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Abstract

We identify three common risk factors in the returns on common stocks: the nondurable

consumption growth rate, the change in the term premium, and the change in the default pre-

mium. We motivate these interesting factors by a linearized version of the Campbell-Cochrane

external habit model where the last two term structure factors proxy for changes in the aggre-

gate risk aversion. Our three-factor model successfully explains the average returns of the 25

size and book-to-market sorted portfolios, and the temporal variation in the conditional first

moments of the market, SMB, and HML portfolios.

JEL: G12, G10

Keywords: Risk Aversion, Default Premium, Term Premium, Size, Book-to-Market,
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1 Introduction

It is already a well-established fact in the empirical finance literature that stocks of small

market capitalizations and high book-to-market ratios earn higher average returns compared

to their counterparts of large market capitalizations and small book-to-market ratios. In an

influential paper, Fama and French (1992, 1993) develop a three-factor model to account for

these stylized facts. However, their model is empirically motivated and thus lacks a structural

explanation.

The thesis of this paper is to propose and estimate a structural consumption-based as-

set pricing model whose empirical success would be comparable to Fama and French (1993).

We take as our benchmark the Campbell and Cochrane (1999) consumption-based external

habit model which implies that assets are risky because they co-vary with the intertemporal

marginal rate of substitution IMRS of the representative agent. The IMRS itself is functionally

dependent upon nondurable consumption growth rate and the change in investors’ relative risk

aversion RRA. We map the unobservable RRA coefficient to observables. In particular, we

argue that the term-structure factors - term and default premia - are proxies for the level in

the aggregate risk aversion; the term premium picks up the variation of aggregate risk aversion

closely related to business cycles, and the default premium tracks the variation in aggregate

risk aversion that transcends the NBER-designated business cycles. These observations are

motivated by the results in Fama and French (1989), who discover that the term premium

displays a strong business-cycle variation, and the default premium variation transcends the

business cycles.

The empirical results are easy to communicate. Our structural model successfully replicates

the results in Fama and French (1993). In fact, that we are able to reproduce apparently well

the cross-section of the 25 size- and book-to-market- sorted portfolio returns may be seen in

Figure 1, bottom right panel: the fitted returns of the linear Campbell-Cochrane model line

up along the 45-degree line in a manner that is remarkably similar to the Fama-French three-

factor model in the top-right panel. The model has a straightforward economic interpretation:
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stocks are risky not only because they co-vary positively with consumption, but also because

they tend to pay badly in times when risk aversion is particularly high relative to the past. In

addition, we also investigate the ability of the model to account for the temporal variation in

the conditional first moments on the market, small-minus-big (SMB) and value-minus-growth

(HML) portfolios using a rich set of instrumental variables (including price/dividend ratio,

value spread etc.), and find strong empirical support for the model.

We find the intuition behind the results compelling. The change in the default premium

is a barometer of the aggregate risk aversion that transcends the NBER-designated business

cycle recessions [Fama and French (1989)], and its mimics the risk factors related to market

capitalization and the book-to-market ratio. In fact, both value and small stocks are sensitive

to innovations in this component of the aggregate risk aversion. Furthermore, the change in the

term premium mimics the risk factor related to the book-to-market ratio. This component of

the risk aversion, which is closely related to the business cycles, contributes toward explaining

the average returns on value stocks relative to growth stocks. Overall, it turns out that small

and value stocks do particularly poorly when the risk aversion is high relative to the past, after

controlling for the consumption growth rate. As an example, small stocks did exceptionally

poorly in the 1980s. Our explanation is that the risk aversion, as proxied by the default

premium, was also extraordinarily high during this period.

In a classical paper, Chen, Roll and Ross (1986) also explore the role of time-varying risk

aversion. They construct the innovation in risk aversion as a simple difference between default

premium and term premium. Their results indicate that the model is capable to account for

the size premium. Another closely related paper is Petkova (2006), who empirically evaluates

the performance of the Merton’s (1973) ICAPM. Her state variables are the dividend-price

ratio, default premium, term premium, short-term Treasury Bill, HML and SMB. Following

Campbell (1996) she uses a triangularized VAR(1) to extract the innovations in these variables,

and then uses these surprise series to price the monthly cross-section of 25 Fama-French port-

folios. In contrast, both our story and the data are different. In specifying the pricing kernel

we fall back on the structural consumption-based Campbell-Cochrane model. Our measure of
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the level of risk-aversion is proxied by the level of the default premium and term premium.

The fact that we use changes in default premium and term premiums in our empirical exercise

is dictated by the pricing kernel of the the model. Note, however, that Petkova’s innovations

to default premium and term premium, and our simple changes in the default and the term

are significantly different time series. Whereas our most significant priced factor is the change

in default premium, in Petkova it is the surprise in the term premium that captures the most

of the cross-sectional variation, with the surprise in default premium not being priced. Our

paper is also related to Lettau and Ludvigson (2001) who explore a conditional version of the

consumption CAPM. Their focus is, however, not on role of the aggregate risk aversion in asset

pricing neither the interaction between the bond and stock market.

A related literature examines the link between stock market and bond market. Fama and

French (1993) find that portfolios constructed to mimic risk factors related to market capi-

talization, book-to-market, and two term-structure factors, the level of the term and default

premiums, capture strong common variation in common stock and bond returns. They con-

clude that “... there are at least three stock-market factors and two term-structure factors

in returns. Stock returns have shared variation due to the three stock-market factors, and

they are linked to bond returns through shared variation in the two term structure factors.”

However, the explanatory power of the term structure factors is marginal once stock market

factors are included in the regression. Gebhardt, Hvidkjaer and Swaminathan (2005) focus

on the level of the default and term premiums as risk factors to price to the cross-section of

corporate bond returns.

The rest of the paper is organized as follows: Section 2 establishes the theoretical framework

and our empirical proxies. Section 3 covers our empirical results. Section 4 concludes.
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2 Theoretical Framework and Empirical Proxies

2.1 Linear Campbell-Cochrane (1999) External Habit Model

Building on the work of Abel (1990), Constantinides (1990), Heaton (1995) and Sundaresan

(1989), Campbell and Cochrane (1999), [hereafter CC], have developed a representative agent

asset pricing model in which investors’ preferences exhibit an external habit formation. CC

specify the felicity function as a difference between consumption Ct and the habit Xt, which

generates a time-varying risk-aversion. Formally,

u(Ct,Xt) =
1

1 − γ
(Ct − Xt)

1−γ . (1)

The utility functional is

U ({Ct}t≥0) = E0

∞∑

t=0

βt u(Ct,Xt), (2)

where β is the subjective discount factor. In complete markets equilibrium, investors equalize

their marginal rates of substitution across states and this common value is the stochastic

discount factor

Mt+1 = β
uC(Ct+1,Xt+1)

uC(Ct,Xt)
. (3)

For purposes of clear exposition, CC define the so-called consumption surplus ratio, denoted

St, as an excess of current consumption relative to the habit expressed as a fraction of the

current consumption. Small consumption ratio, for instance, indicates that the economy is in

recession where consumption is particularly low relative to the habit level. In equations,

St =
Ct − Xt

Ct

. (4)
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We may express the discount factor Mt+1 as

Mt+1 = β

(
Ct+1

Ct

St+1

St

)−γ

. (5)

Intuitively, stocks are risky because they co-vary either with consumption growth Ct+1 /Ct

or with the consumption surplus growth St+1 /St. It is illuminating to express the discount

factor in terms of the RRA coefficient. To do that, recall that RRA is defined as

RRAt ≡ −
∂ log JW (t)

∂ log Wt

= −
∂ log uC(t)

∂ log Ct

×
∂ log Ct

∂ log Wt

= ηt × MPCt, (6)

where MPCt is the marginal propensity to consume out of wealth and the parameter ηt is the

curvature of the felicity function, defined as

ηt = −
Ct uCC(Ct,Xt)

UC(Ct,Xt)
=

γ

St
. (7)

This allows us to re-write the RRA coefficient in terms of the consumption surplus ratio as

RRAt =
γ

St
× MPCt. (8)

Or equivalently,

St =
γ

RRAt
× MPCt. (9)

We can thus eliminate the consumption surplus ratio St from the stochastic discount factor

Mt+1

Mt+1 = β

(
Ct+1

Ct

RRAt

RRAt+1

MPCt+1

MPCt

)−γ

= elog(β) − γ ∆ ct+1 + γ ∆ rrat+1 − γ ∆ mpct+1 (10)

5



Lower-case variables are in logs. We subsequently use the approximation ex ∼= 1 + x

Mt+1 = 1 + log(β) − γ ∆ ct+1 + γ ∆ rrat+1 − γ ∆ mpct+1. (11)

The primary testable restrictions of the model are the set of Euler equations

Et

[
Mt+1 Re

t+1

]
= 0, (12)

where Re is an excess return. Using the linearization and demeaning the factors, we may

rewrite the Euler equation

Et

[
Re

t+1

]
= γ covt

[
∆ct+1, R

e
t+1

]
− γ covt

[
∆rrat+1, Re

t+1

]
+ γ covt

[
∆mpct+1, R

e
t+1

]
. (13)

The model identifies three sources of risk. The first one is the growth rate in nondurable

consumption. This risk factor is well-understood. Stocks that pay badly when people al-

ready consume little are risky. The other two risk factors are recession factors. In the model,

recessions are not only periods of low consumption growth but also of high growth rate of

risk-aversion and low (even negative) growth of the marginal propensity to consume. Holding

the consumption growth constant, stocks that pay badly when the risk-aversion is rising are

bad. They let investors down exactly at the wrong time. Similarly, stocks that pay badly in

times when the marginal propensity to consume out of wealth is falling are risky.

Because marginal propensity to consume ∆mpct+1 is unobservable, we drop it in equation

(11) and have the following linear factor asset pricing model

Mt+1 = b0 + b1 ∆ ct+1 + b2 ∆ rrat+1, (14)

with two restrictions b1 < 0 and b2 = −b1. We argue that dropping the marginal propensity to

consume out of wealth is innocuous as there is only one state variable in addition to the financial
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wealth, the habit level Xt, and therefore only one independent risk factor in addition to the

consumption growth rate. We refer to this model hereafter as the linear Campbell-Cochrane

model.

2.2 Empirical Proxies

Our yardstick of aggregate risk aversion employs two term-structure related variables: the term

premium and the default premium. Our motivation is based on the general decomposition

Expected Return = Price of Risk × Quantity of Risk (15)

In Campbell-Cochrane model, price of risk corresponds to the aggregate risk aversion. In fact,

in an extension of Campbell-Cochrane model, Wachter (2005) models the real and nominal

term structure of interest rates. She finds that the excess return on nominal bonds depends

on the quantity of risk such as covariance of inflation with consumption growth, and the price

of risk, the aggregate risk aversion. We can therefore back out a measure of the aggregate risk

aversion from the term structure of interest rates. One may argue that the same argument

follows for equities. In fact, this is exactly in the spirit of the influential Lettau and Ludvig-

son’s (2001) model. Using the budget constraint, they construct a new interesting predictive

variable, denoted cayt, the deviation from the stochastic trend between asset wealth a, la-

bor income y and nondurable consumption c. Using the linearized Campbell-Cochrane (1999)

model, they then obtain an interesting conditional asset pricing model. However, the advan-

tage of backing out the risk aversion from the yield curve is that default and term premiums

are observable in real time. Moreover, the quantity of risk for bonds is smaller than that for

equities and therefore our measure of risk aversion is arguably less noisy. Secondly, we do not

want the error in measuring the risk aversion to be correlated with stock returns, which might

be more likely if we back it out from equity returns.

Furthermore, in an interesting paper, Fama and French (1989) show that the time-series be-
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havior of the term premium TERM is closely related to business cycles as identified by the

NBER. TERM tends to be particularly low near business cycle peaks and particularly high at

troughs. In other words, TERM tracks the variation in expected returns on stocks and bonds

in response to short-term variation in business conditions. Therefore, it is a good proxy for

the changes in aggregate risk aversion over the business cycle.

If bond portfolios are priced rationally, the default spread DEF reflects the business cycle

state of the U.S. macro-economy. DEF displays some business cycle variation but most of its

movement transcends the business cycles as measured by the NBER. In the post-war period,

DEF is particularly high during the early 80s. As a result, DEF picks up the variation in

aggregate risk aversion that goes beyond the business cycles. Therefore, we map the model-

implied coefficient of relative risk-aversion toward wealth bets by employing two proxies, the

term spread TERM and the default spread DEF.

3 Empirical Investigation

To test our model, we first test the unconditional moment restrictions of the model and then

the conditional moment restrictions. We find that our model performs well in both tests.

3.1 Data

The nominal nondurable consumption and services are obtained from the National Income and

Product Accounts (NIPA), period 1947:Q1 - 2004:Q4, and are seasonally adjusted. They are

converted to real per-capita series by dividing by the consumer price index and the quarterly

U.S. population.

Asset data except Baa and Aaa yields are from Ken French’s web site. The risk-free rate

is the three-month Treasury bill rate, the market return is the return on the value-weighted

portfolio of NYSE, AMEX and NASDAQ firms. The 25 Fama-French portfolios, which are
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constructed at the end of each June, are the intersections of 5 portfolios formed on size (market

equity, ME) and 5 portfolios formed on the ratio of book equity to market equity (BE/ME).

The size breakpoints for year t are the NYSE market equity quintiles at the end of June of t.

BE/ME for June of year t is the book equity for the last fiscal year end in t − 1 divided by

ME for December of t − 1. The BE/ME breakpoints are NYSE quintiles. The portfolios for

July of year t to June of t+1 include all NYSE, AMEX, and NASDAQ stocks for which Fama

and French have market equity data for December of t − 1 and June of t, and (positive) book

equity data for t− 1. The yields on the portfolio of the corporate bonds with Moody’s ratings

Aaa and Baa are obtained from the Federal Reserve Bank of St. Louis.

Following Fama and French (1989, 1993), we define two bond factors based on the term struc-

ture of interest rates for corporate bonds. Firstly, we define the term spread, TERM , as a

simple difference between time t yield-to-maturity on the Aaa bond portfolio and the 3-month

Treasury bill rate. Using the decomposition that the expected return = price of risk × quantity

of risk, TERM is a measure of the price of risk, that is to say, the aggregate yardstick of risk

aversion. Fama and French (1989) show that TERM displays a clear business cycle pattern,

rising in troughs and falling in peaks. Therefore, TERM picks the variation in aggregate risk

aversion that is closely related to the NBER-designated recessions. Furthermore, we define

the default spread DEF as the difference between time t yield-to-maturity on the Baa bond

portfolio minus time t yield-to-maturity on the Aaa bond portfolio. Fama and French (1989)

show that DEF exhibits variation that seem to transcend the business cycle frequencies. For

example, DEF is particularly high in ’80s when small stocks did surprisingly poorly. Table 1

reports the summary statistics.

3.2 Empirical Methods

We use two well-established empirical methodologies to evaluate the presented models. Firstly,

in order to be easily comparable with the previous finance literature, we use Fama-MacBeth

methodology [Fama and MacBeth (1973)]. The primary testable asset pricing implications of
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linear factor models are the β-representation [Ross (1978), Dybvig and Ingersoll (1982)]

E
[
Re

i,t+1

]
= βi

′ λ, i = 1, ..., 25 (16)

where λ is a K × 1 vector of the market prices of risk corresponding to a T ×K vector of risk

factors Ft+1. We test these implications of the economic theory as follows. We run the time

series regression to estimate the betas

Re
i,t+1 = a + βi

′ Ft+1 + εi,t+1, i = 1, ..., 25 (17)

We then run the cross-sectional regression

ET

[
Re

i,t+1

]
= β0 + βi

′ λ + αi, i = 1, ..., 25 (18)

to estimate λ, where we use the Hansen’s (1982) notation ET = T−1
∑T

t=1. In the cross-

sectional regression, a well-specified asset-pricing model produces intercept β0 that is indistin-

guishable from zero [Merton (1973)]. The estimated intercept provides a simple return metric

and a formal test of how well different sets of the risk factors account for the cross-section

of expected returns. Moreover, judging asset-pricing models on the basis of the intercept in

excess return regressions imposes a stringent standard. Competing models are asked to explain

the three-month Treasury Bill rate as well as the excess returns on 25 Fama-French portfolios.

Furthermore, note that the αis represent the pricing errors of a particular model. We therefore

evaluate the empirical performance of the model using the asymptotic JT test, described below.

This test is a direct analog of the Gibbons, Ross and Shanken (1989) test.

Secondly, we follow the stochastic discount methodology [Cochrane (1996)] and test the over-

identifying restriction [Hansen (1982), Hansen, Heaton and Yaron (1996), Hansen and Singleton
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(1982)]. In all models considered, the stochastic discount factor takes the linear form

Mt+1 = 1 + b ′ Ft+1 (19)

where Ft+1 is a T ×K vector of risk factors and b is a K×1 vector of constant factor loadings1.

The primary testable asset pricing implications of the models are the set of Euler equations

Et

[
Mt+1 Re

i,t+1

]
= 0, i = 1, ..., 25 (20)

where Re
i,t+1 are excess returns on 25 Fama-French portfolios. We condition down the models

by taking unconditional expectation of the equation (29) and form the 25 × 1 vector of Euler

equations (pricing) errors

ei(b) = ET

[
Mt+1 (b) Re

i,t+1

]

We follow Hansen, Heaton and Yaron (1996) and estimate the unknown vector of factor loadings

b̂ by making the pricing errors close to zero in the sense of minimizing the quadratic form

b̂ = arg min
b

JT,S = ei (b)′ S−1(b) ei (b)

where S is the spectral density matrix at frequency zero. We report only the results2 of the test

of the over-identifying restriction JT,S [Hansen (1982)]. Furthermore, Hansen and Jagannthan

(1997) suggest to perform model comparison using the weighting matrix E[RR′], the inverse of

the second moments of asset returns, and computing the HJ-distance JT,HJ . The advantage is

that the weighting matrix is invariant across models and thus suitable for model comparison.

Finally, we also report the test of over-identifying restriction for the identity weighting matrix,

the so-called first-stage GMM, which is equivalent to running OLS cross-sectional regression.

The advantage is that the test focuses on economically interesting portfolios, that is, those

1Note that without loss of generality, the coefficient b0 is normalized to one. The reason for this is that we
use excess returns, and we want all parameters to be identified.

2Detailed results, including the code, are available from authors upon request.

11



sorted based on the market capitalization and the accounting book-to-market ratio. Last but

not least, it allows to compare the pricing errors across models, knowing that we did not blow

up the spectral density matrix.

3.3 Unconditional Tests

In addition to the linear Campbell-Cochrane model advocated in the paper, we also consider

three additional familiar linear factor pricing models as benchmarks. We evaluate the power

of all these models to account for the cross-section of expected equity returns using excess

returns on the 25 size and book-to-market sorted portfolios [Fama and French (1993)]. Table

3 presents the results of estimating the β-representation

E
[
Re

i,t+1

]
= β ′ λ, i = 1, ..., 25 (21)

for the Sharpe-Lintner (CAPM) model [row 1], the Fama-French three-factor model [row 2],

the canonical Consumption-Based CAPM of Lucas (1978) and Breeden (1979) [row 3], and

the linear Campbell-Cochrane model [row 4]. The table reports the estimated coefficients of

market prices of risk λ, Shanken-corrected and uncorrected t-statistics for these coefficients,

unadjusted and adjusted R2s for the cross-sectional regression, and the Hansen’s (1982) JT

statistics corresponding to (i) the identity weighting matrix [JT,W ], (ii) Hansen-Jagannathan’s

(1997) distance matrix [JT,HJ ], and (iii) the efficient weighting matrix of continuous-updating

GMM [JT,S ], all to formally test the model.

Perhaps the most familiar unconditional linear factor pricing model is the static Sharpe-Lintner

model (CAPM). We implement this model by using the CRSP value-weighted excess market

return as a proxy for the unobservable market portfolio return. The cross-sectional implication

of this model is

E
[
Re

i,t+1

]
= βw λw (22)
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The results are presented in the first row of table 3. The t-statistics of the market price of

risk λw is statistically insignificant, indicating that the beta is unable to account for the cross-

sectional variation in average returns. Moreover, it has the wrong sign according to Sharpe

(1964) and Lintner (1965). This failure is summarized by (i) very low cross-sectional R2, about

1% [see also Fama and French (1992)] and (ii) large JT,W , JT,HJ and JT,S statistics, rejecting

the model formally3.

Table 3, row 2, presents the results for the influential Fama-French three-factor model [Fama

and French (1992, 1993)] given by

E
[
Re

i,t+1

]
= βw λw + βSMB,i λSMB + βHML,i λHML (23)

where SMB is the small-minus-big portfolio and HML is the value-minus-growth portfolio.

In stark contrast to the Sharpe-Lintner Capital Asset Pricing Model, the three-factor FF

model is able to explain about 78% of cross-sectional variation in average returns, and the

Shanken-corrected t-statistics on the HML factor is statistically significant4. However, the

intercept comes out statistically significant as well, with t statistics 3.310, contrary to the eco-

nomic theory. The model is statistically rejected as the test of the over-identifying restriction

JT,S = 47.498, with p-value= 0.000, but Fama and French (1993) correctly point out that the

model is estimated too precisely, and therefore the pricing errors have “too” small standard

errors (see also the section Euler Equation Errors below).

Table 3, row 3, presents the results for the canonical Consumption-based CAPM [Lucas (1978),

Breeden (1979)]. The cross-sectional implication of this model is given by

E
[
Re

i,t+1

]
= β∆ c λ∆ c (24)

3Jagannathan and Wang (1996) augment the canonical CAPM with human capital and obtain more encour-
aging results.

4The likelihood ratio test [Newey and West (1987a)] yields JT (restricted)-JT (unrestricted) = 60.063 −
47.498 = 12.565 > χ2

95%(1) = 3.842.
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where ∆ c is the (log) growth rate in real nondurable consumption and services. As it is

well-known [cf. Breeden, Gibbons and Litzenberger (1989), Hansen and Singleton (1983)], the

model does not perform very well. Although the sign of the estimated market price of risk λ∆ c

is positive, the t-statistics is statistically insignificant. The model can explain a poor 19% of

cross-sectional variation in average returns. Furthermore, the intercept comes out statistically

insignificant, in accordance with the economic theory. The test of over-identifying restriction

based on the efficient weighting matrix does not reject the model statistically at conventional

significance levels as there is a lot of noise. In fact, the first-stage GMM tests JT,W and JT,HJ

clearly reject the model. In other words, the failure to reject is indicative of large pricing errors

having even larger standard errors, probably blowing up the spectral density matrix, exactly

opposite of what happened to the three factor Fama-French model.

This paper advocates a linear Campbell-Cochrane model, where the risk-aversion is proxied by

the default and term premia. The results are presented in row 4 of table 3. The cross-sectional

implication of this model is given by

E
[
Re

i,t+1

]
= β∆ c λ∆ c + β∆ def λ∆ def + β∆ term λ∆ term (25)

Consistent with the economic theory, the intercept comes out statistically insignificant. In ad-

dition, the default and term factors are statistically significant, with the uncorrected t-statistics

-3.335 and -2.101, respectively. The likelihood ratio test of Newey and West (1987a) confirms

this result as JT (restricted)-JT (unrestricted)= 35.715 − 29.283 = 6.432 > χ2
95%(2) = 5.992.

The growth rate of nondurable consumption ∆ c is not statistically significant, but its market

price of risk has the correct sign. The model is able to account for nearly 80% of cross-sectional

variation in average returns. Furthermore, the test of the over-identifying restriction does not

reject the model at conventional significance levels (JT,S = 29.283 with p-value= 0.137).

Finally, based on equation (14) the model predicts that the factor loadings b1 and b2 on ∆ c

and ∆ rrat+1 are equal to γ. Campbell and Cochrane (1999) calibrate γ = 2. Because we
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proxy the risk aversion with default and term premia, which are noisy yardsticks, we relax the

restriction on the term-structure factors but impose the restriction b1 ≡ −γ = −2. The test

of over-identifying restriction yields5 JT,S = 31.376 with p-value= 0.114. We are still unable

to reject the model at conventional significance levels.

3.3.1 Factor βs

Table 2 reports the average excess returns on 25 Fama-French portfolios sorted by size and

the book-to-market ratio. For each book-to-market quintile, the average return tends to rise

as size gets smaller. Similarly, for each size quintile, the average return tends to rise as the

book-to-market ratio of the portfolios increases. This table, therefore, compactly summarizes

the size and book-to-market effects uncovered by Banz (1981), Basu (1977), Fama and French

(1992, 1993) and others.

The challenge for rational asset pricing is to develop credible models that can successfully

account for these two phenomena. We claim in this paper that the linear Campbell-Cochrane

model does exactly that. In fact, Table 4 reports the default betas. They tend to come out

negative as the market price of risk λ∆ def is negative as well. The small value portfolio has

the largest magnitude of beta and is therefore most sensitive to changes in the default pre-

mium. In general, the default beta tends to fall in magnitude across size quintiles, holding the

book-to-market ratio of portfolios constant, except the two smallest book-to-market quintiles.

Similarly, the default beta falls6 across book-to-market quintiles, holding the market equity of

the portfolios fixed. As a result, the innovation in default premium is a good proxy for the

risk factors uncovered by Fama and French (1992, 1993) as it picks both the size and book-to-

market effects.

A careful reader may have noticed that the individual t-statistics for the default factor βs

are seemingly indistinguishable from zero. To clear up the scepticism, we perform two types

5Details available from authors upon request.
6Note that the market price of risk of ∆def is negative.
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of additional tests. Firstly, we use the asymptotic Wald test from the 25 seemingly unrelated

regressions (SUR) and find that the β∆def s are jointly significant across the 25 time-series re-

gressions [Table 4, last column]. Secondly, in each time-series regression we perform a ”single

equation” F -test for the joint significance of both β∆def and β∆term. The results are reported

in the right bottom of Table 4. Apparently, except the small growth portfolio S1B1, we cannot

accept the null hypothesis that both βs are zero. We interpret the seeming statistical insignif-

icance of β∆def as a multi-collinearity problem.

Table 4, Panel C, reports the term premia betas. It seems that the betas vary across book-

to-market quintiles but not much across size quintiles. We interpret the innovation in term

premium as an additional risk factor that mimics the risk factors related to the book-to-market

ratio.

In conclusion, as we mentioned before, DEF tracks the variation in risk aversion that tran-

scends the business cycle. Both small and value stocks are very sensitive to the variation in

this component of aggregate risk aversion. For example, DEF was particularly high during

the 1980s when small stocks did exceptionally poorly. In contrast, TERM picks the variation

in risk aversion that is related closely to business cycles. It seems that value stocks, but not

small stocks, are particularly sensitive also to this business-cycle related vicissitude in the risk

aversion.

3.3.2 Euler Equations Errors

Figure 1 plots the Euler equation pricing errors et+1, or α’s as they are better known in the

investment literature, especially on CAPM. Formally, Euler equations errors are defined

ei = E
[
mt+1R

e
i,t+1

]
, i = 1, ..., 25 (26)
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where Re
it is ith portfolio out of 25 Fama-French portfolios in excess of the risk-free rate. A

simple manipulation shows that

ei

E[mt+1]
= E

[
Re

i,t+1

]
−

[
−cov(mt+1, R

e
i,t+1)

]
= Average Return − Fitted Return (27)

Because E[mt+1] is close to one, we refer to the Euler equation errors as pricing errors.

Cochrane (1996, 2001) derives the asymptotic distribution for these pricing errors.

Two models stick out as potentially successful descriptions of the cross-section of expected

returns based on the empirical results yielded by the Fama-MacBeth regressions: (i) the Fama-

French three-factor model and (ii) the linear Campbell-Cochrane model that we advocate in

this paper. Firstly, the last one is not formally rejected in the data, whereas Fama and French

(1993) interpret the statistical rejection of their model as small pricing errors having even

smaller standard errors. Figure 1 provides a visual impression of the relative empirical per-

formance of each model we investigate. For a given empirical specification, we portray the

fitted expected returns for each of the 25 portfolios against their realized average returns. For

reference, the pricing errors along with their standard errors for these plots are given in Table

5, Panels B and C, for the two aforementioned models.

Figure 1, top left panel, graphically portrays the failure of the Sharpe-Lintner model, which

explains virtually no variation in average returns. The pricing errors reported in Table 5,

Panel A, are large, with the mean absolute error MAE above 70 basis points per quarter.

Figure 1, bottom left panel, shows that the Canonical CCAPM explains some, but generally

small, variation in average returns on these portfolios. The mispricing of the smallest quintiles

portfolios is particularly evident. To be specific, portfolios 11 (small growth), 14 and 15 (small

value), lie particularly far from the 45 degree line. The mean absolute pricing error for the

Canonical CCAPM is MAE = 58.6 basis points per quarter.
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When the fitted returns from the linear Campbell-Cochrane model are compared with those

of the Fama-French three factor model, it is clear that the linear Campbell-Cochrane model

does about as well as, if not better than, the Fama-French. Both models have difficulty pricing

portfolios 11 (small growth) and 15 (small value). Interestingly, the linear Campbell-Cochrane

model does significantly better than Fama-French in pricing 51 (big growth) portfolio. The

mean absolute pricing error, based on Table 5, Panel B and C, is MAE = 40 basis points per

quarter for Fama-French and MAE = 34.62 basis points per quarter for the linear Campbell-

Cochrane.

We conclude that the linear Campbell-Cochrane model, advocated in this paper, produces

the lowest pricing errors and the test of the over-identifying restriction does not reject the

model statistically.

3.3.3 Including Characteristics

This section investigates whether there are any residual effects of firm characteristics in the

linear Campbell-Cochrane model evaluated above. Kan and Zhang (1999) argue that “useless”

factors can appear statistically significant in the Fama-MacBeth Methodology, when the model

being tested is misspecified. Berk (1995) and Jagannathan and Wang (1998) show that this

misspecification can be tested for by including firm characteristics as additional explanatory

variables in cross-sectional asset pricing tests. In fact, Jagannathan and Wang, in Theorem

6, prove that a useless factor cannot drive out a firm characteristics in the cross-sectional

(second-pass) regression, and Berk demonstrates that if the model is misspecified, including

(log) market equity of a firm picks up the effects of the missing factors and the coefficient in

the cross-sectional regression should be negative. Because of Berk’s result and the fact that

the portfolios are sorted based on market size and book-to-market ratio, we examine the model

misspecification using two characteristics: (log) market equity and (log) book-to-market ratio.

In detail, we include portfolio size, measured as the time-series average of the log of market

equity for each portfolio, and the portfolio book-to-market, again gauged as the time-series
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average of the book-to-market ratio for each portfolio. A large t-statistic on the characteristics

term suggests that the model may be misspecified. We present these results in table 6. Panel

A reports the results when the characteristic included in the cross-sectional regression is size.

Panel B reports the results when book-to-market is included.

In Panel A, column size is consistent with Berk (1995) in that all coefficients on size are neg-

ative. Specifically, row 1 reports the well-known result for the Sharpe-Lintner model, namely,

the coefficient on size is strongly significant, and the R2s rises from 1% to nearly 78% when

it is included as the explanatory variable. In addition, the market price of risk, though still

negative, becomes statistically significant. Rows 2-3 report the results for the Fama-French

three-factor model and the canonical CCAPM of Lucas (1978) and Breeden (1979). In all cases,

the coefficient on size comes out negative and strongly significant. In particular, the results for

the influential Fama-French model indicate in Berk’s (1995) words that some factor(s) is still

missing. In contrast, as row 4 reports, the results for the linearized Campbell-Cochrane model

are encouraging: the coefficient on size is negative but statistically insignificant. The charac-

teristic does not drive out our risk factors in the cross-sectional regression, and the overall fit

is roughly the same regardless of whether or not size is included in the regression.

Panel B, row 1, shows another failure of Sharpe-Lintner model: the coefficient on the book-to-

market ratio is strongly significant and the R2 rises by more than 70% once the book-to-market

ratio is included in the Sharpe-Lintner model. In contrast to size, the Fama-French model re-

ported in row 2 does not have difficulty eliminating the residual book-to-market effects. The

Canonical CCAPM in row 3 is unable to eliminate the residual book-to-market effects which is

indicative that it is perhaps misspecified. The linear Campbell-Cochrane model, row 5, fares

very well: the coefficient on the book-to-market ratio is statistically insignificant, and the R2

practically doesn’t change once the book-to-market ratio is included in the model.
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In summary, the linear Campbell-Cochrane model performs better in explaining the cross-

section of returns than the other familiar models considered, as portfolio characteristics do not

show up as significant explanatory variables.

3.4 Conditional Test of the Model

In this section, we test the time-series implications of the linear Campbell-Cochrane model.

Following Cochrane (1996), the analysis is conducted in the language of the stochastic discount

factor. The primary testable asset pricing implications of the model are the set of Euler

equations, repeated here for convenience,

Et

[
Mt+1 Re

i,t+1

]
= 0 (28)

In order to keep the total number of moments manageable7, we use a small number of assets

and add instruments informative of the state of the U.S. economy. In our estimation, we center

on the three portfolios: value-weighted market return in excess of the three-month Treasury

Bill, the small-minus-big SMB portfolio and the value-minus-growth HML portfolio. Fama and

French (1993) discover that these portfolios pick up the common variation in returns across

the 25 Fama-French portfolios.

We condition down the model using 7 well-known instruments in addition to a constant.

In detail, we use variables known to predict excess returns well: (i) the price-dividend ratio

[Campbell and Shiller (1988), Fama and French (1988), Cochrane (1994)], (ii) Lettau and

Ludvigson’s (2001) co-integrating residual ĉay, (iii) term and default premia [Fama and French

(1989)], (iv) size (SMB) and value (HML) spreads [Cohen, Polk and Vuolteenaho (2003)], (v)

nondurable consumption growth rate and (vi) a constant. All instruments are lagged twice to

account for the time aggregation in consumption data [cf. Hall (1988)]. Furthermore, Ogaki

(1988) shows that the additional lag is consistent with the information structure of a monetary

7Hansen and Singleton (1982) warn that large number of moment conditions may affect the small sample
properties of GMM.
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economy with cash-in-advance constraints. The scaled Euler equations, after conditioning

down, take the form

E
[
Mt+1 Re

i,t+1 ⊗ Zt

]
= 0 (29)

where Zt is a 1 × 7 vector of instrumental variables.

To form a basis for comparison, we begin by presenting results from a series of familiar

models that we discussed in the previous sections. Table 7, row 1, reports the results for the

static Sharpe-Lintner model

Mt+1 = 1 + b1 RW,t+1 (30)

The factor loading b1 on the value-weighted market return comes out significant and with

a correct, negative sign. The model however is able to capture neither the average excess

returns nor any time variation in the conditional expected return on the benchmark portfolios,

namely, excess market return, SMB and HML; the asymptotic JT statistics is above 50 no

matter what weighting matrix we use (i.e. identity matrix W for JT,W , Hansen-Jagannathan’s

(1997) distance matrix for JT,HJ and the efficient weighting matrix for JT,S), and the model is

statistically rejected. This result is not surprising given that the Sharpe-Lintner model already

had trouble pricing the average, unconditional, returns on these benchmark assets. The results

for the Canonical CCAPM

Mt+1 = 1 + b1 ∆ ct+1 (31)

are reported in row 3 and the conclusion is practically the same as for the Sharpe-Lintner

model - there is an apparent inability to capture the time variation in the conditional expected

returns on the benchmark assets.

Table 7, row 2, presents the results for the three factor Fama-French model [Fama and French

(1992, 1993)], which in the stochastic discount factor language is

Mt+1 = 1 + b1 RW,t+1 + b2 SMBt+1 + b3 HMLt+1 (32)
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All factor loadings come out with a correct sign and except for b2, all are statistically signifi-

cant. The model appears to track successfully the temporal variation in conditional expected

returns on the benchmark portfolios. In fact, the asymptotic JT,S statistic based on the effi-

cient weighting matrix comes out slightly above 32, with p-value 0.07. The row 2, column 7,

reports the Newey-West’s (1987) ∆JT test of whether the incremental ability of SMB and HML

is significant. The result is not surprising given Fama and French (1992, 1993). However, the

Hansen-Jagannathan’s (1997) distance metric as measured by JT,HJ is statistically significant.

We interpret this result as saying that the misspecification of the stochastic discount proxy

Mt+1 is important and the maximum pricing errors in the payoff space are large.

Table 7, row 4, presents the estimated factor loadings for the linearized Campbell-Cochrane

model

Mt+1 = 1 + b1 ∆ c + b2 ∆ def + b3 ∆ term (33)

According to the original Campbell-Cochrane (1999) calibration, γ = 2. We therefore impose

the theoretical restriction from the linearization (see the theoretical section) b1 = −γ = −2.

Furthermore, although the theory has implications also for the factor loading on the coefficient

of risk aversion ∆ rra, we hesitate to impose them as the default and term spreads are fairly

noisy measures of aggregate risk aversion. Thus, in row 4 we keep b2 and b3 unrestricted

in the estimation. According to the linearization, the factor loading(s) on the factor ∆ rra

should come out positive. Indeed, we estimate b2 and b3 with the correct sign and statistically

significant. The test of the over-identifying restriction does not reject the model for (i) identity

weighting matrix [ JT,W = 8.356, p-value = 0.996], (ii) Hansen-Jagannathan’s (1997) distance

metric [JT,HJ = 25.961, p-value = 0.253], and (iii) the Hansen’s (1982) efficient weighting

matrix [JT,S = 27.318, p-value 0.199]. These results indicate that the model produces small

Euler equation errors rather than blowing up the spectral density matrix. We conclude that the

linearized Campbell-Cochrane model successfully tracks the time-variation in the conditional

expected returns on the equity premium, and the small-minus-big (SMB) and the value-minus-
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growth (HML) spreads. Furthermore, as the Newey-West’s (1987) ∆JT test reported in column

9 indicates, the incremental ability of SMB and HML is not statistically significant. In row

5 we impose the tight theoretical restriction −b1 = b2 = b3 and still do not reject the model.

4 Conclusion

This paper makes empirical use of the structural consumption-based Campbell-Cochrane (1999)

model to explain (i) the cross-sectional differences in average returns, and (ii) temporal vari-

ation in conditional expected returns, on 25 Fama-French size- and book-to-market- sorted

portfolios. Based on the model’s intertemporal marginal rate of substitution, we propose a

three-factor linear pricing model. Our risk factors are the nondurable consumption growth

rate and the change in aggregate risk aversion. We map the unobservable risk aversion to two

interesting term-structure related proxies - default and term spreads. We discover that our

structural model is capable of accounting for the average returns on 25 Fama-French portfolios

with slightly smaller pricing errors than the empirically-based three-factor Fama-French model.

Furthermore, the linear factor structure successfully captures the average, unconditional, mo-

ments and the time variation in the first conditional moments of the equity premium, and

SMB and HML spreads.
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Table 1: Descriptive Statistics

Variable Mean S.D. Autocorrelation Correlation
(%) (%) Mkt SMB HML Nondurables DEF TERM ∆ def ∆ term

Market 1.537 8.671 0.027
SMB 1.080 6.144 -0.019 0.495
HML 1.064 6.258 0.137 -0.370 -0.108

Nondurables 0.528 0.478 0.360 0.172 0.079 0.007
DEF 1.012 0.440 0.903 0.147 0.072 -0.002 -0.261

TERM 2.314 1.558 0.843 0.144 0.112 0.073 0.069 0.203
∆ def 1.313 17.319 -0.010 0.060 -0.052 -0.133 -0.254 0.226 -0.139
∆ term 0.404 6.542 -0.022 -0.325 -0.032 -0.084 0.011 -0.185 -0.339 -0.222

NOTE - The table reports the mean, standard deviation, and first-order autocorrelation of excess market return Mkt, SMB return, HML return, real
nondurable consumption growth, default premium DEF = the yield spread between Baa and Aaa bonds, term premium TERM = spread between
yields on Aaa bonds and 3-month Trasury Bill rate, and their respective (log) growth rates ∆ def and ∆ term. It also reports the correlations among
these variables. Sample period 1964,1-2004,4.
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Table 2: Average Returns on 25 Fama-French Portfolios

Book-to-Market Equity Book-to-Market Equity
Size Low 2 3 4 High Low 2 3 4 High

Average Return t-statistics
Small 1.189 2.837 2.954 3.588 3.939 0.895 2.522 2.990 3.815 3.831

2 1.545 2.235 2.985 3.145 3.423 1.319 2.277 3.452 3.727 3.749
3 1.539 2.405 2.345 2.789 3.349 1.446 2.775 3.038 3.617 3.930
4 1.804 1.689 2.337 2.689 2.811 1.887 2.112 3.200 3.681 3.445

Big 1.325 1.473 1.533 1.726 1.824 1.803 2.219 2.592 2.899 2.698

NOTE - The table reports the mean returns on 25 Fama-French portfolios and the t-statistics for the mean.
Sample period 1964,1-2004,4.
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Table 3: Fama-MacBeth Regressions Using 25 Fama-French Portfolios: λj Coefficient Estimates on Betas in Cross-Sectional
Regression

Factorst+1 R2 JT,W JT,S JT,HJ

Row Constant Rw SMB HML ∆ c ∆ def ∆ term {R̄2} (p-value) (p-value) (p-value)

1 0.028 -0.0034 0.010 95.932 70.171 96.907
(2.982) (-0.305) (0.200) (0.000) (0.000) (0.000)
{2.979} {-0.262} {-0.033} [0.000]

2 0.039 -0.023 0.008 0.015 0.785 67.211 47.498 64.585
(3.310) (-1.729) (1.668) (2.757) (0.000) (0.000) (0.001) (0.000)
{3.043} {-1.448} {1.141} {1.930} {0.754} [0.002]

3 0.006 0.005 0.194 59.746 35.715 60.052
(0.797) (1.753) (0.000) (0.058) (0.000)
{0.563} {1.233} {0.159} [0.114]

4 -0.009 0.002 -0.119 -0.044 0.797 43.312 29.283 48.576
(-0.828) (0.795) (-3.335) (-2.101) (0.000) (0.009) (0.137) (0.002)
{-0.538} {0.515} {-2.113} {-1.348} {0.767} [0.097]

NOTE - The table presents λ estimates from cross-sectional Fama-MacBeth regressions using excess returns of 25 Fama-French portfolios: E[Re
i,t+1] =

β ′ λ. The individual λj estimates (from the second-pass cross-sectional regression) for the beta of the factor listed in the column heading are reported.
In the first stage, the time-series betas β are computed in one multiple regression of the portfolio returns on the factors. The term Rw is the excess
return on the value-weighted CRSP index, SMB and HML are the Fama-French mimicking portfolios related to size and book-to-market equity ratios,
∆ c is the (log) growth rate in nondurable consumption and services, ∆ def is the (log) growth rate in the default premium, computed as the yield spread
on Baa and Aaa corporate bonds, and ∆ term is the (log) growth rate in the term premium, defined as the spread between the Aaa corporate bond
yields and the 3-month Treasury Bill rate. The table reports the Fama-McBeth cross-sectional regression coefficient; in parentheses is the Fama-MacBeth
t-statistics, and in curly brackets Shanken correction t-statistics. The term R2 denotes unadjusted cross-sectional R2 statistics, in brackets below is the
p-value for the F -test for the significance of the whole cross-sectional regression, and in curly brackets {R̄2} adjusts for the degrees of freedom. The term
JT,W provides the test of the over-identifying restriction based on the identity weighting matrix, JT,HJ is based on the Hansen-Jagannathan’s (1997)
distance matrix (pseudo-inverted due to singularity), and JT,S is based on the continuous-updating GMM. Asymptotic p-values are below in parentheses,
and bootstrapped (based on 10,000 simulations of two-stage GMM) p-values are in brackets [cf. Hall and Horowitz (1996)].
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Table 4: Factor Betas for the 25 Fama-French Portfolios

Book-to-Market Equity Book-to-Market Equity Wald Test
Size Low 2 3 4 High Low 2 3 4 High (p-value)

β∆c t∆def

Small 4.867 5.907 4.544 4.642 5.195 2.046 2.904 2.597 2.628 2.822 81.497
2 4.221 3.755 4.221 3.964 5.122 1.915 2.054 2.660 2.577 3.174 (0.000)
3 3.677 3.589 3.660 3.638 4.441 1.915 2.054 2.660 2.577 3.174
4 3.387 3.541 3.061 3.237 4.620 1.666 2.434 2.219 2.488 2.833

Big 3.288 2.316 3.553 2.697 3.924 2.231 1.769 3.365 2.462 3.541

β∆def t∆def

Small -3.095 -4.412 -6.259 -7.313 -9.489 -0.577 -0.904 -1.502 -1.892 -2.138 102.056
2 1.609 -2.314 -2.189 -4.239 -7.575 0.344 -0.540 -0.603 -1.228 -2.011 (0.000)
3 2.958 -0.357 -1.523 -2.461 -5.839 0.703 -0.104 -0.509 -0.789 -1.710
4 4.528 0.290 -0.851 -2.184 -3.127 1.308 0.100 -0.334 -0.801 -0.958

Big 3.078 2.226 -0.007 -1.507 -0.396 1.235 0.917 -0.004 -0.717 -0.190

β∆term t∆term

Small -3.910 -4.343 -4.658 -4.457 -4.840 -2.130 -3.010 -3.360 -3.430 -3.623 95.554
2 -4.143 -4.978 -5.215 -5.676 -5.357 -2.595 -3.593 -4.082 -4.760 -4.682 (0.000)
3 -4.762 -5.170 -5.313 -5.501 -5.538 -2.595 -3.593 -4.082 -4.760 -4.682
4 -4.021 -5.074 -5.232 -5.743 -5.791 -2.976 -4.296 -5.032 -4.995 -4.852

Big -3.822 -4.179 -4.314 -4.814 -4.801 -3.053 -4.073 -4.822 -5.909 -5.090

R2s in % Single Equation F-test
Small 4.059 7.709 9.411 10.528 11.436 0.139 0.026 0.003 0.001 0.001

2 5.233 8.566 12.509 14.912 14.629 0.055 0.003 0.000 0.000 0.000
3 7.516 11.528 15.173 16.099 15.377 0.007 0.000 0.000 0.000 0.000
4 7.854 13.222 15.624 18.574 17.279 0.006 0.000 0.000 0.000 0.000

Big 11.144 13.042 18.720 19.603 17.566 0.001 0.000 0.000 0.000 0.000

NOTE - The table reports the estimated factor loadings β∆c, β∆def and β∆term, and the corresponding HAC
Newey-West t-statistics (5 Bartlett lags), time-series R2s and the asymptotic F -test that β∆def and β∆term are
jointly significant. The regression we run is

R
e
it = βi,0 + βi,∆c∆c + βi,∆def∆def + βi,∆term∆term + εi,t (34)

The last column reports the asymptotic Wald test and its corresponding p-value from an SUR system, testing
the joint significance of the each of the 25 factor loadings across the 25 regressions simultaneously. Sample
period 1963,1-2004,4.
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Table 5: Euler Equations Errors

Size Book-to-Market Equity (BE/ME) Quintiles
Quintile Low 2 3 4 High Low 2 3 4 High

Panel A. Sharpe-Lintner Model
Pricing Errors (%) Standard Errors (%)

Small -2.233 -0.130 0.366 1.149 1.354 0.046 0.025 0.025 0.026 0.029
2 -1.684 -0.458 0.571 0.858 1.046 0.032 0.016 0.018 0.022 0.027
3 -1.461 -0.090 0.199 0.704 1.155 0.036 0.014 0.018 0.024 0.030
4 -0.950 -0.593 0.257 0.636 0.651 0.038 0.020 0.020 0.024 0.026

Big -0.819 -0.464 -0.097 0.118 0.100 0.043 0.030 0.027 0.030 0.038

MAE 72.57 bp
Panel B. Three-Factor Fama-French Model

Pricing Errors (%) Standard Errors (%)
Small -1.240 -0.288 -0.149 0.327 -0.103 0.024 0.017 0.016 0.017 0.016

2 -0.622 -0.558 0.028 -0.227 -0.494 0.017 0.017 0.016 0.017 0.017
3 -0.165 -0.150 -0.464 -0.393 -0.391 0.017 0.017 0.016 0.015 0.018
4 0.528 -0.642 -0.265 -0.166 -0.539 0.023 0.018 0.015 0.020 0.021

Big 0.424 -0.183 -0.268 -0.566 -0.820 0.021 0.015 0.017 0.015 0.024

MAE 40.00 bp
Panel C. Linear Campbell-Cochrane Model

Pricing Errors (%) Standard Errors (%)
Small -0.953 -0.449 -0.427 0.247 -0.209 0.036 0.014 0.023 0.019 0.020

2 0.088 -0.010 -0.348 -0.094 -0.154 0.025 0.030 0.020 0.024 0.026
3 -0.091 -0.232 -0.346 -0.352 0.184 0.022 0.021 0.018 0.021 0.034
4 0.495 -0.299 -0.329 -0.241 -0.468 0.020 0.021 0.019 0.022 0.032

Big -0.219 -0.283 -0.638 -0.590 -0.909 0.046 0.028 0.045 0.026 0.048

MAE 34.62 bp

NOTE - This table reports the Euler equations pricing errors ei = E[mt+1R
e
i,t+1] (in percent per quarter) from

the first-stage GMM with the identity weighting matrix along with their standard errors [cf. Cochrane (1996)].
The term S1 refers to the portfolios with the smallest firms, and S5 includes the largest firms. Similarly, B1
includes firms with the lowest book-to-market ratio and B5 the highest. The model is estimated using data
from 1963:Q4 to 2004:Q4.
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Table 6: Fama-MacBeth Regressions Including Characteristics

Panel A. λj Estimates on Betas in Cross-Sectional Regressions Including Size
Factorst+1 R2

Row Constant Rw SMB HML ∆ c ∆ def ∆ term Size R̄2

1 0.090 -0.031 -0.005 0.779
(4.743) (-2.498) (-3.844) 0.770

2 0.070 0.006 -0.017 0.011 -0.007 0.825
(4.046) (0.373) (-1.672) (2.151) (-3.001) 0.800

3 0.039 0.000 -0.003 0.343
(2.810) (0.124) (-2.097) 0.315

4 0.006 0.000 -0.092 -0.045 -0.001 0.829
(0.308) (0.290) (-2.201 ) (-2.202) (-0.858) 0.804
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Panel B. λj Estimates on Betas in Cross-Sectional Regressions Including Book-to-Market Ratio
Factorst+1 Book-to- R2

Row Constant Rw SMB HML ∆ c ∆ def ∆ term -Market R̄2

1 0.008 0.019 0.014 0.723
(0.767) (1.414) (3.761) 0.711

2 0.043 -0.021 0.007 0.001 0.008 0.804
(3.669) (-1.523) (1.494) (0.104) (1.834) 0.776

3 0.013 0.004 0.009 0.664
(1.530) (1.360 ) (2.589) 0.649

4 -0.009 0.002 -0.119 -0.044 -0.0001 0.797
(-0.658) (0.901) (-2.404) (-2.145) (-0.014) 0.767

NOTE - See notes to table 3. This table presents estimates of cross-sectional Fama-MacBeth regressions using the excess returns on 25 Fama-French
portfolios:

E[Re
i,t+1] = β

′

λ + d Θi

where Θi denotes a characteristic variable: Θi is either the log of the portfolio size (in panel A) or the log of the portfolio book-to-market ratio (in panel
B).
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Table 7: GMM Results: Time-Series Test

SDF Loadings JT,W JT,HJ JT,S ∆JT,S

Row Model b1 b2 b3 (p-value) (p-value) (p-value)

1 CAPM -5.042 57.401 57.174 56.211
(0.692) (0.000) (0.000)

2 FF -6.132 -2.429 -12.532 49.109 43.218 32.279 23.932
(1.318) (1.325) (1.605) (0.001) (0.004) (0.073) (0.000)

3 CCAPM -930.209 53.082 45.794 38.211 6.047
(144.854) (0.000) (0.017) (0.002) (0.049)

4 Linear CC -2 34.158 19.159 8.356 25.961 27.318 2.707
(calibrated) (5.906) (6.180) (0.996) (0.253) (0.199) (0.258)

5 Linear CC -15.046 15.046 15.046 16.914 13.702 29.961 1.797
(40.154) (2.263) (2.263) (0.768) (0.912) (0.119) (0.407)

NOTE - The table reports the factor loadings bis in the stochastic discount factor for the four models (for
the efficient GMM case). In the linearized Campbell-Cochrane model, b1 corresponds to the minus the utility
curvature parameter γ. Campbell and Cochrane (1999) calibrate γ = 2. Therefore, in row 4 we restrict b1 = −2
in the estimation. In row 5 we impose the theoretical restriction that b1 = −b2 = −b3. The test assets are
the value-weighted market portfolio (in excess of the three-month Treasury Bill rate), SMB portfolio and HML
portfolio. The instruments are second lags (due to time aggregation) of nondurable consumption growth rate,
dividend-price ratio, size spread, value spread, term spread, default spread, dcayt of Lettau and Ludvigson (2001),
and a constant. We report the tests of over-identifying restrictions for (i) the 1st stage GMM case (identity
weighting matrix, column 6), (ii) 1st stage GMM with Hansen-Jagannathan weighting matrix JT,HJ (column
7), and (iii) the continuous-updating GMM of Hansen, Heaton and Yaron (1996), the test of the over-identifying
restriction is denoted JT,S (column 8) . HAC standard errors and the p-values are in parentheses. Column 9
reports Newey-West’s (1987) ∆JT test of whether SMB and HML contain incremental ability to explain asset
prices. HAC standard errors and the p-values are in parentheses. Sample size 1964:Q1 - 2004:Q4.
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Figure 1: Realized vs. Predicted Excess Returns for the 25 Fama-French Portfolios
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NOTE - Realized vs. fitted excess returns: 25 Fama-French portfolios. The top left panel corresponds to
Sharpe-Linter (CAPM) model, the top right panel corresponds to the Three-Factor Fama-French Model, the
bottom left panel corresponds to the Canonical Consumption-Based CAPM, and the bottom right panel to
the linearized Campbell-Cochrane model. The figure shows the pricing errors for each of the 25 Fama-French
portfolios for the four models. Each two-digit number represents one portfolio. The first digit refers to the size
quintiles (1 indicating the smallest firms, 5 the largest), and the second digit refers to book-to-market quintiles
(1 indicating the portfolio with the lowest book-to-market ratio, 5 with the highest). The pricing errors are
generated using the Fama-MacBeth regressions in Table 3.

35


