results

In this section, we propose a theoretical framework for a pricing kernel, M , that is

consistent with our empirical findings. We consider an economy with N firms in

which the fundamentals are captured by a d-dimensional vector of state variables, X.

The dynamics of X are specified as

dXt = µ(Xt, t) dt + Σ(Xt, t) dWt,

where µ(·, t) is a d-dimensional column vector of drifts and Σ(·, t) denotes the d × d

matrix of state-dependent instantaneous volatilities. Wt is a d-dimensional stan-

dard Brownian motion on some probability space (Ω, P ), with informational filtra-

tion {Ft}t≥0 generated by this process. The innovations in Wt describe the diffusive

systematic risk in our economy.

We extend the doubly-stochastic framework of corporate default in Section 3 by

assuming that default of firm i is triggered either by a market-wide credit event τ̄ 0 that

affects all firms in the economy or by a default event τ̄ i that is specific to firm i or the

sector it belongs to. In other words, we set τ i = min {τ̄ 0, τ̄ i}. For each i = 0, . . . , N ,

τ̄ i is the first event time of a (non-explosive) counting processes N̄ i with intensity

process λ̄P,i, relative to (Ω,F , P ). Let us assume that the state process X determines

actual default intensities according to λ̄P,i
t = λ̄P,i(Xt), for all i. For doubly-stochastic

models, conditional on X, the various event times are independent Poisson arrivals at

time-varying deterministic intensities λ̄P,i(Xt). We rule out simultaneous event times

and assume P (τ̄ i = τ̄ j) = 0 for i 6= j, which implies that the actual default intensity

λP,i for firm i introduced in Section 3 can be interpreted as λP,i = λ̄P,0 + λ̄P,i.
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Suppose that the pricing kernel M for this economy can be written as

dMt

Mt−
= −r(Xt) dt − Λ(Xt) dWt −

N
∑

i=0

Γ̄i(Xt−) (dN̄ i
t − λ̄P,i(Xt) dt)

= −
(

rt −
N
∑

i=0

Γ̄i
t λ̄P,i

t

)

dt − Λt dWt −
N
∑

i=0

Γ̄i
t− dN̄ i

t , (17)

where rt = r(Xt) is the instantaneous risk-free interest rate, Λt = Λ(Xt) denotes the

market price of diffusive risk, Γ̄0
t = Γ̄0(Xt) is the market price of default risk associated

with the market-wide credit event time τ̄ 0, and Γ̄i
t = Γ̄i(Xt) is the market price of

default risk associated with the credit event for firm i. Risk-neutral event arrival

intensities are given by λ̄Q,i = (1 − Γ̄i)λ̄P,i. Equation (17) extends the formulation

in Dai and Singleton (2003) to a multi-firm setting.

Define λ̄P
t = λ̄P,1

t + . . . + λ̄P,N
t , and let

Γ̄t =
1

λ̄P
t

N
∑

i=1

λ̄P,i
t Γ̄i

t.

Under mild technical conditions (see, for example, Protter (2005)), the pricing kernel

is given by

Mt = exp

{

−
∫ t

0

rs ds +

∫ t

0

Γ̄sλ̄
P
s ds − 1

2

∫ t

0

Λ2
s ds −

∫ t

0

Λs dWs

}

× exp

{
∫ t

0

Γ̄0
sλ̄

P,0
s ds

}

×
∏

s≤t

[

1 −
N
∑

i=0

Γ̄i
s∆N̄ i

s

]

. (18)

Ruling out simultaneous event times implies 1 −
∑N

i=0 Γ̄i
s∆̄N i

s =
∏N

i=0

[

1 − Γ̄i
s∆N̄ i

s

]

.

The pricing kernel in (18) can therefore be conveniently expressed as

Mt = Et × exp

{
∫ t

0

Γ̄sλ̄
P
s ds

}

× exp

{
∫ t

0

Γ̄0
sλ̄

P,0
s ds

}

×
N
∏

i=0

∏

s≤t

[

1 − Γ̄i
s∆N̄ i

s

]

,

where Et = E({Xs}s≤t) is the stochastic exponential of −r(Xt) dt − Λ(Xt) dWt given

by

Et = exp

{

−
∫ t

0

rs ds − 1

2

∫ t

0

Λ2
s ds −

∫ t

0

Λs dWs

}

. (19)

Note that Et is equal to the pricing kernel that would have applied in the absence of

any risk premia associated with default events (that is, for Γ̄i = 0 for all i).
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For each firm i we have, for small values of h, RQP,i
t+h,h−RFt+h ≈

∫ t+h

t

(

λ̄Q,0
s + λ̄Q,i

s

)

ds

and RPP,i
t+h,h −RFt+h ≈

∫ t+h

t

(

λ̄P,0
s + λ̄P,i

s

)

ds. Hence, the difference between the excess

returns associated with (5) and (4) is approximately equal to

RQP,i
t+h,h − RPP,i

t+h,h ≈ −
∫ t+h

t

Γ̄0
sλ̄

P,0
s ds −

∫ t+h

t

Γ̄i
sλ̄

P,i
s ds. (20)

This suggests that the portion of the excess returns on pure default-contingent claims

that is due to common changes in jump to default risk premia DRP JtD is to a large

extent driven by the market price of jump-to-default risk associated with the market-

wide default event τ̄ 0. In what follows we investigate the effect of this market-wide

source for jump-to-default risk on the expected returns of a firm’s equity and debt

claims. Note that for h small, as is the case in our application, RQP,i and RQQ,i are

closely related, which suggests that much of the time variation in DRP−L also stems

from the jump-to-default risk premia associated with τ̄ 0.

Let R̃E,i
t+h and R̃D,i

t+h denote the gross return over the period [t, t + h] on equity

and debt of firm i, respectively. If both equity and corporate bond markets are

competitive, the pricing equation is the Euler equation, that is,

Et

[

Mt+h

Mt

R̃·,i
t+h

]

= 1,

for · = E, D. As long as firm i is solvent, the gross return on equity claims is non-zero.

We will assume a zero-recovery value to equity holders in the event of default, which

implies R̃E,i
t+h = R̃E,i

t+h1{τ i>t+h}. With this in mind, we have

EtR̃
E,i
t+h = R̃F t+h

(

1 − covt

[

Mt+h

Mt

, R̃E,i
t+h

])

= R̃F t+h

(

1 − covt

[

M−i
t+h

M−i
t

, R̃E,i
t+h

]

+ Et

[

Mt+h

Mt

− M−i
t+h

M−i
t

]

EtR̃
E,i
t+h

)

, (21)

where R̃F t+h is the gross return on risk-less bonds given by

R̃F t+h =

[

Et

(

Mt+h

Mt

)]−1

and

M−i
t = Et × exp

{
∫ t

0

Γ̄sλ̄
P
s ds

}

× exp

{
∫ t

0

Γ̄0
sλ̄

P,0
s ds

}

×
∏

j 6=0,i

∏

s≤t

[

1 − Γj
s∆N j

s

]

.

To gain intuition as to why the DRP factor does not seem to make a significant
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contribution to explaining expected returns on equity, let us study (21) after turning

off all diffusive risk premia in the economy by setting Λ = 0. In this simplified

scenario, the covariance term in (21) is given by

covt

[

exp {At+h} ×
∏

j 6=0,i

∏

t<s≤t+h

[

1 − Γj
s∆N j

s

]

, R̃E,i
t+h

]

, (22)

where At+h = −
∫ t+h

t
rs ds+

∫ t+h

t
Γ̄sλ̄

P
s ds+

∫ t+h

t
Γ̄0

sλ̄
P,0
s ds. The covariance term in (22)

is close to zero as long as rs and {Γ̄j
sλ̄

P,j
s }j are relatively stable over the short interval

[t, t + h].23 At the same time, the last term in (21) is small for realistic values of

default intensities for firm i. In summary, little or no dependency between expected

returns and either DRP JtD or DRP −DRP L will be detected. A similar observation

holds true for DRP by extension.

The fact that corporate bonds have non-zero payoffs in the event of default sub-

stantially changes the relation between corporate bond returns and jump-to-default

risk premia. According to (21), the gross returns on corporate bonds of firm i, R̃D,i
t+h,

can be written as

EtR̃
D,i
t+h = R̃F t+h

(

1 − covt

[

Mt+h

Mt

, R̃D,i
t+h1{τ i>t+h}

]

− covt

[

Mt+h

Mt

, R̃D,i
t+h1{t<τ i≤t+h}

])

.

Even though the first covariance term might be negligible as it is for equity, the second

covariance term captures the dependency between realized returns and DRP JtD (or,

similarly, DRP−L). These results provide intuition as to why for an economy with a

unique pricing kernel for valuing both corporate bonds and equity, corporate bonds

returns but not equity returns load on the jump-to-default component of DRP , and

hence, by extension, on DRP .

8 Discussion and Conclusion

This is the first paper to extract a common risk factor from credit markets and

investigate its contribution towards explaining average returns observed in corporate

bond, equity and index option markets. Our default risk premia factor, or simply

DRP factor, is identified as that portion of the weekly excess returns on an equally-

weighted portfolio of pure default-contingent claims that cannot be explained by linear

combinations of systematic stock-market and Treasury-market risk factors. Asset

23Recall that conditional on default intensities, the realized return on firm i’s equity is independent
from the credit event times of the other firms in the economy.
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pricing tests using returns on Bloomberg-NASD corporate bond indices suggest that

the DRP factor is priced in the corporate bond market. A cross-sectional analysis

of 47 Merrill Lynch corporate bond portfolios sorted on either industry, maturity or

rating supports these findings. We decompose the DRP factor to show that most of

its time variation can be explained by the portion DRP JtD that is due to common

variation in jump-to-default risk premia. Using 16 portfolios of delta-hedged put

options written on the S&P 500 index and sorted on maturity and moneyness, we

find that both average returns and the beta estimates for our DRP factor become

more negative with decreasing time to maturity. There is little to no evidence of

the DRP factor being priced in equity markets. We develop a theoretical framework

where DRP JtD is part of the pricing kernel that supports our empirical findings. It

shows that DRP JtD captures the jump-to-default risk premia associated with market-

wide credit events.

As a final remark we want to address the issue that from a practical perspective,

trading strategies based on the DRP factor are difficult to implement because the pure

default-contingent claims used to construct the portfolios are not actually traded. To

give the reader a sense of how a trading strategy based on the same motivation as for

our default risk premia DRP factor can be implemented, we compute an alternative

CDS-based DRP factor, named CDRP , by replacing the holding returns Ri
t,h(T )

in (3) with

RCDS,i
t,h = −

(

log CDSi
t − log CDSi

t−h

)

, (23)

where CDSi
t denotes the at-market 5-year default swap rate for firm i at time t.

For the median firm in our sample, CDRP explains 20.5% of the risk-adjusted excess

returns on default swaps. Note that since each of our CDS observations is considered a

new constant-maturity par-coupon credit spread, RCDS,i
t,h is no longer a holding period

return.24 Conversations with market participants, however, indicate that for h equal

to a week, the effect of different maturity dates associated with CDSi
t and CDSi

t−h

is minimal, and is certainly outweighed by the advantages of having a tradable form

of the default risk premia factor available.

The asset pricing test results for CDRP are summarized in Appendix E, showing

the estimated loadings for the default-related factors only. For the corporate bond

24This is different from the contracts underlying a particular series of the Dow Jones CDX indices,
which have a fixed maturity date around either June 20 or December 20 of each year. Data on the
HY DJ CDX index is available to us only starting April 2005. In addition, our Moody’s KMV EDF
data does not completely overlap with the members of the IG or HY index, which would prohibit
us from decomposing the CDRP factor.

40



market, Table 17 indicates that CDRP is priced, and that its explanatory power for

returns stems from the portion unexplained by expected losses, in particular the jump-

to-default risk component. For equity portfolios, the time-series loadings on CDRP

or its components are again not significant. In the case of index put options, for each

moneyness bin, the overall trend in the estimated loadings on CDRP is still consistent

(although not longer strictly monotone) with that observed for average returns along

the time-to-maturity dimension. Interestingly, we now find that for each time-to-

maturity bin, the negative factor loadings decrease as the options mover further away

from the money, as do average excess returns. (Two exceptions are the third and

the first moneyness bin for the first and the second-to-expire options, respectively.)

For many option portfolios, the loadings are now statistically significant, especially

for longer dated options. Again, similar observations hold true when replacing the

CDS-based default risk premia factor by the portion that is associated with jump-

to-default risk premia, confirming our findings that most of the explanatory power

of CDRP is due to CDRP JtD. Finally, we find that the CDRP factor commands a

risk premium of 48 basis points per week. Note that this figure is much larger than

for DRP due to the fact that CDRP captures returns on par-coupon spreads in the

sense of (23).
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A Data Coverage

firm rtg 5yr CDS 1yr CDS recov no EDF no 5yr CDS no 1yr CDS

Basic Materials

Bowater Ba 289 177 0.41 248 250 250
Cytec Industries Baa 60 25 0.40 248 231 193
Dow Chemical A 63 45 0.40 248 250 249
Eastman Chemical Baa 70 39 0.41 248 250 244
International Paper Baa 71 45 0.40 248 250 250
Monsanto Baa 52 23 0.41 248 233 194
PPG Industries A 34 19 0.41 248 250 250
Praxair A 26 13 0.41 248 250 243
Rohm and Haas A 33 15 0.41 248 250 250

Consumer Goods

ArvinMeritor Ba 317 212 0.39 248 250 249
Black & Decker Baa 42 21 0.41 248 250 249
BorgWarner Baa 53 27 0.40 248 250 249
Campbell Soup A 29 14 0.40 248 250 249
Coca-Cola Enterprises A 29 13 0.40 248 250 250
ConAgra Foods Baa 46 23 0.39 248 250 250
Dana Ba 449 421 0.41 248 220 220
Delphi Baa 308 343 0.41 195 200 200
Eastman Kodak Baa 172 86 0.39 248 250 250
Ford Motor Baa 440 284 0.41 248 250 250
General Motors Baa 456 334 0.41 248 250 250
Georgia-Pacific Ba 319 265 0.41 206 250 250
Sara Lee A 36 14 0.40 248 250 246
Tyson Foods Baa 100 59 0.41 248 250 249
Visteon Ba 415 317 0.42 248 250 250

Consumer Services

Cardinal Health A 48 21 0.41 248 248 242
Clear Channel Comm Baa 130 99 0.40 248 250 250
Comcast Baa 129 104 0.40 244 250 248
Interpublic Group of Cos Baa 259 192 0.40 248 249 247
Omnicom Group Baa 71 66 0.40 248 250 249
Royal Caribbean Cruises Ba 312 305 0.40 248 250 250
Sabre Holdings Baa 89 50 0.40 248 231 230
Time Warner Cos Baa 122 103 0.39 248 250 250
Walt Disney Baa 57 37 0.40 248 250 250

Health Care

Baxter International Baa 40 26 0.40 248 250 250
Boston Scientific Baa 43 21 0.41 248 250 240
Bristol-Myers Squibb A 30 17 0.41 248 237 234
Chiron Baa 43 34 0.40 223 225 222
Genzyme WR 48 19 0.39 241 156 148
HCA (Oldco) Ba 174 102 0.41 248 250 246
Health Management Assoc Baa 67 29 0.39 248 181 149
Humana Baa 70 44 0.41 248 247 234
Lab of America Holdgs Baa 47 11 0.40 248 177 108
Merck & Co. Aaa 18 6 0.41 248 227 183
Quest Diagnostics Baa 47 14 0.40 248 187 139
Schering-Plough Baa 35 16 0.41 248 229 187
Universal Health Services Baa 72 31 0.39 248 166 146
Wyeth Baa 51 34 0.40 248 250 247

Industrials

Boeing A 40 25 0.40 248 250 250
Caterpillar A 30 16 0.40 248 250 250
Cummins Ba 204 165 0.40 248 250 250
Danaher A 30 23 0.40 248 250 245
Deere A 37 23 0.40 248 250 250
Eaton A 31 17 0.40 248 250 247
Goodrich Baa 98 72 0.40 248 250 250
Honeywell International A 37 23 0.40 248 250 250
Lockheed Martin Baa 43 24 0.41 248 250 250
MeadWestvaco Baa 72 39 0.39 248 244 240
Northrop Grumman Baa 54 34 0.41 248 250 246
Raytheon Baa 75 54 0.39 248 250 249
Sealed Air Baa 164 144 0.38 248 250 240
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Table 1 – continued from previous page

firm rtg CDS5 CDS1 recov no EDF no CDS5 no CDS1

Sherwin-Williams A 41 20 0.41 248 250 247
Temple-Inland Baa 100 64 0.40 248 250 235
United Technologies A 23 12 0.40 248 247 238
Waste Management Baa 96 74 0.41 248 248 235

Oil and Gas

Anadarko Petroleum Baa 42 21 0.40 248 250 249
Baker Hughes A 26 15 0.41 248 250 249
Devon Energy Baa 63 48 0.40 248 250 250
Diamond Offshore Drilling Baa 43 25 0.40 248 250 248
El Paso Caa 547 524 0.37 248 250 250
Halliburton Baa 147 130 0.41 248 247 246
Kerr-McGee Baa 79 41 0.41 239 249 235
Kinder Morgan Energy P Baa 56 29 0.41 230 250 231
Kinder Morgan Baa 71 36 0.40 248 242 215
Marathon Oil Baa 44 24 0.41 248 239 235
Nabors Industries A 42 25 0.40 248 250 244
National Oilwell Varco Baa 49 21 0.39 248 203 157
Pioneer Natural Resources Ba 87 33 0.40 248 156 124
Pride International Ba 191 116 0.40 248 205 184
Transocean Baa 54 41 0.40 248 250 250
Valero Energy Baa 85 61 0.40 248 250 246
Weatherford International Baa 34 14 0.40 248 166 150

Technology

Computer Sciences A 60 29 0.39 248 249 244
Electronic Data Systems Baa 160 120 0.40 248 250 248
Hewlett-Packard A 47 31 0.39 248 250 250
IBM A 32 18 0.40 248 250 250
Lucent Technologies B 684 594 0.38 248 250 250
Pitney Bowes Aa 22 12 0.41 248 250 240
Sun Microsystems Baa 126 89 0.40 248 250 249
Xerox Ba 409 393 0.38 248 250 249

Telecommunications

ALLTEL A 58 26 0.41 248 212 196
AT&T A 167 132 0.38 248 250 250
BellSouth A 45 27 0.41 248 250 249
CenturyTel Baa 98 56 0.41 248 250 237
Citizens Comm Baa 237 156 0.39 248 250 245
New Cingular Wireless Servs Baa 261 262 0.38 145 147 147
Nextel Comm B 511 413 0.37 187 189 167
Sprint Nextel Baa 210 211 0.38 248 250 250
Verizon Comm A 73 63 0.42 248 250 243

Utilities

American Electric Power Baa 105 86 0.40 248 250 249
Cinergy Baa 68 56 0.41 220 250 247
Constellation Energy Group Baa 80 55 0.41 248 250 239
Dominion Resources Baa 62 42 0.41 248 250 248
Duke Energy NaN 62 48 0.40 248 250 249
Exelon Baa 56 32 0.40 248 246 229
FirstEnergy Baa 106 74 0.40 248 226 213
ONEOK Baa 59 39 0.40 248 250 240
Progress Energy Baa 67 46 0.39 248 250 236
Sempra Energy Baa 73 46 0.40 248 250 226
TECO Energy Ba 228 199 0.41 248 230 221
TXU Ba 186 168 0.39 248 250 249
Williams Cos B 476 542 0.37 248 250 250
Xcel Energy Baa 146 140 0.39 248 239 225

Table 1: Firm Summary Statistics: For each firm, we report the number of

weekly observations of EDF rates, 5- and 1-year CDS rates, the average 5-year

CDS rate, the average 1-year CDS rate, and the average recovery rate. The

sample period is January 2, 2002 through October 11, 2006.
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Moneyness Bin Maturity Bin

1st 2nd 3rd-5th ≥ 6th

Moneyness
0.85-0.9 0.88 0.88 0.88 0.88
0.9-0.95 0.93 0.93 0.93 0.93
0.95-1 0.98 0.98 0.98 0.97
> 1 1.07 1.07 1.10 1.13

Maturity (days)
0.85-0.9 25 47 100 439
0.9-0.95 24 45 97 415
0.95-1 22 44 90 373
> 1 23 45 98 349

Number of Valid Return Observations
0.85-0.9 144 530 980 2509
0.9-0.95 487 1179 1174 2556
0.95-1 1185 1762 1555 2388
> 1 1086 1796 2173 4609

Table 2: Summary Statistics for the S&P 500 Index Put Option Portfolios: The first
part of the table shows the value-weighted averages of the moneyness for the options in each bin,
whereas the second part lists the value-weighted averages of the days until to expiration. The last
portion of the table counts the Number of Valid Return Observations for each bin across the time
period January 2002 to April 2006. Source: OptionMetrics.
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Figure 7: Time series of median recovery rates by sector. Source: Markit.
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B Time Series Estimation of Default Intensities

sector κ̂ σ̂ ρ̂ avg θ̂i log-like no firms

Basic Materials 0.256 1.041 0.223 2.009 -1.530 9
Consumer Goods 1.196 1.574 0.206 2.993 -2.565 15
Consumer Services 0.236 0.964 0.294 3.147 -2.535 9
Health Care 0.241 1.034 0.172 2.238 -1.774 14
Industrials 0.379 1.067 0.181 2.203 -1.684 17
Oil and Gas 0.109 1.055 0.234 2.584 -2.197 17
Technology 0.667 1.214 0.282 3.621 -3.148 8
Telecommunications 0.225 0.963 0.320 2.949 -2.251 9
Utilities 0.453 1.201 0.335 3.070 -2.628 14

Table 3: Sector-by-sector EDF-implied ML parameter estimates in (6), using weekly
Moody’s KMV 1-year EDFs from January 2, 2002 to October 11, 2006. The intensities
λP,i are measured in basis points per year.

sector κ̂QP σ̂Q ρ̂Q avg θ̂QP κ̂QQ avg θ̂QQ log-like

Basic Materials 1.018 1.409 0.298 3.350 0.361 3.567 -2.705
Consumer Goods 0.549 1.255 0.262 4.367 0.250 4.421 -3.585
Consumer Services 0.521 1.836 0.323 3.294 0.393 3.560 -3.332
Health Care 0.963 1.477 0.082 3.294 0.302 2.867 -2.765
Industrials 0.832 1.462 0.207 3.036 0.387 3.489 -2.627
Oil and Gas 0.725 1.306 0.245 3.542 0.339 3.850 -2.827
Technology 0.718 1.692 0.241 3.568 0.315 3.364 -3.414
Telecommunications 0.119 1.576 0.355 3.583 0.276 3.820 -3.489
Utilities 0.681 1.617 0.264 3.101 0.366 3.832 -3.162

Table 4: Sector-by-sector CDS-implied ML parameter estimates in (8), using 1- and 5-year
CDS rates with modified restructuring and firm-specific recovery rates from January 2, 2002
to November 11, 2006. The intensities λQ,i are measured in basis points per year.

C Asset Pricing Test Results
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α βMKT βSMB βHML βUMD βTERM βDEF βNDEF βDRP R2 E[R] − RF

Investment-Grade

-0.0002 0.0240 0.0080 0.0399 -0.0306 0.4339 0.6961 – – 0.8159 0.0005
(-1.2655) (1.8139) (0.3862) (1.4946) (-2.1865) (21.6115) (7.6490)

High-Yield

0.0006 0.1190 0.1814 0.2060 -0.0965 0.3302 1.6059 – – 0.6230 0.0024
(1.3935) (4.2902) (3.4764) (3.1014) (-2.9022) (6.2063) (9.6549)

Investment-Grade

-0.0004 0.0371 0.0211 0.0628 -0.0353 0.4025 – 0.4622 0.9947 0.8765 0.0005
(-3.0205) (3.3388) (1.0602) (2.8249) (-2.5370) (24.7091) (5.7547) (13.3886)

High-Yield

0.0001 0.1916 0.2410 0.3345 -0.1470 0.1877 – 0.4897 2.4944 0.7021 0.0024
(0.3208) (7.7639) (4.7794) (4.9990) (-4.7951) (3.3164) (2.1585) (8.5218)

Table 5: The Bloomberg-NASD IG and HY Corporate Bond Portfolios This table reports the results of the time-series
regressions of weekly realized excess returns of portfolios of IG and HY corporate bonds on MKT , SMB, HML, UMD, TERM .
The first panel also includes DEF as a covariate. Specifically, for each portfolio we estimate the regression: R(t) − RF (t) = α +
βMKT MKT (t)+ βSMBSMB(t)+ βHMLHML(t) + βUMDUMD(t) + βTERMTERM(t) + βDEF DEF (t) + ε(t). The second panel reports
the estimation results after replacing DEF by NDEF and DRP . Newey-West t-statistics adjusted for heteroscedasticity (with 3 lags)
are reported in parentheses. The sample period is October 2, 2002 to October 11, 2006.
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Rtg α βMKT βSMB βHML βUMD βTERM βNDEF βDRP R2 E[R] − RF

AAA 0.0001 -0.0058 0.0430 0.0138 -0.0115 0.4990 0.0182 0.2180 0.9478 0.0007
(0.7851) (-0.8380) (3.2255) (1.1406) (-1.4936) (44.8414) (0.5801) (4.3125)

AA 0.0000 -0.0041 0.0124 0.0239 -0.0065 0.4476 0.1265 0.2090 0.9323 0.0006
(0.5004) (-0.6135) (1.0264) (1.7380) (-0.7927) (41.6954) (2.3647) (4.4938)

A 0.0000 -0.0037 0.0204 0.0373 -0.0170 0.5299 0.1958 0.2985 0.9562 0.0007
(0.4978) (-0.5268) (1.8189) (2.7331) (-2.3496) (47.2213) (5.8192) (5.8592)

BBB -0.0002 0.0111 0.0256 0.0663 -0.0342 0.5889 0.6924 0.6698 0.9142 0.0007
(-1.8701) (1.2396) (2.1156) (2.7409) (-2.9007) (39.1004) (10.4254) (4.4123)

BB -0.0001 0.0754 0.0451 0.1276 -0.0127 0.2748 0.5564 1.3825 0.4854 0.0009
(-0.3486) (2.5156) (0.5308) (1.9004) (-0.3513) (5.3778) (2.3583) (5.5121)

B 0.0003 0.0900 0.1020 0.1563 -0.0630 0.1754 0.7173 1.5643 0.6326 0.0014
(0.9750) (4.1913) (2.8205) (2.8654) (-2.4780) (5.0943) (5.1561) (7.7088)

C 0.0010 0.0765 0.2932 0.1794 -0.0745 0.1578 0.8871 1.5633 0.4536 0.0023
(1.6140) (1.7075) (4.3527) (2.2191) (-1.5208) (2.5674) (2.7851) (5.3211)

Table 6: The Merrill Lynch Corporate Bond Portfolios Sorted by Ratings This table reports the results of the time-series
regressions of weekly realized excess returns of 7 Merrill Lynch corporate bond portfolios sorted by credit rating on MKT , SMB,
HML, UMD, TERM , and DRP . Specifically, for each portfolio we estimate the regression: R(t) − RF (t) = α + βMKT MKT (t) +
βSMBSMB(t)+βHMLHML(t)+βUMDUMD(t)+βTERMTERM(t)+βNDEF NDEF (t)+βDRP DRP (t)+ ε(t). Newey-West t-statistics
adjusted for heteroscedasticity (with 3 lags) are reported in parentheses. The sample period is January 2, 2002 to October 11, 2006.
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Maturity α βMKT βSMB βHML βUMD βTERM βNDEF βDRP R2 E[R] − RF

1-3 yrs 0.0001 0.0011 0.0207 0.0428 -0.0197 0.1323 0.0742 0.2388 0.5996 0.0003
(0.6133) (0.1762) (2.3659) (3.1078) (-2.5194) (12.8200) (1.6907) (3.7913)

3-5 yrs 0.0000 0.0044 0.0348 0.0689 -0.0321 0.3193 0.0919 0.3645 0.7959 0.0005
(-0.0755) (0.4338) (2.3177) (3.6377) (-2.8668) (19.8836) (1.5915) (4.4815)

5-7 yrs 0.0000 0.0017 0.0349 0.0631 -0.0369 0.4801 0.2300 0.4249 0.8670 0.0007
(0.1187) (0.1560) (2.2771) (2.9231) (-2.8531) (27.6637) (3.0711) (4.7231)

7-10 yrs -0.0001 0.0030 0.0299 0.0642 -0.0350 0.6427 0.4189 0.5057 0.9364 0.0008
(-0.6701) (0.3315) (2.3356) (3.2810) (-3.2604) (45.6782) (7.2170) (5.2430)

10-15 yrs -0.0002 -0.0074 0.0472 0.0801 -0.0411 0.7803 0.3948 0.5312 0.9420 0.0009
(-0.9295) (-0.5390) (2.5067) (3.4099) (-3.5720) (41.9704) (4.2720) (5.7913)

15+ yrs -0.0001 0.0004 -0.0067 -0.0147 0.0080 1.0420 1.1099 0.6118 0.9806 0.0010
(-1.5584) (0.0670) (-0.7228) (-0.7081) (0.7623) (86.9993) (28.7324) (5.0511)

Table 7: The Merrill Lynch Corporate Bond Portfolios Sorted by Time to Maturity This table reports the results of
the time-series regressions of weekly realized excess returns of 6 Merrill Lynch corporate bond portfolios sorted by time to maturity
on MKT , SMB, HML, UMD, TERM , and DRP . Specifically, for each portfolio we estimate the regression: R(t) − RF (t) =
α + βMKTMKT (t) + βSMBSMB(t) + βHMLHML(t) + βUMDUMD(t) + βTERMTERM(t) + βNDEF NDEF (t) + βDRP DRP (t) + ε(t).
Newey-West t-statistics adjusted for heteroscedasticity (with 3 lags) are reported in parentheses. The sample period is January 2, 2002
to October 11, 2006.
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α βMKT βSMB βHML βUMD βTERM βDEF βNDEF βDRP R2 E[R] − RF

Investment-Grade Broad Industry Portfolios

0.0001 -0.0060 0.0299 0.0336 -0.0115 0.4086 0.1782 – – 0.8747 0.0006
(1.1485) (-0.8321) (2.4406) (1.9285) (-1.4352) (29.8452) (3.8846)

0.0000 0.0003 0.0320 0.0474 -0.0184 0.3978 – 0.0946 0.2874 0.8837 0.0006
(0.2525) (0.0565) (2.6873) (2.6137) (-2.2647) (30.9493) (1.7544) (4.4872)

High-Yield Sector Portfolios

0.0010 0.0329 0.1010 0.0935 -0.0054 0.1905 0.5934 – – 0.3087 0.0014
(2.1865) (1.0351) (2.8037) (1.3260) (-0.1527) (4.4024) (3.7006)

0.0008 0.0595 0.1059 0.1267 -0.0284 0.1570 – 0.2635 0.7152 0.2937 0.0014
(1.5067) (2.0321) (3.0559) (2.0720) (-0.8533) (3.4657) (1.9368) (3.0611)

Table 8: The Merrill Lynch Industry Investment-Grade and High-Yield Corporate Bond Portfolios This table reports
the results of the time-series regressions of weekly realized excess returns of 4 IG Merrill Lynch corporate bond portfolios sorted by
broad industry and of 30 HY Merrill Lynch corporate bond portfolios sorted by sector on MKT , SMB, HML, UMD, TERM , and
DEF . Specifically, for each portfolio we estimate the regression: R(t)−RF (t) = α+βMKTMKT (t)+βSMBSMB(t)+βHMLHML(t)+
βUMDUMD(t) + βTERMTERM(t) + βDEF DEF (t) + ε(t). We also report the estimation results after replacing DEF by NDEF and
DRP . Newey-West t-statistics adjusted for heteroscedasticity (with 3 lags) are reported in parentheses. All figures are median values
across portfolios. The sample period is October 2, 2002 to October 11, 2006.
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α βMKT βSMB βHML βUMD βTERM βDEF βNDEF βDRP R2

100 Fama-French Equity Portfolios

0.0000 1.0581 0.5761 0.2618 -0.0286 -0.0028 -0.0002 – – 0.8507
(-0.0313) (25.2910) (7.3920) (2.9639) (-0.4961) (-0.0481) (0.0001)

-0.0001 1.0582 0.5749 0.2552 -0.0293 -0.0026 – 0.0362 -0.0358 0.8504
(-0.2026) (24.7153) (7.6078) (2.9925) (-0.5681) (-0.0547) (0.0909) (-0.1265)

49 Fama-French Industry Portfolios

0.0004 0.9763 0.2251 0.0867 0.0995 -0.0101 -0.0247 – – 0.6107
(0.3038) (13.9128) (2.1090) (0.5032) (0.9198) (-0.0870) (-0.0584)

0.0004 0.9543 0.2400 0.0632 0.0935 0.0151 – -0.0907 0.1175 0.6114
(0.3456) (13.9297) (2.1393) (0.5122) (0.7333) (0.2012) (-0.1415) (0.2954)

Table 9: The 100 Fama-French Equity and the 49 Fama-French Industry Portfolios This table reports the results of the

time-series regressions of weekly realized excess returns of 100 Fama and French equity portfolios sorted on firm size and book-to-market

equity and of the 49 Fama-French industry portfolios on MKT , SMB, HML, UMD, TERM , and DEF . Specifically, for each portfolio

we estimate the regression: R(t)−RF (t) = α+βMKTMKT (t)+βSMBSMB(t)+βHMLHML(t)+βUMDUMD(t)+βTERMTERM(t)+

βDEF DEF (t) + ε(t). We also report the estimation results after replacing DEF by NDEF and DRP . Newey-West t-statistics adjusted

for heteroscedasticity (with 3 lags) are reported in parentheses. All figures are median values across portfolios. The sample period is

October 2, 2002 to October 11, 2006.
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Moneyness Option to expire

1st 2nd 3rd-5th ≥ 6th

Average excess returns

0.85-0.9 -0.0092 -0.0051 -0.0028 -0.0009
0.9-0.95 -0.0072 -0.0036 -0.0020 -0.0008
0.95-1 -0.0031 -0.0019 -0.0012 -0.0005
> 1 -0.0008 -0.0006 -0.0004 -0.0003

Loadings on DRP factor

0.85-0.9 -0.4245 -0.1598 -0.0732 0.0991
(-1.8182) (-0.6695) (-0.3841) (0.6326)

0.9-0.95 -0.4326 -0.2149 -0.0683 0.0596
(-1.3396) (-1.1729) (-0.4605) (0.4757)

0.95-1 -0.3521 -0.1849 -0.0711 0.0699
(-1.2295) (-1.4245) (-0.6400) (0.6412)

> 1 -0.1439 -0.0680 -0.0246 0.0654
(-0.9364) (-0.9373) (-0.3435) (1.1035)

Loadings on ∆ log(V IX)

0.85-0.9 0.1017 0.0868 0.0755 0.0537
(6.8200) (8.1852) (9.2116) (8.7100)

0.9-0.95 0.0800 0.0768 0.0652 0.0461
(7.1673) (8.2425) (9.1908) (9.2257)

0.95-1 0.0706 0.0597 0.0516 0.0400
(7.1483) (7.9446) (8.9274) (8.5776)

> 1 0.0284 0.0282 0.0264 0.0229
(6.7876) (7.3996) (8.1611) (8.9021)

Table 10: The Index Put Options Portfolios This table reports the results of
the time-series regressions of weekly realized excess returns of 16 value-weighted delta-
hedged index put options portfolios sorted on moneyness and time-to-maturity on MKT ,
SMB, HML, UMD, TERM , and DRP . We also includes changes in log V IX as a
covariate. Specifically, for each portfolio we estimate the regression: R(t) − RF (t) =
α+βMKT MKT (t)+βSMBSMB(t)+βHMLHML(t)+βUMDUMD(t)+βTERMTERM(t)+
βNDEF NDEF (t) + βDRP DRP (t) + βV IX∆ log V IX(t) + ε(t). Newey-West t-statistics ad-
justed for heteroscedasticity (with 3 lags) are reported in parentheses. The sample period
is January 2, 2002 to October 11, 2006.
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Factors γ0 γMKT γSMB γHML γUMD γTERM γNDEF γDRP R2

Corporate bonds

DRP 0.0678 – – – – – – 0.0634 0.1344
0.0661 0.0711

(0.0478) (0.0221)
MKT and DRP 0.0780 0.4908 – – – – – 0.0291 0.2937

0.0870 0.4547 0.0115
(0.0445) (0.2215) (0.0197)

Equity

DRP 0.2642 – – – – – – 0.0252 0.0430
0.3040 0.0124

(0.0988) (0.0224)

MKT and DRP 0.3692 -0.0274 – – – – – 0.0090 0.1066
0.3176 -0.0434 0.0205

(0.0842) (0.1060) (0.0218)

all 0.3855 -0.0997 0.1237 0.1643 0.1241 -0.1213 0.0300 0.0199 0.2817
0.3140 -0.1023 0.0635 0.0716 -0.1022 0.0193 0.0820 0.0110

(0.0788) (0.2088) (0.0897) (0.0811) (0.1584) (0.1105) (0.0513) (0.0180)

Options

DRP -0.1940 – – – – – – 0.1696 0.3501
-0.1501 0.1507
(0.0352) (0.0501)

MKT and DRP -0.1639 -0.7947 – – – – – 0.1923 0.6504
-0.1336 -1.0024 0.0561
(0.0252) (0.2656) (0.0631)

Table 11: Cross-Sectional Tests by Market This table reports the results in percent of weekly cross-sectional regressions by asset class, using
either the DRP factor loadings only, or MKT and DRP factor loadings. For each regression, the reported intercepts and slopes are the median (first
row) and mean (second row) across time. Newey-West standard errors are shown in parentheses. Refer to Table 12 for details on the estimation.
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Factors γ0 γMKT γSMB γHML γUMD γTERM γNDEF γDRP R2

Corporate bonds and equity

all 0.1375 0.3000 0.0201 0.1360 0.4421 -0.0193 0.0104 0.0094 0.3986
0.1118 0.2992 0.0222 0.0546 0.1214 -0.0173 0.0777 0.0014

(0.0373) (0.1875) (0.0884) (0.0797) (0.1490) (0.1111) (0.0480) (0.0115)

All assets

all -0.0349 0.5860 -0.0019 0.1340 0.3997 0.1717 0.0646 0.0408 0.4195
-0.0110 0.5692 0.0576 0.0611 0.1994 0.1839 0.1174 0.0265
(0.0250) (0.1789) (0.0888) (0.0797) (0.1526) (0.1097) (0.0518) (0.0108)

Table 12: Cross-Sectional Tests for Multiple Markets This table reports the results (in percent) of weekly cross-sectional regressions across mar-
kets. Specifically, we estimate the coefficients of the regression: Ri(t)−RF (t) = γ0(t)+γMKT (t)βi

MKT (t−l)+γSMB(t)βi
SMB(t−l)+γHML(t)βi

HML(t−
l)+γUMD(t)βi

UMD(t− l)+γTERM(t)βi
TERM (t− l)+γNDEF (t)βi

NDEF (t− l)+γDRP (t)βi
DRP (t− l)+ εi(t), where the loadings βi

F (t− l) are computed
directly using the formula covt−l(R

i, F )/var(F ). We report the median (first value) and mean (second value) of the intercepts and slopes of the
cross-sectional regressions across weeks. The reported R2 is the median coefficient of determination of the cross-sectional regressions across weeks.
Newey-West standard errors (with 1 lag) are given in parentheses. The sample period is January 2, 2002 to October 11, 2006.
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∆α ∆R2 βChar βDRP

Characteristics Est tStat Est tStat

EDF -0.0001 0.0029 0.0449 0.6519 0.4313 7.1279

Recovery Rate -0.0016 0.0028 0.0040 0.4768 0.4473 7.5960

Implied Vol -0.0002 0.0020 0.0009 0.4557 0.4278 7.0517

Leverage -0.0004 0.0020 0.0012 0.3334 0.4068 6.7819

Table 13: The Impact of Firm Characteristics This table reports the results of
the regressions of the excess returns of pure default-contingent claims with 1 year to
maturity of 112 firms on MKT , SMB, HML, UMD, TERM , DRP , and a firm
characteristic ϑ. Specifically, for each firm we estimate the regression: Ri

t,h(T ) −
RFt = αi + βi

MKT MKT (t) + βi
SMB SMB(t) + βi

HML HML(t) + βi
UMD UMD(t) +

βi
TERM TERM(t) + βi

NDEF NDEF (t) + βi
DRP DRP (t) + βi

Char ϑi(t − h) + εi
ϑ(t). We

report the median across firms of the change in the intercept and the R2 due to the
characteristic, as well as summary statistics of the loadings on the characteristic and
the default risk premia factor. The sample period is January 2, 2002 to October 11,
2006.

D The DRP Components
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one default-related component two default-related compts
Name βDRP βDRP L βDRP JtD βDRP MP R βDRP L βDRP−L

Bloomberg-NASD Portfolios

IG 0.9947 2.3244 1.3918 2.5093 1.9374 0.7984
(13.3886) (8.6889) (8.4300) (9.8090) (9.6777) (10.5035)

HY 2.4944 2.5198 4.5389 6.6943 1.1782 2.7685
(8.5218) (2.9758) (10.2952) (5.6553) (2.4165) (8.0216)

ML Rating Portfolios

AAA 0.2180 0.2943 0.2759 0.4294 0.2852 0.1816
(4.3125) (2.4419) (3.0769) (2.0514) (2.6434) (2.9071)

AA 0.2090 0.2566 0.2940 0.4119 0.2472 0.1883
(4.4938) (2.1662) (3.7941) (2.6725) (2.3616) (3.3231)

A 0.2985 0.2374 0.5370 0.6889 0.2204 0.3408
(5.8592) (2.3049) (7.3027) (3.9867) (2.6910) (6.4185)

BAA 0.6698 0.1546 1.5358 1.8781 0.1060 0.9749
(4.4123) (0.8341) (18.8489) (5.9564) (0.9317) (14.5689)

BA 1.3825 0.5822 2.6308 2.9412 0.0069 1.6296
(5.5121) (1.2422) (4.9563) (5.0229) (0.0126) (4.8297)

B 1.5643 0.9644 2.8333 3.4812 0.3341 1.7854
(7.7088) (2.4412) (9.5794) (5.8354) (0.7608) (8.5783)

C 1.5633 1.1344 2.7203 3.6593 0.5161 1.7514
(5.3211) (1.3414) (4.2146) (4.2890) (0.6027) (4.5795)

ML Maturity Portfolios

1-3yrs 0.2388 0.2226 0.3829 0.5788 0.2099 0.2545
(3.7913) (1.4210) (4.6226) (3.2789) (1.5038) (4.6263)

3-5yrs 0.3645 0.2989 0.6318 0.8833 0.2784 0.4111
(4.4815) (1.5227) (6.1370) (3.9102) (1.6701) (5.7381)

5-7yrs 0.4249 0.2654 0.8248 1.0544 0.2391 0.5255
(4.7231) (1.5487) (8.3258) (4.7893) (1.7459) (7.3197)

7-10yrs 0.5057 0.2517 1.0458 1.2866 0.2187 0.6611
(5.2430) (1.6420) (10.9020) (4.6506) (2.0718) (9.3790)

10-15yrs 0.5312 0.3183 1.0473 1.3155 0.2851 0.6643
(5.7913) (2.4928) (6.8088) (5.3341) (3.4522) (6.1017)

15+yrs 0.6118 0.0059 1.5487 1.7493 -0.0423 0.9658
(5.0511) (0.0837) (30.3014) (6.4455) (-0.4940) (14.6657)

ML IG Broad Industry Portfolios

0.2874 0.3647 0.4534 0.6265 0.3575 0.2919
(4.4872) (2.1380) (3.5166) (3.4160) (2.5097) (3.7765)

ML HY Sector Portfolios

0.7152 0.1902 1.6650 1.9520 0.1263 1.0519
(3.0611) (0.9485) (4.2014) (2.7291) (0.8381) (3.9328)

Table 14: Corporate Bond Portfolios This table reports the results of the time-series regressions
of weekly realized excess returns of various corporate bond portfolios on MKT , SMB, HML,
UMD, TERM , and DRP . The first column summarizes the results for the DRP factor reported
in Tables 5 through 8. The next three columns report these estimates after replacing DRP with
DRPL, DRP JtD and DRPMPR, respectively. The last two columns show the estimation results
after replacing DRP by DRPL and DRP−L. Newey-West t-statistics adjusted for heteroscedasticity
(with 3 lags) are reported in parentheses. The sample period is January 2, 2002 to October 11, 2006,
except for the Bloomberg-NASD portfolios which where initiated in October 2002.
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Loading Moneyness Option to expire

1st 2nd 3rd-5th ≥ 6th

βDRP L 0.85-0.9 -0.4161 0.0838 0.2806 0.4842
(-1.8391) (0.3535) (1.4139) (2.6901)

0.9-0.95 -0.3341 0.0827 0.2290 0.4162
(-1.0375) (0.5052) (1.4462) (2.8161)

0.95-1 -0.0091 0.1079 0.2305 0.4116
(-0.0330) (0.8897) (1.7927) (2.8185)

1-1.05 0.0478 0.0791 0.1747 0.3085
(0.2717) (0.8436) (2.0271) (2.8194)

βDRP JtD 0.85-0.9 -0.4873 -0.3982 -0.3859 -0.1965
(-0.6045) (-0.7929) (-0.9314) (-0.7231)

0.9-0.95 -0.5276 -0.5091 -0.3444 -0.2145
(-0.6141) (-1.1994) (-1.0520) (-0.9292)

0.95-1 -0.8086 -0.4950 -0.3493 -0.1958
(-1.4546) (-1.5835) (-1.3990) (-1.0054)

1-1.05 -0.3782 -0.2151 -0.1979 -0.1129
(-1.3189) (-1.2600) (-1.3526) (-0.9742)

βDRP MP R 0.85-0.9 -1.9833 -0.8011 -0.6071 -0.0673
(-2.3205) (-0.9233) (-0.8575) (-0.1027)

0.9-0.95 -2.2344 -1.0411 -0.4968 -0.1932
(-2.1656) (-1.5995) (-0.8769) (-0.3861)

0.95-1 -1.9270 -0.8524 -0.5172 -0.1228
(-2.3433) (-1.8773) (-1.2992) (-0.2600)

1-1.05 -0.8822 -0.3528 -0.2827 -0.0606
(-2.5888) (-1.7760) (-1.6232) (-0.3336)

βDRP L 0.85-0.9 -0.3105 0.1006 0.2961 0.4906
(-1.5144) (0.4503) (1.4928) (2.7052)

0.9-0.95 -0.2294 0.1046 0.2423 0.4240
(-0.9099) (0.6547) (1.4887) (2.8197)

0.95-1 0.1061 0.1279 0.2441 0.4183
(0.5446) (0.9457) (1.7387) (2.7738)

1-1.05 0.1025 0.0876 0.1824 0.3124
(0.7360) (0.8441) (1.9180) (2.7135)

βDRP−L 0.85-0.9 -0.5250 -0.3032 -0.2742 -0.1140
(-1.2391) (-0.9578) (-1.1220) (-0.6374)

0.9-0.95 -0.5835 -0.3888 -0.2374 -0.1388
(-1.1800) (-1.5220) (-1.2319) (-0.9961)

0.95-1 -0.6892 -0.3552 -0.2427 -0.1197
(-2.0216) (-1.8997) (-1.7052) (-1.0060)

1-1.05 -0.3254 -0.1527 -0.1373 -0.0695
(-1.9219) (-1.5130) (-1.5978) (-1.1055)

Table 15: Index Put Options Portfolios This table reports the results of the time-series re-
gressions of weekly realized excess returns of 16 value-weighted delta-hedged index put option bond
portfolios on MKT , SMB, HML, UMD, TERM , and ∆ log V IX . We also include either DRPL,
DRP JtD or DRPMPR as a covariate. The last two columns show the estimation results when DRPL

and DRP−L are included in the regression. Newey-West t-statistics adjusted for heteroscedasticity
(with 3 lags) are reported in parentheses. The sample period is January 2, 2002 to October 11, 2006,
except for the Bloomberg-NASD portfolios which where initiated in October 2002.
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Factors single dflt-rltd component two default-rltd components
γDRP γDRP L γDRP JtD γDRP MP R γDRP L γDRP−L

Corporate bonds

dflt-rltd 0.0634 -0.0105 0.0338 0.0166 -0.0060 0.0586
0.0711 -0.0046 0.0267 0.0241 -0.0068 0.0493

(0.0221) (0.0141) (0.0149) (0.0082) (0.0134) (0.0177)

plus MKT 0.0291 -0.0075 0.0123 0.0048 -0.0098 0.0220
0.0115 -0.0118 0.0038 0.0037 -0.0121 0.0044

(0.0197) (0.0084) (0.0144) (0.0084) (0.0092) (0.0231)

Equity

dflt-rltd 0.0252 0.0124 -0.0005 0.0011 0.0124 0.0021
0.0124 0.0083 0.0030 0.0042 0.0019 0.0047

(0.0224) (0.0102) (0.0121) (0.0074) (0.0105) (0.0188)

plus MKT 0.0090 0.0200 -0.0039 -0.0059 0.0165 -0.0044
0.0205 0.0101 0.0066 0.0030 0.0020 0.0102

(0.0218) (0.0105) (0.0112) (0.0071) (0.0106) (0.0176)

Options

dflt-rltd 0.1696 0.0031 0.0855 0.0471 0.0285 0.1928
0.1507 -0.0343 0.1020 0.0355 -0.0144 0.1378

(0.0501) (0.0528) (0.0323) (0.0138) (0.0666) (0.0563)

plus MKT 0.1923 -0.0345 0.0773 0.0328 0.0306 0.2149
0.0561 -0.0960 0.0453 0.0117 -0.0797 0.1611

(0.0631) (0.0538) (0.0303) (0.0162) (0.0612) (0.0463)

All assets

all 0.0408 0.0112 0.0244 0.0132 0.0106 0.0396
0.0265 0.0081 0.0190 0.0090 0.0060 0.0258

(0.0108) (0.0075) (0.0064) (0.0040) (0.0077) (0.0097)

Table 16: Cross-sectional Tests This table reports the results (in percent) of weekly cross-
sectional regressions in (16). The first column summarizes the results for the DRP factor reported
in Tables 11 and 12. The next three columns report these estimates after replacing DRP with
DRPL, DRP JtD and DRPMPR, respectively. The last two columns show the estimation results
after replacing DRP by DRPL and DRP−L. We report the median (first value) and mean (second
value) of the intercepts and slopes of the cross-sectional regressions across weeks. The reported R2 is
the median coefficient of determination of the cross-sectional regressions across weeks. Newey-West
standard errors (with 1 lag) are given in parentheses. The sample period is January 2, 2002 to
October 11, 2006.

E Asset Pricing Test Results using CDS Returns

57



one default-related component two default-related compts
Name βCDRP βCDRP L βCDRP JtD βCDRP MP R βCDRP L βCDRP−L

Bloomberg-NASD Portfolios

IG 0.0332 0.0081 0.0337 0.0603 0.0449 0.0334
(5.5044) (0.8317) (5.0476) (4.0012) (3.6170) (5.5230)

HY 0.1294 -0.0108 0.1340 0.3112 0.1316 0.1295
(8.3823) (-0.4238) (7.1915) (6.6907) (4.8094) (8.3939)

ML Rating Portfolios

AAA 0.0085 -0.0090 0.0117 0.0149 -0.0001 0.0084
(2.7310) (-1.5730) (3.3237) (1.8127) (-0.0118) (2.6794)

AA 0.0081 -0.0110 0.0121 0.0112 -0.0026 0.0079
(2.8542) (-2.0732) (4.1233) (1.3373) (-0.4195) (2.7809)

A 0.0178 -0.0106 0.0216 0.0337 0.0083 0.0177
(5.4611) (-1.7637) (6.5782) (4.2842) (1.4017) (5.3876)

BAA 0.0516 -0.0057 0.0554 0.0956 0.0493 0.0516
(8.6212) (-0.6131) (9.4859) (6.8012) (5.4626) (8.6127)

BA 0.0979 0.0025 0.0991 0.2137 0.1061 0.0980
(5.3950) (0.1604) (4.9643) (7.2775) (4.3413) (5.4014)

B 0.1062 0.0070 0.1054 0.2390 0.1194 0.1064
(8.6621) (0.4068) (7.7914) (7.2813) (5.3594) (8.6648)

C 0.1504 0.0148 0.1443 0.3685 0.1741 0.1507
(9.4498) (0.4116) (5.8680) (8.8809) (4.7927) (9.5727)

ML Maturity Portfolios

1-3yrs 0.0096 -0.0073 0.0133 0.0075 0.0028 0.0095
(3.1519) (-1.3526) (4.1679) (0.9752) (0.4647) (3.0900)

3-5yrs 0.0163 -0.0127 0.0218 0.0205 0.0045 0.0162
(3.7297) (-1.6524) (4.8707) (1.8128) (0.5356) (3.6711)

5-7yrs 0.0267 -0.0126 0.0316 0.0478 0.0157 0.0265
(5.5620) (-1.4113) (6.4411) (3.9455) (1.7459) (5.5174)

7-10yrs 0.0333 -0.0079 0.0375 0.0572 0.0275 0.0332
(5.8066) (-0.9066) (6.7051) (4.2745) (3.1907) (5.7941)

10-15yrs 0.0287 -0.0001 0.0315 0.0393 0.0305 0.0287
(4.6295) (-0.0128) (5.1591) (3.0672) (2.7024) (4.6253)

15+yrs 0.0619 -0.0038 0.0631 0.1369 0.0622 0.0619
(13.9868) (-0.4385) (12.4390) (11.9418) (8.9966) (13.9795)

ML IG Broad Industry Portfolios

0.0155 -0.0100 0.0188 0.0157 0.0063 0.0153
(2.6375) (-1.5034) (3.1334) (1.1628) (0.8531) (2.6238)

ML HY Sector Portfolios

0.0816 -0.0044 0.0800 0.2258 0.0881 0.0812
(7.0487) (-0.2258) (5.1234) (6.1938) (2.9496) (7.0955)

Table 17: Corporate Bond Portfolios This table reports the results of the time-series regres-
sions in (15) for various corporate bond portfolios when using the return definition in (23). The first
column summarizes the results for the CDRP factor. The next three columns report these esti-
mates after replacing CDRP with CDRPL, CDRP JtD and CDRPMPR, respectively. The last two
columns show the estimation results after replacing CDRP by CDRPL and CDRP−L. Newey-West
t-statistics adjusted for heteroscedasticity (with 3 lags) are reported in parentheses. The sample pe-
riod is January 2, 2002 to October 11, 2006, except for the Bloomberg-NASD portfolios which where
initiated in October 2002.
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Loading Moneyness Time to Expiration

1st 2nd 3rd-5th ≥ 6th

βCDRP 0.85-0.9 -0.0295 -0.0260 -0.0260 -0.0304
(-1.0590) (-1.4775) (-2.0116) (-3.6708)

0.9-0.95 -0.0250 -0.0292 -0.0215 -0.0243
(-1.3949) (-1.8833) (-2.0624) (-3.4661)

0.95-1 -0.0350 -0.0215 -0.0160 -0.0194
(-2.4247) (-2.0591) (-2.1137) (-3.1144)

1-1.05 -0.0234 -0.0092 -0.0085 -0.0081
(-2.4675) (-1.7661) (-1.6991) (-1.9060)

βCDRP L 0.85-0.9 -0.1578 -0.0316 -0.0079 0.0015
(-1.5999) (-0.9592) (-0.3619) (0.0841)

0.9-0.95 -0.0911 -0.0174 -0.0065 0.0001
(-1.2096) (-0.7530) (-0.3538) (0.0068)

0.95-1 -0.1214 0.0029 0.0037 0.0033
(-2.0936) (0.1647) (0.2556) (0.2482)

1-1.05 -0.0912 0.0152 0.0124 0.0091
(-2.2350) (1.3488) (1.2985) (0.9956)

βCDRP JtD 0.85-0.9 -0.0224 -0.0222 -0.0253 -0.0280
(-0.6018) (-1.2501) (-2.0545) (-3.0654)

0.9-0.95 -0.0295 -0.0259 -0.0212 -0.0230
(-1.2350) (-1.6676) (-2.0535) (-2.9700)

0.95-1 -0.0421 -0.0246 -0.0191 -0.0199
(-2.2355) (-2.2648) (-2.3977) (-3.0001)

1-1.05 -0.0245 -0.0143 -0.0128 -0.0109
(-2.2383) (-2.3638) (-2.3755) (-2.3064)

βCDRP MPR 0.85-0.9 0.0410 -0.0282 -0.0438 -0.0920
(0.4184) (-0.5103) (-1.1080) (-3.1587)

0.9-0.95 -0.0241 -0.0488 -0.0341 -0.0656
(-0.5395) (-1.0358) (-1.1434) (-2.7692)

0.95-1 -0.0348 -0.0277 -0.0180 -0.0478
(-0.9644) (-0.9805) (-0.9159) (-2.3469)

1-1.05 -0.0370 -0.0144 -0.0119 -0.0165
(-1.3589) (-1.0013) (-0.8540) (-1.2042)

Table 18: Index Put Options Portfolios This table reports the results of the time-series
regressions in (15) for 16 value-weighted delta-hedged index put option portfolios when
using the return definition in (23). The first column summarizes the results for the CDRP
factor. The next three columns report these estimates after replacing CDRP with CDRPL,
CDRP JtD and CDRPMPR, respectively. The last two columns show the estimation results
after replacing CDRP by CDRPL and CDRP−L. Newey-West t-statistics adjusted for
heteroscedasticity (with 3 lags) are reported in parentheses. The sample period is January
2, 2002 to October 11, 2006.
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Factors single dflt-rltd component two default-rltd components
γCDRP γCDRP L γCDRP JtD γCDRP MP R γCDRP L γCDRP−L

Corporate bonds

dflt-rltd 0.8155 -0.0249 1.0672 0.2442 0.5153 1.1946
0.6594 -0.0692 0.6515 0.1865 0.1710 0.7355

(0.4133) (0.4473) (0.4760) (0.1373) (0.3682) (0.5427)

plus MKT 0.2677 0.4007 0.1205 0.0611 0.5061 0.3872
0.1919 0.0658 0.2454 0.0416 0.1000 0.3068

(0.4235) (0.3243) (0.4552) (0.1397) (0.3448) (0.5617)

Equity

dflt-rltd 0.1088 0.3317 0.0013 0.0304 0.2143 0.3602
-0.0675 0.1707 -0.2524 0.0115 0.1743 -0.0165
(0.3229) (0.1808) (0.3517) (0.0947) (0.1862) (0.3569)

plus MKT -0.0292 0.2180 0.0787 -0.0081 0.1963 -0.0522
0.0256 0.1555 -0.2364 0.0267 0.1431 0.0377

(0.2780) (0.1493) (0.2583) (0.0777) (0.1622) (0.3348)

Options

dflt-rltd 3.6058 -0.5178 1.8229 0.2807 -0.2287 3.3980
2.8957 -1.4498 1.4023 0.2038 -1.1121 1.6852

(0.7640) (0.7069) (0.7797) (0.2216) (0.5713) (0.8537)

plus MKT 2.9164 -0.3291 1.8907 0.7536 0.0547 3.2913
2.8698 -0.4261 1.6274 0.8302 0.5882 2.2043

(0.6304) (0.6383) (0.6954) (0.1877) (0.5194) (0.8195)

All assets

all 0.7344 0.0458 0.4003 0.1668 0.2544 0.7558
0.4812 0.1450 0.2590 0.1515 0.2380 0.5827

(0.1556) (0.1244) (0.1707) (0.0492) (0.1321) (0.2136)

Table 19: Cross-sectional Tests his table reports the results (in percent) of weekly cross-sectional
regressions in (16). The first column summarizes the results for the CDRP factor. The next three
columns report these estimates after replacing CDRP with CDRPL, CDRP JtD and CDRPMPR,
respectively. The last two columns show the estimation results after replacing CDRP by CDRPL

and CDRP−L. We report the median (first value) and mean (second value) of the intercepts and
slopes of the cross-sectional regressions across weeks. The reported R2 is the median coefficient of
determination of the cross-sectional regressions across weeks. Newey-West standard errors (with 1
lag) are given in parentheses. The sample period is January 2, 2002 to October 11, 2006.
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