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Abstract

An alternative notion of individual rationality for mechanism design is studied in which mechanisms
suggest public goods allocations and individuals then choose whether or not to submit their requested
transfer to the central planner. The set of allocations such that unanimous participation is a Nash
equilibrium is shown to be sub-optimal in a wide variety of environments and shrinks to the endowment
as the economy is replicated. Therefore, any non-trivial mechanism suffers from non-participation in the
selected outcome when agents cannot be coerced to contribute.

JEL Classification Numbers: C62, C72, H41.
Keywords: Public goods, mechanism design, voluntary participation, individual rationality.

1 Introduction

In the design of mechanisms, it is common to apply an individual rationality constraint, guaranteeing that
the selected outcome be weakly preferred to the endowment for every agent. In economies with private goods,
Hurwicz (1972) assumes that the mechanism designer must allow the agents a ‘no-trade’ option, which leads
naturally to the individual rationality constraint. With public goods, exercising a no-trade option may allow
an agent to consume some level of the public good produced by those who participate. Thus, Green and
Laffont (1979, p. 121) argue that individual rationality is instead founded on the ethical belief that each
agent has a natural right to her endowment and the welfare its consumption would generate.

The current paper reconsiders the mechanism design problem with public goods when the mechanism
designer must allow a no-trade option. The resulting constraint, called equilibrium participation, requires
the mechanism to select an outcome such that every agent prefers to contribute their requested transfer
payment rather than withhold it. If an agent withholds her transfer payment, then the level of the public
good is reduced to that which can be feasibly produced with the remaining transfers.

In order to induce all agents to choose participation over non-participation, a mechanism can satisfy
equilibrium participation by making those agents with the strongest free-riding incentive responsible for
the largest share of the production inputs. This is demonstrated in example 1 of section 3.4. However, if
several agents have strong free-riding incentives, they cannot all be made responsible for the lion’s share of
production. This problem is exacerbated in larger economies. This is the intuition behind the two main
results of this paper: (1) there are many finite economies in which only the endowment satisfies equilibrium
participation, and (2) as any classical public goods economy is replicated, the set of outcomes satisfying
equilibrium participation converges to the endowment.

The negative results of this paper imply that coercion is absolutely necessary for mechanisms to suc-
cessfully implement desirable outcomes. If an agent opts out of the mechanism outcome, some punishment
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system must be in place so that the dissenting agent cannot free ride on the production of others. This
can be obtained explicitly through fines and sanctions, or implicitly by threatening to produce nothing if
any agent defects. If explicit coercion is unavailable and implicit threats incredible, then mechanism design
cannot avoid the standard free-rider problem.

The next section reviews the relevant literature. The notation and key definition of the paper are provided
in section 3. General properties of the set of allocations satisfying equilibrium participation are explored
in section 4, followed by an analysis of the constraint in classical, quasi-concave economies with convex
technology in section 5. The main result on convergence to the endowment in large economies is proven in
section 6. Concluding comments and open questions are discussed in section 7.

2 Relation to Previous Literature

Several authors have tried, with limited success, to define a notion of the core that makes sense in a public
goods economy. Such definitions must make assumptions about the behavior of non-dissenting coalitions
when some coalition blocks an allocation. In the original definition by Foley (1970), only the dissenting
coalition may produce the public good; non-dissenters withdraw their contributions to production. This
maximizes the threat to dissenters and many allocations remain in the core.1 Richter (1974) assumes that
non-dissenting agents select levels of production that are ‘rational’ for themselves (under various meanings)
and finds that the subsequent definition of the core may be empty.

Champsaur, Roberts, and Rosenthal (1975) define the ϕ-core as the allocations that remain unblocked
when blocking coalitions are given the power to tax the remaining agents an amount up to ϕ, which depends
on the proposed blocking allocation. If ϕ were a function of the original allocation, then this notion of
blocking (for single-agent coalitions) could encompass the definition of equilibrium participation. Though
the results for both definitions are similarly negative, they are logically independent.

Saijo (1991) analyzes the mechanism design problem if the utility of autarkic production is used as a
welfare lower bound instead of the utility of the endowment. His notion of autarkic individual rationality
requires each agent’s final utility level to be weakly greater than that which the agent could achieve in
isolation with his endowment and access to the production technology. Whereas Ledyard and Roberts (1975)
demonstrate that the standard notion of individual rationality is incompatible with incentive compatibility
among the class of Pareto optimal mechanisms, Saijo (1991) shows that autarkic individual rationality is
incompatible with incentive compatibility for all mechanisms, optimal or not.

There have been other papers examining explicit outside options of agents in mechanism design. The
most general of these is Jackson and Palfrey (2001), where an unspecified function maps from any given
outcome to another (possibly identical) outcome. The necessary and sufficient conditions of Maskin (1999)
are then extended in a simple way to accommodate this ‘reversion function.’ This approach unifies several
existing attempts to model renegotiation and participation in the outcomes of mechanisms in private goods
settings, such as Ma, Moore, and Turnbull (1988), Maskin and Moore (1999), and Jackson and Palfrey
(1998). It also encompasses pubic goods models with an exogenous status quo outcome or mechanism, as in
Perez-Nievas (2002).

Finally, it is worth noting that concepts such as dominant strategy incentive compatibility and ex-
post equilibrium do not encompass the definition of equilibrium participation. Although these concepts do

1Muench (1972) shows that Foley’s core does not converge to the set of Lindahl equilibria in large economies.
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require that the mechanism outcome be preferred by each individual to all other outcomes in the range of the
mechanism, there is no guarantee that the allocation obtaining after an agent opts out is in the mechanism’s
range. Indeed, most ‘standard’ public goods mechanisms (such as those of Groves and Ledyard (1977) or
Groves (1973)) do not include the opt-out points in their range. Therefore, the fact that an allocation is
selected as part of an equilibrium decision does not preclude the possibility that agents will later prefer to
free-ride on the contributions of others.

3 Notation & Definitions

This paper uses the following notational conventions.2

R The real line: (−∞,∞).
R+ The non-negative real line: [0,∞).
Rn, Rn

+ The n-fold Cartesian products of R and R+, respectively.

3.1 Environments

Consider the following environment with one private good and one public good.
I ≥ 2 The number of individuals.
I = {1, . . . , I} The set of individuals, indexed by i.
x ∈ RI

+ An allocation of the private good; x = (x1, . . . , xI).
y ∈ R+ A level of the public good.
z = (x; y) ∈ RI+1

+ An allocation.
Z ⊂RI+1

+ The set of all possible allocations.
ω ∈ Z The initial endowment: ωi > 0 for i ∈ I, ωI+1 = 0.
t = ω − x The transfers paid by the agents. T =

∑
i ti, T−i =

∑
j 6=i tj .

ºi The preference relation of i on Z × Z (complete, transitive).
Âi The strict preference relation of i.
ui : Z →R Utility representation of ºi.
Y ⊆R2 The set of production possibilities: Y∩R2

+ = {(0, 0)}
ϕ ∈ Y & ϕ′ ≤ ϕ ⇒ ϕ′ ∈ Y (comprehensive), Y closed.

F : R+ → R+ The production function: F (T ) = sup {y : (−T, y) ∈ Y}
c : F (R+) → R+ The cost function: c (y) = inf {T ≥ 0 : (−T, y) ∈ Y}.
e =

({ºi}i∈I ,Y, ω
)

An economy with I agents.
EI The set of all economies with I agents.

Given an economy e, let Z (e) ⊆ Z be the set of feasible allocations of the form z = ω + (−t; y), where

y ≥ 0
2If x and x′ are in Rn, then x ≥ x′ ⇔ xi ≥ x′i for all i, x > x′ ⇔ x ≥ x′ and xi > x′i for some i, and x À x′ ⇔ xi > x′i for

all i. Similar definitions apply to preference relations º.
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and t ∈ RI satisfies

t ≤ ω,

T ≥ 0,

and
(−T ; y) ∈ Y.

A feasible allocation (x; y) is balanced if y = F (T ).
The following assumptions are used at various points in the paper.

A1 (Monotonicity) If (x′i, y
′) ≥ (xi, y), then (x′; y′) ºi (x; y).

A2 (Convexity) If z′ ºi z, then αz′ + (1− α) z ºi z for all α ∈ (0, 1).

A3 (Continuity) For every z ∈ Z (e), {z′ ∈ Z (e) : z′ ºi z} and {z′ ∈ Z (e) : z′ ¹i z} are closed.

A4 (Increasing marginal cost) Y is convex.

A5 (Differentiable utility) Preferences ºi can be represented by a differentiable utility function ui.

A6 (Differentiable cost) The function F is differentiable.

Denote the set of ‘classical’ economies satisfying A1 through A4 by EC
I . Let ED

I denote the set of
differentiable economies satisfying A1 through A6. Note that under A4 and A6, c′ (y) = 1/F ′ (T ).

3.2 Mechanisms

The following defines a mechanism and its possible outcomes.
Si The set of strategies of i: S =

∏
I Si.

τ : S →RI Transfer function.
η : S →R+ Outcome function.
Γ = (S, η, τ) A mechanism.
µΓ (e) Equilibrium correspondence mapping Γ and e into subsets of S.
Oµ

Γ (e) = {(x; y) ∈ Z : [∃s ∈ µΓ (e)] x = ω − τ (s) & y = η (s)} (Outcomes.)
Ōµ

Γ (e) = {(x; y) ∈ Oµ
Γ (e) : y = F (

∑
i (ωi − xi))} (Balanced outcomes.)

Definition 1 Γ is decisive under µ if, for all e ∈ EI , Oµ
Γ (e) 6= ∅.

Definition 2 Γ is feasible under µ if it is decisive under µ and, for all e ∈ EI , Oµ
Γ (e) ⊆ Z (e).

Definition 3 Γ is balanced under µ if it is feasible under µ and, for all e ∈ EI , Oµ
Γ (e) = Ōµ

Γ (e).

The set of Pareto optimal allocations for e is given by PO (e) = {z ∈ Z (e) : [6 ∃z′ ∈ Z (e)] z′ Â z}.

Definition 4 Γ is efficient under µ if it is decisive under µ and, for all e ∈ EI , Oµ
Γ (e) ⊆ PO (e).

If preferences are strictly monotonic, efficient mechanisms must be balanced.
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3.3 Implementation

In general, if G is a social choice correspondence (SCC) mapping each economy e to a subset of the feasible
allocations Z (e), then Γ implements G under µ if Oµ

Γ (e) ⊆ G (e) for every e and Γ fully implements G
under µ if Oµ

Γ (e) = G (e) for every e. For example, if IRi (e) = {(x; y) ∈ Z (e) : (x; y) ºi (ω; 0)}, then
IR (e) =

⋂
I IRi (e) is the SCC that selects all points in the economy that are weakly preferred to the

endowment by all individuals. If Γ implements IR (e) under µ, then all agents are made weakly better off
by participating in Γ and playing a strategy in µΓ (e).

Hurwicz (1972) and Ledyard and Roberts (1975) have shown that no mechanism implements PO (e) ∩
IR (e) in dominant strategies for private or public goods economies, respectively. Hurwicz (1979) shows
that if a mechanism implements PO (e) ∩ IR (e) in Nash equilibrium, then Oµ

Γ (e) is the set of Walrasian
(or, Lindahl) allocations.

3.4 The Participation Decision

Consider a situation in which agents in economy e participate in a mechanism Γ that is balanced and efficient
under µ and receive the outcome (ω − τ ; η) ∈ Oµ

Γ (e). If each agent i has the freedom to either contribute
τi or exercise a ‘no-trade’ option by withholding τi, then the mechanism outcome induces an I-player, two-
strategy game. Assume that the final public goods level is the maximum feasible given the contributions
received. If all agents prefer to contribute τi over exercising their no-trade option, then full participation is
a Nash equilibrium of the induced participation game, and the allocation (ω − τ ; η) will be fully realized.

Clearly, there may exist a conflict between the goal of the social planner and the opt-out incentives of
the agents. This is seen clearly by the following example.

Example 1 Let I = {1, 2}. Define
u1 (x1, y) = x1 + 21y − 2y2

and
u2 (x2, y) = x2 + 77y − 9y2.

Fix ωi = 50 for each i and let F (T ) = T/10.

In this example, PO (e) = {(x; y) : y = 4 & t1 + t2 = 40}. At the optima, the marginal rate of substitu-
tion is 5 for both agents, so the consumers’ Lindahl prices are equal. Suppose an efficient mechanism under
µ selects the Lindahl solution τ = (20, 20) and η = 4. The induced participation game is given in panel (a)
of Figure I. Clearly, agent 1 has an incentive to withhold her requested transfer, resulting in a suboptimal
outcome of y = 2 in equilibrium.

Now consider another efficient mechanism under µ that selects η = 4 and τ = (30, 10). In the induced
participation game, shown in panel (b) of Figure I, it is an equilibrium for both agents to participate. Agent
1 no longer has an incentive to opt out because she her contribution is responsible for a larger share of the
production.

Although this redistribution of production ‘responsibility’ is an effective trick to offset free-riding in-
centives, feasibility constraints limit how many agents can have their tax burden sufficiently increased.
Furthermore, some agents may prefer to always defect, regardless of how much of the burden they must
bear. These difficulties are key to the negative results of the paper.
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Consider the more general case of two players and a constant marginal cost. If an allocation z is proposed
such that ti > 0 for each i and F (T ) > 0, then the allocation that obtains when agent 1 opts out is given by

z(−1) =
(
(ω1, x2) ; y(−1)

)
,

where
y(−1) = F (t2) .

The opt-out point z(−2) is similarly defined. Panel (a) of Figure II provides a graphical example of these
points in the Kolm triangle diagram (Kolm (1970); see Thomson (1999) for a detailed exposition.) For the
proposal z to satisfy equilibrium participation, both agents must prefer z to their ‘opt-out’ points z(−i), as
in the figure.

In the case where t1 < 0 while t2 > 0, then y(−2) = 0 since negative quantities of the public good are
not admissible. However, y(−1) = y since agent 1 is not asked to contribute any private good. In this
case, it is assumed that the negative transfer rejected by agent 1 is either redistributed among the other
agents or destroyed, rather than affecting the level of the public good.3 Under A1, agent 1 will always
prefer participation when t1 < 0 and agent 2 will prefer participation only if (x; y) ∈ IR2 (e). The case of a
negative transfer is demonstrated graphically in panel (b) of Figure II.

Generalizing the concepts of the two-player example provides the key definition of this paper.

Definition 5 For any I = 1, 2, . . . and any economy e ∈ EI , a feasible allocation (x; y) ∈ Z (e) such that
x = ω − t satisfies equilibrium participation for agent i (EPi) if and only if

(x; y) ºi

(
x(−i); y(−i)

)
,

where
x

(−i)
i = ωi,

y(−i) =





F (T−i) if ti ≥ 0, T−i ≥ 0, and y ≥ F (T−i)
0 if T−i < 0
y otherwise

, (1)

and (
x(−i); y(−i)

)
∈ Z (e) .

The allocation (x; y) ∈ Z (e) satisfies equilibrium participation (EP) if and only if it satisfies EPi for
all i ∈ I.

There are four possible cases in this definition. When ti ≥ 0, T−i ≥ 0, and y ≥ F (T−i), removing agent
i’s transfer necessarily reduces production, but not to zero. If T−i < 0, then ti > 0 and removing i’s transfer
results in y(−i) = 0. If ti < 0 or y < F (T−i), then y can be produced in the absence of i’s transfer, so
y(−i) = y.

For any economy e ∈ EI , let

EPi (e) {z ∈ Z (e) : z satisfies EPi} ,
3Whether the transfer is redistributed or destroyed will not affect the i’s participation decision since ºi depends only on xi

and y.
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and define
EP (e) =

⋂

i∈I
EPi (e) .

Referring back to the example of Figure II, z ∈ EP (e) in panel (a), but in panel (b), z 6∈ EP1 (e), so
z 6∈ EP (e).

4 Properties of Equilibrium Participation Allocations

The shaded region of Figure III demonstrates a typical equilibrium participation set for agent 1 in a two-
agent classical economy. Note that EP (e) is closed and has a continuous boundary, but need not be convex.
Clearly, EP (e) is non-empty for every e ∈ EI and every I since (ω; 0) ∈ EP (e).

As an alternative to equilibrium participation, consider an environment in which agents can freely choose
ti ∈ [0, ωi], resulting in y = F (T ). The set of Nash equilibrium allocations is given by

NE (e) =
{
(x∗; y∗) ∈ Z (e) : x∗ ≤ ω & [∀i ∈ I] [∀t′i ≥ 0] (x∗i , y

∗) ºi

(
ωi − t′i, F

(
T ∗−i + t′i

))}
.

The notion of equilibrium participation is now shown to be more stringent than the standard notion of
individual rationality, but less restrictive than the Nash equilibrium requirement.

Proposition 1 Under monotone increasing preferences (A3), all allocations satisfying equilibrium partici-
pation also satisfy individual rationality (EP (e) ⊆ IR (e).)

Proof. Consider a point (x; y) such that (xi, y) ºi

(
ωi, y

(−i)
)

for all i ∈ I. Note that y(−i) ≥ 0 for each
i, so A3 implies that

(
ωi, y

(−i)
) ºi (ωi, 0). By transitivity, (xi, y) ºi (ωi, 0) for every i, proving the result.

Proposition 2 All Nash equilibria of the voluntary contributions game satisfy equilibrium participation
(NE (e) ⊆ EP (e).)

Proof. From any Nash equilibrium point, the ‘opt-out’ allocation for agent i in the participation game
is simply

(
ωi, F

(
T ∗−i

))
. Since the definition requires that (x∗i , y

∗) ºi

(
ωi, F

(
T ∗−i

))
for all i by considering

t′i = 0, the point (x∗; y∗) must satisfy equilibrium participation.
In mechanism design with public goods, the most common goal is to implement PO (e). There exist

several mechanisms whose Nash equilibria are guaranteed to be Pareto optimal when utility is transferable.
However, if the outcomes of these mechanism fail to satisfy equilibrium participation, then their desirable
properties are of little use in environments where agents cannot be coerced to submit their transfers. The
following class of examples shows the potential difficulty of finding points in PO (e) ∩ EP (e).

Example 2 Let I ≥ 2. Define ui (xi, y) = vi (y) + xi, where each vi (y) is continuous and differentiable.
Assume F (T ) = T/κ, and let v′i (y) < κ for all i ∈ I and y ≥ 0. Assume that there is a unique yo > 0 such
that

∑
i v′i (y) > κ for y < yo and

∑
i v′i (y) < κ for y > yo. Finally, assume that

∑
j 6=i ωj < κyo for each

i ∈ I.4
4One such example is κ = 1 and

vi (y) =

� 3
2I

y if y ≤ 1
1
2I

y + 1
I

if y ≥ 1
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In this example, no agent is willing to unilaterally fund any amount of the public good at any level and
therefore refuses to contribute in any participation game. To see this, pick any allocation (x; y) 6= (ω; 0), so
t 6= 0. If all agents participate in this allocation, then each agent i receives

ui (xi, y) = vi (y) + ωi − ti.

If i withholds her transfer, she receives

ui

(
x

(−i)
i , y(−i)

)
= vi

(
y(−i)

)
+ ωi.

There must be some agent i with ti > 0. If y = 0 or T−i ≤ 0, then y(−i) = 0 and EPi is not satisfied. If
y > 0 and T−i > 0, but y ≤ F (T−i) then y(−i) = y and EPi again fails. Therefore, consider the case where
y > 0, T−i > 0, and y > F (T−i), so y(−i) = F (T−i). By withholding, agent i saves ti = κ

(
y − y(−i)

)
in

transfer payments. Her loss in value due to the reduction in public goods production is vi (y)− vi

(
y(−i)

)
=∫ y

y(−i) v′i (s) ds, which is less than κ
(
y − y(−i)

)
since v′i (y) < κ for all y. Therefore, she will prefer to withhold

her transfer regardless of ti and the allocation will not satisfy equilibrium participation for agent i. In this
economy, no allocation can satisfy EPi for every i, so EP (e) is simply the endowment. This class of examples
proves the following proposition.

Proposition 3 For every I ≥ 2, there exists economies e in EC
I such that no allocation except the endowment

satisfies equilibrium participation (EP (e) = {ω}).

The following shows that the notion of voluntary participation implicit in the definition of EP may
preclude any optimal allocation from obtaining.

Proposition 4 For every I ≥ 2, there exists economies e in EC
I in which no allocation z ∈ Z (e) can be

selected such that the equilibrium of the resulting participation game is Pareto optimal.

The proof of this result is simple. Any Pareto optimal allocation in the above class of examples must
choose yo > 0, from which any agent will defect. Furthermore, optimal allocations cannot obtain after an
agent defects; if any one agent is consuming xi = ωi, then

∑
j 6=i ωj < κyo guarantees that yo cannot be

feasibly produced by the remaining agents.
Note that example 2 does not represent a knife-edge case. A wide range economies fit its assumptions and

a number of similar examples can be constructed. The key ingredient is that marginal utilities be everywhere
smaller than marginal costs.

Since Proposition 4 indicates that EP is inconsistent with Pareto optimality, it is natural to ask whether
there can exist any non-trivial mechanisms that satisfy this constraint.5 In other words, is there a mecha-
nism and a µ that implements EP (e) in µ? The results of Gibbard (1973), Satterthwaite (1975), Roberts
(1979) and Zhou (1991) indicate that dominant strategy implementation of EP (e) is futile, even in classical
economies. More positive results may be obtained when µ is weakened to the Nash equilibrium concept; it

for each i. Here, yo = 1. The point of non-differentiability in vi is of no consequence.
5A non-trivial mechanism is defined as one that selects something other than the initial endowment in at least one environ-

ment.
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is simple to show that EP (e) satisfies Maskin’s definition of monotonicity (see Maskin (1999),) giving the
following result.6

Proposition 5 The set of allocations satisfying equilibrium participation (EP (e)) can be non-trivially im-
plemented in Nash equilibrium when I ≥ 3.

The proof of this proposition for full implementation relies on Maskin’s mechanism, which is not a
particularly ‘natural’ game form. Proposition 2 shows that EP (e) can be implemented by the voluntary
contribution mechanism since NE (e) ⊆ EP (e). However, this mechanism does not fully implement EP (e).
Note that in the economies like those of Example 1, EP (e) = {ω}, making implementation of EP (e) trivial.

5 Quasi-Concave Economies

5.1 Necessary and Sufficient Conditions

The additional structure gained by adding assumptions A1 through A6 allows for the derivation of separate
necessary and sufficient conditions for an allocation to satisfy equilibrium participation. Although these
conditions are not tight, they require only ‘local’ information about the gradients of utilities and derivative
of the production function.

Proposition 6 For any economy in ED
I , if equilibrium participation is satisfied at a point (x; y) = (ω + t; y),

then
∂ui (ωi;F (T−i)) /∂y

∂ui (ωi; F (T−i)) /∂xi
≥ c′

(
y(−i)

)
(2)

for all i ∈ I such that ti, T−i ≥ 0 and y ≥ F (T−i).

A similar condition is now shown to be sufficient for a point to satisfy equilibrium participation. Whereas
the necessary condition compares the marginal rate of substitution to marginal costs at the drop-out point,
the sufficient condition compares these quantities at the proposed allocation.

Proposition 7 For any economy in ED
I , if a point (x; y) = (ω + t; y) satisfies

∂ui (x; y) /∂y

∂ui (x; y) /∂xi
≥ c′ (y) (3)

for all i such that ti,T−i ≥ 0 and y ≥ F (T−i) and

uj (x; y) ≥ uj (ω; 0) (4)

for all j such that T−j < 0, then equilibrium participation is satisfied at (x; y).

Unlike the necessary condition, equation (4) implies that information about the utilities of some agents
at both the suggested allocation and the endowment is needed. This may be undesirable from the standpoint

6The other sufficient condition, ‘no-veto power’ is trivially satisfied in economic environments such as this.
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of mechanism design since additional information is necessary to determine that the condition is met.7 The
following condition shows how equation (4) could be replaced by a stronger version of equation (3) to give a
single condition sufficient for all agents that uses only information about preferences and costs at the selected
allocation.

Proposition 8 For any economy in ED
I , if a point (x; y) = (ω + t; y) satisfies

∂ui (x; y) /∂y

∂ui (x; y) /∂xi
≥ ti

F (T )
(5)

for all i, then equilibrium participation is satisfied at (x; y).

Figure IV demonstrates the interpretation of these conditions. The quantity (∂ui/∂y) / (∂ui/∂xi) is the
slope of the gradient of ui, while c′ is the slope of the normal to the production possibilities frontier. In the
figure, F is reflected around the y-axis and horizontally shifted so that its graph represents the production
possibilities set for agent i given the endowments. If agent i withholds ti, then the allocation z(−i) results.
In this case, i will prefer the Pareto optimal point z to z(−i).

The necessary condition for equilibrium participation is satisfied in the figure since the gradient of utility
has a steeper slope than the normal to F at z(−i). The sufficient condition is satisfied at z′ since the gradient
of utility is steeper than the normal to F at z′, but this condition fails at the optimal point z. In fact, the
sufficient condition is satisfied for any point along F between z(−i) and z∗, but nowhere left of z∗. This is
intuitive; z′ is closer to z∗ (i’s most preferred point) than z(−i), so i will not opt out of z′.

The Samuelson (1954) condition for an interior optimum forces z to be to the left of z∗, where the
sufficient condition fails. Thus, equilibrium participation requires that z(−i) be sufficiently to the right of z∗,
causing ti to be large. As in the opening example, large transfers are needed to incentivize participation, but
feasibility may constrain how large the transfer can be or how many agents can have these inflated transfers.
Clearly, this constraint will be more restrictive in larger economies, as will be demonstrated in Section 6.

5.2 Quasi-Linear Preferences

The transferable utility environment is especially important in mechanism design as the absence of wealth
effects is useful in guaranteeing the ability to satisfy incentive compatibility constraints through transfer
payments. It also allows a more precise quantification of the minimal transfer needed to satisfy equilibrium
participation.

Assume agents have utility functions ui (xi, y) = vi (y) + xi, where v′i > 0 and v′′ ≤ 0, and let the
production function be strictly increasing and concave, so c (y) is strictly increasing and convex. Let y∗i be
the unique solution to c′ (y) = v′i (y). Equilibrium participation at a public good level of ŷ requires that

ti ≤
∫ ŷ

y(−i)
v′i (y) dy.

It must be that if ti is non-negative, then

∫ ŷ

y(−i)
c′ (y) dy ≤ ti,

7Of course, there could exist mechanisms whose outcomes satisfy Equilibrium Participation without satisfying this sufficient
condition.
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with equality if the allocation is non-wasteful. In order for ŷ to satisfy equilibrium participation for agent i

when ŷ > y∗i , it must be the case that

∫ y∗i

y(−i)
(v′i (y)− c′ (y)) dy ≥

∫ ŷ

y∗i

(c′ (y)− v′i (y)) dy, (6)

both of which are non-negative quantities.
For an optimal allocation yo, equation (6) provides an exact requirement on how ‘far’ y(−i) must be from

y∗i to guarantee equilibrium participation. This is demonstrated in Figure V, in which y(−i) is the largest
value satisfying (6) for the optimal point yo. The necessary and sufficient conditions from equations (2) and
(3) are also intuitive in this figure; if y(−i) > y∗i , then the necessary condition fails because marginal costs are
everywhere larger than the marginal benefit between y(−i) and yo, and the sufficient condition is satisfied for
any y ∈ [y(−i), y∗i ) since marginal costs are everywhere less than the marginal benefit between y and y(−i).

6 Equilibrium Participation in Large Economies

The analysis of finite economies indicates that the large transfers needed to guarantee equilibrium participa-
tion for optimal allocations conflict with the feasibility constraints, particularly for larger economies. There
is a fundamental difficulty in the notion of a replica public goods economy. If each replicated agent is given
the same endowment, then the total available production input grows without bound. Unless preferences
bound the level of production, agents in large economies can find themselves consuming an infinite ratio of
public to private goods.

Muench (1972), Milleron (1972), and Conley (1994) discuss the difficulty of replicating public goods
economies and offer various possible methods.8 Milleron (1972) provides a notion of replication based on
crowding; by splitting a fixed endowment among the replicates and adjusting preferences so that agents’
concerns for the private good are relative to the size of their endowment, the fundamental difficulties of
replication are mitigated. As the economy is replicated and agents are given a smaller share of the endowment,
their preferences adjust proportionally to become more sensitive to the private goods holding. Equivalently,
they care less about the public good because its value is being ‘crowded out’ by the larger number of agents
in the society. An economy is said to have crowding in the public good if preferences follow this pattern.
Under this assumption, a very small shift in the absolute holdings of the private good is more significant
to an agent with a small endowment in a big economy than to an agent with a big endowment in a small
economy.

Formally, consider a base economy e ∈ EI with I unique agents such that e =
({ºi}i∈I ,Y, ω

)
. A replica

economy eR is defined by replicating R times each i ∈ I. Each replicate of consumer type i, denoted by the
pair (i, r) for r = 1, . . . , R, is endowed with ωi/R units of the private good and a preference relation ºi,r

such that, because of the scaling of endowments, (xi,r, y) ºi,r

(
x′i,r, y

′) if and only if (Rxi, y) ºi (Rx′i, y
′).

This assumption on preferences of mimics the approach of Milleron (1972) and guarantees that private good
consumption trade-offs are significant, even as the magnitude of those trade-offs becomes arbitrarily small.
Finally, the production technology of eR is assumed identical to that of e.

This intuition that equilibrium participation becomes oppressively restrictive as an economy is replicated
is confirmed by the following theorem.

8These authors are examining the convergence of the core of the economy to the Lindahl equilibrium.See Foley (1970) for
the appropriate definitions.
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Theorem 1 For any economy satisfying A1, A3, and A4 (continuous, monotone preferences and increas-
ing, continuous production technology) with crowding in the public good, the set of allocations satisfying
equilibrium participation converges to the initial endowment as the economy is infinitely replicated.

The proof of this theorem, available in the appendix, demonstrates how the shrinking endowment restricts
the amount any agent can be asked to pay in the limit. This, in turn, limits the agent’s effect on production.
Since agents in large economies care about small changes in their private goods consumption but not in the
level of the public good, agents eventually prefer to opt-out as their individual effect on production vanishes.

This result is sensitive to the definitions of a replica economy. Consider instead a more standard notion
of replication in which ωi,r = ωi for each type i and replicate r, and assume (xi,r, y) ºi,r

(
x′i,r, y

′) if and
only if (xi, y) ºi (x′i, y

′). To see that the theorem no longer holds, construct a simple base economy e ∈ EI

with an agent i for whom (0, F (ωi)) Âi (ωi, 0). Here, the allocation (x, y) where xi = 0, xj = ωj for all
j 6= i, and y = F (ωi) satisfies equilibrium participation. This economy can be replicated arbitrarily often,
but the sequence of allocations

(
xR, yR

)
such that xR

i,1 = 0, xR
j,r = ωj for all (j, r) 6= (i, 1), yR = F (ωi)

satisfies equilibrium participation for every R but does not converge to the endowment.9

Note that this result applies in economies where the set of Pareto optimal allocations remains far from
the endowment as the economy grows, so that notion of approximate efficiency is of no benefit. For large
economies, it is necessary that the committee or government have the power of coercion in order to overcome
the free-rider problem.

7 Conclusion

If a mechanism is to implement a desired social choice correspondence with public goods when agents have
available a no-trade alternative, it must select an allocation impervious to agents withdrawing their transfers.
The incompatibility between equilibrium participation and Pareto optimality is established through simple
quasi-linear examples, indicating that optimality is unobtainable under the standard assumptions used in
mechanism design. In many economies, only the initial endowment is insusceptible to agents withdraw-
ing. Even in those economies for which non-trivial allocations satisfy equilibrium participation, the set of
equilibrium participation allocations eventually shrinks to the endowment as the economy is replicated.

The above analysis leaves open important questions about participation in public goods allocations.
Perhaps it is possible to characterize those economies for which optimality is not inconsistent with equilibrium
participation. If this class of such economies is reasonable to assume as the set of possible economies, then
the negative results may be avoided with small numbers of agents. Similarly, there may exist a wide range
of economies for which Pareto optimality may be well approximated under equilibrium participation. If such
‘approximately desirable’ outcomes could be identified, perhaps there exists a more natural mechanism that
can implement these outcomes in Nash equilibrium. Given that the equilibrium participation constraint
can be thought of as a restriction on the size of transfers, it is conceivable that a total transfer maximizing
solution to this system of restrictions may be identified and used to maximize the total size of the public
good in a given economy.

Finally, empirical observation demonstrates that non-trivial quantities of public goods are regularly pro-
vided in large economies. Governments and other voluntarily established methods of coercion exist as

9If the limit economy is represented by a measure space of consumers, however, this example fails because the contributions
of a single individual are of measure zero and will not affect production of the public good.
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enforcement devices to guarantee that welfare improving allocations are attained. This suggests a natural
next step; the study of the endogenous selection of enforcement systems for the provision of public goods.

A Appendix

Proof of Proposition 6. Pick any agent i such that ti, T−i ≥ 0 and y ≥ F (T−i)Equilibrium participation
implies that

ui (ωi − ti, F (T−i + ti)) ≥ ui (ωi, F (T−i)) .

By quasi-concavity of ui,

∇ui (ωi, F (T−i)) · (−ti, F (T−i + ti)− F (T−i)) ≥ 0,

or
F (T−i + ti)− F (T−i)

ti
≥ ∂ui (ωi; F (T−i)) /∂xi

∂ui (ωi;F (T−i)) /∂y
.

Thus, by concavity of F ,
∂ui (ωi;F (T−i)) /∂xi

∂ui (ωi; F (T−i)) /∂y
≤ F ′ (T−i) .

Inverting this inequality gives the necessary condition.
Proof of Proposition 7. By monotonicity, equilibrium participation is trivially satisfied for all j such

that tj < 0 or y < F (T−j). Equation (4) guarantees equilibrium participation when T−j < 0.
Now consider some i ∈ I such that ti, T−i ≥ 0 and y ≥ F (T−i), but for whom equilibrium participation

fails. For this agent,
ui (ωi, F (T−i)) > ui (ωi − ti, F (T−i + ti)) , (7)

so that
∇ui (x; y) · (ti, F (T−i)− F (T−i + ti)) > 0.

This is equivalent to
∂ui (x; y) /∂xi

∂ui (x; y) /∂y
>

F (T−i + ti)− F (T−i)
ti

, (8)

so applying the concavity of F at T−i + ti and inverting the resulting relationship gives

∂ui (x; y) /∂y

∂ui (x; y) /∂xi
<

1
F ′ (T−i + ti)

.

Equation (3) implies that (7) cannot hold, so by the contrapositive of this argument, (x; y) must satisfy EPi.

Proof of Proposition 8. For agents with T−i < 0, y(−i) = 0, but F (T−i) < 0. By replacing F (T−i)
with zero in the proof of Proposition 7, the argument is identical through equation (8). At this point, the
subsequent relationship with F ′ (T ) cannot be derived from F (T ) /ti when T−i < 0, so inverting (8) gives
the alternative sufficient condition

∂ui (x; y) /∂y

∂ui (x; y) /∂xi
≥ 1

F (T ) /ti
(9)

for all i such that T−i < 0. Since this is a stronger condition than (3), it is also sufficient every agent.
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Proof of the Theorem. By way of contradiction, assume that there exists some economy e and some
sequence

{(
xR; ŷR

)}∞
R=1

in EP (
eR

)
for each R such that

∣∣ŷR
∣∣ fails to converge to zero.

For each (i, r), let tRi,r = ωR
i,r − xR

i,r. For any
(
xR; ŷR

) ∈ EP (
eR

)
, if ŷR < F

(∑
i,r tRi,r

)
, then by

monotonicity,
(
xR; yR

) ∈ EP (
eR

)
, where yR = F

(∑
i,r tRi,r

)
. In other words, if a wasteful allocation (x; ŷ)

satisfies equilibrium participation, so does the transfer-equivalent non-wasteful allocation (x; y). Thus, the
sequence

{(
xR; yR

)}∞
R=1

satisfies equilibrium participation for each R and
{∣∣yR

∣∣}∞
R=1

also fails to converge
to zero. This implies that there exists an infinite subsequence

{(
xR(k); yR(k)

)}∞
k=1

such that
∣∣yR(k)

∣∣ > ε

for some ε > 0 all k ∈ N= {1, 2, . . .}. Letting c (y) represent the minimal cost of producing y (which is
the inverse of F ,) non-convergence guarantees that c

(
yR(k)

) ≥ c (ε) > 0 for each k since c is an increasing
function and Y∩R2

+ = {0}.
For any k, if R (k) > maxi∈I (ωi/c (ε)), then no one agent (i, r) can unilaterally fund yR(k) using t

R(k)
i,r

since

t
R(k)
i,r ≤ max

i∈I
ωi/R (k)

< c (ε)

≤ c
(
yR(k)

)
.

Letting

k∗ = max
{

k ∈ N : R (k) ≤ max
i∈I

(ωi/c (ε))
}

,

there exists at least one sequence of agents {(ik, rk)}∞k=1 such that t
R(k)
ik,rk

≥ c
(
yR(k)

)
/ (R (k) I) for all k,

and T−(ik,rk) > 0 for all k > k∗. In other words, there exists a sequence of agents such that at each k,
the identified agent is paying a transfer which is more than the average transfer of c

(
yR(k)

)
/ (R (k) I) > 0,

and the sum of the others’ transfers is eventually positive as individual (ik, rk)’s budget constraint becomes
restrictive. For example, {(ik, rk)}∞k=1 might identify the agent (i, r) in each k for whom t

R(k)
i,k is maximal

among all agents (this particular sequence may not have a well-defined limit, but any selection of agents
paying an above average proportion of the cost is sufficient.)

Since each
(
xR(k); yR(k)

)
satisfies equilibrium participation for all (i, r), it must be the case that

(
ωi,r − t

R(k)
ik,rk

, yR(k)
)
ºik,rk

(
ωi,r,

(
yR(k)

)−(ik,rk)
)

,

or equivalently,

(
R (k)α−1

ωi −R (k)α
t
R(k)
ik,rk

, yR(k)
)
ºik

(
R (k)α−1

ωi,
(
yR(k)

)−(ik,rk)
)

.

Note that for k > k∗,
(
yR(k)

)−(ik,rk)

= F


∑

j,s

t
R(k)
j,s − t

R(k)
ik,rk


 .

By continuity of the production function,
(
yR(k)

)−(ik,rk)
becomes arbitrarily close to yR(k) as k grows.

However, since t
R(k)
ik,rk

> c (ε) / (R (k) I), then R (k)α
t
R(k)
ik,rk

is bounded below by R (k)α−1
c (ε) /I > 0 at all k.
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By monotonicity of preferences, it must be the case that

(
R (k)α−1

(
ωi − c (ε)

I

)
, yR(k)

)
ºi

(
R (k)α−1

(
ωi −R (k) t

R(k)
ik,rk

)
, yR(k)

)

ºi

(
R (k)α−1

ωi,
(
yR(k)

)−(ik,rk)
)

.

By continuity of preferences, convergence of
(
yR(k)

)−(ik,rk)
to yR(k) implies that for large enough k,

(
R (k)α−1

(
ωi − c (ε)

I

)
, yR(k)

)
ºik

(
R (k)α−1

ωi, y
R(k)

)
.

However, this violates monotonicity. Since there cannot be an infinite subsequence of allocations with∣∣yR(k)
∣∣ > ε for any ε > 0, it must be the case that yR → 0 as R → ∞. Feasibility then requires that∥∥xR − ωR

∥∥
∞ → 0, completing the proof.
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t1 \ t2 20 0
20 82, 194 64, 168
0 84, 148 50, 50

t1 \ t2 10 0
30 72, 204 65, 200
0 69, 108 50, 50

(a) (b)

Figure I: The induced participation game for example 1 from (a) the equal-price Lindahl allocation, and (b)
an unequal-price optimal allocation.
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Figure II: (a) The point z ºi z(−i) for each i ∈ 1, 2, so it satisfies equilibrium participation. (b) The points
z(−i) when t1 is negative.
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Figure III: The set of balanced allocations satisfying equilibrium participation for agent 1.
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Figure IV: An example with quasi-concave utilities and convex production sets. z is Pareto optimal, z∗ is
i’s most-preferred feasible allocation, and z(−i) is i’s drop-out point. z(−i) satisfies the sufficient condition
for EP. z∗ and z′ satisfy the sufficient condition.
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Figure V: The Pareto optimal point yo exactly satisfies equilibrium participation; if y(−i) were any larger,
EP would fail.
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