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Abstract

This paper develops and implements a semiparametric estimator for investigating, with
panel data, the importance of human capital accumulation, non-separable preferences of
females and child care costs on females life-cycle fertility and labor supply behaviors. It
presents a model in which the agents’ expectations are correlated with their future choices
and provides a set of conditions under which statistical inferences are possible from a short
panel. Under the assumption that observed allocations are Pareto optimal, a dynamic model
of female labor supply, labor force participation and fertility decision is estimated. In that
model, experience on the job raises future wages, time spent nurturing children affects
utility, while time spent off the job in the past directly affects current utility(or, indirectly
through productivity in the non-market sector). This paper then uses the estimates from the
model to conduct different policy simulations which shows that human capital accumulation
is the most important determinant of life-cycle fertility behavior.

1. INTRODUCTION

In this paper we estimate a choice theoretic model of female labor supply and fertility behavior
with panel data, and use our estimates to predict how changes in family policy would affect
the behavior of these variables over the life cycle. The motivation for investigating dynamic
interactions between fertility and female labor supply comes from broad trends in aggregate
behavior and also empirical results from previous empirical work using cross sectional and panel
data.
At the aggregate level the trends in birth rates and female labor supply and the wages of

females in developed countries are striking. Measures of annual total fertility rates (TFRs)
provide a useful way of summarizing trends in fertility at the aggregate level. There are two
basic measures, by period and/or by cohort. A period TFR predicts the total life time number
of births if a representative woman realized the age-specific fertility rates that prevailed in a
given year. A cohort TFR measures the number of children born to a particular birth cohort.
Both measures used for the U.S. and most developed countries show there has been a substantial
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decline in total completed fertility from the beginning to the end of the twentieth century.1 For
example at the beginning of this century a typical woman in the U.S. who reached the age of 45
bore, on average, four children over her lifetime, but by the end of the century, that number has
fallen to only 1.9. The period TFR was 4.0 in Sweden in 1905 and had declined to 1.4 by the
mid 1980’s.2 . Although the majority of women in developed countries eventually bear a child,
an increasing fraction of them bear no children. The incidence of childlessness has fluctuated
over the twentieth century but seems to have increased towards the end of the century. For
example, Hotz et al (1996) report that over the last 20 years the incidence of childlessness has
almost doubled in the U.S., going from 9% of women who reached age 40-45 in 1978 to 18% for
comparably aged women in 1994. 3 The changes in total fertility rates over the last century
have been accompanied by changes in the life-cycle timing of childbearing by women who were
of fecundity age during the era. The so called baby boom of the U.S. was in essence fueled by
women shifting their childbearing to earlier ages, and the subsequent bust was largely the result
of the tendency for childbearing to be delayed.4

Parallel to this marked decline in childbearing has been a rise over time in female labor force
participation in both developed and developing countries.5 In the US the participation of all
wives increased by 36% over the last 25 years, the rates of mothers with children under the age
of three increased by 83%, and by 91% for women with children one year old or younger. The
rise in female participation in the labor force has been accompanied by a decline in the difference
between male and female earnings of full time workers.
These aggregate trends can be rationalized by simple economic models of household choices.

The parents’ demand for children depend on the prices of the inputs used in raising children,
and the levels of household income and/or wealth. The opportunity cost for the mother’s care
and nurture for her offspring is the female wage rate, and as this increases female labor supply
increases and the fertility rate falls. Controlling for the wage, a simple model predicts that
families with more wealth have more children. These simple models also predict that the prices
of other goods and services, including child quality, and the mother’s market wage rate(s) can
also explain families’ demand for children. However, the sign and magnitudes of these effects are
most often not unambiguously indicated by theory, which means that these issues are empirical
questions.
Empirical investigations of micro data bear out these predictions. The mother’s wage is

negatively related to the demand for children in all types of models of fertility (Ward and
Butz (1979, 1980), Hotz and Miller (1988)).6 The relationship between household wealth and
fertility, controlling for the opportunity cost of the mother’s time, is harder to document. Schultz
(1976) reports many earlier studies that found a positive relationship between family income
and/or consumption and parental fertility. Several more recent studies also found a positive
relationship between parental fertility and husband income or other household income (Ward
and Butz (1980), Wolpin (1984), Hotz and Miller (1988)). On the other hand Willis (1973) finds

1See Hotz et al (1996) and reference there in for a survey on this issue.
2 See Walker (1995) for details.
3 Some of this increase reflects the decline in the fraction of women who are married over the same period.

But the incidence of childlessness has risen among married women as well. See Hotz et al (1996) and reference
therein for more details.

4 See Hotz et al (1996) for details on this shift.
5 See Heckman and Killingsworth (1996).
6 See Paul Schultz (1976) for a summary of some the earlier studies.
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a U-shape relationship between completed fertility and husband income, while Heckman and
Walker(1990) found that there weakis a, if any relationship between husband’s income (and also
female wages) and the incidence of childlessness.
A further complication to interpreting the evidence about the effects of higher female wages

on fertility was introduced by Becker (1965), who argued that parents not only choose the
quantity of offspring but also their quality. Thus highly educated parents might choose to have
a lower number of children, but invest more inputs in them. This modification to the basic
model provides another reason why women with higher opportunity costs have lower fertility
rates. Therefore the almost unanimous finding, that parental demand for children are negatively
related to the educational level of the mothers, is hardly surprising. This result holds in static
models of completed fertility (Willis (1973))7, reduced form dynamic models (Walker (1996),
Hotz and Miller (1988), Hotz, Heckman and Walker (1990)), and structural dynamic models of
fertility and contraceptive practices (Wolpin (1984), Hotz and Miller (1993)). In a more direct
test of the role of the mother’s inputs on measures of childhood achievement, Michaels (1992)
finds that after controlling for labor supply the offspring of more highly educated women perform
better at school.
While the basic models of fertility can be used to explain the relationship between total

fertility rates and measures of female labor supply and household wealth, they have much less to
say about the timing of births and how this is related to female labor supply over the life cycle.
Empirical dynamic models of fertility find that the time costs young children impose on their
mothers help to rationalize the spacing of later births (Hotz and Miller (1988). Similarly there
is strong evidence from dynamic models of labor supply and human capital accumulation that,
in addition to providing wages, work experience is a form of investment in human capital that
increases the future wage rate (Eckstein and Wolpin (1989), Miller and Sanders (1997), Altug
and Miller (1998)). Thus the costs of staying home to raise children are significantly greater
than the current wages foregone.
These empirical results suggest that the patterns of investing in the work force through

current labor force participation is intertwined with decisions about the timing and the amount
of offspring a household chooses to have. This study then is an attempt to combine both forms
of human or family capital within a unified framework. Only by capturing both kinds of choices
can one reasonably expect to answer policy questions that bear upon how households will change
their contraceptive and labor force behaviors in response to changes in provisions for maternity
leave, child care facilities and the tax treatment of dependents, to name just three examples of
topical interest.
Recently there have been a number of paper looking at the importance of female’s fertility

behavior on their labor supply, Angrist and Evans(1998) looked at the effect of children on there
mothers’ labor supply however this was done in a static reduced form model which did not
allow them to examine the issue of timing of birth, time cost,and human capital accumulation,
simultaneously on labor supply and the joint effect of supply on fertility behavior. In this vein
similar to this paper, Francesconi(2002) estimated a dynamic model joint fertility and work
decision of married women. However they only have full time versus part work, did not looked
directly on the human capital accumulation mechanisms, the different costs of having children
nor the timing and spacing of birth over the life-cycle.

7See Paul Schulz (19..) survey for a comprehensive summary of these results.
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The next two sections provide the theoretical underpinnings to our empirical investigations.
Section 2 lays out a life cycle model of labor supply and fertility. Then in Section 3 we derive the
conditions implied by dynamic optimization that form the basis for identification and estimation.
Sections 4 through 7 are the heart of the estimation. First, we explain our estimation strategy
in Section 4. Then we briefly summaraize the sample of households used in our empirical work,
which is drawn from the Panel Study of Income Dynamics (PSID). In Section 6 we report our
estimates of the wage equation from wage and labor supply data. The wealth effects of the
household are estimated in Section 7 from data on consumption. In Section 8 we estimate from
data on labor supply and births the parameters that determine preferences for children, as well
as the direct intertemporal effects of labor supply or leisure on household utility. The last two
sections of the paper explore the quantitative implications of our model. They use the estimates
obtained from the body of the estimation to conduct some policy simulations and summarize
our findings.

2. A FRAMEWORK

The model is set in discrete time, and measures the woman’s age beyond adolescence with
periods denoted by t ∈ {0, 1, . . . , T} . It analyzes the accumulation of two kinds of human
capital, offspring and labor market experience.
Female labor market experience for the nth household in our sample is embodied in the

wage rate, denoted wnt, and depends on labor market experience and demographic variables.
The latter, denoted by znt, include such variables as age, formal education, regional location,
ethnicity and race. It is assumed that znt is independently distributed over the population with
cumulative probability distribution function F0(znt+1 | znt). Let hnt denote the proportion of
time worked in period t as a fraction of the total time available in the period, let dnt denote
participation in period t, that is an indicator if hnt > 0. We assume that the mapping from
experience to the current wage rate is given by:

wnt = g(dnt−ρ, ..., dnt−1, hnt−ρ, ..., hnt−1, znt) (2.1)

for some positive integer ρ. Thus Equation 2.1 shows that, in addition to the demographic
variables, the current wage depends on past participation and past hours up to ρ periods ago.
The birth of a child at period t is denoted by the indicator variable bnt ∈ {0, 1} . It contributes

directly to household utility. We assume that the spacing of births is related to preferences by
the household over the age distribution of its children, as captured by interactions in the birth
dates of successive children. More specifically, let γ0 denote the additional lifetime expected
utility a household receives for its first child, let γ0+ γk denote the utility from having a second
child when the first born is k years old, let γ0 + γk + γj denote the utility from having a third
child when the first two are aged k and j years old, and so on. Thus the deterministic benefits
from offspring to the nth household in period t can be summarized by the random variable, U0nt,
defined as:

U0nt = bnt(γ0 +
MX
k=1

γkbnt−k + γM

TX
k=M+1

bnt−k) (2.2)

Raising children requires market expenditure and parental time. We assume that the dis-
counted cost of expenditures of raising a child is π, a parameter that varies with household
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demographics, and that a k year old requires nurturing time of ρk. Letting cnt denote the frac-
tion of time the nth household spend nurturing children in the household, our assumption about
nurturing implies:

cnt =
tX

k=0

ρkbn,t−k (2.3)

Equation (2.3) nests several specifications of the child care costs (or the related child care
technology) considered in the literature. Hill and Stafford(1980) found, using data from time
diaries, that maternal time devoted to child care declines as the children age. To capture this lat-
ter pattern, suppose that the demands a child makes on its mother’s time declines geometrically
with age after a give age M , so that

ρk =

½
ρk if k ≤M

ρMδk−1 if k > M
(2.4)

where 0 < δ < 1. Our specification for child care costs ignores two issues which have been
examined in the literature. First, it implies that the child care process exhibits constant returns
to scale in the number of existing children. The evidence on the importance of such scale
economies is mixed; Lazear and Michael(1980) find evidence of large scale economies while
Espenshade(1984) finds them to be small. Second, by assuming that the coefficients in equation
(2.3) are fixed weights, no substitution is allowed between market and maternal time in the care
of children. However, by interpreting these cost as the minimum time required nurturing time
and allowing π to vary according to individual characteristics we can capture such effects in this
model.
Leisure in period t, denoted lnt, is defined as the balance of time not spent at work or

nurturing children. It follows that the time allocated between nurturing children, market work
and leisure must obey the constraint:

1 = hnt + lnt + cnt (2.5)

Apart from having utility for children, household utility also comes from its consumption of
market goods, denoted xnt, and leisure, denoted lnt. We assume that preferences are additive
in consumption and leisure, but not separable with respect to leisure at different dates. To
model this dependence, define z∗nt = (bnt−M , ..., bnt−1, hnt−ρ, ..., hnt−1, z

0
nt), where the first ρ

elements of z∗nt capture the dependence of the current household state on lagged labor supply
and birth choices, and the remaining elements are the set of observed demographics. Letting
U1nt represent the fixed utility costs of the nth female from working in period t, we assume:

U1nt = u1(z
∗
nt, lnt) + u2(z

∗
nt, dnt)

This formulation incorporates both fixed and variable utility costs associated with working. It
models the variable costs of working as a mapping of observed household characteristics alone,
but allows participation in the work force to be determined by observed factors, entering through
u2(z

∗
nt, dnt). We assume that u1(z

∗
nt, 1− hnt − cnt) is a concave increasing function in lnt.

Let us first recast the decision process of the individual by defining the following indicator
variables.

I0nt =
½
1 if dnt = 0 and bnt = 0
0 otherwise

¾
(2.6)
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I1nt =
½
1 if dnt = 1 and bnt = 0
0 otherwise

¾
(2.7)

I2nt =
½
1 if dnt = 0 and bnt = 1
0 otherwise

¾
(2.8)

I3nt =
½
1 if dnt = 1 and bnt = 1
0 otherwise

¾
(2.9)

Let εntk (k = {0, ..., 3}) demographic and psychological factors that determine the precise
timing of birth and participation in the labor force that is unobserved by the econometrican, and
that (εnt1, ..., εnt1) is identically and independently distributed across (n, t) with multivariate
probability distribution F14 (εnt1, ..., εnt4) .
The third component in utility is derived from current consumption. We denote by U3nt ≡

u3(xnt, znt, ε5nt) the current utility from consumption by household n in period t, and assume
u2(xnt, znt, ε5nt) is concave increasing in xnt for all values of the observed and unobserved
demographic variables (znt, ε5nt). Analogous to the assumptions made for the other unobserved
variables, we assume ε5nt is identically and independently distributed across (n, t) with bivariate
probability distribution F5 (ε5nt) .
The period t utility for household n utility is found by summing over the three components.

Let β ∈ (0, 1) denote the common subjective discount factor, and write Et(.) as the expectation
conditional on information available to household n at period t. The expected lifetime utility of
household n is then:

E0

(
TX
t=0

βt

"
3X

k=0

Iknt(U0ntk + U1ntk + U3nt + εntk)

#)
(2.10)

Table 1 displays the notation defining the main elements of our model.

3. Optimal Decision Making

In this paper we assume there are no distortions within the labor supply and consumer goods
markets. This approach was recently utilized by Altug and Miller (1998) to estimate a life-cycle
model of how work experience affects female wages and labor supply. Indeed, over the last decade
an empirical literature has emerged that tests for deviations from Pareto optimal allocations
using panel data on households. (See, for example, Altug and Miller (1990), Altonji, Hayashi
and Kotilikoff (1995), Cochrane (1991), Mace (1991), Miller and Sieg (1997), and Townsend
(1994)) Taken together, this body of work shows that the restrictions imposed by Pareto optimal
allocations are quite hard to reject with panel data on households, unless one assumes very
limited forms of population heterogeneity, and also that preferences are strongly additive, two
assumptions that are widely regarded by microeconomists as being implausible. In addition, the
limited empirical work that exists on incomplete markets cannot easily be generalized beyond
the highly stylized frameworks that are investigated. So while few economists believe that
the real world supports a rich set of Arrow Debreu securities spanning the commodity space,
in the absence of clear guidance about precisely how gains from trade are left unfulfilled, the
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assumption of ignoring such impediments to trade is a useful working hypothesis. In this case
the assumption, that observed allocations are Pareto optimal, allows us to derive optimality
tractable conditions from a model in which households deal with the complex interactions that
arise from spacing births, given the time commitment to their young, while simultaneously
determining labor supply in a world where labor force attachment impacts on future wages.
The Pareto optimal allocations are derived as the solution to a social planner’s problem

for a large population of households n in a cohort defined on the [0, 1] interval, in which the
integral of the weighted, expected discounted utilities of each household are maximized subject
to an aggregate feasibility or resource constraint. Therefore, the objective function for the
social planner is formed from the individual utilities defined by Equation (2.10), and the social
weights attached to each individual n, which we denote by η−1n . The planner is constrained by
the time available to each household n in the period t ∈ {1, 2, . . . , T} that cohort is active,
which is Equation (2.5), and must respect the time required to nurture children, as indicated by
Equation (2.3). At the margin consumption goods are produced, the value of marginal product
function for labor, which is Equation (2.1), and net transfers between members of the cohort and
others (including other income generating family members and public transfers) are exogenously
set to Wt in period t. We now state the social planner’s constrained optimization problem more
formally.
The aggregate feasibility condition equates aggregate consumption at each date t to the sum

of output produced by all individuals n ∈ [0, 1] and the aggregate endowment Wt. Defining L
as the Lebesque measure which integrates over the cohort population, this constraint requires:Z 1

0

(xnt + πbnt − wnthnt) dL(n) ≤Wt (3.1)

The Pareto optimal allocations are found by maximizing

E0

(Z 1

0

TX
t=0

η−1n βt[
3X

k=0

Iknt(U0ntk + U1ntk + U3nt + εntk)]

)
dL(n) (3.2)

subject to aggregate budget inequality 3.1 and also the individual household time constraints
2.5 with respect to sequences (of random variables that are successively measurable with re-
spect to the information known at periods t = 0, 1, . . .) for consumption and labor supply
{xnt,hnt, bnt}Tt=0 chosen for all the cohort members n ∈ [0, 1]. For future reference we denote the
optimal choices by {xont,hont, bont}Tt=0 writing dont = 1 whenever hont > 0.
The necessary conditions characterizing the optimal consumption, labor supply and birth

allocations are the basis for the estimation procedure. Turning to the derivation of optimal
consumption first, we define βtλt as the Lagrange multiplier associated with the aggregate fea-
sibility constraint. Differentiating the Lagrangian formed from equation(3.2) and equation(3.1),
the optimal consumption allocations satisfy the necessary conditions:

∂u3(x
o
nt,, znt, ε5nt)

∂xnt
= ηnλt, (3.3)

for all n ∈ [0, 1] and t ∈ {0, 1, ...}. Notice that ηn corresponds to the inverse of the social
weight for each household n. In our empirical work we estimate Equation (3.3) using data on
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consumption and household demographics to obtain estimates of the social weight by inverting
an estimate of the estimated marginal utilities of wealth.
At the heart of the decision-maker’s trade off between working career and family, is the

fact that births and work reduce the amount of time left for leisure time, so they cannot be
solved independently. Since each person’s labor supply and birth decisions contribute only
infinitesimally to aggregate output, they are valued at a constant rate each period λt by the
social planner. Thus we may represent the conditional valuation functions for household n
associated with each discrete decision in period t as:

Vjnt+εjnt≡ max
{hnr(Iknr)3k=0}Tr=t

Et

∙ PT
r=t β

r−t(
P3

k=0 Iknt(U0ntk + U1ntk + ηnλrwnrhnr
−ηnλrπk(znr)bnr + εntk)) | Ijnt = 1

¸
(3.4)

for j ∈ {0, 1, 2, 3}.
Up to the household specific factor of proportionality ηn, the term Vknt + εknt, denotes the

social value from n choosing option k at date t, conditional upon all the information available
to the social planner (and the household) at the beginning of time t. Whether each individual
choice is optimal or not depends on:

Ioknt =
½

1, if Vknt + εknt > Vjnt + εjnt ∀j 6= k
0, otherwise

(3.5)

Upon defining pknt as the conditional choice rate in period t, we obtain the probability of
making choice k by the nth female in period t as:

pknt = E[Ioknt = 1 | z∗nt] (3.6)

This definition shows that if a representation for Vknt−Vjnt can be readily obtained in terms of
the variables and parameters that characterize the household’s problem, the parameters can be
estimated using standard approaches to estimating discrete choice models with labor supply and
other demographic data, including data on births. Our estimation approach uses the fact that
pknt can be estimated nonparametrically and that Vknt’s have the recursive representations:

Vjnt≡max
hnt>0

Et

∙
U0ntk + U1ntk + ηnλtwnthnt − ηnλtπ(znt)bnt
+βEt[

P3
k=0 pknt+1(Vknt+1+εknt+1)] | Ijnt = 1

¸
(3.7)

We also use the fact that an interior solution for those participating in the labor force requires
∂V1nt\∂hnt = 0 or ∂V3nt\∂hnt = 0. Thus if Ioknt = 1 for k = {1, 3} , then hont solves:

∂Uknt
∂hnt

+ ηnλtwnt = −βEt

(
3X

k=0

[ pknt+1
∂(Vknt+1+εknt+1)

∂hnt
+ (Vknt+1+εknt+1)

∂ pknt+1
∂hnt

]

)
(3.8)

The left side of Equation (3.8) gives the current benefits and costs of spending a marginal hour
working, comprising a utility cost in terms of leisure foregone, and the value of the extra goods
and services produced. The right side shows the expected future benefits. Marginally adjusting
current hours worked directly affects future productivity as well as the benefits of future leisure.
Moreover, supposing the probability of working next period increases next period from this
adjustment, the net benefits of working next period should be applied to the increase. This is
captured in the second expression on the right side of Equation (3.8).
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4. An Estimation Strategy

This framework is amenable to a multi-stage estimation strategy. First, there is contempora-
neous separability of consumption from labor supply and birth in the utility function. Second,
wages are assumed to be noisy measures of individual-specific marginal products of labor, which
are determined by our two forms of human capital accumulation, namely formal education, past
labor market participation and number of hours worked, plus other individual characteristics.
Provided the measurement error in wages is uncorrelated with current and past labor supply
and birth choices (an assumption we can readily test for providing a set of overidentifying in-
struments exist), the consumption and wages equations can be estimated separately from the
hours, participation and birth equations to provide estimates of the determinants of household
consumption and the effects of human capital accumulation on the individual wages.
The representation of individuals’ valuation functions defined by equations (3.4), and (3.8)

imply that the fixed cost of participation, benefit of a birth and cost of a birth can be recovered
from a model in which the income generated by the decision to work (jointly with the decision
to have a birth) is evaluated using the product of shadow value of consumption λt and the time-
invariant individual-specific effect ηn. However, the existence of fixed costs of participation,
birth benefits, birth and the effect of endogenous labor market participation, birth decision, and
the optimal choice of hours implies that techniques developed for dynamic discrete choice models
must be used to estimate the hours, participation and birth conditions. In principle one could
use one of the many maximum likelihood estimation (ML) procedures available (see e.g. Miller
(1984), Wolpin (1984), Pakes (1986), Rust (1987), etc.). This, however, involves the derivation of
the valuation function as a mapping of the state and parameter space to calculate the probability
of the sample outcome. Our model is very complicated in that it allows nonseparability of the
both birth and labor supply decision. This would make the computational cost of employing
ML in this setting very prohibitive. For this reason, we adapted a conditional choice probability
(CCP) estimator, which does not require us to solve the valuation functions.
The CCP estimator forms an alternative representation for the conditional valuation func-

tions that enter individuals’ optimizing conditions by multiplying current utilities, evaluated at
respective state for a given parameter value and corrected for dynamic selection bias, with the
probability that the state in question occurs, and then summing over all states. The proba-
bilities are estimated non-parametrically and then substituted into a criterion function that is
optimized over the structural parameters. Although CCP estimators are far more tractable than
ML, the computational burden of estimating conditional choice probabilities at every node in
the decision tree is great. We exploit the property of finite state dependence, enjoyed by our
model, to use the representation results from Altug and Miller (1998).

4.1. Conditional Choice Prababilities Estimation

The starting point for our CCP estimation is the discrete component of model, the euler equa-
tion can easily be estimated using standard GMM procedures. Without loss of generality, let
Hnt ≡ (z0nt, µnηnλtωt , hnt−ρ, ..., hnt−1, dnt−ρ, ..., dnt−1, bnt−ρ, ..., bnt−1) represent the agent’s rel-
evant history as of the beginning of period t.In each period t, there is a current utility or payoff,
Utj, associated with each cjoice j.Suppose we let U∗j (Hnt) = E(Utj | Hnt) denote the conditional
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expectation of Utj , given Hnt.We can then reformulate the model specified section 2 such that

Utj = U∗j (Hnt) + εtj (4.1)

where the stochastic utility component, εtj , is by construction, conditionally independent of
Hnt.Let eU(Hnt) = (U∗0 (Hnt), ..., U

∗
3 (Hnt))

0 and eεt = (εt0, ..., εt3)
0, repectively, denote 3 × 1

vectors of deterministic and stochastic utility components. We write the distribution fuction ofeεt,given the the assumption of Type I Extreme Value distribution as:
G(eεt | Hnt) = exp{−

3X
j=0

exp(−εtj)} (4.2)

which has a well-defined, joint density function dG(eεt | Hnt). Then the discrete choice which
leads to the conditional valuation function in equation (3.5) can be stated as follows. First let
us redefine the utility to fit in the above framework.

U∗j (Hnt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(znt, l
(0)
nt ) + u2(znt, 0) j = 0

u1(znt, l
(1)
nt ) + u2(znt, 1) + ηnλtwnth

∗
nt, j = 1

u1(znt, l
(2)
nt ) + u2(znt, 0)− ηnλtz

0
ntπ

+(γ0 +
Pρ

s=1 γsbnt−s + γS
Pt

s=ρ+1 bnt−s) j = 2

u1(znt, l
(3)
nt ) + u2(znt, 1) + ηnλtwnth

∗
nt

+(γ0 +
Pρ

s=1 γsbnt−s + γS
Pt

s=ρ+1 bnt−s)− ηnλtz
0
ntπ, j = 3

(4.3)

where

l
(j)
nt =

⎧⎪⎪⎨⎪⎪⎩
1−

Pt
k=1 ρkbnt−1 j = 0

1− h∗nt −
Pt

k=1 ρkbnt−1 j = 1

1−
Pt

k=0 ρkbnt−1 j = 2

1− h∗nt −
Pt

k=0 ρkbnt−1 j = 3

(4.4)

is the leisure from choosing the diferent options.
Pareto optimality implies that the decentralized problem is equivalent to the individual

problem, then the agent can be viewed as sequentially choosing {eIt}Tt=0 to maximize the objective
function:

E0(
PT

t=0

P3
j=0 Itjβ

t[U∗j (Hnt) + εtj ]) (4.5)

By letting eIos = (Ios1, Ios2, Ios3)0 denote the agent’s optimal in period s.We define the conditional
valuation function associated with choosing j in period t defined in equation(3.4) as:

Vj(Hnt) = U∗j (Hnt) +Et(
PT

r=t+1

P3
j=0 I

(o)
rj β

r−t[U∗j (Hnt) + εtj ] | Hnt, I(o)tj = 1) (4.6)

Then conditional on history Hnt,the probability the agent chooses action j is therefore:

pj(Hnt) = Pr[I{Vj(Hnt)+εtj≥Vk(Hnt)+εtk,∨k 6=j}] (4.7)

Let ep(Hnt) ≡ (p1(Hnt), p2(Hnt), p3(Hnt))
0 denote the 3 dimensional vector of conditional choice

probabilities associated with the last 3 actions in period t.

10



4.2. An Alternative Representation of Conditional Value Functions

In general, the conditional valuation function, Vj(Hnt), does not have a closed form solution. The
standard practice is to exploit Bellman’s(1957) equation and use backward recursion methods
to obtain one. This section provides an alternative representation of Vj(Hnt) which will prove
convenient when estimating this model in a multistage procedure.
To derive this representation, note(4.2) and (4.7) imply that the conditional probability of

making choice j ∈ {1, 2, 3}, can be written as:

pj(Hnt) = E(Iotj = 1 | Hnt) =
eVj(Hnt)P3
k=0 e

Vk(Hnt)

8 (4.8)

For each j ∈ {1, 2, 3}, the expression corresponding to (4.8) is a positive, real-valued, map-

ping from the differences in conditional valuation functions associated with the optimal choice
and the alternative actions. We now show that these differences can be expressed as functions
of the conditional choice probabilities. Let eV (Hnt) = (V0(Hnt), V1(Hnt), V2(Hnt), V3(Hnt))

0 be
a 4-dimensional vector. For each period t and j ∈ {1, 2, 3}, define the real-valued function,
Qj(eV ,Hnt), as:

Qj(eV ,Hnt) ≡
eVj(Hnt)P3
k=0 e

Vk(Hnt)
(4.9)

and eQ(eV ,Hnt), a 3-dimensional vector function as:eQ(eV ,Hnt) = (Q1(eV ,Hnt), Q2(eV ,Hnt), Q3(eV ,Hnt))
0 (4.10)

If eV comprises the differences in the conditional valuation functions, namely,eV 0 = (V1 − V0, V2 − V0, V3 − V0)
0 ≡ eV 0(Hnt) (4.11)

then ep(Hnt) = eQ(eV 0,Hnt). The cornstone of this estimation strategy is the express eV 0 as a
function of ep(Hnt). This requires eQ(eV ,Hnt) to be invertible in eV 0. By proposition 1 of Hotz
and Miller(1993, p 501). This enables us to express Vj(Hnt) in terms of the choice probabilities,
transition probabilities and expected( per period ) payoffs associated with future histories. To
estimate the model we proceed in several steps. First we exploit the limited state dependency
structure of our model to derive an alternative representation of our value function. Inorder
better characterize the expected ( per period payoffs associated with future histories we define
the following four possible histories.To illustrate this, define the (ρ+K+M +1)− dimensional
vectors H(s)

0nt H
(s)
1nt H

(s)
2nt and H

(s)
3nt as

H
(s)
0nt ≡ (z0nt+s, µnηnλt+sωt+s , hn,t−ρ+s, ..., hn,t−1, bn,t−M+s, ..., bn,t−10, ..., 0, 0, ..., 0)

0 (4.12)

H
(s)
1nt ≡ (z0nt+s, µnηnλt+sωt+s , hn,t−ρ+s, ..., hn,t−1, bn,t−M+s, ..., bn,t−1, h

∗
nt, ..., 0, 0, ..., 0)

0 (4.13)

8See Hotz and Miller(1993, p.500) and McFadden(1981, p.204) for example.
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H
(s)
2nt ≡ (z0nt+s, µnηnλt+sωt+s , hn,t−ρ+s, ..., hn,t−1, bn,t−M+s, ..., bn,t−1, 0, ..., 0, 1, ..., 0)

0 (4.14)

H
(s)
3nt ≡ (z0nt+s, µnηnλt+sωt+s

, hn,t−ρ+s, ..., hn,t−1, bn,t−M+s, ..., bn,t−1, h
∗
nt, ..., 0, 1, ..., 0)

0 (4.15)

for s = 1, ...ρ, (i.e. ρ ≡ max(ρ,M)) where h∗nt is the fraction of time a woman chooses to
spend at work conditional on participating, bn,t = (bnt, bnt−1, ..., bnt−M ). . The state vector
H
(s)
0nt is the state for a woman at date t + s who has accumulated work and birth histories,

(hn,t−ρ+s, ..., hn,t−1)
0 and (bn,t−M+s, ..., bn,t−1)

0 respectively, up to period t and then chooses
not to work or have a child at date t and for s − 1 periods following period t. The state
vector H(ρ)

0nt corresponds to the labor market and birth histories in which the woman does not
participate in the labor force or have a child between t and t + ρ. Likewise H(s)

1nt is the state
vector for a woman at time t+s who accumulates work and birth histories, (hn,t−ρ+s, ..., hn,t−1)0

and (bn,t−M+s, ..., bn,t−1)
0 respectively, up to period t, chooses to participate in the labor force

in at date t but chooses not to have a child at date, and then chooses not to participate in the
labor force or have a child for s − 1 periods following period t. While H(s)

2nt is the state vector
for a woman at time t+ s who accumulates work and birth histories, (hn,t−ρ+s, ..., hn,t−1)0 and
(bn,t−M+s, ..., bn,t−1)

0 respectively, up to period t, chooses to have a child at date t but chooses
not to participate in the labor force at date, and then chooses not to participate in the labor
force or have a child for s − 1 periods following period t. Finally, H(s)

3nt is the state vector for
a woman at time t + s who accumulates work and birth histories, (hn,t−ρ+s, ..., hn,t−1)0 and
(bn,t−M+s, ..., bn,t−1)

0 respectively, up to period t, chooses to have a child at date t and at
the same time chooses not to participate in the labor force at date, and then chooses not to
participate in the labor force or have a child for s − 1 periods following period t. Since we
assume the we have limited state dependencies only histories up to ρ are going to be relevant
for decisions in the current period. Also let

j(pj(Hnt)) = E(εtj | Hnt, I(o)tj = 1) (4.16)

Then by forward recusion it follows that we can rewrite equation(4.6) as:

Vj(Hnt) = U∗j (Hnt) + βEt(
P3

k=0 pk(H
(1)
jnt)[Vk(H

(1)
nt ) + k(pk(H

(1)
jnt))]) (4.17)

We can derive an alternative expression for Vj(Hnt) by using the definitions of Q
−1
j (pj(Hnt))

for j ∈ {1, 2, 3}, substituting for Q−1j (pj(Hnt)) into equation(4.17) and rearranging we obtain:

Vk(Hnt) = U∗j (Hnt) + βEt{
ρ.X
s=1

[V0(H
(1)
jnt) + p0(H

(1)
jnt) 0(p0(H

(1)
jnt))] (4.18)

+
3X

k=1

pk(H
(1)
jnt)[Q

−1
k (pk(H

(1)
jnt)) + k(pk(H

(1)
jnt))]}
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We then add and substract
P3

k=1 pk(H
(1)
jnt) 0(p0(H

(1)
jnt))] and obtain

Vj(Hnt) = U∗j (Hnt) + βEt{V0(H(1)
jnt) + 0(p0(H

(1)
jnt))] (4.19)

+
3X

k=1

pk(H
(1)
jnt)[Q

−1
k (pk(H

(1)
jnt)) + k(pk(H

(1)
jnt))− 0(p0(H

(1)
jnt))]}

The above equation implies that

V0(H
(1)
jnt) = U∗0 (H

(1)
jnt) + βEt{V0(H(2)

jnt) + 0(p0(H
(2)
jnt))] (4.20)

+
3X

k=1

pk(H
(2)
jnt)[Q

−1
k (pk(H

(2)
jnt)) + k(pk(H

(2)
jnt))− 0(p0(H

(2)
jnt))]}

Substituting equation (4.20) into equation(4.19) gives

Vj(Hnt) = U∗j (Hnt) + βEt{U∗0 (H
(1)
knt) + βEt[V0(H

(2)
jnt) + 0(p0(H

(2)
jnt))]] + 0(p0(H

(1)
jnt))

+
3X

k=1

pk(H
(2)
jnt)[Q

−1
k (pk(H

(2)
jnt)) + k(pk(H

(2)
jnt))− 0(p0(H

(2)
jnt))]]

+
3X

k=1

pk(H
(1)
jnt)[Q

−1
k (pk(H

(1)
jnt)) + k(pk(H

(1)
jnt))− 0(p0(H

(1)
jnt))]} (4.21)

Performing a ρ-step induction yields:

Vj(Hnt) = U∗j (Hnt) +E{
Pρ

s=1 β
s[U∗0 (H

(s)
nt ) + 0(p0(H

(s)
jnt)) +

3X
k=1

pk(H
(s)
jnt)[Q

−1
k (pk(H

(s)
jnt))

+ k(pk(H
(s)
jnt))− 0(p0(H

(s)
jnt))]] + βρ+1[V0(H

(ρ+1)
jnt ) + 0(p0(H

(ρ+1)
jnt ))

+
3X

k=1

pk(H
(ρ+1)
jnt )[Q−1k (pk(H

(ρ+1)
jnt )) + k(pk(H

(ρ+1)
jnt ))− 0(p0(H

(ρ+1)
jnt ))]]} (4.22)

Using equation(4.9) it follows from proposition 1 in Hotz and Miller(1993, p. 501) that
Q−1k (ep(Hnt) is :

Q−1j (ep(Hnt) = ln[pj(Hnt)/p0(Hnt)] (4.23)

To complete the expression for Vj(Hnt), we need to characterise the form of the j(pj(Hnt))
functions associated with εtj . Given the the assumed distribution for ε0tjs, the function takes
the form:

j(pj(Hnt)) = γ − ln[pj(Hnt)] (4.24)

for j ∈ {0, 1, 2, 3} , where γ is Euler’s constant (≈ 0.577). In this case, Q−1j (ep(Hnt) = −[
j(pj(Hnt))− 0(p0(Hnt))], which implies that the conditional valuation functions do not de-

pend on terms that show which choices will be optimal in the future. As a result, the dynamic
selection terms, Q−1k (pk(H

(s)
jnt)) + k(pk(H

(s)
jnt)) − 0(p0(H

(s)
jnt)), drops out under this parame-

terization of the unobservables.
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Finally inorder to estimate the model we will form moment conditions using equation4.23,
i.e.

ln[pj(Hnt)/p0(Hnt)] = Vj − V0 (4.25)

Substituting for Vj and V0 from equation(4.22) and not all terms in that expression that
involues histories ρ+ 1 are that same for all options,we obtain

Et{ln[
pj(Hnt)

p0(Hnt)
]−U∗j (Hnt)+U

∗
0 (Hnt)−

Pρ
s=1 β

s[U∗0 (H
(s)
jnt)−U∗0 (H

(s)
0nt)+ln[

p0(H
(s)
0nt)

p0(H
(s)
jnt)]

/] | I(o)tj = 1} = 0

(4.26)
for j = 1, 2, 3 and t = 1, ..., T.
We then derive addtional moment conditions which responds to the continuous decision of

number hours to work. In this way we are able to combine both the continuous and decrete
decision in the same framework. Note that equation (4.22) also gives a alternative representation
for the Euler equations for labor supply

0 =
∂U∗j (Hnt)

∂hnt
+Et{

ρ.X
s=1

βs
∂[U∗0 (H

(s)
nt ) + 0(p0(H

(s)
jnt)]

∂hnt
}

+Et{
ρ.X
s=1

βs
3X

k=1

pk(H
(s)
jnt)

∂[Q−1k (pk(H
(s)
jnt)) + k(pk(H

(s)
jnt))− 0(p0(H

(s)
jnt))]

∂hnt
}

+Et{
ρ.X
s=1

βs
3X

k=1

[Q−1k (pk(H
(s)
jnt)) + k(pk(H

(s)
jnt))− 0(p0(H

(s)
jnt))]

∂pk(H
(s)
jnt)

∂hnt
} (4.27)

for j = {1, 3}, conditional on these choices being optimal.
In order to evaluate the terms

∂pk(H
(s)
jnt)

∂hnt
which appears in the Euler equation, define

f
(s),j
1nt = f1(H

(s)
jnt | Ijn,t+s = 1) (4.28)

as the probability density function forH(s)
jnt, conditional on choosing option j at date t+ s. Let

f
(s),j
nt = f(H

(s)
jnt) (4.29)

as the related probability density that does not condition on choosing option j in period t+ s.
This both for s = 1, ..., ρ. Denote their derivatives with respect to hnt by f

0(s)
1nt and f

0(s)
nt . Then

∂pk(H
(s)
jnt)

∂hnt
=

"
f
0(s)
1nt

f
(s)
1nt

− f
0(s)
nt

f
(s)
nt

#
pk(H

(s)
jnt) (4.30)

The moment conditions defined in equations 4.26 and 4.27 now define moment restrictions
which we can use to estimate the model, except for the incidental parameters in the form
of the conditional choice probabilities , future transitional probabilities, their derivatives, the
individual effects and aggregate components. In that respects we first estimate the these
incidental parameters in separate stages ( nonparametrically or parametrically) and substitute
their estimate into the above moment conditions. As such we have a semiparametric estimation
procedure, we derive the asymptotic properties in the appendix. In what follows we first describe
the data and then go into more details for each stage of the estimation procedure..
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5. Data

The data for this study are taken from the Family-Individual File, Childbirth and Adoption
History File and the Marriage History File of the Michigan Panel Study of Income Dynamics
(PSID). The variables used in the empirical study are hnt, the annual fraction of hours work by
individual n at date t; ewnt, her reported real average hourly earnings at t; xnt, real household food
consumption expenditures; FAMnt, the number of household members; Y KIDnt, the number
of children less than six years of age; OKIDnt, the number of children of ages between six and
fourteen; AGEnt, the age of the individual at date t; EDUnt, the years of completed education
of the individual at time t; HIGH.SCHnt, completion of high school dummy; BLACK and
HISPANIC race dummies for blacks and Hispanics, respectively; NEnt, NCnt,SOnt, which
are region dummies for northeast, northcentral, and south, respectively, and MARnt, denoting
whether a woman is married or not. The construction of our sample and the definition of the
variables is described in greater detail in Appendix 3.
Table 1 contains summary statistics of our main variables. The sample has aged, household

size has declined, and the decline is most pronounced amongst young children. The steep decline
in household size over the two decades, and the aging evident in the sample, relative to aggregate
trends in the US, largely reflects the sampling mechanism of the PSID. Thus we cannot infer
any aggregate trend in fertility from this table. Household income has increased somewhat,
but household consumption of food has declined. However, both food consumption and income
per capita has increased over the sample period. More striking is the rise in female income,
which greatly outstrips increases in household income. This is due to both higher wages and
greater hours. Because schooling has not increased over the sample period, the number of years
of formal education is not a factor in explaining aggregate trends in female wages and labor
supply, or any changes that might have occurred in fertility.

6. Wages

We assume the wage rate, or value of marginal product function, Equation (2.1) can be para-
meterized as:

g(dnt−ρ, ..., dnt−ρ, ..., dnt−1, hnt−ρ, ..., hnt−1, znt)

= ωtµn exp[
νX

s=1

(δ1shn,t−s + δ2sdn,t−s) + z0ntB3)] (6.1)

where µn and ωt are an unobserved individual-specific effect and aggregate time-specific wage,
respectively. We further assume that the reported wage rate, denoted ewnt (for the nth household
in period t) measures the woman’s marginal product in the market sector with error, so that:

ewnt = g( eAnt) exp(eεnt) (6.2)

where the multiplicative error term in equation (6.2) is conditionally independent over people,
the covariates in the wage equation and the labor supply decision. Taking logarithms on both
sides of Equation (6.2), and then differencing, yields:
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4eεnt = 4 ln( ewnt)−
νX

s=1

(δ1s4hn,t−s + δ2s4dn,t−s)−4z0ntB3 −4ωt (6.3)

≡ 4 ln( ewnt)− ZntΘ1 (6.4)

where Θ1 ≡ (δ11, ..., δ1ν , δ21, ..., δ2ν , B0
3) denotes the (2ν + k + T − 1)− dimensional vector of

identifiable parameters, and Znt is the vector of covariates.
An instrumental variables estimator was used to estimate Equation (6.3). Defining Yn and

Zn as:

Yn ≡ (4 ln( ewn2), ...,4 ln( ewnT ))
0

Zn ≡ (Zn2, ..., ZnT )
0

we estimated Θ1 with:

ΘN1 = [N
−1

NX
n=1

Z0nfW−1n Zn]
−1[N−1

NX
n=1

Z 0nfW−1n Yn] (6.5)

where fWn is a consistent estimator of:

Wn ≡ E[(Yn − Z0nΘ1)(Yn − Z0nΘ1)
0 p Zn].

Assuming the regressors are valid instuments for the wage equation, that is to say E(4eεnt |Zn ) =
0 for each t, then ΘN1 has the lowest asymptotic covariance within the class of GMM estimators.
Our estimates of the wage equation, displayed in Table III, are comparable to those reported

in Miller and Sanders (1997) for the National Longitudinal Survey for Youth (NLSY), Altug
and Miller (1998) also using the PSID, and others. All the coefficients are significant. Working
an extra hour increases the wage rate up to four years hence, although in diminishing amounts.
The effect is nonlinear, and this is captured by the participation variables. Age has a quadratic
effect, eventually leading to declining productivity, and additional education mitigates the onset
of the decline. We note that the linear terms on age are not identified.
The estimate quantitative magnitudes of past experience are also plausible. Recent working

experience is more valuable than more distant experience: at 2000 hours per year, the wage
elasticity of hours lagged once is about 0.18, but the wage elasticity of hours lagged twice is only
0.03. Also the further back the work experience is, the less the timing matters; an extra hour
worked one year in the past has about twice the effect on current wages as an extra hour worked
two years in the past, but the difference between the wage effects of an extra hour worked three
and four years in the past, respectively, is less than 40%.
Another measure of the effect of past labor supply on wages: consider the total change in

wages for a woman who has not worked up to date t− ρ and then works the sample average of
hours for those women who work, denoted ht. Then this measure is given by

P4
s=1[δ1sht−s +

δ2s] = 0.12. Much of this long-term effect is due to hours worked in the past year. Specifically,
the growth in wages between t−1 and t for a woman who does not participate from t−ρ to t−2,
but works the sample average at t− 1 is δ11h,t−s + δ21 = 0.08. On the other hand, women who
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worked less than 1000 hours the previous year do not receive this increase in wages, this may
be capturing the effect of discouragement normally found in the standard job search model. It
should be noted that we do not explicitly model this type of search cost in our model, however,
we can pick up the lower bound of this effect. This means that not everybody gets the benefit
from past job experience, there is a threshold number of hours of about 1500 for this positive
effect to kick in. This will impact fertility behavior even more than if there were positive benefit
from all levels of past hours, since a mother could reduce her hours and still continue to enjoy
the benefit of higher future wages. We will come back to this point in the empirical findings
section when we will have estimates of the fraction of time a mother spends nuturing her new
born.
The estimated change in aggregate wages over our sample period is displayed in Figure I,

along with its 99% confidence interval. The most striking feature of that plot is that although the
magnitude of the changes fluctuate over the sample period, the signs are always positive. This
shows that over time the aggregate females wage has been increasing. This is not a surprising
finding, given the fact the wage gap between males and females having been closing over time.
However it does raise an interesting issue as to whether the attachment of females to the labor
force, in term of their persistence in labor participation, is having an aggregate effect. For
example, suppose by more females working more hours and participating on a more consistent
level equivalent to men, then the employers in the aggregate are willing to pay females higher
wages closer to males. This higher wages, some would argue, would then cause females to work
more and have less children. Our approach can also disentangled such a result by controlling
for aggregate shock, and then seeing the relative importance of the wage effect.

7. Preferences over Consumption and Wealth Effects

In our model, the effects of differences in wealth across households on their fertility and labor
supply decisions is determined a single parameter, their weight in the social planner’s problem.
The inverse of their social weight is their marginal utility of wealth, and it can be estimated with
household data on consumption This section reports our estimates of the parameters determining
the utility from consumption and the marginal utility of wealth parameter, to be used in the
labor supply and fertility equations that follow.

7.1. The first order condition

We assume that preferences over consumption take the parametric form:

u3(xnt, znt, ε5nt) = exp(z
0
ntB2 + ε5nt)x

α
nt/α (7.1)

where the concavity parameter α < 1. Substituting equation (7.1) into equation (3.3), taking
logarithms and then first differencing yields:

(1− α)−14 ε5nt = 4 ln(xnt)− (1− α)−1 4 z0ntB2 + (1− α)−1 ln(λt) (7.2)
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Let Θ2 denote the (K + T − 1) dimensional vector of parameters to be estimated, defined:

Θ2 =

⎛⎜⎜⎝
(1− α)−1B2

(1− α)−1 ln(λ2)
. . .

(1− α)−1 ln(λT )

⎞⎟⎟⎠
We also define Yn = (4 ln(xn2), ...,4 ln(xnT ))0 as a vector of endogenous variables, and Zn the
exogenous variables as

Zn =

⎡⎣ 4z0n2 D2 ... 0
. . . .

4z0nT 0 ... DT

⎤⎦
where Dt denotes a time dummy for t ∈ {2, . . . , T} . The assumptions in Section 2 imply that
the unobserved variable ε5nt is independent of individual specific characteristics. Therefore
E((1 − α)−1 4 ε5nt |znt ) = 0. Substituting for (1 − α)−1 4 ε5nt using equation(7.2) one can
obtain a set of orthogonality conditions:

E [(Yn − ZnΘ2)Zn] = 0

which can be exploited here to estimate Θ2 using a similar method to the regression procedures
that estimated the wage function.
The estimates of the consumption equation are based on the main sample of females for the

years 1968 to 1992. Consumption for a given year in our study is measured by taking 0.25 of
the value of the different components for year t− 1 and 0.75 of it for year t. This is explained
in more detail in the data appendix. The elements of znt used in this stage of the estimation
are defined as FAMnt, Y KIDnt, OKIDnt, AGE

2
nt, NCnt and SOnt. The estimates in Table 4

show that consumption increases with family size and children consume less than adults, since
the coefficients on children between the ages of zero and fourteen are negative and smaller in
absolute magnitude than the coefficient on total household size. Furthermore, the behavior of
consumption over the life-cycle is concave since the coefficient on age squared is negative. All
the other coefficients are significant. Figure IV shows the estimated aggregate component of
shadow value of consumption, along with its 99% confidence interval. This shows that these
components are estimated very precisely. In fact, there is also significant variation over time
as the test statistic for the null hypothesis that (1− α)

−1
∆ ln (λt) = (1− α)

−1
∆ ln (λt−1) for

t = 1969, ..., 1992 is 395. Under the null hypothesis, it would be distributed as a χ2 with 23
degrees of freedom, implying rejection of the null at 99% significance levels.

7.1.1. Individual-specific Effects

Estimation of the labor supply and fertility equations also requires estimates of individual-
specific effects ηnµn and ηn. There are two approaches that we shall employ for estimating
there quantities, the traditional fixed effects estimators and the regression approach of Macurdy
(1982), extended by Altug and Miller (1998) to handle nonlinearities using nonparametric es-
timation techniques. The traditional estimators are simple to compute. They are, however,
subject to small sample bias arising from short panel length, although the limited Monte Carlo
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evidence provided in Hotz and Miller (1988) suggests that small sample bias might not greatly
affect the estimates of the other parameters. On the other hand, the nonparametric estima-
tor achieves consistency of the cross section of the panel data set, but can only deal with any
unobserved permanent characteristic that is a mapping of observed random variables.
The traditional fixed effect are estimated as follows. Let T1 denote the number of time

periods for which the wage equation is estimated, and T2 be the number of time periods for
which the marginal utility of consumption equation is estimated.
Let:

φ1n ≡
T1X
t=1

h
ln (wnt)−

Xν

s=1
(δ1shn,t−s + δ2sdn,t−s)− z0ntB3

i
/T1

+

T1X
t=1

[ln(xnt)− (1− α)−1z0ntB2 + (1− α)−1 ln(λt)]/T2 (7.3)

and

φ2n ≡
X
t∈T1

[ln(xnt)− (1− α)−1z0ntB2 + (1− α)−1 ln(λt)]/T2 (7.4)

Then estimates of ηnµn and ηn are then estimated by simple time averages of the estimated
residuals of the consumption and wage equations.
Suppose that ηnµn and ηn can be expressed as functions of a Q-dimensional vector of regres-

sors zn, which is assumed to represent the permanent characteristics of individual n. Let the vec-
tor zn be observed and satisfies the conditions, E[zn(φ1n− ηnµn)] = 0 and E[zn(φ2n− ηn)] = 0.
Here zn could include such observed observable demographic characteristics as religion, marital
status, the age distribution of children, home ownership, educational level and geographical lo-
cation. Let δN denote the bandwidth of the proposed kernel estimator and J the normal kernel
on RQ. Then our estimators are

ηNn µ
N
n =

PN
m=1,m6=n φ1mJ [δ

−1
N (zm − zn)]PN

m=1,m6=n J [δ
−1
N (zm − zn)]

(7.5)

and

ηNn =

PN
m=1,m6=n φ2mJ [δ

−1
N (zm − zn)]PN

m=1,m6=n J [δ
−1
N (zm − zn)]

(7.6)

The distribution of the estimated fixed-effects estimates for the wage equation, the con-
sumption equation, and the combined individual effects and time effects of the consumption,
are displayed in figures II, III, IV and V respectively. The most stricking features of these plots
is that the nonparametric estimates are significantly smoother than the traditional fixed effects.
The range of the distribution of the shadow price of consumption all lies above zero, while only
a very small portion of the estimated (inverse) social weights lies below zero in the traditional
case.
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8. Participation, Hours and Birth

8.1. A Parametrization

The remaining components of the utility function u1 and u2 are parametrized as:

u2(z
∗
nt, dnt) = dntz

0
ntB0

and

u1(z
∗
nt, lnt) = z0ntB1lnt +

ρX
s=0

δslntlnt−s

In these expressions, B0 are parameters that characterize the fixed-costs of participating in
the work force, B1 shows the effect of exogenous time-varying characteristics on the marginal
utility of leisure. Preferences are concave, decreasing in time spent in lesure if z0ntB11lnt +
2δ0lnt +

Pρ
s=1 δslnt−s > 0 and δ0 < 0. The parameters δs for s = 1, ..., ρ capture intertemporal

non-separabilities in preferences with respect to leisure choices. A value of δs < 0 for s = 1, ..., ρ
means that leisure s periods ago increases the marginal utility of leisure, and results in less work
and child cre time today. Equivalently, a finding of δs < 0 implies that current and past leisure
time are substitutes where as δs > 0 implies that current and past leisure time are complements.
The distributional assumption for the idiosyncratic stocks and the parameterization of the

utility function implies that the Euler equation can be written as

Et{ηnλtwnt − z0ntB1 − 2δ0l
(1)
nt −

ρX
s=1

δslnt−s −Et[

ρX
s=1

βs[p0(H
(s)
1nt)

−1 ∂p0(H
(s)
1nt)

∂hnt
] | Io1nt = 1} = 0

(8.1)

Et{ηnλtwnt− z0ntB1− 2δ0l
(3)
nt −

ρX
s=1

δslnt−s−
ρX

s=1

βs[p0(H
(s)
3nt)

−1 ∂p0H
(s)
3nt)

∂hnt
] | Io3nt = 1} = 0 (8.2)

In this parametization, equation 4.26 gives the following three moment conditions:

Et

(
ln ( p1ntP0nt

)− z0ntB0 + z0ntB1(l
(0)
nt − l

(1)
nt ) + δ0(l

(0)2
nt − l

(1)2
nt )

+
Pρ

s=1 δs(l
(0)
nt − l

(1)
nt )lnt−s − ηnλtwnth

∗
nt −

Pρ
s=1 β

s ln(p0(H
(s)
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(s)
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(8.3)
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(0)
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0
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(8.4)
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(8.5)
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8.2. Nonparametric estimation of the conditional choice probabilities

Then the probabilities pknt can be computed as nonlinear regressions of participation index
Iknt on the current state HN

nt, where the N superscript denotes an estimated quantity. Define
K[δ−1N (HN

nt−HN
mr)] as a given kernel , where δN is the bandwidth associated with each argument.

Then the nonparametric estimate, pNknt , is then computed using kernel estimator

pNknt ≡
PN

m=1,m6=n
PT

r=1,r 6=t IkmrK[δ
−1
N (HN

nt −HN
mr)]PN

m=1,m6=n
PT

r=1,r 6=tK[δ
−1
N (HN

nt −HN
mr)]

(8.6)

The conditional choice probabilities pj(H
(s)
knt) are also estimated as nonlinear regressions of

a choice index on the appropriate state variables. Define the variable

I(s)knt = Ikn,t−s
s−1Y
=1

(1− Ikn,t− ), k ∈ {0, 1, 2, 3} (8.7)

Notice that I(s)knt = 1 if the person choose option k at t− s, but then did not choose option

k for s − 1 periods. Thus, I(s)kntis an index variable that allows us to condition on the behavior

of individuals with the labor market and birth histories defined by z(s)knt. The conditional choice

probabilities pNj (H
(s)
knt) are then computed as

pNj (Ψ
(s)
knt) ≡

PN
m=1,m6=n

PT
r=1,r 6=t IjmrI

(s)
kmrK[δ

−1
N (H

(s)N
knt −H

(s)N
kmr )]PN

m=1,m6=n
PT

r=1 I
(s)
kmrK[δ

−1
N (H

(s)N
knt −H

(s)N
kmr )]

(8.8)

where H(s)N
knt ≡ (z

(s)0
knt, µ

N
n η

N
n )

0 for k ∈ {0, 1, 2, 3} is the state vector for individual n.

8.3. Hours, participation and birth Conditions

So combining the estimate we obtain in section 7.1.1 gives

ξnt = (1− α)−1 \ln(λtηn) (8.9)

Note that we can obtain an estimate of ηnλt and ηn, respectively, as:

[ηnλt ≡ exp((1− α)ξnt) (8.10)

The remaining unknown parameters of the model consist of the parameters in the hours,
participation ond birth equations, the discount factor β and the risk aversion parameter from
the utility function for consumption, α.Define the (3K+ρ+ ρ+2)−dimemensional vector Θ3 ≡
(B0

0, B1,
0 δ0, ..., δρ, γ0, ..., γρ, γS , α, π)

0.We do not estimate the discount factor because of problem
with identitifying it, this is a standard problem most dynamic structural models so instead we
estimate the model using different value of β. This fact motivates an estimator of Θ3, conditional
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on β. For this purpose, the idiosyncratic errors or moment restrictions associated with the Euler
and discrete choice equations can be written as

bm1nt(Θ3) = I1nt ×

⎛⎝exp((1− α)ξnt) bwnt − z0ntB1 − 2δ0l
(1)
nt −
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βs bp0(H(s)
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−1
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(s)
1nt)

∂hnt

⎞⎠
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⎛⎜⎝ ln ( dp2ntdP0nt ) + z0ntB1(l
(0)
nt − l

(2)
nt ) + δ0(l

(0)2
nt − l

(2)2
nt )

+
Pρ

s=1 δs(l
(0)
nt − l

(2)
nt )lnt−s + exp((1− α)ξnt)z

0
ntπ

−(γ0 +
Pρ

s=1 γsbnt−s + γS
Pt

s=ρ+1 bnt−s)−
Pρ

s=1 β
s ln( bp0(H(s)

0nt)/ bp0(H(s)
2nt))

⎞⎟⎠
(8.13)

and

bm4nt(Θ3) = I3nt×
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(0)
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(8.14)

Let bmnt(Θ3) ≡ (bm1nt, bm2nt, bm3nt, bm4nt)
0 and let T3 denote the set of periods for which

the hours and discrete participation conditions are valid. Define bmn(Θ3) ≡ (bm0
n1, ..., bm0

nT3
)0

as the the vector of moment restrictions for a given individual over time. Similarly, define
Φn ≡ Et[bmn(Θ3)bmn(Θ3)

0]. Notice that the matrix Φn is block diagonal with diagonal ele-
ments defined as Φnt ≡ Et[bmnt(Θ3)bmnt(Θ3)

0], and off-diagonal elements that are zero because
Et[bmnt(Θ3)bmns(Θ3)

0] = 0 for s 6= t, s < t. The 4 × 4 conditional heteroscedasticity matrixbΦnt associated with the indivdiual-specific errors bmnt(Θ3) is evaluated using a nonparametric
estimator based on the estimated residuals, bmnt(Θ3), using an initial consistent estimator of
Θ3.This estimator is simalar to Robinson(1987) estimator except we use a kernel based non-
parametric regressions instead of a Nearest neighbor regression approach. To ensure none zero
variance we trimmed the data. The optimal GMM estimator for, Θ3 satisfiesbΘ3 = argmin

Θ3

[1/N
PN

n=1 bmn(Θ3)]bΦn[1/NPN
n=1 bmn(Θ3)]

0. (8.15)

Appendix A.3 derives that asymptotic properties of a general class of estimators which can be
used to show consistency and asymptotic nomality of the estimator bΘ3.
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9. Empirical Findings

Tables V, VI, VII and VIII contain estimates of alternative estimators of our participation
cost,nurturing cost, utility of leisure and birth equation. Column (1) reports estimates of the
birth preference and cost parameters that are based on nonparametric estimates of individual
effects ηn and µnηn, while estimates in column (2) are based on the standard effects estima-
tors of ηn and µnηn. The most striking feature of our results is the similarities between both
sets of estimates. Given these similarities, we will focus in the discussion that follows on the
nonparametric estimates.

9.1. Fixed Cost of Participation

Table V contains estimates of the fixed cost of participation. First the constant term is negative,
which means that particiaption in the labor force has a fixed utility cost instead of a benefit,
which is what standard economic theory would predict. Age reduces this cost of participation
in the labor, but this reduction is at a decreasing rate as the parameter estimate on the AGE2

is negative. Education increases the cost associated with age. There is a negative sign on
the estimates of AGE×EDUC which implies that a more educated female has a higher cost of
participation for a given age than a less educated female. To understand the overall effect of
age and education on the fixed cost of participation, we investigate what is the shape of this
function conditional on education. Females with less that 7.7 years of education have a concave
function in age, while females with more that 7.7 years of education have the cost of participation
increasing at an increasing rate in age. One possible explanation for this result maybe the fact
that less educated females will earn less over their life-time and as they get older will not have
the discretion of whether to work are not. So in the data we would expect to observe that
older females with small levels of education to be participating in the labor force at a higher
rate. Married women have a higher cost of participation while blacks and hispanics have a lower
cost of participation for a given age and education level. Again these results are not surpising
since the standard literature has documented similar results( see for example Altug and Miller
(1998))..

9.2. Nurturing Cost

Table VI contains the results from the estimation of the fraction of time spent nurturing a child.
The risk aversion parameter is very reasonable for a CES utility function. These estimates
seems quite reasonable. For example, a new birth seems to require about 35% of the mother’s
time, and this falls to about 16% for a five years old child. These are similar results to those
found by Hotz and Miller (1984) which found that these parameters follow off a geometric rate.
This is very important in our model, since with the nonlinearity observed in the estimates of
the wage equation, this implies that if a female reduces her time in the labor force to have a
child, then they would not benefit from the increases in wages as a result of human capital
accumulation in terms of their previous labor supply. So holding all other things constant, this
would make having children less desirable for a female who is on a high wage trojectury. This
combined with the estimates of the risk aversion parameter means that females would like to
smooth more there consumption, hence working more in earlier years and delaying child-bearing

23



to later years. This would mean that working females would have less children than nonworking
female.

9.3. Utility Cost of Leisure

Table VII contains the estimates for the utility cost of leisure. Although the sign on the lnt is
negative this do not mean that females in our sample obtain a negative utility from leisure, which
would contradict theory, we have to look at the over all first order effect of lnt. For example, for an
average women in our sample, the direct effect on the utility from leisure is positive .The second
order effects of leisure( i.e. term on the the squared of leisure) is negative giving us the standard
concave utility function in our results. Our estimates suggest that leisure is intertemporily
nonseparable. Past leisure are compliments with for current leisure These is similar to what
is found in Altug and Miller (1998), among other, about the separability of leisure. Another,
supprising results we found is that the sign on marriage in our results is negative. At first glance,
this would imply that married females love leisure less. One explanation for this effect could be
simple the fact that married females are working more than before and is still having children.
Since we do not allow at the moment for the utility of birth or the time cost of raring a child to
depend on such demographics, as marital status, then the only way they found then be having
children and still working is if they as a group love leisure less. Another explanation may be
due to the welfare system.In the era of our sample, a subsistence income (AFDC) is available
to unmarried mothers, but (basically) only conditional on them not working. Married females
do not face a similar tradeoff. Since welfare participation among female heads is quite common
in this era (roughly around one-third), this is definitely an important enough phenomenon to
account for this results.In short, the ”leisure” time of female heads is highly subsidized, and they
may well have similar preferences as wives.9 This is some thing that we will explore further.

9.4. Birth Effects

We concurred with the classical literature that children are good and not bad, since we find a
positive utility up to the 6th birth. The parameter on the timing of births for example, would
imply that the optimal space of a two-child family would be 3 to 4 years apart. So, having
children too close or too far apart is less desirable. Turning to the cost of a child, we find that
both sets of estimates give similar results. There is a positive cost discounted life-time cost to
having a child. We find that having at least a high school education significantly increases that
cost. After controlling for education, we find that Blacks and Hispanics have a significantly
lower cost than White. The fact that education significantly increases the cost of having a birth
coincides with our earlier hypothesis, and can help explain the unanimous empirical finding that
number of children is negatively related to level of education.

10. Policy Simulations

There are many ways in which public policy over the last century has affected the costs and
benefits of having children. From child labor laws to the public provision of schooling, from
the subsidizing of health care to local taxes that support amenities such as swimming pools, as

9We would like to thank Elizabeth Powers for pointing out this very insightful possibility to us.
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well as sporting and other events for children, raising children depends on social infrastructure
that is often taken for granted in modern developed societies. Over the last several decades,
greater attention has been paid to jointly determining fertility and female labor supply. Part of
the concern about the falling rates of fertility are related to the long-term viability of the social
security system in many developed countries, especially in Western Europe.
This section considers a variety of policies that subsidize fertility to investigate how responsive

women are to changes in the incentives they factor in between market work and raising a family.
Our study shows that different policies not only have different aggregate or average effects on
fertility and female labor supply, but also have very significant compositional effects, or incidence
across this heterogeneous population. We hasten to add that our contribution is postitive, not
normative, seeking to provide quantitative analysis against which different policy options can
be evaluated.

10.1. Overview of the simulations

We substituted the parameters obtained from our estimation procedures into the utility function,
the equation characterizing the returns to experience, and the child care cost equation and solved
the decision-maker’s problem. We conducted simulations for a wide range of female types in
the population, but they are not exhaustive. We stratified the population, breaking down the
groups according to a three-way classification scheme, by race, marriage and education, and
considered an individual whose unobserved fixed effects correspond to the estimated means
of the distributions. Three racial types were considered, namely Black, White and Hispanic
(respectively abbreviated B, H and M in Tables IX and X below). Marriage was a dichotomous
variable partitioning women by marital status at age 25, where M denotes she was married at age
25 or before, and U if not. We considered three educational groups, those who completed some
years at college (denoted by the inequality sign >), those who completed some years at high
school but not college (denoted by HS), and those with less education than that (denoted by a
< sign). Thus our simulations apply to women in the 18 categories whose marginal utilities’ of
wealth, and whose endowed marginal product of labor (controlling for schooling and experience),
correspond to the estimated sample means.
The models we simulated are slightly less complex than the estimation framework itself in

three ways. The first simplification was to limit the choice set. Rather than assuming that
workers made a discrete choice about whether to participate in the labor force or not with a
continuous hours choice, we discretized the labor supply choice set facing workers, limiting them
to 10 equally spaced choices in the [0, 1] interval. Second, we linearized the value of marginal
consumption around the marginal utility of consumption achieved in the current regime. Thus
in the objective function (2.9), U3ntk is replaced with eU3ntk ≡ η−1n . Third, we investigated
an economy where there are no aggregate shocks. As a practical matter, the quantitative
significance of aggregate demographic shocks (such as the baby boom in the U.S., the AIDS crisis
in Botswana and other countries, the effects on fertility of immigration both legal and illegal
into U.S. and parts of Western Europe) is difficult to overstate, and we think that excluding
them is the main reason why our results should be treated cautiously.
The model was solved for each group under five policy regimes. The benchmark regime,

labelled Estimation, is the current one, which may be compared with the conditional sample
means from the data set. In the first two alternative regimes we analyze the subsidy to having
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children does not vary with the recipient, although the value a mother places on the scheme
depends on her wealth and wage rate. In the regime labelled Expenses, the state pays all the
estimated monetary costs associated with raising children, removing the wedge in the marginal
utility of wealth between households that have children and those that do not. Under the
Daycare policy, maternal time is replaced with publicly funded child care centers. In the other
two regimes the payment mothers receive depends on her wages and hours she worked before
taking time off to have a child. The Wages policy would pay the mother the wages she would
have received if she had decided against having her child. If the Retraining policy is adopted,
mothers are given retraining upon reentering the workforce that fully restore the human capital
from lost workforce experience.
In our model there are three costs associated with childcare: the lifetime discounted cost of

market inputs used up raising a child, the direct time cost in terms of the required for nurturing,
and the human capital accumulation cost stemming from the experience acquired from working
that is not used when women quit the labor force to have children. We will provide the costs of
each policy in a future version of this paper.

10.2. Solving the Model

We first simulated the prediction of the model for females in each of the categories described
above over the 25 years of a partial life cycle starting at age 20, for use as a bench mark case.
This requires us to solve 18 valuation functions for the optimization problem each type solved,
obtain the optimal decision rules, and thus compute the probabilities of observing any given
decision, as a mapping of the state variables, which in this case are the vector of lagged labor
supplies and a vector for the ages of the offspring. An appendix describes the algorithm in
detail. Briefly, we combined the use of both policy function iteration (using Newton steps) with
value function iteration (using the contraction operator on the value function). Convergence to
the solution of the infinite horizon problem occurred relatively quickly, typically within seven
iterations.
The labor force participation rate and expected fertility rate over this period (essentially the

TFR) for each type is reported in the second column of Tables IX and X under the heading of
Estimation. A sense of how representative our groups are is found by comparing the simulated
results for our estimated model with their corresponding sample means in the first column,
headed Actual. Note that the numbers are not very close, although many of the inequalities
within each column are preserved. This is attributable to two factors. The first is estimation
error. The second is that the sample means do not condition on the values of the unobservables,
which enter in a highly nonlinear way into the participation and fertility choices. To separate
out these separate influences, we will nonparametrically estimate the same set of statistics for
that person in the group with the estimated mean fixed effects, which simply weights the data
used to obtain the averages in the first column by how close each observation is to the mean
estimated fixed effect vector.
Table IX shows most of the types have fertility rates below the replacement rate of 2. For

example, the TFR of all the college educated groups are all below the replacement rate. College
educated white females bear the least number of children (1.1 for the group as a whole and 1.2
at the mean fixed effects), and black married females with less than high school education the
most (2.1 for the overall group and 2.4 at the mean fixed effects).
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In most, but not all groups, those married by 25 bear more children than those who had
not married by then. Table X shows that, with the notable exception of college educated
whites, unmarried women are more likely to participate in the labor force. At 0.93, the labor
force participation rate for a married college educated white female with the mean fixed effects
exceeds all other groups, closely followed by unmarried college educated black women (at 0.91).
Across education achievement and marital status but within race categories, blacks exhibit the
biggest range in labor force participation rates. The exact derivation is presented in more details
in Appendix 1.

10.3. Childcare Support

There are many ways to subsidize fertility by having the state pay for the discounted lifetime
cost of children. For example, it could be achieved though tax credits at upper income levels and
child support payments for those who do not receive enough taxable income. In this framework
this is equivalent to imposing the constraints π0 = 0 and π1 = 0 in the expression for child care
costs:

π (znt) = π0 + z0ntπ1

The total fertility and labor force participation rates that are induced by this subsidy are
shown in the third columns of Tables IX and X. Paying the market goods inputs for raising
children has a substitution and wealth effects. In a static model, the substitution effect induces
women to have more children and reduce their own consumption of leisure and other goods,
while the wealth effect induces them to increase their consumption of leisure and children. The
results of the dynamic simulations lend support to this intuition. In 16 of the 18 groups labor
force participation declines, and in all but one instance fertility rises, 6 groups (compared to 4)
now settling above the replacement rate. The 3 types whose fertility behavior is most sensitive
to this policy shift are the married non-college educated black female and the unmarried lowest
educated black female. By way of contrast the biggest reduction in labor force participation
rate is amongst unmarried high school educated whites.

10.4. Daycare

Rather than pay for market inputs directly, another public policy for subsidizing fertility is to
expand the availability of child care services for the mothers of infants and preschool age children,
by financially supporting centers, or reimbursing mothers who place their children in them. In
our framework a policy that eliminates the maternal time inputs altogether would set ρi = 0 for
i ∈ {1, . . . , 5} . This increases the amount of time mothers of young children have for leisure and
work. In a static model of fertility and labor supply, fertility increase in response to a reduction
in one of its factor inputs, maternal time. Furthermore, the time freed up from looking after
children is distributed between extra leisure, and working for more goods and services over and
above those used up by the additional children. Consequently, one predicts that both fertility
and labor supply would increase, the latter less than the amount of time released from child
care.
The fourth column shows the labor force participation and fertility outcomes from solving the

optimization problem under the Daycare policy. As expected all the group exhibit higher fertility
rates, 12 now at or above the replacement rate of 2.0, with married high school educated white
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females registering the biggest increase (from a TFR of 1.52 to 2.30). Comparing the effects on
TFR across different groups, we see that switching from subsidizing market inputs to replacing
maternal time inputs has a far greater impact on females with some college education than
those who did not complete high school. Indeed in just one group, married blacks who did not
complete high school, TFR would actually fall from 2.63 to 2.41 if subsidizing market inputs were
replaced with subsidizing maternal inputs. This finding demonstrates that the type of subsidy
to child care helps determine not just the aggregate level of births, but also their composition
within different types of households.
The change in labor force participation rates are more ambiguous, in fact puzzling. Since

returns from experience on the job is likely to strengthen attachment to the labor force beyond
that predicted by the static model, we are further investigating this counter-intuitive result.

10.5. Paid Maternity Leave

Paying females wages when they take maternity leave is a third way of promoting higher fertility.
A distinguishing feature of this policy is that women with high wages receive greater payment
than those receiving lower wages. (Note that if the payment is a fixed allowance, then the
analysis of Expenses policy applies.) In contrast to the two previous schemes, (each of which
has only one degree of freedom, the proportion of costs or time covered), this scheme has two,
what percentage of her market wage a mother is paid while on maternity leave, and the maximum
eligibility period per child. Under the Wages policy, mothers are paid the wage they would have
received if they had not given birth, and the maximum eligibility period is the amount of time
they would have withdrawn from the workforce in the absence of the subsidy. These variables
are for the most part negatively correlated, and therefore affect the total payment in offsetting
directions.
In particular, suppose the woman gives birth at period t, let hon,t+s (bnt = 0) denote the

woman’s labor supply s periods after the birth had she not left the workforce to give birth, let
wo
n,t+s (bnt = 0) denote her wage rate had she not given birth, and let τ

0
n denote the number of

periods she would have taken off if there were no provisions for paid maternity leave. Then in
this policy regime the wage payment she receives upon having a child is:Xτn

s=0
λn,t+sw

o
n,t+s (bnt = 0)h

o
n,t+s (bnt = 0)

In a static framework, paid maternity leave induces women to reduce their labor supply
and have larger families. In our dynamic framework paying wages does not fully compensate a
mother for taking maternity leave, because job market experience acquired before giving birth
depreciates over the time spent out of the labor force. Consequently, females who decide to
have a child because of the paid maternity leave may simply exit the labor force permanently if
their market capital has depleted sufficiently quickly. This scenario certainly arises when, in the
absence of the paid leave policy, women essentially choose between having a career and having
a family.
Our preliminary simulation results are displayed in the fifth columns of Tables IX and X.

They show that in 13 out of the 18 cases the labor supply participation falls, because of the
substitution effect into child rearing activities, and the compounding effect of human capital
depletion. Although total fertility rates increase in all categories, this policy is not as effective
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as directly paying for the time inputs; in every category fertility rates under subsidized Daycare
exceed those in attained when there is paid maternity leave as mandated in Wages.

10.6. Retraining

In our framework mothers lose human capital from temporarily withdrawing from the labor
force. The last counter factual regime we consider does not make any payments to mothers,
but offers partial compensation by putting women returning to work from maternity leave on
an equal footing with those who chose not to have children. The policy scheme simulated in
Retraining restores them to the wage trajectory they would have been on if they not withdrawn
from the workforce to have children. In our framework the labor force experience over the
previous ν periods helps determine the current wage. Thus, if the female in Model 4 reenters
τ4n periods after she has her birth, the natural logarithm of her wages increases by:

Xmin{ν,τ4n}
s=0

£
δ1sh

o
n,t−s (bnt = 0) + δ2sd

o
n,t−s (bnt = 0)

¤
The last columns of Tables IX and X display the results, which in some ways are the most

dramatic. The total fertility rate of every group except the unmarried white females with less
than high school education rises above the replacement rate, and for one group, married black
females with high school education, reaches 3.

11. Conclusion

This paper develops a dynamic model of female labor supply and fertility behavior and estimates
its structural parameters. Previous empirical research on female labor supply had shown that
current labor supply choices affect future wages and utility through intertemporal nonsepara-
bilites in the production function (such as through learning by doing or staying in practice), and
in utility (for example, through the household production function and also possibly due to the
intertemporal nature of utility from leisure). In addition, there are a small number of studies
of fertility behavior that suggest the timing of later births is partly determined by economic
factors. Our study nests both kinds of dynamic interactions within a unified structural model.
Our empirical results reaffirm findings from previous work, and provide a set of parameters

that capture the costs and benefits of having children within a dynamic structural framework.
More specifically, our estimates reaffirm the importance of nonseparabilites in labor supply
choices. Wages are increased by experience up to four years in the past, recent experience
counting the most. In addition, we reject the null hypothesis that leisure is intertemporally
separable, our estimates suggesting that there is also learning by doing in home-making activities.
With regards to fertility previous work estimating linear index functions and fertility hazards

had found that the timing of later births depended on the ages of older siblings. Although there
is not much in the literature with which we can directly compare our findings, our estimated
costs and benefits of children are plausible. They imply that households view children as good,
not bad, thus suggesting that households limit their size because of the time and money costs
associated with raising offspring, not because adults do not like having offspring. Our estimates
show that there is an optimal gestation period with respect to births that is partly determined
by the same economic factors that have played a role in reducing TFR over the past generation
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or two, a finding which is consistent with previous work on the spacing of births over the life
cycle.
With respective the aggregate wage effect on labor force participation and fertility behavior

of females, we can reasonability conclude that although it is important, it is not the most
significant feature driving our results. This is based on the fact that the wage effect in the
simulations seems to have very small impact on female behavior relative to others, say, human
capital accumulations.
Our study was motivated by the fact that the decline in childbearing coincides with higher

wages for females, who are raising fewer children, participating in the labor force in greater
numbers and are working longer hours. Our model is uniquely suited to analyzing whether
shifts in public policy towards child support could affect these trends, and in what ways. As
such we conducted different policy simulations which we use to analyze the effects on such trends
and found that the effect differ depending on the social economic group that we are looking at.
This suggests that any such fertility policy must be undertaken with a great degree of care, to
ensure that we are not only subsidizing a group of individuals who would have children in any
event, and hence does not change the population growth rates.
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12. Appendix 1

In this appendix we defines a class of conditional choice probability (CCP) estimators, to which
the estimator used in Section 8.3 belongs, and show consistency and asymptotic normality of
these estimators.

12.0.1. A class of CCP estimators.

The estimators (ΘN3 ,Γ
N) defined by equation (??) and (??) are examples of CCP estimators, in

which the individual-specific effects µNn η
N
n , time-specific effects ω

N
t λ

N
t and the conditional choice

probabilities pNknt for k = 0, .., 3 and p
(s,k,N)
0nt for s = 1, ..., ρ enter as incidental parameters. This

estimator falls within a class of CCP estimators that can be described as follows.
Let Dn(Θ, µn, pn) be a q × 1 vector function such that Θ0 ≡ (Θ30,Γ0) is the unique root of

E[Dn(Θ, µn, pn)]. For each, n ∈ {1, 2, ...} and Θ ∈ Ξ, let µNn be a kernel or traditional estimator
which converges uniformly to µn, let p

N
n (µn) be a kernel estimator which converges uniformly

to pn(µn). We define Θ
N as any solution to

1

N

NX
n=1

Dn(Θ
N , µNn , p

N
n (µ

N
n )) = 0 (12.1)

The proof of proposition 1 below shows that ΘN is asymptotically normal, but is not centered
on zero. While an asymptotically unbiased estimator could be calculated following the procedure
in Hotz and Miller (1993) by forming a linear combination of the estimators which are based on
different bandwidths for the incidental parameters, the limited empirical evidence suggests that
the asymptotic bias is unimportant.10

Proposition 1: ΘN converges to Θ0 and
√
N(ΘN − Θ0) is asymptotic normal with mean

−E(vn)/2 and covariance matrix (D0
0)
−1S0D0, where vn D0 and S0 are defined by equations

(12.10), (12.17) and (12.18).
Proof.
For ease of notation, we assume that µNn and pNn (µ

N
n ) take the form of nonparametric kernel

estimators weighted or unweighted probability density functions of the form

µNn =
XN

m=1,m6=n
φmδ

−qJ [δ−1N (xm − xn)] (12.2)

and
pNn (µ

N
n ) =

XN

m=1,m6=n
dmδ

−qJ [δ−1N (k(zm, µ
N
m)− k(zn, µ

N
n ))] (12.3)

where k(zm, µ
N
m) is mapping that defines the distance between the observations. The proof

that ΘN converges in probability to Θ0 is standard, relying on the uniform convergence of the
incidental parameters to their true values, so that the approximating sample moments obtained
by substituting the incidental parameter estimates for their respective true values only affect
the resulting structural parameter estimates by an op(1) term.11

10For evidence on the magnitude of this asymptotic bias, see the Monte Carlo simulations in Powell, Stock and
Stoker (1989) and the fertility application in Hotz and Miller (1993).
11 See Hotz and Miller(1993) for a consistency proof of a very similar semiparametric estimator.
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To establish the mean, covariance, and bias, we first consider anotherestimator denoted byeΘN , and show that this has the same asymptotic distributional properties as ΘN . For ease of
notation, let Dn ≡ Dn(Θ0, µn, pn), pn ≡ pn(µn)

D0n ≡
∙
∂Dn(Θ0, µn, pn)

∂Θ

¸

D1n ≡
∙
∂Dn(Θ0, µn, pn)

∂µn
+

∂Dn(Θ0, µn, pn)

∂pn
.
pn(µn)

∂µn

¸
and

D2n ≡
∙
∂Dn(Θ0, µn, pn)

∂pn

¸
The estimator eΘN satisfies the equation

−N−1
XN

n=1
[Dn +D0n(eΘN −Θ0)] (12.4)

= N−1
XN

n=1
[D1n(µ

N
n − µn) +D2n(p

N
n (µ

N
n )− pn(µn))] (12.5)

Define the quantities

vN1mn ≡ D1n[φmδ
−qJ [δ−1N (xm − xn)]− µn] +D1m[φnδ

−qJ [δ−1N (xm − xn)]− µm] (12.6)

vN2mn ≡ D2n[dmδ
−qJ [δ−1N (k(zm, µ

N
m)− k(zn, µ

N
n ))]− pn] (12.7)

+D2m[dnδ
−qJ [δ−1N (k(zm, µ

N
m)− k(zn, µ

N
n ))]− pm] (12.8)

vNmn ≡ vN1mn + vN2mn (12.9)

vn = f(xn)[D1n(µn + φn) +D2n(pn + dn)]−D1nµn −D2npn (12.10)

where f(xn) is the density of xn.
Expanding the first expression on the right-side of 12.4 using the definition of the nonpara-

metric estimator for µn yields

N−1
XN

n=1
[D1n(µ

N
n − µn)

= N−1
XN

n=1
D1n[

XN

m=1,m6=n
φmδ

−qJ [δ−1N (xm − xn)]− µn] (12.11)

= N−1
XN

n=1

XN

m=1,m6=n
D1n[φmδ

−qJ [δ−1N (xm − xn)]− µn]

= N−1(N − 1)−1
XN−1

n=1

XN

m=n+1
vN1mn (12.12)

Similarly, the second expression on the right side of 12.4 may be written as

N−1
XN

n=1
D2n[p

N
n (µ

N
n )− pn(µn)] = N−1(N − 1)−1

XN−1

n=1

XN

m=n+1
vN2mn (12.13)
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Following Hotz and Miller (1993), it is straight forward to show that E[
°°vNimn

°°2] = o(N) for
i = 1, 2. Then appealing to lemma 3.1 of Powell, Stock and Stoker (1989), p.1410

N−1(N − 1)−1
XN−1

n=1

XN

m=n+1
vNmn =

E[vNmn]

2
+ (N − 1)−1

XN−1

n=1
{E[vNmn | n]

−E[vNmn]}+ op(1) (12.14)

The right-side of 12.14 depends on N. To derive the asymptotic distribution of eΘN . Lemma
1 derives the appropriate limit for the right side of 12.14 as

N−
1
2
E[vNmn]

2
+N−

1
2

XN

n=1
{E[vNmn | n]−E[vNmn]}

= N−
1
2
E[vn]

2
+N−

1
2

XN

n=1
{vn −E(vn)}+ op(1)(12.15)

The conditions that define eΘN can now be written as

−N− 1
2

XN

n=1
[Dn +D0n(eΘN −Θ0)] = N−

1
2
E[vn]

2
+N−

1
2

XN

n=1
{vn

−E(vn)}+ op(1) (12.16)

The Central Limit Theorem implies that the right-side of 12.16 converges in distribution to
a normal random variable with mean −E[vn]

2 . Hence,
√
N(eΘN − Θ0) converges to a normal

random variable with mean −E[vn]
2 and covariance (D0

0)
−1S0D

−1
0 where

D0 ≡ E[D0n] (12.17)

and
S0 ≡ E[(Dn + vn −E(vn))(Dn + vn −E(vn))

0] (12.18)

We complete the proof of this proposition with lemma 2 provided below, which implies that
ΘN and eΘN have the same asymptotic distribution, that is,

√
N(eΘN −ΘN ) is op(1) Q.E.D.

Lemma 1: N−
1
2
E[vNmn]

2 +N−
1
2
PN

n=1{E[vNmn | n]−E[vNmn]}
= N−

1
2
E[vn]
2 +N−

1
2
PN

n=1{vn −E(vn)}+ op(1)

Proof.
Consider vN1mn which has the form

vN1mn ≡ D1nφmδ
−qJ [δ−1N (xm − xn)]

−D1nµn +D1mφnδ
−qJ [δ−1N (xm − xn)]−D1mµm (12.19)
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Taking the first on the right-side of 12.19

E[D1nφmδ
−qJ [δ−1(xm − xn)] | xn]

= D1n

Z
µ(x)δ−qJ [δ−1(x− xn)]f(x)dx

= D1n

Z
µ(xn + δu)J(u)f(xn + δu)du

=

Z
D1n{µ(xn)f(xn) + µ(xn + δu)f(xn + δu)

−µ(xn)f(xn)}J(u)du
= D1nµ(xn)f(xn) +D1ntn(δ)

where tn(δ) ≡
R
[µ(xn + δu)f(xn + δu)− µ(xn)f(xn)]J(u)du. Furthermore,

E[t(δ)2] = E

(
φ2n

∙Z
[D1(xn + δu)f(xn + δu)−D1(xn)f(xn)]J(u)du

¸2)

= E

⎧⎨⎩φ2n

"Z xn+δu

xn

∂(D1f)(x)

∂x
J(u)du

#2⎫⎬⎭
≤ E

∙
φ2n

Z
δ2u2

°°°°∂(D1f)(x)

∂x

°°°°J(u)du¸
= E

∙
φ2nδ

2

°°°°∂(D1f)(x)

∂x

°°°°σ2u¸
= op(1).

Thus, tn(δ) has a neglible effect because its variance asymptotes to zero and it has a mean of
zero. As a consequence,

N−
1
2

XN

n=1
{E[D1nφmδ

−qJ [δ−1(xm − xn)] | xn]

−E[D1nφmδ
−qJ [δ−1(xm − xn)]]}

= N−
1
2

XN

n=1
{D1nµnf(xn)

−E[D1nµnf(xn)]}+ op(1).

Similarly, considering the third term in 12.4

N−
1
2

XN

n=1
{E[D1mφnδ

−qJ [δ−1(xm − xn)] | xn]

−E[D1mφnδ
−qJ [δ−1(xm − xn)]]}

= N−
1
2

XN

n=1
{D1nf(xn)φn

−E[D1nf(xn)φn]}+ op(1).
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It now follows that

N−
1
2

XN

n=1
{E[vN1mn | n]−E[vN1mn]}

= N−
1
2

XN

n=1
{D1nf(xn)(µn + φn)−D1nµn

−E[D1nf(xn)(µn + φn) +D1nµn] + op(1). (12.20)

By a similar argument

N−
1
2

XN

n=1
{E[vN2mn | n]−E[vN2mn]}

= N−
1
2

XN

n=1
{D2nf(xn)(pn + dn)−D2npn

−E[D2nf(xn)(pn + dn) +D2npn] + op(1). (12.21)

Q.E.D.

Lemma 2:
√
N(eΘN −ΘN ) is op(1).

Proof.
Expanding the right-side of 12.1 about the true structural parameters, Θ0 and the true

incidental parameters, we obtain

− 1
N

XN

n=1
[Dn + eD0n(Θ

N −Θ0)]

=
1

N

XN

n=1
[ eD1n(µ

N
n − µn) + eD2n(p

N
n (µ

N
n )− pn(µn))] (12.22)

where ~ indicates that the appropriate partial derivatives are evaluated at points on the line
segment joining (Θ0, µn, pn) and (Θ

N , µNn , p
N
n ). Substracting 12.22 from 12.4 gives

− 1
N

XN

n=1
[ eD0n(Θ0 −ΘN )−D0n(Θ0 − eΘN )]

=
1

N

XN

n=1
[( eD1n −D1n)(µ

N
n − µn)

+( eD2n −D2n)(p
N
n (µ

N
n )− pn(µn))] (12.23)

consider the following asymptotic expansion

1

N

XN

n=1
{ eD0n(Θ0 −ΘN )−D0n(Θ0 − eΘN )}

=
1

N

XN

n=1
{D0n(Θ0 −ΘN )−D0n(Θ0 − eΘN ) + ( eD0n −D0n)(Θ0 −ΘN )}

=
1

N

XN

n=1
D0n(eΘN −ΘN ) + op(1)(Θ0 −ΘN )

= {E[D0n] + op(1)}(eΘN −ΘN ) + op(1)(Θ0 −ΘN )
= {E[D0n] + op(1)}(eΘN −ΘN ) + op(1) (12.24)
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Considering the second expression in 12.23

1

N

XN

n=1
[( eD1n −D1n)(µ

N
n − µn) = op(1)

1

N

XN

n=1
(µNn − µn) (12.25)

where the right of 12.25 follows from the fact that eD1n converges in probability to D1n uniformly
in n. Similar U-statistic arguments to that used to justify the asymptotic normality of

√
N(eΘN−

Θ0), show thatN−
1
2
PN

n=1(µ
N
n −µn) converges in distribution to a normal random variable which

is op(1). Therefore, 12.25 is op(N
1
2 ). Finally the third expression in 12.25 can be written as

1

N

XN

n=1
[( eD2n −D2n)(p

N
n (µ

N
n )− pn(µn))]

= op(1)
1

N

XN

n=1
(pNn (µ

N
n )− pn(µn))

= op(1)
1

N

XN

n=1
(pNn (µ

N
n )− pn(µ

N
n ))

+op(1)
1

N

XN

n=1
(pn(µ

N
n )− pn(µn)) (12.26)

This mean that
1√
N

XN

n=1
(pNn (µ

N
n )− pn(µ

N
n ))

and
1√
N

XN

n=1
(pn(µ

N
n )− pn(µn))

are asymptotically normal. Then using the results obtained for 12.24, 12.25 and 12.26 in 12.22.
We thus establish that

0 = {E[D0n] + op(1)}
√
N(eΘN −ΘN ) + op(1) (12.27)

Noting that E[D0n] is nonsingular, 12.27 implies that
√
N(eΘN−ΘN ) is op(1) as claimed. Q.E.D.

13. Appendix 2

In this appendix we outline in more detail the methods we used to solve the valuation funcion
used in the policy experiments.To solve the for the valuation function we shall used a hybrid
method which is a combination of the the finite horizon and infinite horizon contraction .

13.0.2. Optimization

We first rewrite the per period utility to depend on k ∈ {0, 1, 2, 3}. Let

Unt0(z
∗
nt, xnt) = z0ntB1 +

ρX
s=0

δslnt−s + ε0nt

Unt1(z
∗
nt, xnt) = z0ntB0 + z0ntB11(1− hnt) +

νX
s=0

δs(1− hnt)lnt−s + ηnλtwnth
∗
nt + ε1nt
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Unt2(znt, xnt, hnt) = z0ntB11(1− cnt−1 − ρ0) +
νX

s=0

δs(1− cnt−1 − ρ0)lnt−s

+(γ0 +
MX
k=1

γkbnt−k + φ1Nnt + φ2N
2
nt)

−ηnλtπ(znt) + ε2nt

Unt3(znt, xnt, hnt) = z0ntB0 + z0ntB11(1− cnt−1 − ρ0 − hnt)

+
νX

s=0

sδs(1− cnt−1 − ρ0 − hnt)hnt−s

ηnλtwnth
∗
nt + (γ0 +

MX
k=1

γkbnt−k + φ1Nnt + φ2N
2
nt)

−ηnλtπ(znt) + ε3nt

Then let
Z∗ ≡ [z0nt, hnt, ..., hnt+1−ρ, bnt, ..., bnt+1−M , µnηn]

and
Pr[Z∗nt+1 = Z∗ | Z∗nt, xnt, hnt, Intk = 1] ≡ Fntk(Z

∗∗ | Z∗nt, xnt, hnt).
Let xont, h

o
nt and I0ntk be the optimal action conditional on the current state Z∗nt. Then we

can recast the problem recursively. To that end, the value function, Vnt(Z∗) is defined for each
(t, Z∗) ∈ {0, ..., T}×Z∗ by substituting the optimal decision rule back into the expected lifetime
utility function:

Vnt(Z
∗) ≡ Et[

TX
s=t

3X
k=0

Ionskβ
t−sUnsk(zns, x

o
ns, h

o
ns)]

For notational convinence define the reduced form utilities

Untk(Z
∗) ≡ Untk(x

o
knt, h

o
knt, Z

∗)

and the transition probabilities

Fntk(Z
∗∗ | Z∗nt) ≡ Fntk(Z

∗∗ | Z∗nt, xoknt, hkont).

The optimal discrete choice I0ntk maximizes:

Untk(Z
∗) +

Z
Vnt+1(Z

∗∗)dFntk(Z
∗∗ | Z∗nt)

over {0, 1, 2, 3}, patently a finite discrete choice problem. Since

Z∗∗ ≡ [z0nt+1, hnt, ..., hnt+1−ρ, bnt, ..., bnt+1−M , µnηn]
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and since Pr[Z∗nt+1 = Z∗ | Z∗nt, xnt, hnt, Intk = 1] ≡ Fntk(Z
∗∗ | Z∗nt, xnt, hnt) then the transition

density is deterministic in our model. So let Z∗∗k the future state variable, then I0ntk is the
optimal choice that maximizes:

Untk(Z
∗) + Vnt+1(Z

∗∗
k )

13.0.3. Finite Horizon Problem

The standard solution method is the Bellman’s (1957) perspective of the backward induc-
tion. Suppose the problem has a finite horizon T, and consider the choices facing an in-
dividual entering the last period with state variables Z∗nT her valuation function is simple
VT (Z

∗
nT ) = max{UnTk(Z∗nT )}. Taking expectation of VT (Z∗nT ) one period before when her

state variables on Z∗ yields

gT−1(Z
∗) = E[VT (Z

∗
nT ) | Z∗]

= E[max{UnTk(Z∗nT )} | Z∗]
Let’s for notational convenient denote

Untk(Z
∗
nt) ≡ Untk(Z∗nt) + εknt

Then

gT−1(Z
∗) =

3X
k=0

pk(Z
∗
nt)[Untk(Z

∗
nt) +E(εknt | Z∗nt, Iknt = 1)]

By the extreme value assumption

pk(Z
∗
nt) = Pr[Untk(Z∗nt) + εknt > Untj(Z∗nt) + εjnt,∀k 6= j]

=
exp(Untk(Z∗nt))P3
s=0 exp(Unts(Z

∗
nt))

and
E(εknt | Z∗nt, Iknt = 1) = ζ − ln(pk(Z∗nt))

These assumptions imply that

gT−1(Z
∗) = ζ +

P3
k=0 exp(Untk(Z

∗)) ln[
P3

j=0 exp(Untj(Z
∗))]P3

s=0 exp(Unts(Z
∗))

= ζ + ln[
3X

j=0

exp(Untj(Z∗))]

Having calculated gT−1(Z
∗), at the beginning of the period T − 1 the person chooses the

maximum over the different options and obtains a valuation function of:

VT−1(Z
∗) = max{Untk(Z∗nt) + εknt + βgT−1(Z

∗∗)}
In a iterative fashion lets

gT−2(Z
∗
nT−2) = E[VT−1(Z

∗
nT−1)].

By successively solving for the functions gT−1(Z∗) through g1(Z∗), the value function Vt(Z
∗) is

derived numerically for all t ∈ {0, ..., T}.
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13.0.4. Infinite Horizon

Here we will use the contraction mapping theory to extends the idea of iteration on the value
function to the infinite horizon case. Let H0(Z

∗∗) be any real value bounded continuous function
defined on the coordinate Z∗ and define the real valued mapping as:

C[H(Z∗∗)] = E[max
k
{Uk(Z∗) + εk + βH(Z∗∗)}]

where the integration is over εk , an extreme value Type I random variable. The mapping
C[.] is a contraction mapping, and satisfies the fixed point property that a unique H(Z∗∗) solves:

H(Z∗∗) = C[H(Z∗∗)]

In this case H(Z∗∗) is interpreted as the expected value function for the infinite horizon problem:

H(Z∗∗) = E[V (Z∗)].

By a corrollary of the contraction mapping fixed point theorem, we obtain an upper bound
on the sequence of iteration approximating function. In particular for an initial H0(Z

∗∗), then

kCs[H0(Z
∗∗)]−H(Z∗∗)k ≤ (1− β)−1

°°Cs[H0(Z
∗∗)]− Cs−1[H0(Z

∗∗)]
°°

In our specific case with the extreme value Type I assumption on the errors, we have:

C[H(Z∗∗)] = ζ +

P3
k=0 exp(Untk(Z

∗) + βH(Z∗∗)) ln[
P3

j=0 exp(Untj(Z
∗) + βH(Z∗∗))]P3

s=0 exp(Unts(Z
∗) + βH(Z∗∗))

ζ + ln[
3X

j=0

exp(Untj(Z∗) + βH(Z∗∗))]

We can then use a Newton fixed method to numerically solve for the fixed point. The Newton
iteration is of the form:

Hs+1 = Hs − C[Hs]

C 0[Hs]
, s > 0

this gives the following

Hs+1 = Hs − β−1 ln[
3X

j=0

exp(Uj + βHs)], s > 0

Although convergence is global, an intelligent choice for the intial function H0() reduces the
number of iterations required to achieve convergence. One such choice , is to combine the finite
horizon problem with the infinite horizon problem and set

H0() = (1− β)gT−1(Z) (13.1)

which is the discounted life time utility for a household one period before the terminal horizon.
This choice works very well in our application and achieve convergence in 4 to 7 iterations.
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14. Appendix 3

In part B of this appendix, we describe in more detail the construction of our sample and the
construction of the variables used in our study. We used data from the Family-Individual File
, Childbirth and Adoption History File, and the Marriage History File of the Michigan Panel
Study of Income Dynamics (PSID). The Family- Individual File contains a separate record for
each member of all households included in the survey in a given year. The Childbirth and
Adoption History File contains information collected in 1985-1992 waves of PSID regarding
histories of childbirth and adoption. The file contains details about childbirth and adoption
events of eligible people living in a PSID family at the time of the interview in any wave from
1985 through 1992. Each set of records for a specified individual contains all known cumulative
data about the timing and circumstances of his or her childbirth and adoption experience up to
and including 1992, or those waves during that period when the individual was in a responding
family unit. If an individual has never had any children, one record indicates that report. Note
that “eligible” here means individuals of childbearing age in responding families. Similarly, the
1985-1992 Marriage History file contains retrospective histories of marriages for individuals of
marriage-eligible age living in a PSID family between 1985 and 1992. Each set of records for
a specified individual contains all known cumulative data about the timing and circumstances
of his or her marriages up to and including 1992, or those waves during that period when the
individual was in a responding family unit.
Our sample selection started from the Childbirth and Adoption history file, which contains

24,762 individuals. We initially selected women by setting “sex of individual” variable equal to
two. Out of an initial sample of 24,762 individuals included in the Childbirth and Adoption file,
this initial selection produced a sample of 12,784 female. We then drop any individual who was
in the survey for four years or less, this selection criteria eliminated a further 1,946 individuals
from our sample. We then drop all individuals who were older than 45 in 1967, this eliminated
an additional 1,531 individuals. We then drop all individuals that were less than 14-years-old
in 1991, this eliminated an additional 385 individuals.
The corresponding number of observations for the interviewing year 1968 through 1992 are

given by 5,429,5,608, 5,793,5,970, 6,197, 6,346, 6,510, 6,696, 6,876, 7,094, 7,236, 7,320, 7,393,
7,455, 7,551, 7,634, 7,680, 7,761, 7,712, 7,666, 7,618, 7,574, 7,532, 7,378 and 7,233, respectively.
Since individuals who had become non-respondents as of 1992, either because they and their

families were last to the study or they were mover-out non-respondents in years prior to the 1992
interviewing year, are not in the twenty-five Family-Individuals Respondents File, the number
of observations increases with the interviewing years.
There were coding errors which occurred for the different measures of consumption in the

PSID from which we construct our consumption measure. In particular, our measure of food
consumption expenditures for a given year is obtained by summing the values of annual food
expenditures for meals at home, annual food expenditures for eating out, and the value of food
stamps received for the year. We measured consumption expenditures for year t by taking 0.25
of the value of this variable for the year t − 1 and 0.75 of its value for the year t. The second
step was taken to account for the fact that the survey questions used to elicit information about
household food consumption is asked sometime in the first half of the year, while the response
is dated in the previous year.
The variables used in the construction of the measure for total expenditures are also subject
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to the problem of truncation from above in the way they are coded in the 1983 PSID data
tapes. The truncation value for the value of food stamps received for that year is $999.00,
while the relevant value for this variable in the subsequent years and for the value of food
consumed at home and eating out is $9,999.00. Taken by itself, the truncation of different
consumption variables resulted in a loss of 467 person-years. We also use variables describing
various demographic characteristics of the women in our sample. The dates of birth of the
women were obtained from the Child Birth and Adoption file. The age variable resulted in a
loss of 162 individuals.
The race of the individual or the region where they are currently residing were obtained from

the Family portion of the data record. We defined the region variable to be the geographical
region in which the household resided at the time of the annual interview. This variable is not
coded consistently across the years. For 1968 and 1969, the values 1 to 4 denote the regions
Northeast, Northcentral, South and West. For 1970 and 1971, the values 5 and 6 denote the
regions Alaska and Hawaii, and foreign country, respectively. After 1971 a value of 9 indicates
missing data but no person years were lost due to missing data for these variables.
We used the family variable “Race of The Household Head” to measure the race variable

in our study. For the interviewing years 1968-1970, the values 1 to 3 denote White, black, and
Puerto Rican or Mexican, respectively. 7 denotes other (including Oriental and Philippino), and
9 denotes missing data. For 1971 and 1972, the third category is redefined as Spanish-American
or Cuban and between 1973-1984, just Spanish American. After 1984, the variable was coded
in such a way that 1-6 correspond to the categories White, Black, American Indian, Aleutian or
Eskimo, and Asian or Pacific Islander, respectively. A value of 7 denotes the other category, a
value of 9 denotes missing. We used all available information for all the years to assign the race
of the individual for years in the sample when that information was available.
We used a combination of individual and family level variables to construct our measure of

educational attainment. This was because the variable for the individual does not contain data
for the head of the household or wife, this we obtained from the family level files.
The marital status of a women in our subsample was determined by using the marriage

history file. The number of individuals in the household and the total number of children within
that household were also determined from the family level variables of the same name. In
1968, a code for missing data (equal to 99) was allowed for the first variable, but in the other
years, missing data were assigned. The second variable was truncated above the value of 9 for
the interviewing years 1968 and 1971. After 1975, this variable denotes the actual number of
Children within the family unit.
We constructed some additional variables. The variable showing the value of home-ownership

was constructed by multiplying the value of a household’s home by an indicator variable de-
termining home ownership. A similar procedure was followed to generate value of rent paid
and rental value of free housing for a household. Mortgage payment and Principal of Mortgage
outstanding were obtained from the family variables of the same names. Finally, household in-
come was measured from the PSID variable total family money income, which included taxable
income of head and wife total transfer of head and wife, taxable income of others in the family
units and their total transfer payments.
We used two different deflators to convert such nominal quantities as average hourly earnings,

household income, and so on to real. First, we defined the (spot) price of food consumption
to be the numeraire good at t in the theoretical section. We accordingly measured real food
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consumption expenditures and real wages as the ratio of the nominal consumption expenditures
and wages and the annual Chain-type price deflator for food consumption expenditures published
in table t.12 of the National Income and Products. On the other hand, we deflated variables
such as the nominal value of home ownership or nominal family income by the Chain-type price
deflator for total personal consumption expenditures.
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Table I: Notations

wnt individual marginal product of labor
xnt consumption of market goods
znt demographic variables
hnt proportion of time worked in period t

as a fraction of the total time available in the period
lnt leisure in period t :balance of time not spent at work or nurturing children
dnt labor force participation dummy
bnt indicator of the birth of a child at period t
γ0 additional lifetime expected utility a household receives for its first child
γ0 + γk utility from having a second child when the first born is k years old
γ0 + γk + γj utility from having a third child when the first two are aged k and j years old
U0nt benefits from offspring to the nth household in period t
U1nt utility costs of the nth female from working in period t
U3nt current utility from consumption by household n in period t
π discounted cost of expenditures of raising a child
ρk nurturing time required by a k year old child
cnt fraction of time the nth household spend nurturing children in the household
η−1n social weight attached to each individual n
W aggregate endowment or output from the exogenous production process
dont optimal labor forceparticipation decision at date t
h∗nt optimal labor supply
hont optimal labor supply conditional on participation
b0nt optimal birth decision
λt shadow value of consumption
µn time-invariant individual-specific effect of marginal product
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Table III. Wage Equation

ln(wnt) = ln(ωt) + ln(µn) +
Pν

s=1(δ1shn,t−s + δ2sdn,t−s) + z0ntB3

Variable Parameter Estimate

Lags of hours worked

4hn,t−1 δ11
14.1011
(0.2337)

4hn,t−2 δ12
10.9974
(0.2471)

4hn,t−3 δ13
8.8360
(0.2437)

4hn,t−4 δ14
5.4729
(0.2227)

Lags of participation

4dn,t−1 δ21
−6.8664

(4.01e− 02)

4dn,t−2 δ22
−4.4241

(4.46e− 02)

4dn,t−3 δ23
−2.8986

(4.44e− 02)

4dn,t−4 δ24
−1.6065

(3.92e− 02)

Socioeconomic Variables

4AGE2nt B31
−0.0114
(3.0e− 04)

4(AGEnt ×EDUnt) B32
0.0161

(3.1e− 03)
† Standard Errors in parenthesis
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Table IV: Consumption Equation
ln(xnt) = 1/(1− α)[z0ntB2 − ln(ηnλt) + c

nt]

Variable Parameter Estimate

Socieconomic variables

4FAMnt (1− α)−1B21
3.19e− 02
(3.0e− 04)

4Y KIDnt (1− α)−1B22
−3.33e− 02
(1.6e− 03)

4OKIDnt (1− α)−1B23
−1.12e− 02
(1.2e− 03)

4AGE2nt (1− α)−1B24
−1.0e− 04
(0.0000)

Region Dummies

4NCnt (1− α)−1B25
−3.7e− 03
(3.3e− 03)

4SOnt (1− α)−1B26
−1.19e− 02
(3.2e− 03)

† Standard Errors in parenthesis
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Table V: Sample Averages of Nonparametric Estimates of Conditional Choice
Probabilities

.

Variable
Sample
mean

† Sample
std. dev

† Sample
mean

‡ Sample
std. dev

‡

p0nt 0.4369 0.4044 0.4377 0.4052
p1nt 0.5191 0.4036 0.5182 0.4036
p2nt 0.0153 0.0721 0.0153 0.0721
p3nt 0.0288 0.1128 0.0288 0.1128

p0(H
(1)
0nt) 0.7344 0.1658 0.7338 0.1675

p0(H
(2)
0nt) 0.2460 0.1254 0.2477 0.1278

p0(H
(3)
0nt) 0.1745 0.0909 0.1744 0.0927

p0(H
(4)
0nt) 0.1154 0.0662 0.1162 0.0674

p0(H
(5)
0nt) 0.1400 0.0634 0.1405 0.0637

p0(H
(1)
1nt) 0.1581 0.1274 0.1592 0.1296

p0(H
(2)
1nt) 0.4007 0.1956 0.4012 0.1973

p0(H
(3)
1nt) 0.5978 0.2455 0.5975 0.2464

p0(H
(4)
1nt) 0.6656 0.2370 0.6656 0.2362

p0(H
(5)
1nt) 0.6863 0.1699 0.6840 0.1685

p0(H
(1)
2nt) 0.7199 0.1993 0.7231 0.1915

p0(H
(2)
2nt) 0.5626 0.2175 0.5632 0.2116

p0(H
(3)
2nt) 0.4804 0.2261 0.4913 0.2236

p0(H
(4)
2nt) 0.4970 0.1961 0.4935 0.1952

p0(H
(5)
2nt) 0.4146 0.1488 0.4238 0.1464

p0(H
(1)
3nt) 0.2777 0.2275 0.2824 0.2310

p0(H
(2)
3nt) 0.3103 0.2431 0.3127 0.2425

p0(H
(3)
3nt) 0.3300 0.2600 0.3261 0.2553

p0(H
(4)
3nt) 0.2730 0.2102 0.2756 0.2075

p0(H
(5)
3nt) 0.2181 0.0635 0.2179 0.0684

†Time-averaged individual effects
‡Nonparametrically estimated individual effects
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Table V(cont’d): Sample Averages of Nonparametric Estimates of Conditional
Choice Probabilities

Variable
Sample
mean

† Sample
std. dev

† Sample
mean

‡ Sample
std. dev

‡

∂p0(H
(1)
1nt)/(∂hnt) −0.0714 0.0474 −0.0716 0.0474

∂p0(H
(2)
1nt)/(∂hnt) −0.1405 0.0637 −0.01399 0.0642

∂p0(H
(3)
1nt)/(∂hnt) −0.1370 0.0963 −0.1365 0.0947

∂p0(H
(4)
1nt)/(∂hnt) −0.1318 0.1070 −0.1312 0.1067

∂p0(H
(1)
3nt)/(∂hnt) −0.0939 0.0613 −0.0924 0.0608

∂p0(H
(2)
3nt)/(∂hnt) −0.1089 0.0693 −0.1073 0.0673

∂p0(H
(3)
3nt)/(∂hnt) −0.1126 0.0766 −0.1109 0.0728

∂p0(H
(4)
3nt)/(∂hnt) −0.1471 0.0812 −0.1487 0.0794

†Time-averaged individual effects
‡Nonparametrically estimated individual effects
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Table VI: Fixed Utility of Labour Force Participation
u10(znt) = dntB0z

0
nt

Variable Parameter Nonparametric Traditional

CONSTANT B00
−12.23
(6.02)

−10.95
(6.39)

AGEnt B01
0.635
(0.223)

0.555
(0.300)

AGE2nt B02
−0.007
(0.003)

−0.007
(0.004)

AGEnt×EDUCnt B03
0.002
(0.0002)

0.0004
(0.001)

MART.STATUSnt B04
0.311
(0.1001)

0.260
(0.122)

BLACKnt B05
−0.582
(0.182)

−0.712
(0.343)

HISPANICnt B06
1.145
(0.421)

1.190
(0.354)

† Standard Errors in parenthesis.
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Table VII: Nurturing Time Cost
cnt =

Pt
k=0 ρkbn,t−k

Variable Parameter Nonparametric Traditional

NuturingT ime ρ0
0.133
(0.012)

0.127
(0.023)

ρ1
0.021
(0.0003)

0.013
(0.002)

ρ2
0.013
(0.0002)

0.004
(0.002)

ρ3
0.019
(0.0001)

0.0002
(0.0002)

ρ4
0.016
(0.001)

0.005
(0.003)

ρ5
0.013
(0.0012)

0.005
(0.003)

ρM
0.002
(0.0002)

0.0003
(0.0001)

RISK AV. α
0.996
(0.328)

0.888
(0.481)

† Standard Errors in parenthesis.
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Table VIII: Utility of Leisure

U11 (z
∗
nt, lnt) = z0ntB11lnt +

ρP
s=0

θsln,t−slnt

Variable Parameter Nonparametric Traditional

lnt B110
15.81
(3.45)

14.53
(2.97)

AGEnt×lnt B111
0.066
(0.002)

0.110
(0.034)

AGE2
nt×lnt B112

−0.001
(0.0003)

−0.002
(0.0001)

AGEnt×EDUCnt×lnt B113
−0.0003
(0.00001)

−0.0002
(0.0001)

MART.STATUSnt×lnt B114
−0.082
(0.002)

−0.009
(0.003)

BLACKnt×lnt B115
0.093
(0.024)

0.130
(0.102)

HISPANICnt×lnt B116
0.196
(0.023)

0.168
(0.121)

l2nt θ0
−4.077
(0.789)

−3.838
(1.328)

lntlnt−1 θ1
−4.304
(2.123)

−3.952
(2.125)

lntlnt−2 θ2
−2.142
(1.043)

−1.781
(0.756)

lntlnt−3 θ3
−1.155
(0.236)

−1.195
(0.876)

lntlnt−4 θ4
−0.413
(0.345)

−0.845
(0.642)

† Standard Errors in parenthesis.
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Table IX: Birth Effects
U0nt = bnt

³
γ0 +

PM
k=1 γkbnt−k

´
+ bntγM

PT
k=M+1 bnt−k

πnt (znt) = π0 + z0ntπ1

Variable Parameter Nonparametric Traditional

bnt γ0
514.83
(48.78)

523.936
(300.23)

bntbnt−1 γ1
−3.088
(1.234)

−3.328
(2.134)

bntbnt−2 γ2
0.816
(0.346)

0.323
(0.187)

bntbnt−3 γ3
1.585
(0.362)

1.195
(0.872)

bntbnt−4 γ4
−1.162
(0.239)

−0.674
(0.078)

bntbnt−5 γ5
−0.570
(0.206)

−0.758
(0.492)

bnt
PT

k=M+1 bnt−k γM
−1.112
(0.419)

−1.065
(0.974)

CONSTANT π0
424.44
(78.98)

235.944
(98.67)

HIGH SCHnt π1
0.481
(0.004)

0.846
(0.078)

BLACKnt π2
1.078
(0.036)

0.770
(0.129)

HISPANICnt π3
3.635
(0.956)

3.23
(1.245)

† Standard Errors in parenthesis.

56



TABLE IX

Completed Fertility Simulation Outcome
Marital Education Actual Estimation Expenses Daycare Wages Retraining

Black
M < 2.12 2.45 2.63 2.41 2.57 2.69

HS 1.93 2.03 2.60 2.8 2.19 3.00
> 1.35 1.68 1.71 2.3 1.66 2.50

U < 2.15 2.35 2.56 2.58 2.41 2.57
HS 1.82 1.97 2.04 2.1 1.98 2.05
> 1.23 1.17 1.26 1.85 1.37 2.24

Hispandic
M < 2.08 2.19 2.23 2.31 2.25 2.02

HS 1.83 1.79 1.89 2.03 1.87 2.35
> 1.55 1.46 1.50 1.87 1.49 2.03

U < 2.00 2.15 2.23 2.26 2.23 2.31
HS 1.78 1.87 1.96 2.12 1.89 2.38
> 1.46 1.56 1.67 2.00 1.72 2.30

White
M < 1.78 2.04 2.12 2.16 2.09 2.07

HS 1.34 1.52 1.63 2.30 1.67 2.45
> 1.12 1.23 1.32 1.97 1.24 2.03

U < 1.47 1.56 1.54 1.78 1.58 1.87
HS 1.25 1.31 1.56 1.90 1.67 2.08
> 1.11 1.24 1.39 1.78 1.48 2.03

57



TABLE X
Simulation outcomes for Annual Labour Force Participation Rate

Marital Education Actual Estimation Expenses Daycare Wages Retraining

Black
M < 0.570 0.452 0.436 0.421 0.476 0.423

HS 0.673 0.772 0.722 0.732 0.724 1.723
> 0.781 0.729 0.745 .742 0.732 0.732

U < 0.678 0.616 0.606 0.627 0.601 0.591
HS 0.723 0.763 0.751 0.749 0.761 0.763
> 0.897 0.912 0.913 0.916 0.915 0.921

Hispandic
M < 0.612 0.634 0.632 0.625 0.623 0.618

HS 0.722 0.745 0.739 0.738 0.737 0.735
> 0.823 0.856 0.842 0.845 0.835 0.812

U < 0.732 0.742 0.692 0.693 0.695 0.683
HS 0.752 0.765 0.745 0.746 0.748 0.746
> 0.824 0.878 0.867 0.857 0.856 0.872

White
M < 0.678 0.693 0.687 0.598 0.662 0.597

HS 0.897 0.876 0.874 0.873 0.878 0.871
> 0.912 0.927 0.921 0.928 0.926 0.923

U < 0.753 0.734 0.727 0.714 0.701 0.692
HS 0.857 0.876 0.767 0.798 0.845 0.855
> 0.866 0.857 0.867 0.849 0.867 0.856
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Figure I: Estimated Change in Aggregate Wage

0 2 4 6 8 10 12 14 16 18 20
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Time Periods

E
st

im
at

ed
 C

ha
ng

e 
in

 A
gg

re
ga

te
 P

ric
es

Estimates
CI
 

59



Figure II-a: Traditional Estimates of Fixed Effects of Marginal Products

Figure II-b: Nonparametric Estimates of Fixed Effects of Marginal Products
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Figure III: Aggregate Prices
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Figure IV -a: Traditional Fixed Effects Estimates of Social Weights

Figure IV-b: Nonparametric Fixed Effects Estimates of Social Weights
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Figure V-a: Traditional Shadow Prices of Consumption

Figure V-b: Nonparametric Shadow Prices of Consumption
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