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Abstract

This paper studies the causal e¤ect of individuals�overcon�dence and bounded rationality
on asset markets. To do that, we combine a new market mechanism with an experimental
design, where (1) players�interaction is centered on the inferences they make about each
others� information, (2) overcon�dence in private information is controlled by the experi-
menter (i.e., used as a treatment), and (3) natural analogs to prices, returns and volume
exist.

We �nd that in sessions where subjects are induced to be overcon�dent, volume and price
error analogs are higher than predicted by the fully-rational model. However, qualitatively
similar results are obtained in sessions where there is no aggregate overcon�dence. To
explain this, we suggest an alternative possibility: participants strategically respond to
the errors contained in others� actions by rationally discounting the informativeness of
these actions. Estimating a structural model of individuals�decisions that allows for both
overcon�dence and errors, we are able to separate these two channels. We �nd that a
substantial fraction of excess volume and price error analogs is attributable to strategic
response to errors, while the remaining is attributable to overcon�dence. Further, we show
that price analog exhibit serial autocorrelation only in the overcon�dence-induced sessions.



1 Introduction

Recent studies suggest that overcon�dence on the part of traders can rationalize a set
of long standing asset-pricing �anomalies�such as excess trading volume, excess volatility
and serially autocorrelated returns [see for example Kyle and Wang (1997), Odean (1998),
Daniel et al. (1998)]. To understand the link between overcon�dence and �nancial markets,
consider a generic market populated by partially informed traders. Each trader�s decision
re�ects a weighting of her private (yet imperfect) information and the information revealed
by the actions of others. Overcon�dent traders perceive their signal to be more precise than
it is, thus irrationally overweighting it. As a result (1) beliefs are more dispersed across
traders, leading to greater volume, and (2) prices over-re�ect overcon�dent traders�signals,
leading to poorer price informativeness.1

We suggest an alternative reason that may cause traders to rationally �overweight�their
information relative to the information of others: they strategically respond to errors made
by others. The idea that people make mistakes, in the sense that they do not always best
respond when interacting with others, is well documented [see Camerer (2003)]. Generally,
mean-zero mistakes in actions can have two e¤ects: direct and strategic. If errors are
added to players�Nash equilibrium strategies, the direct e¤ect would wash out across many
observations. However, if in addition players are aware of others�mistakes and react to them,
this would lead to a strategic e¤ect that as we show, does not necessarily average out. In
this case, traders would discount the informativeness of fellow traders�actions, rationally
overweighting their own information. Thus, overcon�dence and response to errors both lead
to directionally similar behavior and may therefore be observationally equivalent.

To separate these competing channels and quantify their relative magnitude on volume,
prices and returns analogs, we study (theoretically and experimentally) a new game that ex-
plicitly links individual level behavior and asset markets. The experimental setting enables
us to control and/or measure individuals� information, preferences and beliefs, which are
key determinants of their decisions. While previous experimental studies have also looked
at aggregation of information in �nancial markets [Plott and Sunder (1982), (1988) and
Sunder (1995) for a survey], they focused on market outcomes and not on individual be-
havior. Other important studies have suggested rich descriptions of how individuals learn
from each others�actions [see Bikhchandani, Hirshleifer and Welch (1998) for a survey] but
used settings that are somewhat di¤erent from those found in asset markets. Our design is
novel in that it outlines a way of bridging these two strands of literature.

In the game there are two players, each receiving (1) a private signal and (2) a private
signal-precision. Players� task is to guess an unknown fundamental value, around which
their signals are drawn. The game consists of multiple decision turns in which players �rst
observe each others�previously submitted estimates and then simultaneously submit new
ones. At the end of the game, one of the previous turns is chosen randomly and each
subject is paid according to the accuracy of her estimate on that turn relative to the drawn
value. Players�payo¤s do not come from trading but rather depend on the accuracy of their
individual estimates.2 Thus trading intensity, which is related to con�dence in valuation, is
replaced by persistency: the more a player is con�dent in her private information, the less she
adjusts her estimates across turns. Over time (under full-rationality), players are predicted

1We do not claim that these results would come out of all models of overcon�dence; rather, we are trying
to provide an intuition for how overcon�dence may a¤ect markets.

2Unlike most trading mechanisms, the one described here is not a �xed sum game. This allows us to
simplify the inference problem by inducing subjects to act as if they were risk-neutral price takers.
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to perfectly aggregate their private information, converging to the Rational Expectations
Equilibrium level.

In this game, natural proxies for prices, returns and volume emerge. The idea that
prices re�ect a weighted average of traders�individual beliefs about the fundamental value
is very common in information based asset pricing models [e.g. Diamond and Verrecchia
(1981)]. These weights generally depend on the distribution of wealth and/or preferences in
the economy. Since in this game we control for endowments and modulate the e¤ect of risk
attitudes, we de�ne a price index as the (equally weighted) average of players�estimates.
Also, speculative volume is generally a result of traders�di¤ering valuation of the underlying
asset [e.g., Wang (1998)]. We therefore create a volume index which is equal to the absolute
di¤erence of players�estimates (recall that the game induces players to submit estimates
which are equal to their valuations). Using these de�nitions, we construct a return index.

We conducted experimental sessions in which subjects participated in this game and
were rewarded in cash based on their decisions.3 Private signal precision (high or low) was
determined by the subjects� rank on a task that took place at the beginning of sessions.
In some sessions, denoted as baseline treatment (BLT), participants rolled a die (whose
outcome was privately observed). In other sessions, denoted as overcon�dence treatment
(OCT), participants answered a short SAT quiz [see Camerer and Lovallo (1999)].4 While
the die throw is a neutral treatment, the SAT is not; many previous studies document the
tendency of individuals to perceive themselves as �better than average�in variety of contexts
[e.g., Svenson (1981)]. Therefore, subjects who mistakenly believe they are better than their
median peer on the SAT quiz will also mistakenly believe their signal precision is better
than it really is and are therefore going to be overcon�dent about their private signal �not
by conjecture, but rather by construction.5

Analyzing the results from the OCT we �nd that volume and price error indexes are in
excess of what is predicted by the fully-rational model, lending support to the hypothesized
e¤ect of overcon�dence on markets. However, we �nd qualitatively similar results in the
BLT, where subjects have no reason to be overcon�dent.6 Speci�cally, we �nd that a
substantial fraction of excess volume index is attributable to strategic response to errors,
while the remaining is attributable to overcon�dence. If one looks at the price error index,
similar results are obtained.

To formally separate these competing channels we form a structural model, denoted
as Noisy Actions Biased Beliefs (�NABB�), that maps exogenous information, endogenous
information and beliefs into actions while allowing for both erroneous beliefs and erroneous
actions. Applying it to the data enables us to back out participants�subjective con�dence
in their information, calculate best-responses and estimate the magnitude of errors to which
they respond.7 Fitting the model on both treatments con�rms that subjects are on average

3Subjects were primarily UC Berkeley business and economics undergraduate students, earning $5-$15,
depending on individual performance, for a one-hour long experiment.

4 In both treatments subjects were not told what their rank was but were made aware of the way it was
determined.

5Most other experimental studies used survey-based miscalibration results and relate them to trading
activity either in experimental markets [see Biais et al (2002)] or naturally occurring markets [see Glaser
and Weber (2003)]. There are two potential problems with this approach: (1) these surveys do not provide
incentives for accuracy and (2) miscalibration tends to be domain speci�c; for example, the level of overcon-
�dence tends to depend on the di¢ culty of the task [Fisschho¤ et al. (1977), Lichtenstein et al. (1982)] and
on the domain-expertise [Keren (1987)].

6As we show later on, subjects do not exhibit aggregate overcon�dence in the BLT.
7This is in the spirit of Quantal Response Equilibrium (QRE) models previously studied in the context
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overcon�dent in the OCT (around 15%) but not in the BLT and that subjects seem to be
responding to mean-zero errors made by others.8

The remainder of the paper is organized as follows: section 2 sets up the theoretical
model and derives the unique subgame-perfect Nash equilibrium and section 3 describes
the experimental design mirroring this model. Section 4 discusses the model-independent
empirical results. We proceed to specify a richer model of behavior in section 5 and discuss
its estimation results in section 6. We summarize in section 7.

2 Literature Review

There are a number of voluminous strands of literature related to this paper which we do
not cover in this short review including cognitive psychology studies of overcon�dence and
miscalibration, theoretical asset pricing models studying the e¤ect of traders� overcon�-
dence, and empirical and theoretical work on social learning. Rather, we focus on the most
closely related experimental work on overcon�dence and emphasize key di¤erences between
these studies and our paper.

Kirchler and Maciejovsky (2002) measure individuals�miscalibration and how it is af-
fected by trading. They allow subjects to trade securities that pay stochastic dividends
over a number of periods in double-auction markets. At the beginning of each period, sub-
jects are asked to provide an assessment of the distribution of trading prices they expect to
observe. The authors use these predictions to construct two di¤erent measures of overcon-
�dence. They �nd substantial heterogeneity in subjects�levels of over/undercon�dence but
�nd no aggregate overcon�dence.

Biais et. al. (2002) correlate individual measures of overcon�dence and self-monitoring,
collected through surveys at the beginning of the sessions, to their earnings from trading
in an asset market similar to Plott and Sunder (1988). Absent private values, this setting
is subject to winner�s curse since participants hold imperfect private information. Thus,
no-trade results apply. The authors �nd that subjects prone to overcon�dence earn rela-
tively low earnings and those that exhibit high self-monitoring abilities earn relatively high
earnings. At the same time, they do not �nd that overcon�dence leads to more intense
trading.

Deaves, Luders and Luo (2003) study the link between miscalibration, gender and trad-
ing intensity. The authors design an experiment in which subjects�signal quality depends
on the accuracy of their responses on a survey. They �nd that overcon�dence leads to
increased trading activity among subjects. In contrast with other studies, they �nd no
di¤erence in overcon�dence and trading intensity between men and women.

Glaser and Weber (2003) conducts a survey among broker investors to assess their
overcon�dence as expressed in their miscalibration and better than average e¤ect (as well as
illusion of control / unrealistic optimism). Results from 215 individuals were then matched
with their own trading volume. The authors �nd that the two measure yield distinctively
di¤erent results: above average e¤ect, but not miscalibration, is related to trading volume.

There are a number of important di¤erences between these papers and our study. First,
we measure participants�individual over/undercon�dence that is implicit in their decisions

of normal and extensive form games [see McKelvey and Palfrey (1995), (1998)]. Notice that these games
involved discrete actions while here we deal with continuous actions.

8Average overcon�dence of 15% means that subjects perceive the probability of being perfectly informed
to be on average 65% while in fact it is 50% (since half of the subjects are perfectly informed by design).
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by estimating a structural model of behavior. That is, instead of using direct elicitation, we
estimate revealed miscalibration as relevant for the context studied. This is important as
overcon�dence lacks a universal operational measure and may very well di¤er for the same
individual across di¤erent domains. As a result, de�ning a measure of overcon�dence elicited
through a survey that covers a particular area may not necessarily capture overcon�dent
behavior in a market setting (see Glaser and Weber (2003)). Related to that, our approach
is more robust to survey methodology; it is quite possible that while individuals are not
able to communicate probabilistic assessments well, they are able to incorporate them into
their decisions.

Second, the market mechanism we utilize di¤ers substantially from the canonical double-
auction markets, utilized by virtually all experimental asset markets. The tractability of our
mechanism allows us to study a rich set of aggregate measures, such as price informativeness,
and to generate clear predictions under the fully-rational model about the levels and changes
in price and volume indexes. In contrast, most previous work almost exclusively dealt with
comparative static tests of trading intensity or volume only. No study that we know of
looks for example at the e¤ect of overcon�dence on the quality of prices, while it is clearly
of central interest to economists.

Third, most previous work in this area followed the approach of correlating individuals�
psychological attributes and their behavior in markets. As such, it was centered on indi-
vidual level results. Our focus is on understanding the aggregation process and the market
level e¤ects of individuals�biases, while also discussing a number of individual level �ndings.

3 Theory

3.1 General

In this game there are two players, both trying to estimate the realization of a random
variable v, referred to as �fundamental value�, where v � U [L;H]. Each player is assigned a
type: ti 2 fh; lg such that one player is of type h and the other is of the complementary type,
l. A player of type h receives a perfect signal while player of type l receives an imperfect
signal:9

� Perfect signal: shi = v

� Imperfect signal: sli = v + ei, where ei
iid� U [�Y; Y ]

Subjects do not know whether their type is h or l; instead, they observe a draw, qi,
representing the objective probability that they are of type h, where qi is drawn IID from
a known continuous distribution with a support F � [0; 1]. Since there are only two types
of signals, qi fully characterizes the precision of player i�s private signal. For now, assume
that subjects�beliefs about the likelihood that her own signal is perfect, denoted by eqi , are
correct (i.e., eqi = qi). Thus, the realization fsi; qig makes up subject i�s private information.

At t = 0, the realizations of v and fsi; qig2i=1 are drawn. The collection of fqig2i=1 is
used to determine players�types: the player with the highest draw of qi is assigned type h,
while the other player is assigned type l.10 The game consists of 3 turns: at the beginning
of each turn, t, both players simultaneously submit an action, ai;t, which comes in the form

9Subscripts i:j index the players.
10Note that type realization is not part of players�information set.
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of a numerical estimate of the realized fundamental value.11 At the end of each turn, both
players� estimates are announced.12 As we show later, 3 turns are needed for players to
arrive at the fully-revealing equilibrium. The intuition is straightforward. There are two
dimensions of uncertainty for each player �other�s signal and signal precision. Since each
turn can allow for at most one new dimension to be observed, players need to observe each
others�estimates for two turns, arriving at full-revelation in turn 3.

At the end of the game one turn is randomly chosen (with equal probability) and players
receive a payo¤ �i(ai;t; v) ensuring that expected utility is maximized at the expected value
of v: E (vjIi;t) 2 argmaxE [ui(�i(ai;t; v))jIi;t], where Ii;t represents player i�s information
set (both private and public) in turn t. Put di¤erently, payo¤ scheme ensures that if
players act myopically, they minimize the forecasting error at each turn of the game. For
example, if players are risk neutral then �i = �(v � ai)2; if players have log utility then
�i = exp(�(v�ai)2), etc. Note that since each player is paid according to the accuracy of her
actions, irrespective of the actions of the other player, this is not a �xed sum game (unlike
most trading institutions). This feature is important in neutralizing payo¤ externalities
typically arising in market settings and removing strategic incentives.

To understand the dynamics of this game, notice that players�con�dence in their infor-
mation is not conveyed through trading intensity. Rather, it is communicated through the
extent to which they revise their estimates. A player revising her estimate sharply, in re-
sponse to observing a fellow player�s estimate, is re�ecting low con�dence in her previously
held information.

3.1.1 Optimal Actions

Now we turn to characterize the fully-rational solution of this game by calculating the
optimal actions of players i; j (denoted by a�i ; a

�
j ). Recall that the game starts with subjects

receiving their private information, fsi; qig, followed by three decision turns. Since the
exogenous information is �xed across the turns, subjects revise their submissions due to
endogenous information only, obtained by observing others�actions. Also, since exactly one
player is perfectly informed but the identity of that player is uncertain, optimal actions are
a convex combination of players�signals. How far one�s estimate is from her signal depends
generally on the con�dence she has in her signal.

Proposition 1 There exist a Perfect Bayesian Equilibrium (PBE) where players optimal
actions are: a�i;t = E(vjIi;t) 8i; t.

Proof In turn 1; optimal actions are:13

a�i;1 = si

a�j;1 = sj

11We �xed the number of turns to be 3 because as we show later, this is the number of turns needed for
full information revelation. That is, any additional turns are redundant.
12Each player is privy to the actions of the other player with whom they were paired in that round and not

all players. Also, since there are 2 players per market, observing the average of actions is su¢ cient statistic
for the action of the other player.
13Since we set the support from which v is drawn to be much larger than Y , we ignore the boundary cases

where si; sj 2 [H � Y;H] [ [L;L+ Y ].
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At the end of turn 1, ai;1 and aj;1 are announced.
In turn 2, a�i;2 = E(vjIi;2) = E(vjfsi; qi; a�j;1g) = E(vjfsi; qi; sjg)
Since player i cannot extract any information about the other players�realized signal

precision, qj , we obtain that:

a�i;2 = qisi + (1� qi)sj (1)

a�j;2 = (1� qj)si + qjsj (2)

Once again, at the end of turn 2, ai;2 and aj;2 are announced.
In turn 3, since both sj and qj are known14, a�i;3 = E(vjfsi; qi; a�j;1; a�j;2g) =

E(vjfsi; qi; sj ; qjg) = a�j;3

a�i;3 = a
�
j;3 = Ind(qi>qj)si + Ind(qi<qj)sj + Ind(qi=qj)(

si + sj
2

) (3)

Where Ind represents the indicator function. Since all information is now common
knowledge full information revelation is obtained.

Proposition 2 The Perfect Bayesian Equilibrium (PBE) characterized above is unique.

Proof. We will use backward induction for this proof:
Since the myopic best-response equilibrium maximized expected payo¤s at each turn of the
game separately, player would deviate from it only if they can increase their future expected
payo¤s. Therefore, In the last stage of the game, both players follow a�i;3 = E(vjIi;3) since
no future bene�ts can arise from deviation.
In turn 2, assume ai;2 6= a�i;2 ) E(ui;2(ai;2)) < E(ui;2(a

�
i;2)) so it must be the case that

E(ui;3(a
�
i;3(I(aj;2(ai;2))))) > E(ui;3(a

�
i;3(I(a

�
j;2(ai;2))))) but since actions are submitted si-

multaneously, this can not hold. Thus, in turn 2, both players�actions are a�i;2 = E(vjIi;2)
In turn 1, assume that ai;1 6= a�i;1 ) E(ui;2(ai;1)) < E(ui;2(a

�
i;1)) so it must be the case that

E(ui;3(a
�
i;3(I(aj;2(ai;1))))) > E(ui;3(a

�
i;3(I(aj;2(a

�
i;1))))) but since turn 3 actions arrive at full

information revelation (a.s.), this can not hold.
Before proceeding, a few features of this game should be emphasized. First, information

is aggregated sequentially. In turn one, optimal action depends on ones�own signal. In
turn two, optimal action depends on own signal as well as other�s observed turn one action
and own subjective con�dence. Second, using the mapping outlined in the introduction
between this game and �nancial markets, we denote level of disagreement by volume index
(V ol = jai;t � aj;tj), average estimate as price index (P = ai;t+aj;t

2 ) and the distance between
price index and v as price error index (PE = jv � Ptj). Using these de�nitions, we claim that
volume index and price error index strictly decrease across turns. This is an intuitive result
� the e¤ect of gradual information aggregation is that the average estimate participants
hold gets closer to the underlying value, and the e¤ect of gradual information dissemination
is that participants�estimates get closer together.

De�nition 3 volume index: V olt = jai;t � aj;tj

Proposition 4 volume index strictly decreases from turn 1 to 3 a:s:
Proof. V ol1 = jsi � sj j = jej j > 0 a:s:

14Since a�j;1 = sj and a
�
j;2 = (1� qj)si + qjsj we obtain that qj =

a�j;2�si
a�j;1�si
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V ol2 = jqisi + (1� qi)sj � (1� qj)si � qjsj j = j(1� qi � qj)sj � (1� qi � qj)sij
= j(1� qi � qj)(sj � si)j
Since �1 � (1�qi�qj) � 1 and �ej � (sj�si) � ej, we get that j(1� qi � qj)ej j < jej j

a:s:(notice that qi + qj need not equal 1)
Also, since a�i;3 = a

�
j;3, V ol3 = 0

Thus, V ol1 > V ol2 > V ol3 = 0

Notice that volume index (in round 2) is increasing in (1) the realized signal error of
the imperfectly informed trader and (2) the sum of subjective beliefs.

De�nition 5 Price index: Pt =
ai;t+aj;t

2

De�nition 6 Price error index: PEt = jv � Ptj

Proposition 7 The price error index strictly decreases a.s. from turn 1 to 3

Proof. PE1 =
��� si+sj2 � v

��� = ��v+v+e2 � v
�� = �� ej2 �� > 0 a:s:

PE2 =
��� qisi+(1�qi)sj+(1�qj)si+qjsj2 � v

��� = ��� (1�qj+qi)si+(1�qi+qj)sj2 � v
���

Assume WLOG that player i is of type h. Then��� (1�qj+qi)si+(1�qi+qj)sj2 � v
��� =

��� (1�qj+qi)v+(1�qi+qj)(v+ej)2 � v
��� =��� (1�qj+qi+1�qi+qj)v+(1�qi+qj)ej2 � v

��� = ���2v+(1�qi+qj)ej2 � v
��� = ��� (1�qi+qj)ej2

���
Since qi > qj, 0 < (1� qi + qj) < 1 we get that PE2 =

��� (1�qi+qj)ej2

��� < �� ej2 �� = PE1
Recall that since by turn 3, the price index is perfectly revealing (a.s.) and since one of the
players is perfectly informed, PE3 = 0. Thus, PE1 > PE2 > PE3 = 0.

Thus, price error index increases (in turn 2) in realized signal error and in di¤erence in
subjective beliefs.

3.1.2 Miscalibration

Recall that we are interested in understanding the e¤ects of two forms of bounded ratio-
nality: errors in actions and errors in beliefs. In this section, we provide some intuition for
the latter. We will discuss the former in the context of our econometric model.

Consider the possibility that players hold erroneous beliefs about their probability of
being perfectly informed. That is, individual subjective probability equals the objective
probability plus miscalibration: eqi = qi+MCi whereMCi denotes subject i�s miscalibration.
Positive miscalibration represents overcon�dence while negative miscalibration represents
undercon�dence. We allow for arbitrary subjective beliefs as long as they are admissible,
that is 0 � eqi � 1 8i.15

To simplify matters, let us assume that subjects are naive in the sense that they are
not aware of other players� potential miscalibration (this assumption will be maintained
throughout this paper).16 Now, we can rewrite volume and price error indexes in the case
of miscalibration, denoting them with superscript MC.

Volume index:
15This de�nition corresponds to the way miscalibration is de�ned in the cognitive psychology literature

[see Alpert and Rai¤a (1977) for a review].
16We naturally assume that players are not aware of their own miscalibration [see for example Odean

(1998)].
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� Turn 1: V olMC
1 = jsi � sj j = jej > 0 a:s

� Turn 2: V olMC
2 = j1� eqi � eqj j jej = j1� (qi + qj)� (MCi +MCj)j jej

� Turn 3: V olMC
3 = 0

Notice that turn 3 volume index would be zero, even if players are miscalibrated, since
both parties regard subjective beliefs to be equal to the objective beliefs and thus converge
on the signal held by the player with the larger subjective probability of the two. Thus,
unlike the fully-rational case, convergence will happen but it may be to the wrong signal.

Price error index:

� Turn 1: PEMC
1 =

�� e
2

��
� Turn 2: PEMC

2 = j1� eqi + eqj j �� e2 �� = j1� (qi � qj)� (MCi �MCj)j �� e2 ��
� Turn 3: PEMC

3 =

�����2
�
1esi>esj esi+1esj>esiesj�+1esj=esj (eqisi+(1�eqi)sj+(1�eqj)si+eqjsj)

2 � v
����� =����1esi>esjesi + 1esj>esiesj + 1esj=esj (eqisi+(1�eqi)sj+(1�eqj)si+eqjsj)

2 � v
����

In the discussion below we will compare volume and price error indexes in the absence of
miscalibration and in the presence of miscalibration to obtain comparative static predictions.

Proposition 8 The expected volume index is (weakly) greater in the presence of average
overcon�dence for all turns (a.s.).

Proof. For turns 1 and 3 the proof is trivial.
For turn 2, recall that V olOC2 = j1� (qi + qj)� (MCi +MCj)j jej / j1� (qi + qj)� (MCi +MCj)j,

since jej � 0:
Denoting (qi + qj) � qij and (MCi +MCj) � MCij , and squaring both sides of the

expression we get:�
V olOC2

�2
= (1� qij �MCij)2(sj � si)2 = (1� qij �MCij)2(ej)2

To �nd the parameter value ranges for which index volume is increasing, take a derivative
with respect to MCij :

d(V olOC2 )
2

dMCij
= �2(ej)2(1� qij �MCij), which is increasing if

qij +MCij � 1 > 0: Since in expectations qij = 1, E(V olOC2 ) is increasing in MCij if
players are on average overcon�dent.

Proposition 9 The price error index is (weakly) increasing in the dispersion of overcon�-
dence for all turns.

Proof For turn 1, the proof is obvious.
For turn 2, recall that PEMC

2 = j1� (qi � qj)� (MCi �MCj)j
�� e
2

�� / j1� (qi � qj)� (MCi �MCj)j
WLOG we have assumed that qi � qj and since jqi � qj j � 1 we have that 1�(qi�qj) > 0.

Therefore:

� if the better informed player, i, is less overcon�dent than the worst informed player,
j, price error index is higher than when players are well-calibrated.
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� if the better informed player, i, is more overcon�dent than the worst informed player,
j, price error index is lower than when players are well-calibrated.

In turn 3, price error index would a.s. be either equal to zero or to jej, exceeding the
price error index in the case when players are well-calibrated.

Compared with the case where subjects are well calibrated, price error index is greater
if the worst informed is more overcon�dent than the better informed and price error index
is smaller if the better informed is more overcon�dent than the worst informed.

4 Experimental Design

4.1 General

The experiment was run at the Haas School of Business: a total of 12 sessions were
conducted in which 72 subjects participated; 5 were Baseline Treatment (BLT) and 7 were
Overcon�dence Treatment (OCT).17 Subjects were recruited from undergraduate classes at
the University of California, Berkeley and had no previous experience with similar experi-
ments. They received a show-up payment of $5 and an additional performance-based pay
of $0-$10, which was paid in private and in cash at the end of the session. Sessions were 1
hour long and included 6 participants each.

At the beginning of each session an administrator read the instructions aloud and an-
swered questions in private.18 Each subject entered their decision using a computerized
interface, which was built for the purpose of this experiment [see �gure 1], thus maintaining
both isolation and anonymity. Particular emphasis was put on limiting interaction to that
facilitated by the computerized system.19

Figure 1: Interface: screen shot

17The order of treatments was determined randomly.
18 Instructions are available upon request.
19The application developed by the author for this experiment is available upon request.
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4.2 Structure

Each session started with an initial phase, followed by 10 independent and identical rounds.20

At the beginning of each round subjects were randomly assigned into markets consisting of
two players each and were presented with their private signal. Each round was composed of
4 decision turns and in each subjects were asked to enter their decision.21 Throughout the
turns, subjects�pairing and their private information remained the same. Transition from
one turn to the next occurred only after all subjects submitted their action and no time
restriction was imposed.

The experiment was carried out along a single treatment: base-line treatment (BLT)
or overcon�dence treatment (OCT), which di¤ered only in their initial phase. In the BLT,
the initial phase consisted of subjects privately throwing a die and observing its outcome.22

Draws were recorded by the experiment administrator and fed into the computer which
then determined the rank of the draws; three of the subjects, with the highest draws, were
classi�ed as perfectly informed while the other three, with the lowest draws were classi�ed
as imperfectly informed (ties were resolved randomly). Subjects observed their own draw
but did not observe the draws obtained by other participants and were not told their rank.

In the OCT, subjects were asked to answer 20 multiple-choice SAT questions (taken
from sample tests that were posted on the CollegeBoard website, see appendix). Scores
were recorded by the computer which then ranked subjects according to the number of
correct answers, as a primary key, and by the length of time required to complete the quiz,
as a secondary key; three of the subjects, ranked top, were classi�ed as perfectly informed
while the other three were classi�ed as imperfectly informed. Again, subjects were not told
what their rank was.

The choice of using SAT questions was deliberate and intended to bias the results in
favor of the null, stating that treatment would have no e¤ect on market outcomes, by facing
subjects with a task with which they are familiar - one that they have performed before
and on which their ranking, with respect to the relevant peer group, is known.23

4.3 Information

The information structure was the following: at the beginning of each round a quantity v
was drawn by the computer, where v � U [50; 950]. Then, subject i received an independent
signal si = v + ei such that ei = 0 for subjects that were classi�ed as perfectly informed
and ei � U [�30; 30] for subjects that were classi�ed as imperfectly informed.

All information was continuously displayed on subjects�interfaces for them to observe.
Note that aside from the information speci�ed above, no additional feedback was given. In
particular, the realization of the unknown quantity, v, was not revealed at any stage of the
experiment (not even at the end of the round) and subjects did not see their earnings until
the end of the session. This may be likened to an environment where traders never get
to observe the liquidating value; subjects can only learn from their interaction with other

20We report here the results from the �rst 10 rounds while a few sessions were conducted with more
rounds.
21While the 4th turn is redundant under the fully rational model it need not be redundant in practice. We

also run 2 sessions (not reported here) with 6 decision turns but behavior during the last two turns seemed
very close to the one exhibited in turn 4.
22At the beginning of each experiment, one subject was publicly asked to examine the die and con�rm

that it appeared normal.
23Note that SAT scores already re�ect ranking as they are curved.
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players, which is an endogenously generated information, not from exogenous cues. 24

4.4 Assignment

Pairing into markets is randomly determined while ensuring that exactly one subject is
perfectly informed and the other one is imperfectly informed. This (1) makes ex-ante
distribution of information equal across all market instances (2) disables subjects from easily
unveiling their type and (3) allows posterior probability updating to take on a particularly
simple and intuitive form.25 ;26

4.5 Actions and payo¤

At the beginning of each turn t subjects simultaneously submit their estimates ai;t by
entering a number on their screen. No restrictions are imposed on the value the report can
take. Upon receiving submissions from both subjects, the turn comes to an end and no
changes are accepted. At that point subjects are informed of each others�estimate and are
given a short transition time into the next turn.

At the end of the session, one turn from each round is randomly drawn and earnings
(for subject i in round r) are calculated as follows:

�i =
P
r
c1 � exp(�

(vr � ai;r)2
c2

) (4)

Where we parametrized c1 = 100; c2 = 50. At the end of the experiment, the total
number of points earned was converted into dollars using an exchange rate of 100 to 1
and subjects were paid in private and in cash. Average earnings were $12 with standard
deviation of $3:5.

This payo¤ function was chosen for a number of reasons. First, its convexity ensures
that payo¤s are non-negative everywhere. This is desirable because of the bankruptcy pos-
sibility arising from subjects submitting estimates that are distant from the fundamental
value (due to errors).27 Generally, bankruptcy is nonenforceable in the lab and once en-
countered may in�uence subjects�decisions in a substantial manner and may result in loss
of experimental control [see Friedman and Sunder (1994)]. Second, the symmetry of payo¤s
around the fundamental value suggest to subjects that they should submit estimates that
minimize estimation error. Indeed, the instructions reinforce this idea by stating that �the
more precise your guesses are the more money you will earn at the end of the experiment�
(see appendix). While formally this payo¤ function induces truth-telling if players maxi-
mized expected log utility, we do not �nd evidence to suggest that subjects�risk attitudes,
deviating systematically from log utility, in�uence our results.28

24 In a few sessions, we have extended the number of rounds to include full feedback round: subjects�payo¤
and the realization of v was revealed at the end of the round. Sure enough, subjects discovered whether
they were the perfectly or imperfectly informed type almost immediately.
25 If two subjects submit the same estimate in turn 1, most chances are that they are both perfectly

informed and thus from the next round on both players know their type with certainty.
26We have conducted a few sessions (not reported in this paper) with di¤erent rules of market assignment.

The problem discussed here does appear: when two perfectly informed subjects are paired together, they
tend to �nd out their type. Nonetheless, the qualitative features of the experiment and the results are
similar.
27 In a number of sessions (not reported here) we have used a quadratic payo¤ function. In each of those

sessions, about a third of the participants ended up with negative payo¤s after the �rst few rounds.
28As an aside, assuming that subjets are risk-averse, rather than risk neutral, is desirable, as suggested
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5 Model independent results

Our main �ndings can be divided into

� individual level

� subjects to incorporate both private information dimensions into their estimates:
signal realization and signal precision

� subjects seem to exhibit overcon�dence and/or react strategically to others�er-
rors

� aggregate level

� information is aggregated and disseminated under both treatments but not with
the same degree of e¢ ciency

� the volume and price error index levels are in excess of the fully rational model
prediction in both treatments; however, these indexes are higher in the OCT
compared with the BLT

� the price index exhibits negative serial autocorrelation in the OCT but not in
the BLT

5.1 Individual level

Given the central role that the second moment of information plays in this game, we seek
to characterize individual level behavior by focusing on a measure that captures subjects�
weighting of their own information with that of their fellow player. Recall that con�dence
in this game is expressed by the rate at which estimates are adjusted across turns. That
is measured by "adjustment rate", which we de�ne as the change in estimate, from turn
1 to turn 2, divided by the di¤erence between players�turn 1 estimates. This quantity is
represented in �gure 2 as the fraction B/A.

Subject 1,
Turn 1

Subject 1,
Turn 2

Subject 2,
Turn 1

B

A

Figure 2: Adjustment rate

To better interpret this measure, recall that the incremental information obtainable at
each turn is the following:

by experimental studies of �rst-price sealed bid auctions [see Kagel and Roth (1995) and Davis and Holt
(1993) for a review].
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� Turn 1: own signal realization

� Turn 2: other�s signal realization and own signal precision

� Turn 3: other�s signal precision

� Turn 4: none

As was shown in the theory section (in the absence of errors) subject i�s turn 2 optimal
estimate is ai;2 = eqisi+(1+eqi)aj;1, which can be rearranged as eqi = ai;2�aj;1

si�aj;1
. Since si = ai;1,

we obtain that eqi = ai;2�aj;1
ai;1�aj;1 . This quantity matches the de�nition of the adjustment rate.

We show in a later section that in the case where subjects react to errors in others�estimates,
ai;2 = eqisi + (1 + eqi)(aj;1 + ci;2) where ci;2 � 0 represents the discount player i applies to
the turn 1 estimate of player j. In that case, eqi = ai;2�aj;1

ai;1�aj;1�ci;2 .
Thus, the adjustment rate is a unit-free measure of the weight assigned to the private

signal realization and as such depends on:

� Subjective probability of being perfectly informed, which in turn can be broken into

� objective probability of being perfectly informed

�miscalibration (over/under con�dence)

� Reaction to possible errors made by other players

Figure 4 depicts observed ("Data") and fully-rational, no-overcon�dence theoretical
("RE") adjustment rates for the BLT and the OCT, sorted by subjects� objective prob-
ability of being perfectly informed.29 The main �ndings suggest that subjects act in a
coherent manner that is also consistent with our intuition of the game:

� Objective con�dence is monotonically related to adjustment rates in both treatments.
Higher objective probability corresponds to lower adjustment rates. This suggests
that subjects incorporate their signal precision into their estimates and that objective
and subjective probabilities are related.

� In the OCT, subjects adjust less than they do in the BLT, which is consistent the
presence of more overcon�dence in the former treatment.

� Subjects adjust uniformly less (in both treatments) than predicted by the RE model,
suggesting that players discount others� actions. This is consistent with strategic
response to others�errors.

5.2 Aggregate-level results

5.2.1 Measures

The empirical analysis discussed in this section focuses on the following market-level mea-
sures, each representing a dependent variable of interest. These are:

29For the purpose of this plot only we exclude observation where B and A do not have the same sign
as these cases clearly represent erroneous behavior; by doing that we have taken out less than 5% of the
observations, across both treatments.
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� Volume index represents the extent to which players diverge in their estimates and
is de�ned as V olr;t = jai;r;t � aj;r;tj.30

� Price index represents the average estimates and is de�ned as Pr;t = ai;r;t+aj;r;t
2 .

� Price error index represents the distance between the average estimate and the
fundamental value and is de�ned as PEr;t = jvr � Pr;tj.

5.2.2 Aggregation and dissemination of information

The markets we study here have the potential to aggregate and disseminate private infor-
mation held by individual players. The extent to which they succeed in performing these
functions can be measured through the level and change in volume and price error indexes.
The volume index is indicative of the degree to which information held by players is close
together, thus proxying for the information disseminated. The price error index is indica-
tive of the degree to which the aggregate information-set is informative, thus proxying for
information aggregation. Thus, we look at the changes and levels of volume and price error
indexes across turns.

Table 1 provides average levels (across market instances and rounds) of volume and
price indexed for both treatments while table 2 summarizes the non parametric Wilcoxon
rank-sum test results of the null that median indexes are constant across turns.31 In the
BLT both volume and price error indexes decrease from turn 1 to turn 3 but not after
that, in line with the rational model (recall that turn 4 is in principle redundant). Quite
remarkably, median price error and volume indexes in the last turn are very close to zero
(0:5 and 1:5, respectively). In the OCT, we �nd similar pattern, delayed by a turn: there is
a signi�cant drop going from turn 1 to 2 and from 3 to 4 but not in between. Notice that
while the volume index decreases toward the end of the round, the price error index does
not. That is, subjects seem to converge but to the wrong value, which can be explained
by subjects�ignorance of their and others�overcon�dence. We provide further evidence on
that in our discussion of return autocorrelation.

5.2.3 Excess volume and price error indexes

A central question of interest is: are excess volume and price error indexes linked to overcon-
�dence? To answer that, we compare the OCT results to the predicted RE levels. We �nd
that consistent with the predictions of many asset pricing overcon�dence models, observed
levels are higher than predicted by the fully-rational model (see table 1).32 To gauge how
much of these deviations from the rational model prediction are due to overcon�dence, we
perform the same comparison on the BLT results, in which subjects are not induced to
overcon�dence. First, we �nd qualitatively similar patterns to those observed in the OCT,
while the magnitude is lower (see tables 3 for a formal cross-treatment signi�cance test). A

30The subscript notation consists of player identi�cation, round number and turn number, in that order.
We may drop the round or turn subscript when appropriate.
31To obtain a feel for the results recall that in each market instance there is exactly one subject who

receives an imperfect signal. This signal is uniformly distributed around the liquidating value with bounds
of +/-30. Therefore, if these markets did not aggregate or disseminate information at all, expected volume
index would have been 15 and expected price error index would have been 7.5.
32Notice that observed levels of volume and price-errors indexes are not signi�cantly di¤erent from those

predicted by the RE model in turn 1. This is to be expected since the precision of information should not
a¤ect turn 1 estimates.
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large fraction of excess volume and price error indexes is attributable to strategic response
to errors, while the remaining is attributable to overcon�dence.33 In a later section we show
that a model, which allows for erroneous beliefs and actions, can replicate the BLT levels
of excess volume and price errors indexes and establish that subjects are not overcon�dent.

5.2.4 Return autocorrelation

In contrast to the spirit of the �ndings above, we proceed to show that return autocorrelation
�another phenomenon attributed to overcon�dence �is found only in the OCT. To explore
this, we sort within-round price index changes by size (-30 to -20, -20 to -10 etc.) and
plot the average change from turn 1 to 4 relative to the average change that would have
occurred at the close of the round had the fundamental value been announced (see �gure 5).
If returns are uncorrelated, these two should not be related. As we can see, in the BLT the
average close-to-fundamental value is virtually zero irrespective of the sort. In the OCT,
the price changes seem to exhibit reversals.

To provide an econometric test, we estimate (using a robust regression technique) the
following relation:

Ln(Vi=P4;i) = a+ bLn(P4;i=P1;i) + ei

Table 4 summarizes the results. First, there is no indication of unconditional return
predictability in either of the treatments. Second, we �nd negative serial autocorrelation
of returns in the OCT (at a very high signi�cance level) but not in the BLT; i.e., we �nd
price index reversals. Third, change in the volume index (within the round) helps predict
returns; when the volume index decreases (i.e., subjects�valuation get closer to each other)
price reversals are more pronounced. The intuition is the following: in the course of the
game, average estimates move away from a naive average of signals and closer to the signal
held by the poorly informed player. This is due, as we show later, to the heterogeneity
of overcon�dence; since players that are very unlikely to receive perfect signals tend to be
very overcon�dent while players that are very likely to receive perfect signals tend to be
somewhat undercon�dent. Each of these e¤ects increases the market weight on the poorly
informed player. To the extent that subjects are naive about the existence of overcon�dence,
they would fail to properly o¤set the "negative externality" brought about by the poorly
informed yet overcon�dent players.

6 Econometric Model

To substantiate the e¤ect of the two forms of deviations from rationality discussed here, we
need to obtain subjects beliefs (which will allow us to estimate their individual miscalibra-
tion) and separate them from strategic response to errors. In the next section we describe
a structural model that allows us to do just that. It maps exogenous information (sig-
nal realization), endogenous information (players�publicly submitted history of estimates)
and beliefs into best-response actions. Since all the model�s inputs are known except for
subjects�beliefs, we �t the data to back-out subjective probabilities implicit in subjects�
decisions at each stage of the session.

The econometric model we suggest, termed Noisy Actions Biased Beliefs (�NABB�), is
designed to separate errors in action from errors in beliefs by nesting them. Recall that

33We do not include turn 1 results since they are not in�uenced by overcon�dence.
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these two channels of deviation from full rationality have potentially competing e¤ects:
too high subjective probability of being perfectly informed as well as strategic reaction to
fellow players�errors both result in increase of the relative weight players�assign to their
own private information. We use a probabilistic choice model [see Goeree and Holt (1999),
McKelvey and Palfrey (1995, 1998)] in which players�actions are distributed around their
best-responses; best responses are formed while taking into account that others� actions
include errors. Additionally, we let each subject hold arbitrary beliefs about the precision
of their private information.

We build on the following principles:

� Subjects�actions include errors

� The magnitude of errors is inversely related to their cost

� Subjects have some expectations about the distribution of errors; the distribution of
errors is common knowledge and matches the observed distribution

� Subjects react strategically to errors of others when forming their best responses

� Subjects�con�dence in the precision of their private signal need not match its true
precision, i.e., they may be miscalibrated. However they are naive about the possibility
that either they or others may be miscalibrated, i.e. we are �xing subjects�higher
order beliefs about overcon�dence

There are two notable di¤erences between the model we propose and those discussed
in the literature. First, we estimate individual beliefs and miscalibration without imposing
any parametric assumptions about them and without using direct elicitation. Thus we end
up with estimates of each participant�s implicit con�dence over the course of the session.34

One reason we can achieve this is because the game involves repeated interaction �each
unit of observation includes three pairs of simultaneous decisions (corresponding to turns
1-3) over which beliefs are constant. Second, we do not assume that participants are perfect
econometricians; in particular, we allow for the possibility that they misestimate the vari-
ance of errors. Third, we allow actions to be continuous while most previous applications
involved mostly discrete choice games [see Celen and Kariv (2003) for an example].

We formulate the problem recursively [see Anderson and Holt (1997)], so that actions
in turn t best respond to the distribution of errors in turns ft � 1; t � 2; :::g: To allow for
continuous actions, we suggest that observed actions are composed of best-response action
(conditional on private and public information) and white noise-error term, the following
speci�cation:

ai;t = a
�
i;t

�
Ii;t; fc�jgt�1j=1

�
+ ei;t (5)

where a�i;t is player i�s best-response in turn t, f�jgt�1j=1 is set of the error disturbance
parameters for previous turns (1 through (t � 1)), ei;t � N(0; �2t ) is turn t realized error,
and c represents player�s beliefs about the size of �.

34 In contrast, previous studies took one of two approaches: they either used direct elicitation, thus ending
up with static individual measure, or estimated the distribution of belief parameters, thus ending up with a
collective measure.
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This model assumes that subjects� observed actions are normally distributed around
the optimal action in that turn.35 Specifying a normal distribution for errors automatically
satis�es the condition that the probability of observing deviations from best response is
inversely related to their cost since the payo¤ function is of the same functional form as
the normal density (both are negative quadratic exponential). Further, the distribution of
errors is the same across players. In particular, subject i�s error in a particular turn does
not change the likelihood of observing a given size of error in the previous or subsequent
turns.36 Optimal actions are a function of all information (private and public) as well as
knowledge of previous turns�error distributions.

6.1 Optimal Actions

In this part we derive expressions for best-responses and actions for a generic player i during
turns 1-2.37 We retain a key feature discussed in the context of the fully-rational model:
in each turn, players�estimates correspond to their expected value of the underlying asset,
given their private information.

In turn 1 (suppressing the round index and using subscript 1=2 for the �rst/second
player), we obtain that:

a1;1 = s1 + e1;1 (6)

a2;1 = s2 + e2;1 (7)

where ei;1 � N(0; �21).
In turn 2, a�1;2 = s1q1 + E(s2ja21; s1)(1� q1), but,
E(s2ja21; s1) =

R s1+Y
s1�Y s2 Pr(s2ja2;1; s1)ds2:

After some calculations, we obtain (see page 26 for details) that:

a1;2 = q1s1 + (1� q1) (8)0@a2;1 + 2c2�21 (�(a2;1; s1 � Y; c�1)� �(a2;1; s1 + Y; c�1))
erf
� p

2
2c�1

(Y � s1 + a2;1)
�
� erf

� p
2

2c�1
(a2;1 � s1 � Y )

�
1A+ e1;2

35We impose mean zero error distribution for all turns.
36Some one-shot games assume that subjects come from a pool that includes some random players and

other best-responding players. Using this speci�cation in a context of a repeated interaction game, like the
one studied here, would introduce further complexity [see for example Celen and Kariv (2003)].
37We focus on these turns only for tractability reasons (recall that in this setting the updating rule is

not stationary). In a previous version of the paper, we derived the solution to optimal actions in turn 3.
However, including turn 3 in the estimation requires the use of a lenghty numerical optimization and relies
on assumptions about higher order expectations.
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a2;2 = q2s2 + (1� q2) (9)0@a1;1 + 2c2�21 (�(a1;1; s2 � Y; c�1)� �(a1;1; s2 + Y; c�1))
erf
� p

2
2c�1

(Y � s2 + a1;1)
�
� erf

� p
2

2c�1
(a1;1 � s2 � Y )

�
1A+ e2;2

To interpret these expressions, we contrast them with the solution obtained in the fully-
rational model:

a1;2 = q1s1 + (1� q1)a2;1
a2;2 = q2s2 + (1� q2)a1;1

Notice that subject 1�s reaction to the action of player 2 in the previous turn is now
adjusted, relative to the fully rational case. This adjustment decreases the marginal weight
put on the other�s action the more extreme it is. To see that, �gure 3 plots the expected
value of the other player�s signal, conditional on their estimate, E(s2ja2;1), relative to their
estimate, a2;1 (recall that in the fully-rational model E(s2ja2;1) = a2;1), for the following
parameter values: s1 = 500; Y = 30; �1 = 5; c = 1:

550525500475450

525

512.5

500

487.5

475

a21

E(s2|a21)

a21

E(s2|a21)

Figure 3: Turn 2 best response adjustment term e¤ect - numerical example

One can see that for admissible values (470 � 530), the adjustment is small. Going
outside that range results in a steep adjustment in the direction of the signal possessed by
the receiver.

6.2 Maximum Likelihood Estimation

Given the highly non-linear nature of the model speci�ed above, we utilize maximum like-
lihood estimation. The objective is to provide point estimates of the following quantities:
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subjects�individual con�dence, subjects�degree of response to others�errors, their optimal
actions at each point of the game, and the variance of those errors around the optimal
actions. In estimating the model, we make the following speci�cations:

1. All errors are conditionally independent and identical of all other errors.

2. Subjective beliefs are constant within subject and across rounds. In order to allow
for heterogeneous overcon�dence while keeping the number of estimated parameters
to a minimum, we further assume that subjective beliefs take one of three values
(determined by the estimation).38 Speci�cally, we assume that subjects in the BLT

with objective probabilities of [0; 13 ], [
1
3 ;
2
3 ],[

2
3 ; 1] hold beliefs equal to eq[0; 13 ]BLT , eq[ 13 ; 23 ]BLT , andeq[ 23 ;1]BLT respectively, and subjects in the OCT hold beliefs equal to eq[0; 13 ]OCT , eq[ 13 ; 23 ]OCT , andeq[ 23 ;1]OCT .

3. Subjects need not have rational expectations about others�mistakes. That is, in turn
2 subjects may under or overestimate the magnitude of errors embedded in others�
observed actions.

Assumption (2) assumes that subjects can be categorized into three groups based on
how objectively informed they are. At the same time, it does not specify the relation
between objective and subjective beliefs (see for example Tversky and Kahneman (1992)).
This strikes a balance between the desire to limit the restriction about admissible forms of
overcon�dence while keeping the number of estimated parameters to a minimum. After all,
if we wanted to allow subjects to have individually time varying beliefs would could end up
having upward of 140 parameters. Assumption (3) allows us to test (rather than assume)
whether subjects rationally respond to others�errors in actions.

This leads to the following likelihood function:

L =
fBLT;OCTgQ

v

10Q
r=1

72Q
i=1
�
�
av;r;1;i � a�v;r;1;i (Iv;r;i;1) ; 0; �

�
�(av;r;2;i�a

�
v;r;2;i(c�; Iv;r;i;2;eqv;i); 0; �)

(10)
Where the vectors Iv;r;i;1 and Iv;r;i;2 denote the set of observables (e.g., own signal, the

signal of the other subject, etc.). The indexes v; i; r denote the treatment variant (BLT or
OCT), the subject number, and the round number, respectively; the numbers {1; 2} denote
the turn number. For example, aBLT;3;2;10 refers to action submitted in the BLT , round 3,
turn 2, by player 10. We �t this model to the data collected in the �rst two turns under
both treatments. Nonetheless, we allow for di¤erent levels of miscalibration across the two
variants.39

In summary, the model estimated a total of eight parameters:

� Magnitude of observed error (di¤erence between best-response and observed deci-
sions), denoted by �.

38 In a previous version of the paper we estimate a model in the number of subjective-belief parameters is
equal to the number of subjects, while the model estimated here makes due with only three parameters. We
obtain qualitatively similar results to the ones presented here.
39We implicitly assume that magnitude of errors and average response to them is equal across treatments.

Estimation results not reported here suggest that this assumption is not consequential.
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� Subjective con�dence, denoted by eq[0; 13 ]BLT , eq[ 13 ; 23 ]BLT , eq[ 23 ;1]BLT , and eq[0; 13 ]OCT ,eq[ 13 ; 23 ]OCT , and eq[ 23 ;1]OCT .

� Degree of response to others�errors, denoted by c.

Since subjects are randomly paired into markets, and since we assume beliefs are �xed
across subsequent rounds, the likelihood function captures a complex set of interactions.
For example, subject #1 may be paired with subject #2 in round 1 and so their subjective
probabilities will enter into both of their optimal actions. In round 2, subject #1 may
be paired with subject #3 and subject #2 may be paired with subject #4. Since we
are estimating eqi assuming it is constant across rounds 1 and 2, all four will be linked
through the likelihood function. Thus, no analytical solution can be derived. Instead, we
set-up and solve the maximization problem using a Sequential Quadratic Programming
(SQP) method.40 Since these procedures �nd local minima, results may be sensitive to
starting points. To avoid biasing our estimations, we specify starting points for subjective
probabilities equal to objective probabilities and repeat a subset of estimations by specifying
di¤erent starting points. The results do not seem to be sensitive to variations in the starting
points.

7 Model estimation results

Our main results are as follows:

1. Model �t - test of the NABB model and the two alternative models that it nests �
Rational Expectations (RE) or Private Information (PI) �suggests that the alternative
models can be rejected while the NABB cannot.

2. Miscalibration - subjects in the OCT exhibit moderate levels of overcon�dence while
subjects in the BLT are on average well calibrated.

3. Rational response to mistakes: subjects appear to be strategically responding to
errors of others, while underestimating the magnitude of those errors.

7.1 Testing the NABB Model

We start by testing the null hypothesis that the NABB model �ts the data well. To do
that, we use a standard log-likelihood model test statistic:

G2 = �2�Xi ln

0@Xprd
i

�b��
Xi

1A � �2 (n� k � 1)

Where Xi denotes observation i and X
prd
i

�b�� denotes model prediction for observation
i given the vector of estimated parameters b�. Since the calculated test statistic for the
model is equal to 3:6076, we cannot reject the null that the NABB describes the data well
at conventional statistical levels (corresponding p value is 0:5000).

Next, we test two alternative models: Rational Expectations (RE) and Private Infor-
mation (PI), which are nested within the speci�cations of the NABB model.41 If players
40Matlab code is available upon request.
41We chose these two alternatives as they often serve in examinations of information aggregation markets

[see Plott and Sunder (1998)].
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were perfectly calibrated and made no errors, we would obtain the RE results; if players
were all completely con�dent in their private information, thus disregarding the actions of
others, we would obtain the PI results.

That is, the RE model implies that subjects are well calibrated and that the error
magnitude to which they are responding is equal to zero. The model, discussed in the
theory section, assumes that:

� Players�subjective probabilities of being perfectly informed are equal to the objective
ones. We bootstrap from the distribution of outcomes (die throw or quiz score) to
calculate the probability of each draw/score being ranked above average among a
group of 6, which determined the objective probability of being perfectly informed.

� Players�actions in all turns are Bayesian. That is, subject i reacts in a particular
turn to the perfectly rational, and not to the actual estimate submitted by player j
in the previous turn.

In the context of the NABB model, these implications can be translated into a set of
non-linear restrictions on the parameters: fc� = 0; q � eq = 0g. Using Wald test we �nd that
the null can be strongly rejected (W = 6:0102e+ 010 in the BLT and 4:5185e+ 010 in the
OCT).

The PI model suggests that agents attend only to their private signal, thereby com-
pletely disregarding the observed actions of others. In our setting, this translates into
players holding subjective beliefs of being perfectly informed equal to one; that is,�eq[0; 13 ]BLT = 1; eq[ 13 ; 23 ]BLT = 1; eq[ 23 ;1]BLT = 1

�
and

�eq[0; 13 ]OCT = 1; eq[ 13 ; 23 ]OCT = 1; eq[ 23 ;1]OCT = 1

�
. We examine the

prediction by constructing a Wald test corresponding to those restrictions. The results
suggest that we can reject the hypothesis for each of the treatments (test statistic equal to
371:2 in the BLT and 219:1 in the OCT).

7.2 Miscalibration

We de�ne miscalibration, denoted byMCi;r as the di¤erence between subjective (e.g., eq[0; 13 ]BLT )

and objective probability (e.g., q
[0; 1

3
]

BLT ) of being perfectly informed. This measure captures
the degree to which an individual is over/undercon�dent, adjusting for their objective con�-
dence. As a convention, we interpret positive miscalibration as representing overcon�dence
and negative miscalibration as representing undercon�dence. Note that an individual that
scored high on the initial task (die roll or quiz) would be assigned high con�dence level (qi)
but would not necessarily be assigned high overcon�dence level (eqi � qi).

We �rst seek to establish that the conjectured treatment e¤ect induces (overall) overcon-
�dence in the OCT but not the BLT. Table 5 reports mean and standard errors of estimated
miscalibration levels grouped by treatment (BLT and OCT) and by objective con�dence
(�poorly informed�, �averagely informed�, �well informed�, and �all�).

First, we �nd that overall miscalibration in the BLT is statistically indistinguishable
from zero (mean estimate of �0:0427 with standard errors of 0:0300) while overall miscal-
ibration in the OCT is positive (mean estimate of 0:147 7 with standard error of 0:0250).
Subjects appear to be overcon�dent in the OCT but well-calibrated in the BLT. The level
of overcon�dence in the OCT is not only statistically but also economically signi�cant;
it suggests that on average subjects (in the OCT) believe that their probability of being
perfectly informed is about 15% greater than it actually is.
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Second, we test the null of no di¤erence in miscalibration level for all subgroups.42 The
Wald test statistic (W = 37:59) allow us to reject the null at the 1% level.

Third, overcon�dence seem to be driven primarily by the poorly informed subjects in the
OCT. The estimated level of miscalibration for the averagely informed and well informed
are similar across treatments (for the averagely informed it is 0:0035 (BLT) and 0:010 4
(OCT), and for the well informed it is �0:104 3 (BLT) and 0:0372 (OCT)). Comparing the
levels for the poorly informed group suggests major di¤erences: miscalibration is �0:03
50 in the BLT and 0:432 7 in the OCT. This �nding suggests that overcon�dence may be
particularly damaging for price e¢ ciency as it is concentrated among the poorly informed.43

It can also serve to explain why price index was found to be serial autocorrelation in the
OCT.

7.3 Rational best-response

The NABB model allows for the possibility that players best respond to errors made by
fellow players. Rather than impose this as an assumption, we estimate the model in a way
that allows subjects to respond to some fraction, denoted by c, of the empirically observed
magnitude of errors. Recall that subjects generally cannot directly observe errors made
by others, let alone measure their magnitude. Thus, the parameter c estimates subjects�
implicit response to others errors such that parameter value of zero means that subjects
completely ignore others�errors and parameter value of one suggest that subjects respond
to others�errors and have rational expectations about their magnitude.

The estimate of the parameter c is 0:7839 (with standard error of 0:0631), implying
that subjects� decisions take into account about 80% of observed error size. The main
hypothesis we test is that subjects do not appear to be best responding to errors made
by others. This null can be strongly rejected with test statistic of W = 5e + 009. That
is, subjects�decisions seem to respond to others� errors. At the same time, they do not
appear to hold fully rational expectations about others�errors as they underestimate the
magnitude of errors; we can reject the null that c = 1 at conventional signi�cance levels
with test statistics of W = 239:2.

8 Summary

In this paper we suggest a game through which we study - theoretically and empirically
- how market participants aggregate multidimensional private information. In order to
separate out two widespread behavioral biases, erroneous actions and mistaken beliefs, we
combine an experimental design, which controls for the presence of overcon�dence, and an
econometric model that nests both biases. As a result, we are able to estimate subjects�
overcon�dence and quantify the importance of errors.

We show that subjects strategically respond to others�mistakes and that this feature
generates a pattern of volume and price e¢ ciency index levels similar to those predicted by
models based on overcon�dence. Nonetheless, most canonical predictions linking investors�

42Using notation introduced above we test the null that
�eq[0; 13 ]BLT = eq[0; 13 ]OCT ; eq[ 13 ; 23 ]BLT = eq[ 13 ; 23 ]OCT ; eq[ 23 ;1]BLT = eq[ 23 ;1]OCT

�
.

43To see the intuition, imagine two subjects - one poorly informed and the other well informed. If both of
them are equally overcon�dent, the price index would not overweight either of their private signals. However,
if the poorly informed subject is more overcon�dent than the well informed agent, the price index would
overweight the signal held by the former, decreasing the price informativeness index.
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overcon�dence to markets is borne out: we �nd a higher volume and lower informational
e¢ ciency index levels in the overcon�dence treatment. Serial correlation of price index
is observed only in the presence of overcon�dence. We suggest that this stems from the
fact that the worst informed are found to be the most overcon�dent, imposing negative
externalities of their overcon�dence.

We believe that the setup and the results discussed here open the door to promising
future research. We have started exploring the lead-lag interaction between the volume
index, the change in volume index, the price error index, and the return index. Preliminary
results suggest intriguing dynamics, in the spirit of Llorente, Michaely, Saar and Wang
(2002). While this paper made the simplifying assumption that overcon�dence is static, it
would we interesting to further explore the role market interaction plays in the process of
overcon�dence updating. Also, in this experiment we have made information acquisition
exogenous but it would be interesting to endogenize it, allowing one to study how miscali-
bration feeds into investment in information. Related to that, we study a setting in which
only private signals are present. This framework could be easily extended to include public
information, thereby allowing one to ask how overcon�dence e¤ects the response to that
type of news.44 Last, since our game does not depend on a large number of participants,
it provides a solution to situations characterized by either asynchronous trading or thin
markets, a topic of interest to both experimentalists [see Plot (2000)] and practitioners [see
Lange and Economides (2003)].
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9 Appendix

9.1 Proofs

Derivation of turn two optimal actions:
Generally, it is easy to show that if x; y; z are r.v.:

Pr(xjy; z) = Pr(yjx;z) Pr(xjz)
Pr(yjz) and therefore, Pr(s2ja21; s1) = Pr(a21js2;s1) Pr(s2js1)

Pr(a21js1) and calculat-
ing the elements of this expression we get:
- Pr(a2;1js2; s1) = Pr(a2;1js2) = �(a21 � s2; 0; �1)
- Pr(s2js1) = 1

2Y

Pr(a21js1) =
s1+YR
s1�Y

1
2Y �(a21 � s2; 0; �1)ds2 =
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9.2 Tables

Table 1: Comparison between observed, fully-rational and boundedly rational models

Means (BLT/OCT)
Turn 1 2 3 4

Volume index
Obs 17:57=16:97 7:51=11:95 5:62=13:19 5:00=9:74
RE 14:95=15:34 4:03=3:80 0:00=0:00 0:00=0:00
NABB 14:95=15:34 4:97=6:15 NA NA
Obs-RE 2:62=1:63 3:48=8:15 5:62=13:19 5:00=9:74

Price error index
Obs 8:93=8:51 4:46=7:41 3:41=7:77 3:49=6:96
RE 7:47=7:67 3:14=3:15 0:68=0:17 0:68=0:17
NABB 7:47=7:67 4:69=6:88 NA NA
Obs-RE 1:46=0:84 1:32=4:26 2:73=7:60 2:81=6:79

Notes: this table reports the average levels of volume and price error indexes as given by ob-
served data (labeled "Obs"), predictions of the Rational Expectations model (labeled "RE") model,
predictions of the Noisy Actions Biased Beliefs (labeled "NABB") model, and observed minus pre-
dicted rational expectations model (labeled "Obs-RE"). The left (right) �gures represent the results
for the BLT (OCT).
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Table 2: Change in price-error and volume indexes

Turn 1 vs 2 Turn 2 vs 3 Turn 3 vs 4 Turn 2 vs 4
(p values)

Price Error index
BLT 0:0000 0:0021 0:9330 0:0216
OCT 0:0143 0:8068 0:2638 0:2414

Volume index
BLT 0:0000 0:0027 0:3950 0:0005
OCT 0:0000 0:4062 0:0030 0:0313

Notes: this table reports p values resulting from non-parametric (Wilcoxon) tests of the null
that the price error index or the volume index remain constant across turns for each treatment
separately. For example, in column one, labeled "Turn 1 vs 2", the lines labeled "BLT" report the
probability that observed turn 1 price error index or volume index are on average the same as those
observed in turn 2.
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Table 3: Price error and volume index comparison across treatments

(p value reported)
Turn 1 2 3 4

Price Error index

All 0:338 0:000 0:000 0:000
Rounds 1-3 0:840 0:046 0:004 0:000
Rounds 4-7 0:369 0:014 0:000 0:004
Rounds 8-10 0:300 0:000 0:000 0:009

Volume index
All 0:610 0:004 0:000 0:000
Rounds 1-3 0:122 0:580 0:008 0:001
Rounds 4-7 0:442 0:156 0:002 0:009
Rounds 8-10 0:095 0:002 0:000 0:104

Notes: this table reports non-parametric (Mann-Whitney) test results of the null that median
observed price error and volume indexes are the same across treatments (BLT vs. OCT) for a given
subset of rounds and turns. For example, the column labeled "3" and the row labeled "Rounds 1-3"
under "Price error index" report the probability that the price error index level is the same across
treatments in turn 3 during rounds 1-3.
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Table 4: Return autocorrelation

ba bb bc
Ln(Vi=P4;i) = a+ bLn(P4;i=P1;i) + ei

BLT 0:000 �0:000
OCT �0:002 �0:109���

Ln(Vi=P4;i) = a+ bLn(P4;i=P1;i) + c(V ol4;i � V ol1;i) + ei
BLT 0:000 0:000 0:000
OCT �0:003�� �0:140��� �0:0003���

Notes: this table reports regression results of log price index change, from open to close of round
(turns 1 to 4), Ln(P4;i=P1;i), and the volume index changes from open to close of round (turns 1
to 4), V ol4;i � V ol1;i, on log ratio of fundamental value to closing round price index, Ln(Vi=P4;i).
Superscript ��(���) denote signi�cance level of 5%(1%).
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Table 5: Mean miscalibration

Group [0; 1=3] [1=3; 2=3] [2=3; 1] All

BLT
Miscalibration �0:03 50 0:0035 �0:104 3�� �0:0427
S.E. 0:0631 0:0500 0:0372 0:0300

OCT
Miscalibration 0:432 7 0:010 4 �0:0870� 0:147 7��

S.E. 0:0414 0:0806 0:0498 0:0250

Notes: this table reports the average miscalibration (across subjects) along with test results of
the null that the average level is equal to zero. Superscript �� (�) represent signi�cance levels greater
than 5% (10%).
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9.3 Figures (not included in the text)

Figure 4: Adjustment rate across treatments by initial probabilities
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Note: this �gure reports average adjustment rates, de�ned as the ratio of own estimate change
from turn 1 to turn 2, over the absolute di¤erence between subjects�turn 1 estimates (see �gure
2). Each column represents the average adjustment rate across all subjects within a given range
of objective probabilities (0 to 1

3 ,
1
3 to

2
3 , and

2
3 to 1), grouped by treatment (BLT or OCT). In

addition, we plot the fully-rational-no-overcon�dence (RE) predicted average adjustment rate for
each of the subgroups.
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Figure 5: Return index autocorrelation
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Notes: these �gures show the price index in turn 1, turn 4, and the fundamental value (labeled
"Liq value") such that all market instances are grouped by the change from turn 1 to turn 4. For
example, the top line in each of the �gures represents the average price index level of all market
instances in which price index increased by 20 to 30 points from turn 1 to turn 4. The top (bottom)
panel represents data gathered in the BLT (OCT). Prices are normalized to be equal to zero in turn
1.
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