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1 Introduction

The conditional heteroskedasticity and long-memory persistence apparent in
financial times series is one of the most thoroughly studied but least under-
stood of empirical regularities in financial economics. These regularities were
first noted formally in the mid-1960s by researchers examining the long-run
statistical behavior of stock prices, interest rates, and foreign exchange rates
(see e.g. [8], [12], or [21]). In the early 1980’s, the availability of high-speed
computers made it possible for researchers to begin modeling the time-varying
behavior of these time series explicitly. Early work on these topics includes
the original Autoregressive Conditional Heteroskedasticity (ARCH) model of
[7], and work by [17] and by [10] on fractional differencing (which built on
the seminal analysis of fractional Brownian motions by [22]). Since that time,
a number of extensions and elaborations of these models have appeared (see
[2] for a detailed review of this literature). Application of these models to the
stock price, interest rate, and foreign exchange data generally yields results
which are highly statistically significant. It is no surprise, then, that ARCH
and fractionally integrated time-series models have become increasingly more
popular as tools for analyzing financial data.

What is surprising, however, is the relative dearth of theoretical results
which might explain the observed time-varying volatility and/or persistence
in the data. Standard asset pricing models of the type originally formulated
by [20] or [3] are simply too stationary to deliver the desired effects. In the
[20] framework, for example, the price of asset i is given by

pi(yt) = βEt {Mi(yt, yt+1) (yt+1 + pi(yt+1)) | yt}
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where β is the discount rate, Mi is the pricing kernel, and yt is the vector
of dividends paid at time t. With a stationary pricing kernel, only the as-
sumption of conditional heteroskedasticity in the dividend process will deliver
ARCH effects in this framework. In models with production, convergence to
steady-state equilibrium has the effect of eliminating non-stationarities in the
model which might generate time-varying conditional volatilities, unless, of
course, one assumes that the exogenously given shock process is itself ARCH.
This approach has been examined explicitly in work by [1] and [11]. Each of
these papers allows for underlying dividend processes with time-varying condi-
tional variances and examines the implications of changing risk on the general
equilibrium behavior of the model. While such studies can yield interesting
insights, they hardly constitute a theoretical explanation of ARCH.

There have been several hypotheses put forth to explain ARCH effects. One
such hypothesis holds that serially correlated news arrival drives increases in
variance (see, for example, [5] or [9] for details). While this is plausible on its
face, is poses the obvious question as to why the information arrival process
should be serially correlated. Other researchers ([26], [27]) have examined time
deformations that can occur when calendar time and market time proceed at
different rates. In these models, trade can occur more or less frequently in the
same calendar period. This can lead to observed volatilities which vary with
calendar time even though the asset is covariance stationary when measured
in “operational time”. While these models do exhibit the desired conditional
heteroskedasticity, they do not explain what might drive the fluctuations in
trading rates that give rise to the time deformation to begin with.

A third hypothesis has been put forward by [14] to explain the observed
ARCH effects in interest rate time series. In their model, market incomplete-
ness together with constraints on borrowing leads to differences in savings
behavior between rich and poor agents. This implies that the distribution
of wealth in the economy influences the degree to which otherwise nicely be-
haved stochastic endowment shocks affect the interest rate in the model. Time
variation in the distribution of income translates into time variation in the
volatility of interest rates. While this mechanism may be at work in generat-
ing ARCH effects in interest rates, it seems implausible that variations in the
wealth distribution could occur with sufficient frequency to drive the ARCH
effects observed in stock prices.

The literature on theoretical explanations of the observed persistence in
economics time-series is even sparser. The earliest result is work by [13] show-
ing how aggregation of independent AR(1) processes can generate a process
which is fractionally integrated. Since many financial and economic decision
problems in stochastic environments lead to decision rules and pricing rela-
tions which are autoregressive, this would seem a plausible explanation for
why economic aggregates exhibit persistence. One problem with this result,
however, is that it is driven by the requirement that there exist AR(1) pro-
cesses which have autoregressive parameters very close to 1. This requirement
is generally not consistent with observed microeconomic data. A second prob-
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lem is that the result isn’t applicable to much of the financial data which is
available in disaggregate form. More recent work on this issue has been done
by [6] who examines a model based on the Ising models of physics. In Durlauf’s
model, firms are located on a lattice, and the activities of neighboring firms
”spill over” and influence the original firm’s production activities.

In this paper, we examine a very different mechanism based on an agency
theoretic model of the internal dynamics of the firm. One of the weaknesses
of exchange models of asset pricing is the need to exogenously specify the
dividend process. This weakness is remedied somewhat in models of capital
accumulation, since production is modeled explicitly. But the neoclassical view
of the firm as a shell housing the basic technical processes that transform
inputs into outputs fails to capture several essential aspects of real firms that
may be relevant in determining the value of the firm. A key feature, which
we focus on here, is the ability of a firm’s managers to respond to favorable
opportunities by expanding output (or sales from inventory) and to reduce
output (or restock inventory) in response to unfavorable shocks.

We examine this feature using a standard principal-agent model together
with a particular reduced form for production which allows the agent to con-
trol, at some cost, the rate of growth of the firm’s output. To keep the analysis
relatively simple, we embed this part of the model in a simple variant of the
[20] asset-pricing model. As in Lucas, we have a single representative agent
who owns an orchard full of trees (the assets) which bear stochastic amounts
of completely perishable fruit (dividends) in every period. Unlike Lucas, how-
ever, we do not assume that the process of fruit production is completely
exogenous. Instead, we include an agent, who one may think of as the gar-
dener, who can influence the production of fruit by exerting effort in the
orchard. Specifically, we assume that the agent can cause the amount of fruit
produced to grow by exerting effort. In the context of the tree model, we can
think of our gardener’s fixed amount of time being allocated between routine
crop tending and innovations in fertilizers, root stocks, and hybridization. The
latter facilitate growth, which in turn demands more of the former activities,
making it more difficult to engage in activities that promote innovation.

In order to keep the analysis relatively simple, we will focus on the case
of a single asset or firm. The owner of the firm contracts with a manager
to operate the firm and pays him a portion of the output as compensation.
Again, for simplicity, we assume that the principal’s interest is in maximizing
the value of the firm, while the agent is risk averse with respect to his income.
We consider a simple repeated relationship between the principal and agent
without commitment. Under these assumptions, we show that the optimal
contract generates a time-series for the firm’s price which exhibits significant
conditional heteroskedasticity and long-memory persistence, even when the
underlying innovations are i.i.d.

In Section 2 we lay out the formal model. In Section 3 we look at a specific
parametrization of the model and indicate how to solve this model numeri-
cally. Section 4 compares the first-best and second-best contract equilibria for



4 Jamsheed Shorish and Stephen E. Spear

the model, using both analytical conclusions and the numerical solution. Sec-
tion 5 examines simulated time-series data generated by the model, and tests
the data for evidence of long-memory persistence and of ARCH effects. We
find that for certain specifications of the manager’s preferences, both of these
phenomena occur. Section 6 presents conclusions, while an Appendix contains
the solution of the first-best contract, as well as the existence proof for the
second-best contract equilibrium and details of the numerical simulation.

2 The Model

The model is based on the stochastic asset pricing model of [20], in which
the firm is comprised of two agents, an owner and a manager. The manager’s
action is defined as an effort level which contributes to the production of
the firm. Following Lucas, we associate the firm’s production with a simple
specification of a dividend process:

xt ∼ G(xt |xt−1, at) (1)

where xt and xt−1 are the current and previous dividends, respectively, at is
the manager’s action, and G is a continuous conditional distribution function
over a compact support X—for simplicity we specify a first order dividend
process.

Each period the manager chooses an action which maximizes the expected
utility for the upcoming period. We assume that the manager is accepting a
series of one-period contracts, and cannot commit to a longer contract. The
manager’s preferences are separable and given by

U(wt, at) ≡ u(wt)− h(at) (2)

where wt is the manager’s wealth, defined as the wage paid by the owner, u
is an increasing, continuous concave function, and h is a strictly increasing,
continuous convex function. The h function measures the disutility of working
to the manager. Finally, we assume that the agent possesses outside employ-
ment opportunities, which sets a lower bound ū for the utility the agent must
receive from employment.

The owner of the firm wishes to maximize the firm’s value, i.e. the asset
price. The owner must pay the manager a wage wt in return for the manager’s
labor at in production (which is summarized by the dividend process). We
suppose that the manager’s labor contribution is unobserved when the wage
is specified–thus the owner can only condition the wage upon the current
dividend xt. The owner seeks to

max
at,wt

Et−1(pt), (3)

where Ej denotes the conditional expectation operator with respect to infor-
mation known at time j.
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As in [20] the price of the firm is given by the discounted expected future
dividends, net of the labor wage. This can be succinctly written as

pt = βEtpt+1 + xt − wt(xt), (4)

where β ∈ (0, 1) is the owner’s discount factor.
To complete the model, some mechanism for the owner’s expectation of the

future price must be defined. Suppose that the owner uses prior values of the
state variables, in this case the dividend, in order to form her expectations. We
assume that only the expected current dividend value is used in the forecast,
and that the forecast function v : X → R+ is continuous and time invariant:

Et(pt+1) = v(xt). (5)

The owner’s problem is to select an action at and a wage wt to maximize
the value of the firm, given that the action of the agent will be unobservable.
Using equations (1) to (5) we can restate the owner’s problem as

max
at,wt

∫
X

(x− wt(x)) dG(x |xt−1, at) + β

∫
X

v(x) dG(x |xt−1, at) (6)

such that
at ∈ arg max

a

∫
X

u(wt)dG(x | xt−1, a)− h(a), (7)∫
X

u(wt) dG(x |xt−1, at) − h(at) ≥ ū.

Note that in this form the owner faces a typical second-best repeated static
moral hazard problem–the dividend process is conditioned on the manager’s
choice of labor, but this is not incorporated into the contracting institution by
the agents. While the single-period contract specification is used for reasons
of tractability, it may be helpful to think of this as describing a firm which
hires and fires labor of the same type every period. A newly-hired manager
may observe that previous labor has affected the dividend process (as the
distribution function for dividends is common knowledge) but has no control
over the previous manager’s labor choice.

We would like to examine the solution to the owner’s problem without
having to worry about the learning dynamics associated with the forecast
function v. That is, we will assume that the owner has already learned the
rational expectations equilibrium (REE) price function, and uses this function
to forecast future prices. In other words, the owner knows the actual function
v∗ which takes the observed dividend and returns the expected value of the
firm, i.e. Et−1pt ≡ v∗(xt−1). This means that the REE price function must
satisfy

v∗(xt−1) = max
at,wt

{
Et−1 [xt |xt−1, at ]−

∫
X

wt(x) dG(x |xt−1, at) (8)

+ β

∫
X

v∗(x) dG(x |xt−1, at)
}

.
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such that

at ∈ arg max
a

∫
X

u(wt) dG(x |xt−1, a) − h(a), (9)∫
X

u(wt) dG(x |xt−1, at) − h(at) ≥ ū. (10)

In the Appendix it is shown that under the current assumptions on the
dividend process and some additional restrictions on preferences, there ex-
ists a function v∗ which defines at each point in time the value of the firm.
However, in order to more fully characterize the qualities of the value func-
tion (and the associated optimal labor and wage functions, respectively) it is
necessary to introduce functional form assumptions on the dividend process
and on preferences. These assumptions also allow for numerical simulations
to take place. In selecting these functional forms we have attempted to main-
tain a balance between generality and tractability–even with the specifications
given below, the rational expectations price function is still general enough
that an analytical solution cannot be found, and numerical analysis must be
performed.

Definition 1. The dividend process is an AR(1) process with innovation in
the mean, i.e.

G(xt | at, xt−1) ⇔ xt = at + ρxt−1 + εt, |ρ| < 1, εt ∼ N(0, 1)∀t.

Definition 2. U(wt, at) ≡ − exp(−wt)− exp(at).

With Definition 2 we may adopt the first-order-approach (see e.g. [25], [18])
to replace the argmax operator in equation (7) with the associated first-order
condition:

∂

∂a

∫
X

u(wt(x)) dG(x | a, xt−1)− h(a)
∣∣∣∣
a=at

= 0. (11)

3 Numerical Approximation

The specifications for the dividend process and preferences are not enough
to generate an analytical solution for the value, wage or labor functions. The
approach taken in this paper is to leave the remaining functional forms as
general as possible, and to instead focus on numerical solutions to the REE
condition. The aim here is to identify and analyze the dynamics of the price
and dividend processes given the numerical solution, instead of concentrating
solely upon the analytical results of e.g. a local quadratic approximation of
the value function v∗.

However, we would like to be able to compare the resulting owner-manager
contract and, ultimately, the dynamics of the price process with a benchmark
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case. We can then see what this type of environment is ‘bringing to the table’
when compared with other contracting forms. In particular, it is interesting to
compare the ‘second-best’ model outlined above with the ‘first-best’ problem,
in which the manager’s action is set by the owner without considering the
manager’s optimal choice. In this case the incentive compatibility condition
is absent from the owner’s optimization, and the only thing the owner need
worry about is giving the manager enough utility (in this case ū) to choose
employment.

In the first-best case, the problem facing the owner is

max
at,wt

{
Et−1 [xt |xt−1, at ]−

∫
X

wt(x) dG(x |xt−1, at)

+ β

∫
X

v(x) dG(x |xt−1, at))
}

such that ∫
X

u(wt) dG(x |xt−1, at) − h(at) ≥ ū.

In the Appendix it is shown that when Definitions 1 and 2 hold the wage func-
tion has the usual property that the manager’s risk is entirely smoothed away–
regardless of the observed dividend, he always receives a utility of ū. Both the
wage function and the effort function are constant, and the expected price
function v∗ is linear and increasing. Further details on the first-best contract
will be presented when compared with the second-best contract below.

Unfortunately, in the second-best case it is not possible to find a closed-
form solution. So there remains the problem of finding the expected price
function (or ‘value function’) v∗ of the firm. We adopt here a numerical ap-
proximation technique to identify the value and policy functions. The method
of obtaining the value function used here is by iterating on a functional oper-
ator T , defined by

T (vn) (xt−1) = Et−1 [xt |xt−1, a
n
t ]−

∫
X

wn
t (x) dG(x |xt−1, an

t ) (12)

+ β

∫
X

vn(x) dG(x |xt−1, an
t ).

where wn
t and an

t are the optimal choices given the candidate value function
vn. Since T is a contraction (see Appendix) it follows that

lim
n→∞

Tn(v0) = v∗ ∀v0 ∈ C1
X . (13)

This condition simply states that for any initial continuous (bounded) function
taking dividends into prices, iterations of the operator T on the initial function
will converge to the rational expectations price function.

In the approximations these iterations are derived from a class of functions
known as universal approximators. A universal approximator has the prop-
erty that given a finite collection of points from the domain and range of an
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unknown function, the approximator can update its parameters such that it
converges almost everywhere to the unknown function. Members of the class
of universal approximators include neural networks, which specify a ‘general’
functional form up to a finite set of parameters. These parameters are then
updated by iteration using the collection of points from the unknown func-
tion until they approach a set of ‘true’ parameters which in principle allow the
neural network to arbitrarily approximate the unknown function. (See [16] for
a discussion of universal approximation and neural networks, and [29], [19] for
a general discussion of the applicability of neural networks to both functional
approximation and regression analysis.) The properties of neural networks are
by now well established–for the purpose of this paper, they are essentially a
convenient method of implementing nonlinear least squares regression in a
deterministic setting.

We are now in a position to outline the algorithm for numerically comput-
ing the rational expectations value function v∗:

1. Select an initial value function v0. Using neural networks, this amounts
to defining a network whose parameters are randomized.

2. Specify a finite grid over the dividend space X. Given v0 and a distribution
for the error process εt, numerically compute for each point in the grid
the optimal values for w0

t and a0
t (i.e. carry out the optimization on the

right-hand side of equation 12, where n = 0). For each grid point, the
value for T ◦ v0 is computed.

3. Iterate the value function to v1 = T ◦ v0, for which there is a finite col-
lection of values given by step 2. These values define a neural network f1

which approximates the function v1.
4. Use the neural network approximation f1 in place of v0 in step 2. Re-

peat steps 2-3 until
∥∥fn − fn−1

∥∥ < η, where η is some predefined error
tolerance level. Call fn the rational expectations value function, or v∗.

5. Given each point in the dividend grid, perform the optimization on the
RHS of equation (12) using v∗. This gives in the optimal values for the
wage and effort level for each grid point. These values serve to define
a neural network [w∗

t , a∗t ] = [w∗(xt, xt−1), a∗(xt−1)], which is the ’policy
function’ for the economy. Given the state of the economy (i.e., a real-
ization of the current dividend, plus the previous dividend) the policy
function tells the principal what wage should be paid, and how hard the
manager should work in the current period.

The rational expectations value function is the law of motion for the econ-
omy. Once found, v∗ defines the optimal a∗t –this, combined with the previous
level of the dividend xt−1 and a new realization of the error process εt, gen-
erates the current dividend xt. Having observed xt, v∗ also defines w∗

t –this
is the wage paid to the agent by the owner and depends only upon [xt, xt−1]
since the owner cannot observe the manager’s effort. The actual price of the
asset pt is then

pt = βv∗(xt) + xt − w∗(xt, xt−1). (14)
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With the current dividend xt the next effort level a∗t+1 can be defined, and
the process continues. Thus, the economy can be simulated and sequences of
dividends and prices can be generated and analyzed.

Particulars on the specification of the networks v∗(xt−1) and [w∗(xt, xt−1),
a∗(xt−1)], including the number of hidden units, number of iterations, con-
vergence criteria, and other parameter values may be found in the Appendix.

4 First-Best and Second-Best Comparison

We start with the analytical ’benchmark’ results for the first-best case. In the
Appendix it is shown that the optimal value and policy functions are:

Et−1pt = v∗(xt−1) =
1

1− β

(
a∗

1− βρ
+ ln(|u| − ea∗

)
)

+
ρ

1− βρ
xt−1, (15)

a∗ = ln
(

|u|
2− βρ

)
,

w∗ = − ln
(
|u|

(
1− βρ

2− βρ

))
.

Figure 1 displays the optimal value function for the case where ū = −2,
β = 0.9, and ρ = 0.9. These are the identical parameter values used for the
second-best approximation.

Fig. 1. First-Best Contract Expected Price

Clearly, in the first best case we will have no conditional heteroskedasticity
or long memory–the actual price follows the process
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pt = xt+ln
(
|u|

(
1− βρ

2− βρ

))
+β

1
1− β

(
a∗

1− βρ
+ ln(|u| − ea∗

)
)

+
ρ

1− βρ
xt ⇔

pt = c +
1− βρ + ρ

1− βρ
xt, (16)

where we have grouped constant terms into c for convenience. Since

xt = a∗ + ρxt−1 + εt

we can lag and substitute (16) into the dividend relation to yield

pt = ρpt−1 + (1− ρ)c +
(

1− βρ + ρ

1− βρ

)
(a∗ + εt).

The price thus follows an AR(1) process with the same autoregressive param-
eter as the dividend process, but with a different mean and variance. This
result supports the intuition that because in the first-best case there is no
response by the agent to changes in production, there should be no resultant
correlation between production (or price) volatility from period to period. In
the first-best case, the sole connection between the present and the past is the
autoregressive dividend process.

In the second-best case, however, things are markedly different. Figures 2-4
present the numerical results for the second-best value function, wage function
and effort function respectively. Figure 2 shows the numerical approximation
of the value function given by the program (8)-(10), using Definitions 1 and 2
and the parameter values ū = −2, β = 0.9, and ρ = 0.9. The value function is
strictly concave, and for high levels of the dividend the expected future price is
nearly constant. This reflects the fact that for very high levels of the dividend
the manager shirks a great deal, absorbing any expected future gains from
the dividend. Figure 3 presents the manager’s effort function–note that for
low or negative dividend levels the manager wishes to work a (small) positive
amount, but that as dividends rise the manager rapidly works less and less.
Figure 4 presents the optimal wage as a function of the current and past
dividends. From this we see that the manager receives positive compensation
when there is a large positive gain in the dividend process (indicating hard
work by the agent). Compensation then falls as the difference between the
two dividends falls, and becomes sharply negative when the current dividend
is far below the previous one.

5 Simulation of Time Series

Once the value function and optimal wage and effort functions have been
approximated it is possible to simulate the economy and generate synthetic
time series for analysis. The simulation of time series data is important because
the second-best model has no analytical solution. Thus, analytical tools such
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Fig. 2. Second-Best Contract Expected Price

Fig. 3. Second-Best Contract Manager Effort

as comparative statics must be traded for tools which take advantage of the
large number of simulated data points that can be generated from the model.
Tools such as regression analysis do, of course, make the tacit assumption
that the model is an accurate representation of the salient features of the
owner-manager relationship in a real economy. Nonetheless, the complexity of
the model and the relative paucity of relevant data in the real world are both
strong incentives to use simulated time series data as a proxy for economic
data generated from actual owner-manager behavior.

The owner-manager model is by its nature a nonlinear model of pric-
ing. Thus, one might expect the dynamics of observed price and dividend
sequences to reflect this nonlinearity. Of particular interest is the extent to
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Fig. 4. Second-Best Contract Wage

which the nonlinearity in the model is capable of generating time-series data
with properties observed in real stock price data. Thus, in analyzing the sim-
ulated time-series, we look for evidence of conditional heteroskedasticity and
long-memory persistence.

The tools used for the analysis of the simulated time series are the general-
ized ARCH (or GARCH) model of conditional heteroskedasticity (see [7] and
[2]), the estimated power spectrum of the simulated time-series, and a test
for long-memory persistence. The results of this analysis indicate that 1) the
price series exhibits strong ARCH-like behavior, with the GARCH (1,1) model
demonstrating significant correlated volatility, and 2) the power spectrum and
the long-memory test indicate some long-memory persistence.

The second-best value function and the optimal wage and action functions
were used to generate time series of both prices and dividends for one hundred
thousand periods. A typical example of the dividend time series, along with
the associated wage compensation and effort levels for 200 periods are given
in Figures 5 and 6. A sample path of the second-best price for the same
200 periods is presented in Figure 7. Since it is the value of the firm which
empirically demonstrates ARCH-like behavior and long-memory persistence,
only the time series for the price of the firm was tested in what follows.

5.1 Spectral Analysis

To answer the question of whether the simulated price series exhibits per-
sistence, we first examine the empirical power spectrum. We calculated the
Welch-averaged spectral density of the simulated price series with 100,000
data points, with a Hanning window 100 units wide. The smoothed spectrum
with 95% confidence bands is shown in Figure 8.
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Fig. 5. Sample Dividend Series from Synthetic Data, 200 Periods

Fig. 6. Wage and Manager Effort Series from Synthetic Data

The spectrum indicates considerable power in the lower frequencies, a hall-
mark of long-memory processes. However, it does not appear that the spec-
trum demonstrates strong long-memory persistence. Rather, it appears at first
blush that the spectrum of the second-best price series is still dominated by
the AR(1) structure of the dividend process. In order to ascertain if long-
memory has any impact we turn to a ’rough and ready’ test of persistence
given by [10]. This test attempts to verify whether or not the spectrum bears
a some similarity to an inverse power law in frequency. In the literature on
fractionally integrated time-series, this is often referred to as ”1/f ” noise.

To test the hypothesis that the observed data behave as 1/f noise, we
regressed the log of the power spectrum against the log of the (sin of) fre-
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Fig. 7. Sample Price Series from Synthetic Data, 200 Periods

Fig. 8. Smoothed Price Spectrum with 95% Confidence Bands, 100,000 Obs.

quency, and the results are presented in Table 1. As shown in the table, the
estimated long-memory exponent d = 0.61 is significant beyond the 99% con-
fidence level. We conclude, then, that the simulated price series exhibits some
long-memory persistence.

This results raises the obvious question as to what causes the observed
persistence. One way of approaching this is to consider an experiment first
performed in the 1940’s by the hydrologist Harold E. Hurst. Hurst’s exper-
iment involved generating random sequences of biased random walks, and
analyzing the properties of the resulting time-series. Subsequences were char-
acterized by a fixed bias in the step size of the random walk. A second random
variable determined when the bias would be changed, generating a new sub-
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Table 1. Spectral Regression (Geweke & Porter-Hudak) Estimate Results

Variable Coefficient Std. Error t-statistic

intercept 2.2096 0.0705 31.349∗∗

d 0.6088 0.0441 13.816∗∗

R2 0.7578

sequence. When Hurst examined large data sets generated in this fashion, he
found significant evidence of long-memory persistence. Subsequent work on
time-series models with exogenous structural breaks has confirmed the long-
memory properties of the time-series generated by such models (see e.g. [24]).
In our model, structural breaks in the trend of the stock price time series oc-
cur when the drift parameter swings from negative to positive (or vice-versa)
in response to increased (or decreased) effort by the agent. These breaks oc-
cur endogenously (but randomly, given their dependence on the innovation
process of the dividend) and, we believe, generate the observed persistence.
As we will see in the following section, the trend breaks may also generate
the significant conditional heteroskedasticity observed in the simulated price
series.

5.2 Estimation of the GARCH (1,1) Model

The GARCH (1,1) model for conditional heteroskedasticity is defined as

pt | Ψt−1 ∼ N
(
βpt−l, σ

2
t

)
,

σ2
t = α0 + α1ε

2
t−1 + α2σ

2
t−1,

εt = pt − βpt−l,

where Ψt−1 is the information set available at time t−1, pt−l ≡ [1, pt−1, . . . pt−l]
′

is an (l + 1)−dimensional vector of lagged endogenous variables, εt is the
residual of the mean regression, and β, α ≡ [α0, α1, α2] are (1× l + 1) and
(1× 3)−dimensional vectors, respectively. This specification allows for the
possibility of ‘booms’ and ‘busts’ (or alternatively, ‘fads’ and ‘bubbles’) in the
price sequence, and has (along with its variants E-GARCH and N-ARCH)
been implemented extensively on economic data (see e.g. [4], [15] and [23]).3

The GARCH (1,1) model of the second-best price series was estimated
using Maximum Likelihood with 100,000 observations, with a first-order au-
toregressive process for the conditional price expectation. Before estimation,

3Veronesi (1996) also used the GARCH (1,1) specification to test for ARCH, in
a model which uses ’regime shifts’ (similar to the trend breaks of Perron [1989]) to
generate correlated volatility in asset returns.
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the Lagrange Multiplier (LM) test for ARCH ([7]) and the Jarque-Bera nor-
mality test were applied to the residuals of the mean equation. The results
of the estimation and tests are presented in Table 2. The LM test strongly
rejected the i.i.d. residual hypothesis at the 99% confidence level, while the
Jarque-Bera test rejected the normality hypothesis beyond the 99% confidence
level. These are strong indications that the time series contains some measure
of correlated volatility.

Table 2. GARCH(1,1) Estimation Results

Variable Coefficient Std. Error z-statistic

Mean Equation:
Et−1pt = β0 + β1pt−1

Constant 2.5293 0.0266 95.015∗∗

pt−1 0.8309 0.0018 453.23∗∗

LM ARCH Test: T ∗ R2 = 488.27, Pr(i.i.d.) < 10e−6

Jarque-Bera Statistic: 3815.3, Pr(normal) < 10e−6

Variance Equation
Et−1σ

2
t = α0 + α1ε

2
t−1 + α2σ

2
t−1

Constant 0.4802 0.0243 19.739∗∗

ε2
t−1 0.0631 0.0025 25.561∗∗

σ2
t−1 0.7738 0.0097 79.328∗∗

** refers to significance at the 99% confidence level.

The coefficients of the GARCH (1,1) model were all statistically significant
beyond the 99% confidence level. In addition, the conditional variance process
is strongly persistent (with α2 = 0.774). This provides reasonable grounds for
acceptance of the GARCH (1,1) model as demonstrating the existence of
conditional heteroskedasticity in price data which is generated by second-best
contracting. Naturally, fitting the GARCH model to the data is an a priori
model misspecification, since the price data are actually generated by (14).
The GARCH estimation is in this case simply used to demonstrate the strong
presence of correlated volatility in the price data.

6 Conclusion

We have seen that the simple model presented here yields a price sequence
which can have hidden nonlinear behavior. In addition, it appears that exam-
ples of this sequence are fit well by an ARCH-like specification, which has been
noted to exist in empirical data. These results support the conclusion that en-
dogenous correlated volatility and persistence is possible when the manager
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influences the production process and is in turn affected by his contractual
relationship with the owner.

The model of owner-manager behavior in an asset-pricing model presented
here has been simplified in many key ways. First and most important, the
type of contract that the manager is able to make with the owner is essen-
tially static–commitment only occurs over the single period the contract is in
force, and the same contract is assumed to be accepted in perpetuity. Further
investigation would see whether a more general model, incorporating a multi-
period contract with commitment, would be substantively different from the
simplified model presented here. It would be interesting to see, for example,
whether the correlation between dividends and prices is less strong under a
fully dynamic model, since it is empirically observed that dividend time series
is less volatile than (hence, less strongly correlated with) the asset price series.

In addition, it is not clear whether the manager affects the mean of the
production process (as assumed here), the variance of the process (as would be
true, for instance, if the manager could influence the impact of the exogenous
shock upon the dividend), or both. Future research will develop a production-
based model of manager effort which can then suggest a dividend process
such as equation (1) as a direct conclusion. Of course, given the analytical
complexity of the simplified case, it is not at all clear that a more general
model with the above extensions would yield analytically testable conclusions.
Rather, it would appear from this presentation that the tools of numerical
approximation and simulation of time series would be just as valuable for
these cases.

7 Appendix

7.1 Solution of the First-Best Contract

Consider the first-best economy:

v∗(xt−1) = max
w,a

{
a + ρxt−1 −

∫
w(x)dG(x|xt−1, a) + β

∫
v∗(x)dG(x|xt−1, a)

}

s.t.

∫
e−w(x)dG(x|xt−1, a) + ea ≤ |u| ,

where we have used the functional forms from Definitions 1 and 2. From
the optimization with respect to w we know that the wage payment will be
independent of the observed output x, so that

e−w∗
+ ea = |u| ⇒

w∗ = − ln(|u| − ea),

given a particular level of managerial effort a.
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The owner’s optimization is now

v∗(xt−1) = max
a

{
a + ρxt−1 + ln(|u| − ea) + β

∫
v(x)dG(x|xt−1, a)

}
.

The objective function of the owner is concave in a. Posit a candidate policy
function a = a∗, where a∗ is some constant, and a candidate value function
v∗ (xt−1) = c1 +c2xt−1. Then Bellman’s equation at the optimal level of effort
is

c1 + c2xt−1 = a∗ + ρxt−1 + ln(|u| − ea∗
) + βc1 + βc2(a∗ + ρxt−1).

Matching coefficients yields

c1 = a∗ + ln(|u| − ea∗
) + βc1 + βc2a

∗

c2 = ρ + βρc2

or

c∗1 =
1

1− β

(
a∗

1− βρ
+ ln(|u| − ea∗

)
)

,

c∗2 =
ρ

1− βρ

(note that this can also be directly verified by appealing to the equivalent
sequence problem–cf. [28]).

The owner thus wishes to solve

max
a∗∈(−∞,ln(|u|))

{
a∗ + ρxt−1 + ln(|u| − ea∗

) (17)

+
β

1− β

(
a∗

1− βρ
+ ln(|u| − ea∗

)
)

+
βρ

1− βρ
a∗

}
.

This problem has (after some rewriting) the associated first-order condition

ea∗

|u| − ea∗ =
1

1− βρ
⇒

a∗ = ln
(

|u|
2− βρ

)
.

This implies that the optimal wage payment is

w∗ = − ln(|u| − ea∗
) = − ln

(
|u|

(
1− βρ

2− βρ

))
.

In the first-best equilibrium, then, the value of the firm is a linear function
of the previous level of the dividend, while the wage and manager effort are
constant. As either the rate of discounting β or the autoregressive parameter ρ
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converge to zero the effort level converges to ln
(
|u|
2

)
, while the wage converges

to − ln
(
|u|
2

)
. In these cases either the owner does not care about the future,

or the manager does not contribute to future dividends through the past
dividend level, and the manager’s effort level is low. As β or ρ rise, however,
the effort level rises and the wage rises to compensate.

7.2 Existence of the Second-Best Value Function

We seek to prove that a function v∗ exists which solves:

v(x) = max
w,a∗

{∫
X

(y − w(y))g(y |x, a∗)dy + β

∫
X

v(y)g(y |x, a∗)dy

}
such that

a∗ ∈ arg max
a

∫
X

u(w(y))g(y |x, a)dy − h(a),∫
X

u(w(y))g(y |x, a∗)dy − h(a∗) ≥ ū,

where X is the dividend space, y is the current (unobserved) dividend, x is
the previous dividend, w is the wage paid to the manager, a∗ is the manager’s
optimal action, and ū is the manager’s reservation utility. Note that for expo-
sition our notation here differs slightly from the form in the text–in addition,
we have replaced the current dividend density function dG with the density
function gdy.

We assume that the first-order approach is valid; that is, the manager’s
preferences are such that the incentive compatibility condition (ICC)

a∗ ∈ arg max
a

∫
X

u(w(y))g(y |x, a)dy − h(a)

may be replaced with (cf. [18])∫
X

u(w(y))
∂g(y |x, a∗)

∂a
dy − h′(a∗) = 0. (ICC)

Assuming that the first-order approach is valid implies that an interior so-
lution to the problem ICC exists, i.e. that the second-order condition satisfies∫

X

U(w(y))
∂2g(y |x, a∗)

∂a2
dy − h

′′
(a∗) < 0.

when the second-order condition exists. In order to ensure this, we must add
the condition that the density function of current dividends g (y |x, a) be at
least twice-continuously differentiable in a.

From this we know immediately that the Implicit Function Theorem (IFT)
applies around a∗; next we assume that g (y |x, a) is at least twice-continuously
differentiable in x so that we may write
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X

U(w(y))
∂g(y |x, a∗(x;w))

∂a
dy − h′(a∗(x;w)) = 0.

Note that since w takes as its argument the current dividend y, the optimal
action a∗ will not depend parametrically upon w, but rather functionally. By
the IFT, however, we know that this functional dependence is one-to-one.
Thus, the incentive compatibility condition defines the optimal action given
the previous dividend and the wage function.

We may now write the dynamic programming problem of the owner as

v(x) = max
w

{∫
X

(y − w(y))g(y |x, a∗(x;w))dy + β

∫
X

v(y)g(y |x, a∗(x;w))dy

}
(18)

such that ∫
X

u(w(y))g(y |x, a∗(x;w))dy − h(a∗(x;w)) ≥ u (PC)

where PC is the participation constraint of the manager.
This problem has a straightforward solution. The current-period return

function is bounded in w by assumption, and we also suppose that the
conditional expected value of the current dividend is finite (i.e.,

∫
X

yg(y |x,
a∗(x;w)dy < ∞). The constraint PC is compact-valued, non-empty and con-
tinuous. As before (see equation 12) we define an operator T : C1

X → C1
X

by

T (v)(x) =
∫

X

(y − wv(y))g(y |x, a∗(x;wv))dy + β

∫
X

v(y)g(y |x, a∗(x;wv))dy

(19)
where wv is the optimal solution to the problem (18) + (PC) for a given
function v.

From the above considerations we know that the Theorem of the Maximum
obtains–the T operator takes bounded continuous functions into bounded con-
tinuous functions. Furthermore, we can use Blackwell’s sufficiency conditions
to show that T is a contraction. Recall that if T is an operator taking bounded
continuous functions into bounded continuous functions, then it is a contrac-
tion mapping if

1. T is monotonic, i.e. T (v)(x) ≤ T (w)(x) whenever v(x) ≤ w(x) ∀x
2. T is ’sublinear’, i.e. T (v + c)(x) ≤ T (v)(x) + βc ∀v, β ∈ (0, 1) , c < 0.

It is clear that the operator defined by (19) satisfies Blackwell’s conditions,
so that T is a contraction mapping. Hence, we know that a continuous function
v∗ exists which solves the owner’s problem, and that

lim
n→∞

Tn(v0) = v∗ ∀v0 ∈ C1
X .
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7.3 Second-Best Approximation Details

The second-best value function v∗ was estimated using a single-layer feedfor-
ward neural network of 6 hidden units. Following the procedure outlined in
Section 3, neural networks were fit to dividend grid data and then used to
calculate the next iteration of the value function. Each neural network fit the
grid data so that the sum-of-squared-error (SSE) between the estimated data
and the actual data was less than 10−10.

The dividend space X ranged from -2 to 20, and was divided into a grid
{xi} of 30 equidistant points to be used as network input. These points were
used to calculate the value function points vn(xi). These points constituted the
target vector for fitting the neural network. The actual grid data used to esti-
mate the neural network varied from iteration to iteration. An adaptive grid
was used to focus the neural network’s attention on those points which were
particularly hard to estimate, i.e. those grid points whose absolute errors were
above the mean absolute error of the current iteration’s estimate. Convergence
of the value function was assumed when the largest absolute error between
consecutive value function estimates was less than 10−3. As mentioned in the
text, the owner’s discount factor β was set to 0.9, the autoregressive param-
eter ρ of the dividend process was also 0.9, and the reservation utility ū was
-2.

After the value function iteration had converged, grid data for the optimal
wage function and the optimal effort function were generated. The optimal
wage function was estimated using a single-layer feedforward neural network
of 16 hidden units, and the SEE between the estimated and actual wage values
was less than 10−4. The optimal effort function required 6 hidden units, and
the SSE between the estimated and actual effort values was less than 10−12.
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