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Abstract

I extract credit pricing information from the prices of callable corporate debt, by disen-

tangling the components of callable corporate bond prices associated with discounting

at market interest rates, discounting for default risk, and optionality. The results in-

clude the first empirical analysis, in the setting of standard arbitrage-free term-structure

models, of the time-series behavior of callable corporate bond yield spreads, explicitly

incorporating the valuation of the American call options. As an application, I consider

medium-quality callable issues of Occidental Petroleum Corporation, using a three-factor

model for the term structures of benchmark (LIBOR-dollar) swap rates and for Occiden-

tal yield spreads.

JEL Codes: E43; G12; G13.

Keywords: Callable Corporate Bond; Credit Spread; American Option; Term Structure
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1 Introduction

This paper presents a methodology for extracting credit pricing information from the

prices of callable corporate debt. Until recently, empirical research on corporate bond

pricing has avoided a direct treatment of callable corporate bonds. In practice, however,

callable debt is popular. As of April 2003, the Fixed Investment Securities Database

(FISD (2002)) contained a total of about 23,950 fixed-rate U.S. corporate debentures,

of which roughly 60% in number and 42% in offering amount were callable. In order to

extract credit-quality information from yield spreads, one must treat the simultaneous

effects of credit risk and optionality.

Figure 1 shows market prices of a Baa3-rated callable bond issued by Occidental over

the time period from January 1990 through December 1995. Also plotted are the prices

at which this bond would trade if it was noncallable and default-free. The reduction

in price of the actual callable, defaultable bond relative to its noncallable, default-free

equivalent is due to two factors: discounting for default risk, and callablity. The primary

objective of my work is to disentangle these two components, thus identifying the values

of both the embedded American call option and the noncallable (defaultable) bond. In

practice, the problem of valuing the call option is often approached with a term-structure

model of the default-free yields, possibly adjusted for default risk by adding yield spreads

of noncallable bonds (see, for example, Fan, Haubrich, Ritchken, and Thomson (2003)).

This method, however, reflects a somewhat superficial point of view, because the market

value of the call option depends not only on uncertainty regarding market interest rates,

but also on the risk of changes in the credit quality of the bond. For example, an

upgrade in credit quality of the callable Occidental bond, holding default-free yields

constant, would increase the value of the embedded call option. The challenge when

estimating the term structure of callable corporate bond yield spreads stems from this

interaction between call-free credit spreads and the prices of the call option, which calls

for a simultaneous solution of both.

Previous approaches to describing the term structure of callable corporate bond yield

spreads have relied on the price data for noncallable bonds of the same firm. By con-

trast, I propose a methodology that achieves the same goal using only the prices of the

callable bond of interest. The benefits of this approach are twofold: first, it permits the

term structure estimation of callable corporate bond yield spreads in the absence of a

noncallable equivalent; and second, relative to existing methods, it dispenses with the

stringent assumption that, for the same firm, both bond types have equal credit spreads.
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Figure 1: Prices of a callable Occidental bond and its noncallable, default-free equivalent.
Source: Datastream.

Significantly, the method I propose respects the fact that a single firm may issue multiple

bonds whose yield spreads incorporate issue-specific default or liquidity characteristics.

This paper includes a model for pricing callable bonds that accounts for both default

and American callability, and allows for compensation for illiquidity. I develop a method-

ology that is designed to disentangle the components of callable corporate bond prices

associated with (i) discounting at market interest rates, (ii) discounting for default and

illiquidity risk, and (iii) callability. I build on the framework of Duffie and Singleton

(1999), who show that the cash flows promised by a corporate bond can be priced using

a default-adjusted short-term discount rate that reflects the mean arrival rate of a credit

event and the associated loss in market value upon arrival. Additionally, one can adjust

the discount rate by a mean fractional cost rate to compensate for illiquidity effects. The

model incorporates the dependency of the value of the call option on both interest rate

risk and the risk of changes in credit quality.

The valuation of callable corporate bonds requires an assumption about the call policy

of the issuer. For the purpose of this paper, I will assume that a callable bond is called so

as to minimize its market value, which is justified under the assumption of perfect capital

markets and absence of other motives including the impact of early redemption on the

pricing of other corporate securities. In practice, however, firms may exercise bond calls,

or fail to exercise them, for many different reasons. For example, the desire to change

the firm’s capital structure or the need to eliminate restrictive covenants are two reasons
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why a company might decide to call in the debt even though its market value is below

the strike price. Liquidity constraints, on the other hand, could defer calls. In addition,

for the issuer of a portfolio of corporate liabilities, in order to minimize the portfolio’s

market value, it may not be optimal to call in a particular bond so as to minimize that

bond’s market value, because of joint default risk and signals that may go to the market.

To the extent that firms do not call optimally, the implied credit spreads of the callable

bond would be corrupted, and should be interpreted only as a benchmark.

I evaluate corporate bonds within the class of multi-factor affine term-structure mod-

els, where the short-term discount rate is modeled as affine with respect to a multi-

dimensional Markov process. This process is in turn modeled as a regular affine process

(Duffie, Filipovic, and Schachermayer (2003)), meaning that its characteristic function is

exponential-affine in the present state. In this context, I use the popular Least-Squares

Method (LSM) (Longstaff and Schwartz (2001)1) to price the American-style options

embedded in callable bonds. The LSM is a simulation-based algorithm that solves for

the optimal stopping rule. The key to this approach is to use least-squares regression to

estimate the conditional expected value of the bond if not called. Uglum (2001) suggests

an “override” condition that suppresses approximate call exercise whenever it is more

valuable at present to commit to exercise at some future date. I find that the LSM

algorithm, when accompanied by this override feature, achieves a high degree of both

accuracy and robustness for a wide range of parameterizations.

The results of this work include the first empirical analysis, in the setting of stan-

dard arbitrage-free term-structure models, of the time-series behavior of callable cor-

porate bond yield spreads, explicitly incorporating valuations of the American call op-

tions. As an application, I consider a Baa3-rated callable issue of Occidental Petroleum

Corporation, using a three-factor model for the term structures of benchmark (LIBOR-

dollar) swap rates and for Occidental yield spreads. Applying an approximate-maximum-

likelihood estimator, I estimate a model of the term structure of noncallable credit

spreads, using as data the prices of the callable bond issued by Occidental.

Using the parameters and implied noncallable spreads, I examine some implications

of the estimated model for the current market practice of pricing callable corporate debt,

and study the correlations of these spreads with various macroeconomic and firm-specific

time series, including a U.S. chemicals index and Occidental’s leverage ratio. Given a

simple model of recovery at default and for the mean fractional liquidity cost rate, one

is then in a position to estimate the implied risk-neutral probability of default from

corporate bond prices. The actual probability of default can finally be estimated on the
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basis of the estimated risk premia (see, for example, Driessen (2003) and Huang and

Huang (2003)).

The remainder of this paper is organized as follows. Section 2 gives a summary of

the related literature. Section 3 presents my valuation framework for callable corporate

bonds, and Section 4 discusses how to approximate the optimal strategy for exercising the

American call option. In Section 5, I describe the estimation strategy applied. Section 6

presents the empirical results for Occidental’s bond data. Finally, Section 7 summarizes

the results presented in this paper and provides some concluding remarks.

2 Related Literature

This work draws on four different lines of literature, namely (i) the theory of valuing

callable, defaultable bonds, (ii) simulation-based American option pricing methods in

the setting of multi-factor term-structure models, (iii) empirical methods for time-series

modeling of credit spreads, and (iv) estimation techniques for latent-factor term-structure

models. A recent discussion of the literature on the latter subject can be found in

Umantsev (2001).

2.1 Valuation of Callable, Defaultable Coupon Bonds (Theory)

Two major building blocks of any valuation framework for callable, defaultable bonds are

the treatments of discounting for default risk and of callability. Corporate default risk has

previously been captured by a variety of models. Recent methods are based on either a

structural or a reduced-form model. Structural models are based on a model of the firm’s

value, as a stochastic process, and on the assumption that default is triggered when the

firm’s value falls below some critical value, related to liabilities. The structural approach

was pioneered by Black and Scholes (1973), and much of the literature is based on Merton

(1974).2 Models that are reduced form, meaning that they are based on an assumed

form of default intensity, generally treat default as the arrival of a counting process

with a (stochastic) intensity process. See, for example, Pye (1974), Das and Tufano

(1995), Jarrow and Turnbull (1995), Jarrow, Lando, and Turnbull (1997), Madan and

Unal (1998), Duffie and Singleton (1999), and Collin-Dufresne, Goldstein, and Hugonnier

(2004). Treatments of loss given default vary, both among reduced-form models and

among structural models.
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Regarding optimal exercise strategies for the embedded call options, several ap-

proaches have been developed. In particular, one can distinguish between models using

partial differential equation (PDE) techniques and the martingale approach. Regarding

the PDE-based literature, models with default were advocated by Merton (1974), who

argued that prices of a callable, defaultable bond solve a PDE subject to boundary con-

ditions that describe default and call events. Closed-form solutions do not exist, and

finite-difference methods are applied. Kim, Ramaswamy, and Sundareasan (1993) ex-

tend this work by allowing for stochastic interest rates. In Sarkar (2000), imperfections

in the capital structure (refunding costs, taxes, bankruptcy costs) alter the optimal call

policy. Martingale methods simplify the calculation of prices of bonds with embedded op-

tions. For example, Duffie and Singleton (1999) rely on the martingale approach to price

callable, defaultable bonds assuming that the issuer calls the bond so as to minimize its

market value, which is optimal assuming perfect capital markets and the absence of other

motives to exercise bond calls or to postpone exercise. Acharya and Carpenter (2002)

model call and default options as American options written on a noncallable, default-

free bond with fixed continuous coupons. In a related paper, Guntay (2002) proposes

a double-hazard framework to price callable, defaultable coupon bonds. He models call

risk and default risk as two correlated hazard processes, while allowing taxes and refund-

ing costs to affect the arrival rate of the call, and firm characteristics to influence the

arrival of default. Peterson and Stapleton (2003), in a recent contribution to the pricing

of options on credit-sensitive bonds, build a three-factor model for the term structures of

default-free yields and for correlated credit spreads. They price Bermudan-style options

on defaultable bonds using a recombining log-binomial tree methodology.

2.2 Simulation-Based American Option Pricing in Multi-Factor

Term Structure Models

In general, there are no analytic expressions for the prices of a callable bond.3 Monte

Carlo (MC) simulation is an appropriate method in higher-dimensional settings or with

stochastic parameters. Introductory and review papers on MC simulation for deriva-

tive pricing are Boyle (1977), Bossaerts (1989), Tilley (1993), and Boyle, Broadie, and

Glasserman (1997). The literature on simulation-based methods embraces the param-

eterization of the decision boundary (Li and Zhang (1996), Andersen (2000), Picazo

(2000), Garcia (2002)), dimensionality reduction or nonparametric representation of the

early exercise region (Barraquand and Martineau (1995), Clewlow and Strickland (1998),
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Carr and Yang (2001), Duan (2002)), and approximation of the value function. Value-

function approximation can be based on decision trees (Broadie and Glasserman (1997)),

stochastic-mesh methods (Broadie and Glasserman (2004)), regression methods (Carrière

(1996), Tsitsiklis and Roy (1999, 2001), Longstaff and Schwartz (2001), Clément, Lam-

berton, and Protter (2002), Kusuoka (2003), Lai and Wong (2003), Moreno and Nava

(2003)), or dual methods (Rogers (2002), Andersen and Broadie (2004), Haugh and Ko-

gan (2004)). Fu, Laprise, Madan, Su, and Wu (2001) empirically test and compare the

performance of some of these simulation-based algorithms.

2.3 Empirical Estimation of Credit Spreads

Existing empirical literature on the estimation of credit spreads of corporate bonds,

such as Duffee (1999), Elton, Gruber, Agrawal, and Mann (2001), or Driessen (2003),

investigates expected returns and risk premia of noncallable bonds only. Fan, Haubrich,

Ritchken, and Thomson (2003) calibrate the term structure of credit spreads for five

large banks to subordinated noncallable bond data, and use the parameter estimates to

generate theoretical prices of puttable coupon bonds. Duffie, Pedersen, and Singleton

(2003) estimate a time-series model of the term structure of yield spreads for noncallable

Russian dollar-denominated bonds. To my knowledge, however, the existing empirical

literature on estimating the term structure of credit spreads using as data the prices of

callable bonds is limited to this paper and recent work by Jarrow, Li, Liu, and Wu (2003).

Whereas I assume that a callable bond is exercised so as to minimize its market value,

the latter authors employ a reduced-form representation of the call’s exercise. They

apply an extended Kalman filter technique to estimate a four-factor model for the term

structure of default-free yields and for the default and the call probability characterized

by a default-arrival and a call-arrival intensity process, respectively.

3 Methodology

I introduce a probability space with measure P (actual or data-generating measure) and

an increasing family {Ft : t ≥ 0} of information sets4 defining the resolution of informa-

tion over time. I consider the price Pt, at any time t before default, of a corporate security

that promises to pay a single, possibly random, amount Z at some stopping time τ ≥ t.

I assume that Z is Fτ -measurable so that the payment can be made based on informa-
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tion that is currently available. I take as given a short-rate process r and an equivalent

martingale measure Q.5 Harrison and Kreps (1979) and Delbaen and Schachermayer

(1999) show that the existence of such a “risk-neutral” measure Q and the absence of

arbitrage are “essentially” equivalent. With respect to this risk-neutral measure, prices

are discounted expected cash flows, as specified in more detail in what follows. This

means that a default-free claim to Z at time τ has a price at t of EQ
t

[

e−
R

τ

t
rs dsZ

]

, where

EQ
t denotes Ft-expectation with respect to Q.

Consider a bond issue that defaults at the first arrival of a doubly-stochastic counting

process with intensity h (with respect to Q). That is, ht is the risk-neutral default

intensity. This means, under technical regularity conditions, that the Ft-conditional risk-

neutral probability of default between t and t+∆, given that default has not occurred by

t, is approximately ht∆, in the limit as ∆ goes to zero, and moreover that the probability

of no default by t is EQ
[

e−
R

t

0 hs ds
]

. It is also assumed that the short rate rt is in the

subfiltration of {Ft} that “drives” the doubly-stochastic arrival of default.

For the case of a single credit event, Duffie and Singleton (1999) show that for pricing

purposes, under technical regularity conditions, one can treat the issue’s promised cash

flow Z as default-free, and allow for default risk by replacing the discount rate r with

the default-adjusted discount rate r +hL, where L is the risk-neutral expected fractional

loss in market value in the event of default. Under the assumption that illiquidity of the

security can be captured by a fractional cost rate of l, where l is a predictable process,

the total mean loss rate of the security due to default and illiquidity is

s = hL + l. (1)

I call the process s the short spread. The default- and liquidity-adjusted short-rate process

R associated with the bond is defined as

R = r + s. (2)

Duffie and Singleton (1999) show that, under technical conditions,

Pt = EQ
t

(

e−
R

τ

t
Ru duZ

)

. (3)

I evaluate corporate bonds within the class of multi-factor Affine Term-Structure

Models (ATSMs). The default- and liquidity-adjusted short rate R is modeled as affine

with respect to the state vector X ∈ R
3, which is modeled as a regular affine process
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under both the data-generating measure P as well as under the equivalent martingale

measure Q. (See Duffie, Filipovic, and Schachermayer (2003) for a complete definition.)

3.1 Valuation of Callable Corporate Bonds

Suppose that a corporate bond that matures at time T pays a coupon of size ci, as a

fraction of face value, at Ti for an increasing sequence T1 < T2 < · · · < TL+1 = T of times.

If the bond is noncallable, the market value (ex-coupon) at any time t before maturity,

as a fraction of face value, is, from (3),

Vt(T ) = EQ
t

[

∑

t<Ti≤T

ci e
−
R Ti

t
Ru du + e−

R
T

t
Ru du

]

.

I have implicitly assumed the same model for coupons and principal. One could, in

principle, have adopted a different specification of the short spread s in (2) for each

coupon.

Now, suppose the bond is callable, possibly only after some initial lock-out period,

T , and let us denote the exercise price at time t, as a fraction of face value, by V̄t,

where V̄T = 1 (often, V̄t is the principal (“par”) plus accrued interest). Throughout, I

assume that a callable bond is called so as to minimize its market value. For any time

t before maturity, let T (t, T ) denote the set of feasible call policies on or after t ({Ft}-
stopping times with outcomes in [t, T ]). Provided default has not occurred by time t, the

ex-coupon market value at t, as a fraction of face value, is

Vt = ess inf
τ∈T (t,T )

Vt(τ), (4)

where, from (3),

Vt(τ) = EQ
t

[

∑

t<Ti≤τ

ci e
−
R Ti

t
Ru du + V̄τ e−

R
τ

t
Ru du

]

, (5)

which can be shown by standard arguments for nondefaultable securities.6 The pricing

relation (4) applies under technical regularity conditions discussed, for example, in Duffie

and Singleton (1999). According to Bellman’s principle of optimality, at each time t, the

issuer minimizes the market value of the liability by exercising the option to call in the

bond if and only if its market value, if not called, is higher than the call price.
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I conclude this section by stating that, in general, it is suboptimal to redeem a

callable bond at inter-coupon times. This argument assumes that the short-rate process

R associated with the corporate security is nonnegative and is standard. I will ignore

minor adjustments due to market conventions for quoting accrued interest on corporate

bonds.

3.2 Parametric Model of the Adjusted Short Rate

I rely on the term structure of U.S.-dollar LIBOR-quality swap yields as the reference

curve based on the short-rate process r. Duffie, Pedersen, and Singleton (2003) discuss

advantages of using swap yields over Treasury yields as a benchmark term structure

against which to measure corporate yield spreads, and propose a two-factor affine model

for the reference term structure which describes the dynamics of the short-rate process

r and the process v driving its volatility. Specifically,

d

[

vt

rt

]

=

[

Kvv 0

Krv Krr

]([

θv

θr

]

−
[

vt

rt

])

dt

+

[

1 0

Σrv Σrr

] [ √
vt 0

0
√

vt

] [

dW v
t

dW r
t

]

, (6)

where (W v,W r)′ is a two-dimensional standard Brownian motion under the actual mea-

sure. The distribution of the Brownian motion (W v,W r)′ under the risk-neutral measure

is specified by

[

dW v
t

dW r
t

]

= −
[ √

vt 0

0
√

vt

] [

0

λr

]

dt +

[

dW̃ v
t

dW̃ r
t

]

, (7)

where (W̃ v, W̃ r)′ is a two-dimensional standard Brownian motion under Q. Duffie, Peder-

sen, and Singleton (2003) use weekly data on two- and ten-year swap rates for the period

January 1987 through July 1999 to estimate the model parameters (Kvv = 0.0047, Krv =

−0.027, Krr = 0.34, θv = 107.40, θr = 5.68, Σrv = 0.044, Σrr = 0.11, λr = −0.076) using

approximate-maximum-likelihood estimation. For the purpose of my empirical analysis,

I will treat these parameter estimates as the true parameters.

With regard to the short spread s of a particular bond, I model the joint behavior of
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the benchmark term structure and the process s as

st = α + βvvt + βrrt + ut, (8)

where u is a Vasicek-type (Ornstein-Uhlenbeck) process under both the data-generating

and the risk-neutral measure. The dynamics of the process u are assumed to be given by

dut = −Kuuut dt + Σuu dW u
t , (9)

where W vru = (W v,W r,W u)′ is a standard three-dimensional Brownian motion under

P. I specify that, under Q, W̃ vru = (W̃ v, W̃ r, W̃ u)′ is a standard Brownian motion in R
3

with

dW u
t = − (λu

0 + λu
1ut) dt + dW̃ u

t . (10)

As discussed in Duffie, Pedersen, and Singleton (2003), the fact that the short spread

can take on negative values is not necessarily inconsistent with the proposed theoretical

model, due to the possibility of a negative liquidity factor. Moreover, as illustrated in

Figure 2, even for issues below LIBOR-quality negative yield spreads can be observed in

the market.

If the issuer has issued several bonds, each bond’s short spread may incorporate an

idiosyncratic component specific to this issue (like special default or liquidity character-

istics), and not necessarily to a maturity segment of that firm’s yield curve. I select one

bond as a “benchmark,” and model its short spread s as in (8) through (10). For any

non-benchmark bond i, the short-spread process is assumed to be given by si = s + ηi,

where

dηi
t = κi

(

ϑi − ηi
t

)

dt + σi dξi
t, (11)

and ξi is a standard Brownian motion independent of {W vru, ξj : j 6= i}. The distribution

of the idiosyncratic Brownian motion ξi under Q is specified as

dξi
t = −

(

λi
0 + λ

i,u
1 ut + λ

i,η
1 ηt

)

dt + dξ̃i
t, (12)

where, with respect to the risk-neutral measure, ξ̃i is a standard Brownian motion inde-

pendent of
{

W̃ vru, ξ̃j : j 6= i
}

. In Appendix A, I show that the parameterizations of the

market price of spread risk for s and ηi in (10) and (12) do indeed generate an equivalent
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martingale measure, in the sense that Girsanov’s theorem applies.

The model setup in (8) through (12) represents a trade-off between the aims of cap-

turing important empirical features of corporate bond yield spreads, while maintaining

a setting that allows to estimate the model parameters in a feasible fashion. As will

become more evident in Sections 4 and 5, for callable bonds, the estimation procedure

is numerically intensive, and requires time-consuming attention by the user in order to

obtain a reasonable fit. This leaves us with the vector

Θ =
(

α, βv, βr, Kuu, Σuu, λu
0 , λ

u
1 , {ϑi}, {κi}, {σi}, {λi

0}, {λi,u
1 }, {λi,η

1 }
)

of unknown parameters, governing the stochastic behavior of corporate bond yield spreads,

to be estimated from observed bond prices.

In Appendix A, I show that for the given parametrization of R, the value of the short

spread st at time t can be implied from the observed (callable) bond price Vt at time

t, given the current states of the reference curve, that is vt and rt, and the parameter

vector Θ governing the stochastic behavior of s.

4 American Option Pricing by LSM

In general, there is no closed-form solution available for the price (4) of a callable bond.

The underlying dynamic optimization problem is solved numerically, for example by

dynamic programming. I now suppose, as is often the case in practice, that the bond

is callable at par with first call date at T , and that the times of “callability” include

all coupon payment dates thereafter. If the bond is callable at some inter-coupon time,

and is not called before that date, the issuer maximizes the value of the call option

embedded in the bond (and hence minimizes the market value of the callable bond) by

not exercising it until the next coupon payment date. This argument assumes that the

short-rate process R associated with the corporate security is nonnegative. I will ignore

minor adjustments due to market conventions for quoting accrued interest on corporate

bonds. The model assumptions for R in (2) and in (6) through (10) allow for negative

values of R. Throughout my empirical analysis, however, the (risk-neutral) probability

of such occurrences is small. I therefore make the simplifying assumption that the issue

is callable only at coupon dates, that is, T (t, T ) = {T1, . . . , TL+1 : Tj ≥ max(t, T )} for

all t before maturity.
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Initially, I fix some time t before maturity. Let τ ∗ ∈ T (t, T ) denote an optimal stop-

ping time, characterized by Vt = Vt(τ
∗) in (4) and (5). Given τ ∗, Vt can be evaluated

accurately by straightforward MC simulation. An optimal exercise strategy τ ∗ is usu-

ally not explicitly known, however, and must be approximated. In general, an optimal

stopping time will depend in a complicated way on the discount factors B(Ti, Tj), where

B(t0, t1) = EQ
t0

e−
R t1

t0
R(s) ds, t0 < t1,

for all feasible call dates Ti and Tj after t. As an optimal stopping time depends on too

many variables to be feasibly determined within a standard MC setting, I rely, therefore,

on the popular Least-Squares Method (LSM, Longstaff and Schwartz (2001)) to price the

American-style options embedded in callable bonds.7

Longstaff and Schwartz (2001) find an approximate exercise strategy through a re-

cursive, simulation-based algorithm that proceeds backwards in time and solves for the

stopping rule that minimizes the value of the callable bond at each time point along each

path. The key to the approach is that, at each exercise date, least-squares regression

is used to estimate the conditional expected value of the bond, if not exercised (value

of continuation), as a function in polynomials of the underlying state variables X (here,

X = (v, r, u)), and possibly of other nonlinear transformations of X.8

Convergence results for the LSM algorithm are available (see, for example, Tsitsiklis

and Roy (2001), Clément, Lamberton, and Protter (2002), and Kusuoka (2003)). The

arguments build on the fact that, under technical conditions, the conditional risk-neutral

expected value of continuation is an element of the Hilbert space of square-integrable

functions relative to the risk-neutral measure. This Hilbert space has a countable or-

thonormal basis, hence the conditional expectation can be represented as a linear com-

bination of the basis elements. Clément, Lamberton, and Protter (2002) distinguish

between two types of approximations in the LSM algorithm: (i) replace the conditional

expected values of continuation by projections on a finite set of basis functions, and

(ii) use MC simulations and least-squares regression to compute the value function of

the first approximation. They prove, under fairly general conditions, the almost-sure

convergence of both approximations.9 In a recent related article, Kusuoka (2003) gives

an even more rigorous justification of the LSM procedure, and shows that the complete

algorithm converges. The author provides explicit error bounds for the estimated prices

of Bermudan-style options.10

Longstaff and Schwartz (2001) argue that, for many applications, a moderate number

12



of basis functions suffices. In a recent study on the robustness of the LSM algorithm,

Moreno and Nava (2003) analyze the impact of different basis functions on option prices.

They show that, for American put options, LSM is quite robust to the choice of basis

functions, and that for more complex derivatives the choice can affect options prices

slightly. In my empirical applications, I use the first three powers of all unmatured

discount bond prices with final maturity up to and including maturity, as well as products

of the unmatured discount bond prices with the shortest and the longest remaining

maturities. In order to obtain an estimator of the decision boundary that is smooth in

the state and the parameter vector, s and Θ, I use all sample paths in the regression

step, and not only the in-the-money paths as recommended by Longstaff and Schwartz

(2001).11

Uglum (2001) suggests an override, avoiding exercise whenever the value of current

exercise is dominated by the value of exercising at a later deterministic time. To protect

against misspecification of the decision boundary associated with my implementation of

the LSM method, I implement Uglum’s override condition. Extensive numerical tests

indicate that the LSM algorithm, accompanied by this override feature, achieves a high

degree of accuracy and is robust for a wide range of parameterizations of the term struc-

ture of callable corporate bond yield spreads.

5 Estimation Strategy

The general estimation setting in this paper is typical for state-space models of the term

structure, in that the short spread st that determines the current price of the corporate

bond is not directly observable. (Remember that I consider the present state of the

reference curve, (vt, rt)
′, as given.) Instead, at every time t, I record the observed prices

of d corporate securities V 1
t , . . . , V d

t which, according to (4) and (5), are deterministic

functions of s1
t , . . . , s

d
t , given (vt, rt)

′. Throughout this work, the number of observables, d,

equals the dimension of the state vector (s1, . . . , sd)′, and exact inversion of the model is

possible. Once the model is inverted and the path {sΘ
t } of the state vector is inferred, the

estimation can proceed in the usual fashion, that is, either by maximizing the likelihood

of the state vector’s transition density (corrected by the Jacobian) or by matching a

set of model-implied and actual moments of the state variables. One could also adopt

an estimation strategy that doesn’t require model inversion.12 In the remainder of this

section, I outline the procedure used for estimating the parameter vector Θ associated

13



with the short spread of a callable bond from its observed market prices, using the

valuation framework established in Sections 3 and 4. The estimation strategy is based on

standard maximum likelihood estimation techniques for latent-factor affine models of the

term structure as discussed above and, for example, by Duffie, Pedersen, and Singleton

(2003).

As before, I fix some time t before maturity. Given the states vt and rt of the reference

curve, the bond value in (4) is a deterministic function, here denoted by Gt(·; ·), of the

current short spread st and the parameter vector Θ governing its stochastic behavior.

That is,

Vt = Gt(st; Θ).

Hence, the estimation problem is similar to that for latent-factor models because one

directly observes the bond prices Vt but not the short spreads st which determine the

current and near-future term structure of the corporate bond yield spreads.

Suppose that I observe the prices of a callable corporate bond at times t0 through

tN . Standard change-of-variable arguments lead to the log-likelihood function for the

observed bond price vector V = (Vt0 , Vt1 , . . . , VtN ) given by

l (V |Θ) =
1

N

N
∑

n=1

[

logP
(

sΘ
n |sΘ

n−1; Θ
)

− log
∣

∣DGtn

(

sΘ
n ; Θ

)
∣

∣

]

,

where sΘ
n = G−1

tn
(Vtn ; Θ), and where DGt (·; Θ) denotes the partial derivative of Gt (·; Θ)

with respect to st. In Appendix A, I show that, for the short-spread model in (8)

through (10), Gtn(·; Θ) is indeed invertible for each Θ. A MLE for Θ is given by

Θ̂ ∈ arg max
Θ

l (V |Θ) . (13)

Faced, however, with the problem of estimating the parameter vector Θ from the

observed prices of corporate bonds with an embedded American-style call option, one

encounters several additional challenges, and (13) holds only in an approximate sense.

First, the optimal exercise strategy in (4) is, for most cases, not explicitly known. Hence,

I approximate it using the LSM algorithm together with Uglum’s override condition.

Second, given an (approximate) stopping rule, often there is no explicit formula at hand to

calculate the callable bond prices and MC simulation is employed. And third, computing

the likelihood function for the time series of observed callable corporate bond prices

14



Table 1: Contractual features of two bonds issued by Occidental. Source: FISD.

Security Callable 10yr note Straight 12yr note
Issue date 7/1/89 11/15/89
Maturity 7/1/99 11/15/01
Amount issued (MM) $300 $330
Coupon 9.625% 10.125%
Credit rating (Moody’s) Baa3 Baa3/Baa2
Seniority Senior/Unsecured Senior/Unsecured
First call date 7/1/96 –
Redemption 7/1/96 at par –

involves both inverting the value function Gtn(·; Θ) in stn and calculating the sensitivity

DGtn(·; Θ) of the bond prices relative to the short spread. Again, numerical methods are

applied.13

6 Case Study: Occidental Petroleum

In this section, I investigate the behavior of the term structure of credit spreads of bonds

issued by Occidental Petroleum Corporation. Headquartered in Los Angeles, California,

Occidental is a large, multinational company with worldwide interests in oil and gas

exploration and production, as well as the manufacturing of chemicals. The principal

operations of the company are conducted through the company’s subsidiaries, Occidental

Oil and Gas Corporation and Occidental Chemical Corporation.

The contractual characteristics of a callable bond issue are summarized in the second

column of Table 1. The callable ten-year note was issued on 7/1/89 with an initial size

of $300 million and a semi-annual coupon at an annual rate of 9.625%. The issue was

rated Baa3 by Moody’s on 3/17/94, and neither downgraded nor upgraded by that rating

agency thereafter. The notes were redeemable on or after 7/1/96, at Occidental’s option,

at a redemption price equal to 100% of the principal. The entire issue was called on

7/1/96, its first call date. Figure 10 in Appendix B displays the yields to maturity and

the yields to first call of the callable Occidental issue. The yield to first call exceeds

the yield to maturity throughout 1990, until January 1991. This pattern is reversed,

however, after May 1991, and from that time the option of calling the issue at the first

possible date consistently moves deeper into the money.

The empirical analysis will address the pricing of callable bonds relative to noncallable
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bonds. Hence, I collect data on a straight Occidental bond with the same credit rating

and with similar features as the callable issue. For example, on 11/15/89, Occidental

issued a straight twelve-year note with an initial size of $330 million and a semi-annual

coupon at an annual rate of 10.125%. On 3/17/94, Moody’s assigned a Baa3 credit

rating to this bond, which was upgraded one notch to Baa2 on 12/16/96, but again

downgraded to Baa3 on 2/2/99.14 Neither bond had a sinking fund provision nor any

variation over time in promised coupon payments. Both notes were senior-unsecured,

nonputtable, nonconvertible, and nonexchangable. They did not default prior to maturity

or redemption. (See, for example, FISD (2002).)

Datastream provides weekly (each Wednesday) market price information for both

issues, for the period 1/10/90 to 12/6/95. Figure 2 shows the corresponding (four-weekly)

yield spreads relative to the U.S.-dollar swap curve.15 Of particular interest is the surge

in yield spreads during the Fall of 1990. The callable note lost 9% of its market value

between 8/1/90 and 10/10/90, while the value of the straight issue dropped 12% over

the same period of time. Both issues recovered quickly and were back at August 1990

levels by mid-January 1991. The economic background pertinent to these observations

is the Gulf War. After Iraq’s invasion of Kuwait in August 1990, anxiety about Mideast

stability caused oil prices to jump from $17 a barrel in July to $36 by October 1990. On

the other hand, confidence in the U.S. economy faltered and consumer spending fell off,

which forced the U.S. economy into a recession in the Fall of 1990. In general, higher oil

prices mean good news to oil producing companies (given they have sufficient reserves

or crude-oil production), boosting their stock and bond prices. So why did Occidental’s

bond (and stock) prices fall, instead of rise? Contrary to popular perception, Occidental

at that time was more like a chemical company than an oil and gas producer, as illustrated

in Figure 11 in Appendix B. Hence, I attribute the sharp rise in Occidental’s yield spreads

to a drastic softening in the U.S. chemical markets just prior to the Gulf War.

In Figure 2, one further observes very low yield spreads for the callable bond from

December 1994 forward, and even occasional trading through LIBOR (periods of negative

yield spreads). One possible explanation for the observed overpricing when approach-

ing the first call date in July 1996 is that investors had assigned a (significant) positive

probability to the event that Occidental would not redeem this issue at the first pos-

sible call date. Interest rates had fallen substantially since the initiation of the bond,

hence investors would have profited considerably from Occidental’s decision to postpone

redemption of the debt beyond the “optimal” date. Another observation is that the

callable bond yield spreads appear to be more volatile. While taking into account the
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Figure 2: Yield spreads (relative to Dollar swap curve) of the callable and straight
Occidental bonds. Source: Datastream.

shorter effective duration of the callable note, I suspect this to be due, at least partly,

to issue-specific illiquidity risks caused by different clientele trading patterns, or asym-

metrically informed traders, or noisy data. Near the optimal call date, the implied yield

spread (and short spread) is of course extremely sensitive to the measured price.

6.1 Call-Corrected Short Spreads

Estimates of the parameters in (8) through (10) for the callable Occidental bond are

displayed in Table 2,16 together with their MC distribution.17 I impose three over-

identifying restrictions in order to reduce the dimension of the parameter space. First, I

set the coefficient βv equal to zero. Equation (8) still allows for correlation between the

instantaneous reference rate and the short spread. I have verified that, for levels of the

volatility-driving process v estimated for the sample period 1/10/90 to 12/6/95, the role

of the risk-neutral correlation between v and s is negligible for the purpose of pricing

the callable Occidental bond. Second, in preliminary empirical investigations I found the

mean-reversion parameter of the process u under the risk-neutral measure, K̃uu, to be

negative, but to have relatively small absolute value. (This is in line with the results

for noncallable debt found, for instance, by Duffee (1999) for many issuers.) To ensure,

however, that the one-year-ahead distribution of the short spread under Q is negative

with only a reasonably small probability, I set K̃uu = 0, which guarantees that the process

17



Table 2: Parameter estimates for the callable Occidental issue, and their MC distribution.

Parameter Estimate MC distribution
mean std. dev.

α 1.849 1.645 0.718
βv 0.000 – –
βr −0.187 −0.210 0.115

Kuu 1.767 1.889 0.566
Σuu 1.201 1.197 0.105
λu

0 0.000 – –
λu

1 −1.471 – –

u is not risk-neutrally “explosive.” From (9) and (10) we have K̃uu = Kuu + λu
1Σ

uu = 0,

which translates to λu
1 = −Kuu

Σuu . Lastly, since K̃uu = 0, the market price of spread risk

factor λu
0 is not identified by the model specification in (9) and (10), and can be set to

zero without loss of generality.

The estimate of the constant term α is 1.849, and the estimate for βr implies that a

100 basis point incline in the reference rate r lowers s by 18.7 basis points. To get a sense

of how both these terms affect the yield spreads, assume that the reference curve r is at

its sample average, that is, r̄ = 5.11%. Then, on average, these estimates imply that the

yield spread on a near-zero-maturity zero-coupon bond is roughly 89.3 basis points. I note

that the estimate of the coefficient βr documents a negative correlation between the short

spread and the reference rate, with a level of significance of 6%. The estimates of Kuu and

Σuu are 1.767 and 1.201, respectively. Thus, even though stationarity is not imposed,

the risk-neutral default intensities appear to be stationary under the data-generating

measure. Assuming that the reference curve is at its long-run mean, the half-life of

shocks to s amounts to less than five months. The actual one-year-ahead probability of

the short spread, conditional on the reference rate being equal to its sample average, to

be negative is less than 8%. The estimated mean term structure of yield spreads18 is

downward sloping. Figure 3 shows the time series of the implied short spreads of the

callable Occidental note. The basic pattern follows that of the yield spreads in Figure 2.

Near the first call date, the effective maturity of the callable Occidental bond is basically

July 1996. This can be seen in Figure 12 in Appendix B, which displays the time series

of the estimated conditional risk-neutral probabilities that optimal exercise occurs at a

given date, for each of the seven coupon dates between July 1996 and July 1999.19 Near

the optimal call date, the implied short spread is extremely sensitive to the measured
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Figure 3: Implied short spreads for the callable Occidental bond.

price.

6.2 Interpreting the Short Spread

The likelihood of default by Occidental is influenced by firm-specific balance-sheet and

related macroeconomic variables, on which I now focus. As illustrated in Figure 11 in

Appendix B, chemicals (rather than oil and gas) was Occidental’s main industry segment

throughout the observation period (1/90 to 12/95). Hence, during that time, a boost to

the chemicals market would have been expected to lower the probability of default by

Occidental, and thereby lower the short spread s (naturally assuming that these are in a

monotonic relationship). Further, Occidental’s leverage ratio is defined as the book value

of its debt divided by the sum of the market value of Occidental’s equity plus the book

value of its debt. A higher leverage ratio should raise the level of the short spread. As

a preliminary examination of the potential influence of such covariates, I regress u, the

implied short spread component of the callable bond not explained by the reference rate,

onto the Datastream index for U.S chemicals (CHEM) and Occidental’s leverage ratio

(LEV) using four-weekly data from January 1990 to December 1995.20 The estimated

regression model, in basis points, is

ut = 14.21 − 0.71 CHEMt + 1.45 LEVt + ǫt.

(5.81) (0.11) (1.59)
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I obtain an R2 of about 69.3%. Newey-West heteroskedasticity-corrected standard errors

are reported in parentheses. Both coefficients show the expected sign, although only the

estimate for the U.S. chemical index multiplier is significant at conventional levels.21

6.3 Decomposing Callable Bond Prices

I am now in a position to value the American option embedded in the callable bond, and

thereby disentangle the components of the callable bond prices due callability and due to

default and illiquidity risk. Figure 13 in Appendix B shows the disentangled components

of Occidental’s callable bond prices. It matches Figure 1 in that it shows the market

prices of the callable Occidental bond together with the prices at which this bond would

trade if it was noncallable and default-free. I am now in a position, however, to show also

the prices at which this bond would trade if it was noncallable (but still defaultable). In

other words, I can compute the prices of the straight version of the bond, and thereby

specify what portion of the total price difference between the callable, defaultable bond

and its noncallable, default-free equivalent is the price of the American call option, and

what part is due to discounting for default and illiquidity risk.

Figure 4 displays the amounts by which the theoretical price of the noncallable, de-

faultable bond and the theoretical price of the noncallable, default-free bond exceed the

market price of the callable Occidental bond, respectively. The shaded area underneath

the graph associated with the noncallable, defaultable bond shows the amounts by which

Occidental’s bond prices are less than the theoretical values of the underlying straight

bond, hence giving the implied values of the American call option embedded in the

callable bond. One observes that the call option gains in value throughout time until

just prior to the first call date in July 1996. The only exception is the time around

the Gulf War, when Occidental’s bond prices were so weak that the early redemption

option was far out of the money. The noncallable, default-free bond prices exceed the

theoretical values of the noncallable, defaultable bond by the amounts highlighted in the

shaded area between the corresponding two lines, indicating the reduction in price due

to discounting for default and illiquidity risk.

6.4 Relative Pricing of Callable and Straight Debt

In order to investigate the relative pricing of callable and noncallable bonds, I choose the

straight Occidental issue as benchmark and treat the callable note as a non-benchmark
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Figure 4: Price differences (relative to callable Occidental bond) of its noncallable, de-
faultable equivalent (due to callability), and of its noncallable, default-free equivalent
(due to discounting for default and callability).

bond. This selection is based on the observation that the straight note is of higher volume,

and that it appears to be more liquid across the observation period (1/10-12/95). The

“recursive” short-spread model described in (8) through (10) allows estimation of the

parameters of the short spread of the straight bond, ss, in a first stage, followed by the

estimation of the parameters of the idiosyncratic factor of the callable Occidental bond,

ηc, in a second step. Estimates of the parameters in (8) through (10) for the straight

Occidental bond are displayed in Table 3,22 together with their MC distribution. I then

treat the estimates for α, βr, Kuu, and Σuu as the true parameters, and estimate the

parameters of the idiosyncratic spread-risk component in (11) and (12) for the callable

issue.

For the benchmark bond, I impose over-identifying restrictions analogous to those

described in Section 6.1. In particular, I enforce βv = 0 and K̃uu = 0. The coefficient βr

is again estimated to be negative, but is no longer significant at conventional levels. In

order to improve the interpretability of the parameter estimates associated with the short

spread of the non-benchmark callable issue, sc, facilitating the comparison of the implied

values for ss and sc, I impose that sc is a one-dimensional Ornstein-Uhlenbeck intensity

process under Q, by taking κ̃c = K̃uu. Here, κ̃c denotes the risk-neutral mean-reversion

parameter of ηc. From (11) and (12) we have κ̃c = κc + λc,ησc = 0, which translates to
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Table 3: Parameter estimates for the benchmark straight Occidental bond and for the
idiosyncratic factor of the non-benchmark callable issue, together with their MC distri-
bution.

Parameter Estimate MC distribution
mean std. dev.

straight bond
α 1.202 1.024 0.642
βv 0.000 – –
βr −0.046 −0.021 0.083

Kuu 2.198 2.947 1.093
Σuu 1.020 1.029 0.088
λu

0 0.000 – –
λu

1 −2.155 – –

callable bond
ϑc −0.355 −0.348 0.042
κc 14.752 17.503 6.668
σc 1.205 1.240 0.195
λc

0 0.000 – –
λ

c,s
1 0.000 – –

λ
c,η
1 −12.242 – –

λc,η = −κc

σc . I also require that the market price of risk component λ
c,s
1 of ηc is equal

to zero. Since κ̃c = 0, I can set λc
0 = 0 without loss of generality. Estimates of the

parameters in (11) and (12) for the idiosyncratic factor of the non-benchmark callable

Occidental bond are displayed in Table 3, together with their MC distribution.23

The results suggest that the callable bond short (or yield) spreads were indeed signif-

icantly more volatile. Moreover, the estimate of ϑc of −36 basis points, more than eight

times its standard error, suggests that the callable bond traded “rich” relative to the

noncallable. This might be due to an assumption by investors of “suboptimal” calling

behavior by Occidental. Figure 5 displays the time series of the implied short spreads

of the benchmark straight Occidental note and of the non-benchmark callable Occiden-

tal bond. Again, the basic patterns for both issues follow those of the associated yield

spreads in Figure 2.

As a diagnostic check, I examine the behavior of the standardized innovations ǫc of
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Figure 5: Implied short spreads for the benchmark straight Occidental bond, and for the
non-benchmark callable Occidental bond.

ηc, defined by

ηc
t+h = e−κchηc

t + σc

√

1 − e−2κch

2κc
ǫc
t+h,

for some time step h. Under the specified model (11), with respect to the actual probabil-

ity measure, these innovations are independent standard normals. The sample mean and

the sample standard deviation of the fitted versions of these standardized innovations are

−0.0066 and 1.0516, respectively. Figure 6 shows the associated histogram.

In further applications, I will compare the yield spread of the straight version of the

callable bond that is theoretically implied by the short spread of the callable bond (the

“call-corrected” yield spread) with the yield spread that is implied by the short spread

of the straight bond. Additionally, given a simple model of expected recovery at default

and for the mean fractional liquidity cost rate, I am able to estimate the implied risk-

neutral probabilities of default. The actual probabilities of default can be estimated on

the basis of estimated risk premia. Finally, using the parameter estimates and implied

short spreads from Tables 2 and 3 and Figures 3 and 5, I can compute model-implied

prices for out-of-sample bonds which were not included in the estimation procedure, but

were issued by Occidental and had similar contractual features.
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Figure 6: Histogram of the standardized innovations ǫc for the callable Occidental bond.

6.5 Call-Corrected Yield Spreads

For a callable bond, the call-corrected yield spread is defined as the theoretical yield

spread, relative to the reference curve, of the underlying straight bond (see Figure 4).

Figure 7 shows the call-corrected yield spreads of the callable Occidental bond, using the

stand-alone parameter estimates and model-implied short spreads reported in Table 2

and Figure 3. Unlike the quoted yield spreads of a callable bond (see Note 15), these

spreads are computed based on a fixed maturity. Call-corrected yield spreads may be

of particular use when communicating credit pricing information among traders and

investors, for example when comparing them to the yield spreads of other, callable or

straight, bonds of the same issuer, or other issuers. These yield spreads offer a uniform

cross-market measure of the credit risk and illiquidity priced into corporate bonds.

I now turn to a comparison of the noncallable yield spreads of Occidental’s callable

bond with those based on a common market practice for pricing callable corporate debt.

Practitioners often value callable defaultable bonds based on a term-structure model

calibrated to (or estimated from) the prices of straight bonds of the same credit rating.

As outlined in the introduction to this paper, this does not allow for idiosyncratic risk

factors specific to the callable bond under investigation.24 I implement this approach

by using the parameter estimates (Table 3) and corresponding short spreads (Figure 5)

inferred from the straight bond prices to value the straight bond underlying the callable
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Figure 7: Noncallable yield spreads (relative to Dollar swap curve) of the callable Occi-
dental bond using the short spread estimated from callable bond prices (call-corrected)
in Section 6.1, as quoted (see Figure 2), and estimated from straight bond prices (call-
uncorrected).

Occidental issue. Figure 7 shows the associated call-uncorrected yield spreads, together

with the call-corrected yield spreads computed from the parameter estimates and model-

implied short spreads for the callable bond as reported in Section 6.1. For example, the

call-uncorrected yield spread exceeds its call-corrected counterpart by 46 basis points in

June 1991, and on average underprices the callable issue by 34 basis points. Consequently,

in the case of Occidental, using call-uncorrected yield spreads as a substitute for call-

corrected yield spreads produces misleading results.

6.6 Estimating Implied Default Probabilities

Given a simple model of recovery at default and for the mean fractional cost rate capturing

the illiquidity risk, I am now in a position to estimate the implied risk-neutral probabilities

of default. For t < t̄, let p̃(t, t̄) denote the risk-neutral probability of default before time t̄,

given that default did not occur by t. Under technical conditions discussed, for example,

in Duffie (2001),

p̃(t, t̄) = 1 − E
Q
t

(

e−
R

t̄

t
hu du

)

. (14)
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Figure 8: Implied risk-neutral one-year default probabilities for the callable Occidental
bond in Section 6.1.

Based on the stochastic model of the short spread s, and given estimates for the

parameter vector Θ, one can use the relationship h = s−l
L

from (1) to calculate the

default probability p̃(t, t̄) using (14). The actual sample mean of loss given default, as a

fraction of face value, during our sample period was reported by Altman, Brady, Resti,

and Sironi (2003) to be approximately 59%. Using 59% as a rough estimate for L for

Occidental’s senior unsecured bonds, and ignoring the component due to illiquidity,25

Figure 8 shows the associated risk-neutral one-year probabilities of default of the callable

Occidental bond. These values are computed using the parameter estimates and implied

short spreads of the callable Occidental bond from Table 2 and Figure 5.

The data-generating (actual) probabilities of default can be estimated on the basis of

estimated risk premia (see, for example, Driessen (2003) and the literature cited therein).

Under the simplifying assumption that the default timing risk has no risk premium, the

actual intensity of default is also h. (See Jarrow, Lando, and Yu (2001) for a discussion

of conditions under which this property holds.) I emphasize that this conclusion does

not imply that actual and risk-neutral default probabilities are the same, for while the

respective default intensity processes are assumed to have the same outcomes in each

state, their probability distributions under P and Q may differ. If the actual intensity of

default is also h, for t < t̄, the actual probability of default before time t̄, provided that
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Table 4: Contractual features of the out-of-sample bond issued by Occidental. Source:
FISD.

Security Callable 10yr note
Issue date 5/1/88
Maturity 5/1/98
Amount issued (MM) $200
Coupon 10.75%
Credit rating (Moody’s) Baa3
Seniority Senior/Unsecured
First call date 5/1/95
Redemption 5/1/95 at par

default did not occur by t, is

p(t, t̄) = 1 − Et

(

e−
R

t̄

t
hu du

)

,

which can be estimated using the estimate for the data-generating mean-reversion pa-

rameter Kuu. For Occidental, the actual one-year default probabilities are, one average

across our sample period, 69 basis points lower than their risk-neutral counterparts.

6.7 Pricing Out-of-Sample Bonds

From Datastream, I obtain market price information for an additional (out-of-sample)

U.S.-dollar denominated Occidental debenture, whose contractual characteristics are

summarized in Table 4. This callable ten-year note was issued on 5/1/88, with an initial

principal of $200 million and a semi-annual coupon at an annual rate of 10.75%. The

issue was rated Baa3 by Moody’s on 3/17/94, and neither downgraded nor upgraded by

that rating agency thereafter. This debenture was redeemable at any time on or after

5/1/95, at Occidental’s option, at a redemption price of 100% of the principal amount.

The entire issue was called in at par effective 5/1/95, its first call date.

Figure 9 shows the market prices and the model-implied prices of this out-of-sample

callable Occidental bond. The model-implied price labeled as “model-implied (callable)”

is defined as the market value of the out-of-sample bond when priced using the parameter

estimates and implied short spreads of the callable Occidental bond, from Table 2 and

Figure 3 respectively. Figure 9 also shows the model-implied prices of the out-of-sample

debenture that are computed based on the parameter estimates and the implied short
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Figure 9: Empirical and model-implied prices of the out-of-sample Occidental bond us-
ing the short spread estimated from callable bond prices (callable) in Section 6.1, and
estimated from straight bond prices (straight).

spreads that are associated with the straight Occidental bond. The two models fit the

out-of-sample debenture prices reasonably well. In particular, the model-implied prices

fluctuate around the actual observed market prices, and do not consistently over- or un-

derestimate them. The average absolute relative pricing error amounts to 1.3% and 1.7%

for the model-implied prices relative to the callable and the straight bond, respectively.

It is noteworthy, however, that during the two years prior to the first call date (May

1995) of the out-of-sample bond, its market prices are comparably high and “jumpy,”

while the lower model-implied prices smoothly approach the strike price.

7 Summary and Conclusion

This paper develops a method for estimating the term structure of callable corporate

bond yield spreads, using as data the prices of callable debt. The approach allows these

term structures to be estimated in the absence of a noncallable equivalent, and in con-

trast to existing methods, dispenses with the stringent assumption that both callable and

noncallable bonds of the same issue have equal credit spreads. A further contribution of

this work is the first empirical analysis, in the setting of standard arbitrage-free term-

structure models, of the time-series behavior of callable corporate bond yield spreads,
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explicitly incorporating valuations of the American call options. By effectively disen-

tangling the components of callable corporate bond prices associated with discounting

at market interest rates, discounting for default and illiquidity risk, and callability, it

became possible to value the American option embedded in the callable bond.

Some interesting observations in the case of Occidental include the very low yield

spreads and implied credit spreads, even occasionally trading through LIBOR, for the

callable bond. One possible explanation for the observed overpricing when approaching

the first call date is that investors had assigned a (significant) positive probability to the

event that Occidental would not redeem this issue at the first possible call date. For

Occidental, the time-series behavior of callable bond yield spreads significantly differs

from that of straight bond yield spreads. Using the latter as a substitute for call-corrected

credit spreads would produce misleading results. My findings suggest that the callable

bond short (or yield) spreads were significantly more volatile, and that the callable bond

traded “rich” relative to the noncallable. This might be due, at least partly, to issue-

specific illiquidity risks caused by different clientele trading patterns, or asymmetrically

informed traders, or data noise, and to an assumption by investors of “suboptimal” calling

behavior by Occidental.
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A Proofs

Lemma 1 (Identification of ut given Θ). Let us fix some time t0 before maturity T .

Take as given the parameter vector Θ, as well as the initial values for vt0, rt0, and ut0.

If Q(τ ∗ > t0|vt0 , rt0 , ut0 ; Θ) > 0, where τ ∗ denotes an optimal stopping time, then

Vt0((vt0 , rt0 , ut0); Θ) > Vt0((vt0 , rt0 , ut0 + x); Θ), for all x > 0.

Proof: Fix some x > 0, and let ux
t denote the process solving the stochastic differential

equation (9) with the initial condition ux
t0

= ut0 + x. Let K̃uu denote the mean-reversion

parameter of the process u under the risk-neutral measure. Then, ux
t = e−K̃uu(t−t0)x+ut,

for all t0 ≤ t < ∞, holds Q-almost surely. Since Q(τ ∗ > t0|vt0 , rt0 , ut0 ; Θ) > 0, there

exists some t > t0 such that Q(τ ∗ ≥ t|vt0 , rt0 , ut0 ; Θ) > 0. Therefore, suppressing vt0 , rt0

and Θ, Vt0(ut0) exceeds the value of the callable bond given ux
t0

= ut0 + x and assuming

exercise according to strategy τ ∗. Consequently, Vt0(ut0) dominates the market value

of the callable bond given ux
t0

= ut0 + x and assuming that the bond is called so as to

minimize its market value, Vt0(ut0 + x).

Theorem 2. Assume that X follows a N -factor uncorrelated Gaussian model, in that

dXt = K(θ − Xt) + Σ dWt,

where W is a N -dimensional standard Brownian motion under P, θ is a N -dimensional

vector, and K and Σ are N×N diagonal matrices. For some N×N matrix A = (aij)
N
i,j=1,

set Zt = AXt. Then ξ = {ξt,Ft; 0 ≤ t < ∞} with

ξt = e
P

N

i=1

R
t

0 Z
(i)
s dW

(i)
s − 1

2

R
t

0 |Zs|2 ds, for all t ≥ 0,

is a P-martingale.

Proof: Let |x| denote the Euclidean norm of x, and refer to C[0,∞)N as the set of

all continuous functions from [0,∞) to R
N . Define a vector µ = (µ(1), . . . , µ(N)), µ(i) :

[0,∞) × C[0,∞) → R, of progressively measurable functionals on C[0,∞)N via

µ(t, z(·)) = A [θ + e−Kt(x − θ) + Σ(z(t) + Ke−Kt

∫ t

0

eKsz(s) ds)].

Define z∗(t) = max0≤s≤t |z(s)| and a∗ = maxi=1,...,N |ai,·|, as well as K∗ = |diag(K)| and
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Σ∗ = |diag(Σ)|. Then, for each T ≥ 0 and any t ∈ [0, T ],

|µ(t, z(·))| ≤ N a∗
[

|θ|(1 + eK∗t) + eK∗t|x| + Σ∗(2 + eK∗t)z∗(t)
]

≤ KT (1 + z∗(t)), (A.1)

where KT = N a∗
[

|θ|(1 + eK∗T ) + eK∗T |x| + Σ∗(2 + eK∗T )
]

. On the other hand, we can

rewrite Xt as

Xt = θ + e−Kt(x − θ) + Σe−Kt

∫ t

0

eKs dWs

= θ + e−Kt(x − θ) + Σ

(

Wt − Ke−Kt

∫ t

0

eKsWs ds

)

,

where the last equation uses Itô’s formula. Consequently, Zt = µ(t,W·). From this last

equation, together with (A.1), it follows that ξ is a Ft-martingale (see, for example,

Karatzas and Shreve (1997), pg. 199-200).
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B Additional Background Figures
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Figure 10: Yield to maturity and yield to first call of the callable Occidental bond.
Source: Datastream.
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Figure 11: Net sales and operating revenues from Occidental’s oil and gas operations and
from its chemicals operations. Source: Global Access.
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Figure 12: Implied conditional risk-neutral distribution of the optimal exercise date for
the callable Occidental bond.
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Figure 13: Prices of the callable Occidental bond, of its noncallable, default-free equiva-
lent, and of its noncallable, defaultable equivalent.
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Notes

1The idea of using regression methods previously appeared in Carrière (1996), and is
also discussed in Tsitsiklis and Roy (1999, 2001).

2Including Brennan and Schwartz (1980), Kim, Ramaswamy, and Sundareasan (1993),
Nielsen, Saá-Requejo, and Santa-Clara (1993), Longstaff and Schwartz (1995), Zhou
(1997), and Collin-Dufresne and Goldstein (2001).

3In recent contributions to the pricing of European optionality within the affine frame-
work, numerically accurate and computationally efficient approximations to swaption
prices have been developed. For example, Singleton and Umantsev (2002) provide the-
oretical results based on an affine approximation of the decision boundary and Fourier
inversion methods, whereas Collin-Dufresne and Goldstein (2002) use an Edgeworth-
expansion technique to estimate the probability distribution of the future asset price.
Although suitable for the European swaption, these papers do not treat the usual Amer-
ican case of callable corporate debt.

4This is a filtration satisfying the usual conditions. See Protter (1990) for a complete
definition.

5The short-rate process r is progressively measurable with respect to {Ft : t ≥ 0},
with

∫ t

0
|rs| ds < ∞ Q-almost surely and EQ

[

e−
R

t

0 rs ds
]

< ∞, for all t. See Protter (1990)

for details.

6Merton (1974) proposed this approach of value minimization over stopping times in
a structural model for pricing callable defaultable bonds.

7The LSM algorithm, as proposed by Longstaff and Schwartz (2001), can be applied
to value American-style options embedded in callable, defaultable bonds, after replacing
the default-free discount rate r by the default- and liquidity-adjusted short rate R.

8In practice, one often estimates the conditional expected value of the bond at Ti,
if not exercised, as a function in polynomials of the intrinsic value VTi

(T ) and of all
unmatured discount bond prices B(Ti, Tj), with maturity dates Tj up to and including
the final maturity date of the bond.

9Additionally, Clément, Lamberton, and Protter (2002) show that the normalized er-
ror of the LSM procedure, after replacing the conditional expected values of continuation
by projections on a finite set of basis functions, is asymptotically Gaussian.

10Kusuoka (2003), however, adapts the LSM procedure in a more expensive manner
than initially suggested by Longstaff and Schwartz (2001) in that he proposes to simulate,

39



at each exercise date tk, a new set of sample paths in order to approximate the value
function, while using the approximate stopping rules previously determined at exercise
times tk+1, . . . , tK = T .

11Lai and Wong (2003) provide some guideline to the choice of basis functions and their
underlying theory. These authors apply neuro-dynamic programming. That is, they use
neural networks and regression splines to approximate the regression functions.

12For example, a variation of the Generalized Methods of Moments of Hansen (1982)
or the Efficient Methods of Moments of Gallant and Tauchen (1996) could be used to
match the model-implied and actual moments of the observable variables.

13Here, for a given choice of parameters Θ, I first calculate Gtn(·; Θ) by MC simulation
for a sufficiently wide range of outcomes of stn . Next, I use Chebyshev polynomials to
approximate Gtn(·; Θ) and DGtn(·; Θ). Finally, I invert Gtn(·; Θ) (approximated) in Vtn

to retrieve an approximation of sΘ
tn

, at which I evaluate DGtn(·; Θ).

14On 12/20/99, Occidental announced the completion of a tender offer of this issue.
The amount tendered and repurchased totaled $240.286 million, leaving an amount of
$89.714 million outstanding at that time. Evaluation was based on the yield to maturity
of the 5.875% U.S. Treasury note due 11/30/01 at the time of the tender plus 37.5 basis
points, and plus interest accrued.

15The “yield” on the callable bond is recorded, in practice, as the minimum of the
yield to maturity and the yield to first call.

16The values for α and Σuu are shown in percent.

17That is, I treat the parameter estimates in Table 2 as the true parameters, generate
an independent sample of the time series of observed callable Occidental bond prices,
and re-estimate the parameters using MLE. I repeat this procedure 100 times in order
to retrieve the MC distribution of the estimated parameters. For the callable Occidental
bond, I adopt a grid search strategy to re-estimate the parameters.

18That is, the term structure of zero-coupon yield spreads evaluated at the implied
sample means of the reference curve and the process u.

19At any given time point, using the parameter estimates and implied noncallable
spreads from Table 2 and Figure 3, I obtain the sample distribution, with respect to the
risk-neutral measure, of the optimal exercise date. In December 1992, for example, the
conditional risk-neutral probabilities that optimal exercise occurs on the first (July 1996)
and the final (July 1999) call date are estimated as 47% and 34%, respectively.

20Both covariates were centered around their respective sample means.

21I repeat the regression analysis for the time period that excludes the Gulf War, that
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is, April 1991 to December 1995. The resulting estimated regression model is

ut = −11.20 − 0.39 CHEMt + 2.96 LEVt + ǫt,
(3.13) (0.05) (1.03)

with standard error estimates, corrected for heteroskedasticity using the Newey-West
method, shown in parentheses. As expected, without the evident macroeconomic effects
of the Gulf War, I now find it harder to explain Occidental’s short spread. This difficulty
is reflected by the lower R2 of 62.5%. Both coefficients, however, show the expected sign
and are significant at conventional levels.

22The values for α and Σuu are shown in percent.

23The values for ϑc and σc are shown in percent.

24Fan, Haubrich, Ritchken, and Thomson (2003) price American-style puttable fixed-
rate bonds relative to credit spreads that are calibrated to the prices of noncallable bank
loans.

25Data limitations make it difficult to determine a breakdown of Occidental’s total
short spreads into the risk-neutral mean fractional loss rate due to credit risk, hL, and
the risk-neutral mean fractional cost rate due to illiquidity, l.
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