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Abstract

This paper considers the problem of identi�cation and estimation in panel-data
sample-selection models with a binary selection rule when the latent equations
contain possibly predetermined variables, lags of the dependent variables, and un-
observed individual e¤ects. The selection equation contains lags of the dependent
variables from both the latent and the selection equations as well as other possibly
predetermined variables relative to the latent equations. We derive a set of condi-
tional moment restrictions that are then exploited to construct a three-step sieve
estimator for the parameters of the main equation including a nonparametric esti-
mator of the sample-selection term. In the second step the unknown parameters of
the selection equation are consistently estimated using a transformation approach
in the spirit of Berkson�s minimum chi-square sieve method and a �rst-step kernel
estimator for the selection probability. This second-step estimator is of interest in
its own right. It can be used to semiparametrically estimate a panel-data binary
response model with a nonparametric individual speci�c e¤ect without making
any other distributional assumptions. We show that both estimators (second and
third stage) are

p
n-consistent and asymptotically normal.

1 Introduction

In this paper, we study a panel-data sample-selection model of the form

(1) y�it = �y
�
it�1 + xit� + �i + "

�
it,
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(2) yit = dity
�
it;

and

(3) dit = I f�0dit�1 + �1yit�1 + zit + �i � uit > 0g ;

where I f:g denotes the usual indicator function, i indexes individuals (i = 1; : : : ; n), t
indexes time (t = 1; : : : ; T ), y�it is a latent outcome variable, (yit; dit;xit; zit) are observed
random variables, (�i; �i) are unobserved time-invariant individual-speci�c e¤ects, and
("�it; uit) are unobserved random individual time-speci�c e¤ects assumed to be indepen-
dent across individuals. The �rst equation, also called the outcome equation, has an
autoregressive structure with xit containing both strictly exogenous variables xeit and
predetermined variables xpit with respect to "

�
it. The second equation, the selection

equation, summarizes the process of observations entering into the sample. It has an
autoregressive structure, but also depends explicitly on the lagged outcome of the �rst
equation and on variables zit that may be predetermined with respect to "�it and uit.
Although sample-selection models have been studied extensively in the econometrics

literature (see Heckman, 1974, 1976, Das, Newey and Vella, 2003, Kyriazidou, 1997,
2001, among others), the model described in (1)�(3) is new in two respects. First, the
selection process may depend on variables that are predetermined with respect to the
error structure of both the outcome and the selection equations. Second, the outcome
equation contains a lagged dependent variable along with other predetermined variables.
Therefore our model can be derived from a dynamic utility maximization problem with
time-inseparable preferences.
The economic literature contains many examples where panel-sample-selection mod-

els that include lags or other predetermined variables would be of interest. Models of
this form arise for example in the study of the intertemporal behavior of economic agents
(see Hotz, Kydland and Sedlacek, 1988, Altug and Miller, 1998, to name a few). Several
applications have shown that the current realization of outcomes or the current decision
to participate in the sample is a¤ected by both current and past variables (see Kyd-
land and Prescott, 1982, Altug and Miller, 1998, among others). One illustration is the
analysis of a company�s investment behavior (Bond and Meghir, 1994). In this case it
is reasonable to expect that whether a company decides to invest today will depend on
how much it invested in the last period, hence creating a feedback from the continuous
outcome (the amount invested last period) to the selection process (the decision to invest
today). Variables explaining investment include variables in the agent�s information sets
that would be correlated with past shocks and hence past values of the dependent vari-
able. These variables are therefore predetermined with respect to the system. Another
example of interest is the study of models of life-cycle behavior (Gayle and Miller, 2004)
where the dynamic utility maximization of time nonseparable preferences gives rise to
feedback e¤ects from the outcome equation to the selection equation. For example, the
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decision to participate in the labor force may depend on the wage earned in the past. As
the past explains the present, so does the expectation about the future. For example,
parents�decision to work in the current period is a¤ected by their expectations about
future birth events. Therefore, explanatory variables such as the number of children are
predetermined (that is, correlated with lagged values of the error term of the outcome
equation, but uncorrelated with its present and future values).1

Panel-data dynamic models of sample selection have been studied by Kyriazidou
(2001). Her model, however di¤ers from ours in that the selection equation does not have
any autoregressive structure, nor does it depend on the lag of the dependent variable from
the outcome equation. Consequently, it cannot be directly derived from a dynamic utility
maximization problem. Nevertheless, the extensions we consider in this paper are not
trivial since Kyriazidou�s (2001) estimation and identi�cation strategy critically depends
on the assumption that the selection equation only contains strictly exogenous regressors.
Hence, we will have to pursue a di¤erent identi�cation and estimation strategy from
Kyriazidou (2001).
The method that we adopt in this paper allows us to identify the structural para-

meters of the outcome and of the selection equation without placing any parametric
assumption on the distribution of the error terms. We will still be able to obtain ap
n-consistent estimator for the structural parameters that is asymptotically normally

distributed. The
p
n- consistency of our estimator is an important improvement over

that of Kyriazidou (2001). However this generalization and improvement comes at a
cost of two additional restrictions both of which enable us to obtain identi�cation of our
model. The �rst major restriction is to impose the individual speci�c e¤ect in the se-
lection equation to be a nonparametric function of strictly exogenous individual speci�c
variables. The second restriction requires that the distribution of the predetermined and
lagged dependent variables in the selection equation conditional on the instruments in
the outcome equation forms a complete family of distribution.
The contribution of this paper is twofold. First it develops a new semiparametric

estimator for a more general class of panel sample selection models than is found in
the current literature. Second, it develops a new semiparametric estimator for dynamic
panel binary choice model. This estimation technique does not rely on specifying the
distribution of the errors nor does it rely on the distribution of the initial condition.
The remainder of this paper is organized as follows. In Section 2, the identi�cation of

the sample-selection model is discussed. In Section 3, our proposed estimator is de�ned.
Consistency and asymptotic normality of our estimator are established in Section 4. A
Monte Carlo study of our estimator is conducted in Section 5 to compare the small-
sample performance of our estimator with that of Kyriazidou (2001). An appendix

1A predetermined variable is a regressor that is Granger caused by past values of the dependent
variable of the system.
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contains proofs of the technical results while proofs that are critical to the �ow of the
paper are left in the text.

2 Identi�cation

Five major issues need to be addressed in order to achieve identi�cation of the model
speci�ed in equations (1)�(3). These issues include the presence in equation (1) of the
unobserved time-invariant�individual-speci�c component, �i, the presence of the lagged
dependent variable, y�it�1, the presence of predetermined variables in xit, the sample-
selection mechanism speci�ed by Equations (2) and (3) and the identi�cation of the
binary selection model with lagged dependent variables. In the absence of sample selec-
tion, the �rst three issues have been resolved in the panel-data literature (see Anderson
and Hsiao, 1982, Arellano and Bond, 1991, Ahn and Schmidt, 1995, to name a few). The
presence of sample selection, however, complicates the identi�cation issue. Another issue
is the identi�cation of the selection equation as it contains lagged dependent variables
and an individual speci�c e¤ect.
A number of papers have looked at this problem before (Honore, 1993; Arellano and

Carrasco, 2003, Hahn, 1997 and Honore and Kyriazidou, 2000). However, these papers
have either studied the case where the distribution of the error term is assumed to be
parametric or the case where the distribution of the initial condition is parametrically
speci�ed. Moreover, they take one of the following approaches for the individual speci�c
e¤ect: either they assume that it is random with a parametric distribution or that it
is �xed and can be eliminated in some ways. In this paper we do not assume that the
distribution of the error is parametric. We take an alternative approach on the individual
speci�c e¤ects. The following assumptions summarize that approach.

Assumption 2.1 (8i = 1; :::; n; t = 1; :::; T ):

1. �i = �(z1i ) where z
1
i are the strictly exogenous time-invariant components of zit,

�(z1i ) is an unknown function of z
1
i .

2. ("�it, uit) are jointly independent of z
1
i and zit:

This restriction is still mild since the distribution of the error terms ("�it; uit) is left
unspeci�ed. This is a nonparametric extension of the approach in MaCurdy (1981),
which was formalized in Altug and Miller (1998). A version of this restriction can be
found in Chamberlain (1986), Nijman and Verbeek (1992), and Zabel (1992), where �(:)
is speci�ed as a linear function of strictly exogenous variables and the distribution of
the error terms are assumed to be normal. Newey (1994) relaxed the linear functional
assumption on �(:) while retaining the normality assumption on the errors. In what
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follows, we use an approach similar to Chen (1998) by relaxing the assumptions on both
the functional form and the distribution of the error term. One viable alternative would
be to use the �xed-e¤ect speci�cation of Honore and Lewbel (2002). Their �xed-e¤ect
model relies, however, on the existence of a special regressor conditionally independent
of the individual-speci�c e¤ect and of the error term in the model, whereas our original
formulation does not. We now state additional conditions under which the selection
equation is semiparametrically identi�ed. Let

Pit0 � E[ditjdit�1; yit�1; zit; z1i ];

be the true conditional expectation. Let wit = [dit�1; yit�1; z
0
it]
0; !it = [w0it; z

10
i ] ande = [�0; �1; 0]0.

Assumption 2.2 (8i = 1; :::; n; t = 1; :::; T ):

1. kek = 1:
2. The random vector wit contains at least one continuous regressor.

3. E[4wit4w0it] is invertible.

4. E[�(z1i )] = 0:

5. Let Fu(:) be the distribution function of uit; conditional on !it. Fu(:) is strictly
increasing, di¤erentiable and non constant on its support.

Assumptions 2.2.1 and 2.2.2 are standard in the semiparametric literature on the
identi�cation of binary choice models (See Manski, 1987 among others). A well known
alternative to Assumption 2.2.2 is that a component of w0it; say witk (of associated para-
meter ek) has a probability distribution conditional on the remaining components that
are absolutely continuous with respect to the Lebesgue measure, and then assume that
jekj = 1: We do not need to make this assumption here since under Assumption 2.2.5
we are able to estimate the signs of all coe¢ cients. We could however assume thatek = 1 (or ek = �1) which along with Assumption 2.2.2 would allow us to estimate
the remaining parameters relative to ek. Assumption 2.2.3 is the traditional full rank
condition used for identi�cation in the linear panel data literature. Assumption 2.2.4
is a version of the traditional zero mean assumption in �xed e¤ect models, it serves
here as the location normalization. It could be relaxed but then all the nonparametric
functions would be identi�ed up to an additive constant. Assumption 2.2.5 is the critical
assumption which allows us to identify and estimate our model. Since the identi�cation
strategy is very important in understanding the estimation, we will prove it in the text.

Proposition 1 Under Assumptions 2.1 and 2.2 (e0; F0u(:); �0(z1i )) are identi�ed.
5



Proof. Let �0 = (e0; F0u(:); �0(z1i )) denote the true parameters of our model and let
�1 = (e1; F1u(:); �1(z1i )) be another set of parameters that are observationally equivalent
to �0 . Then by equation (3) and Assumption 2.1 we obtain that

(4) F0u(w
0
ite0 + �0(z1i )) = F1u(w0ite1 + �1(z1i ));

because by observational equivalence both sides are equal to Pit0. Assumption 2.2.5
implies that

(5) w0ite0 + �0(z1i ) = F�10u (F1u(w0ite1 + �1(z1i ))).
Since Fu(:) is strictly increasing it is di¤erentiable almost everywhere. Di¤erentiating
(5) with respect to the continuous regressor witk gives

e0k =
@witkF

�1
0u (F1u(w

0
ite1 + �1(z1i )))

@witkF
�1
1u (F1u(w

0
ite1 + �1(z1i )))e1k;

=
@witkF

�1
0u (Pit0)

@witkF
�1
1u (Pit0)

e1k:(6)

Let �k =
e0ke1k , note that �k > 0 which follows directly from Assumption 2.2.5. Hence we

can rewrite equation (6) as

(7) @witkF
�1
0u (Pit0) = �k@witkF

�1
1u (Pit0):

Integrating equation (7) over the range [0; Pit0] gives us

(8) F�10u (Pit0) = �kF
�1
1u (Pit0) +K;

where K = F�10u (0)� �kF�11u (0). Note that by equation (3), Assumptions 2.1 and 2.2.5,
we obtain

F�10u (Pit0) = w0ite0 + �0(z1i ),(9)

F�11u (Pit0) = w0ite1 + �1(z1i ):(10)

Taking the �rst di¤erence of equations (8), (9) and (10) gives us

4F�10u (Pit0) = �k4F�11u (Pit0);(11)

4F�10u (Pit0) = 4w0ite0;(12)

4F�11u (Pit0) = 4w0ite1:(13)

From equations (11), (12) and (13) we obtain that

(14) 4w0ite0 = �k4w0ite1:
6



Premultiplying equation (14) by 4wit and taking the expectation gives

(15) E[4wit4w0it]e0 = �kE[4wit4w0it]e1:
Assumption 2.2.3 and equation (15) imply that

(16) e0 = �ke1:
Assumption 2.2.1 that ke0k = ke1k = 1 implies that j�kj = 1. But since �k > 0; this
means that �k = 1, thus

e0 = e1;(17)

F�10u (Pit0) = F�11u (Pit0) +K:(18)

Equations (9), (10) and (18) imply that

(19) w0ite0 + �0(z1i ) = w0ite1 + �1(z1i ) +K:
Equation (17) further gives

(20) �0(z
1
i ) = �1(z

1
i ) +K:

Finally, Assumption 2.2.4 implies that K = 0, hence the model is identi�ed.

The literature on sample selection normally takes two di¤erent approaches to the
identi�cation of the structural parameters, the �rst is the standard Heckman�s correction
and the second is to �nd a way to eliminate the selection bias indirectly (see Ahn
and Powell, 1993 for example). Under the �rst approach one could either assume the
parametric form of the joint error distribution and then obtain the correction term or
one could nonparametrically identify the correction term. We will use the nonparametric
approach in this paper. Below we state some regularity conditions that allow us to
proceed.

Assumption 2.3:

1. "�it is independent of y
�
i0 for all t and for each i.

2. "�it is independent of �i for all t and for each i.

3. The ( "�it; uit)
0s are mutually independent for all t and for each i, with E("�it) = 0

and var("�it) = �
2
".

4. xpis is independent of "
�
it for all s � t and for each i.
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5. xeis is independent of "
�
it for all s; t = 1; : : : ; T and for each i.

6. zis is independent of "�it for all s � t and for each i.

7. y�i0 is i.i.d. with density fy0(:) for each i:

8. di0 2 f0; 1g i.i.d. with Pr[di0 = 1] = Po for each i:

Assumption 2.3 is a strengthening of the standard type of assumptions used in the
linear panel-data literature to achieve identi�cation. In the standard linear panel-data
literature, these are typically conditional mean independence assumptions, while here we
need full conditional independence. This is not unusual in the semiparametric literature,
however, and is similar to the assumptions used in Kyriazidou (2001).
Let

� it � fyit�1; yit�2; dit�2; xit; zit; zit�1; z1i ; �i; ditdit�1 = 1g:
Taking the expectation of y�it in Equation (1) conditional on � it gives for i = 1; :::; n;
t = 2; :::; T;

(21) E(y�it j � it) = �yit�1 + xit� + �i + �(vit; vit�1; z1i );

where

(22) vit = �0dit�1 + �1yit�1 + zit

and

(23) �(vit; vit�1; z
1
i ) � E("�it j � it).

Equation (21) follows by noting that

(24) E("�it j � it) = EfE("�it j � it; �i) j � itg:

The inner expectation E("�it j � it; �i) can be expressed as

E("�it j � it; �i)

= E["�it j yit�1; yit�2; dit�2; xit; zit; zit�1; z1i ; �i; �i; uit < vit + �i; uit�1 < vit�1 + �i];

=

vit+�iR
�1

vit�1+�iR
�1

+1R
�1
"�f("�; u2; u1 j yit�1; yit�2; dit�2; xit; zit; zit�1; z1i ; �i; �i)d"�du2du1

vit+�iR
�1

vit�1+�iR
�1

+1R
�1
f("�; u2; u1 j yit�1; yit�2; dit�2; xit; zit; zit�1; z1i ; �i; �i)d"�du2du1

:
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Furthermore, by Assumptions 2.1.2, 2.3.2, 2.3.4, and 2.3.5 to 2.3.8, the conditional den-
sity f("�; u2; u1 j yit�1; yit�2; dit�2; xit; zit; zit�1; z1i ; �i; �i) equals the joint density f("�; u2; u1),
which implies that

E("�it j � it; �i)

=

vit+�iR
�1

vit�1+�iR
�1

+1R
�1
"�f("�; u2; u1)d"

�du2du1

vit+�iR
�1

vit�1+�iR
�1

+1R
�1
f("�; u2; u1)d"�du2du1

;

� �(vit + �i; vit�1 + �i):(25)

Denote by f�(:) the density of �i, then we can integrate out the unobserved component
�i over f�(:) and

E("�it j � it)

=

Z
�(u+ vit; u+ vit�1)f�(u)du;

� �(vit; vit�1; z
1
i ):(26)

Note that if (23) were equal to zero, then (21) could be estimated as a standard
dynamic, linear panel-data model. However, (23) in general is not equal to zero and the
model to be estimated is of the form

(27) yit = �yit�1 + xit� + �i + �(vit; vit�1; z
1
i ) + "it;

where

(28) "it = "
�
it � �(vit; vit�1; z1i ):

The above correction is now similar to that considered by Heckman (1976) except that
it is a multi-index speci�cation instead of a single-index speci�cation. In this paper,
we allow �(:) to have an unknown functional form, which is similar to the formulation
used by Das, Newey and Vella (2003) in the cross-section contexts. Equation (27) is
an additive semiparametric regression equation similar to that considered by Robinson
(1988), except that �(:) depends on the unknown parameters of the selection equation.
Suppose for the moment that these parameters were known; then, in order to obtain
consistent estimates of the remaining parameters in (27), we would need to correct
for the presence of yit�1 and of the predetermined variables in xit. Following Arellano
and Bover (1995), we would look within the system for instruments that will lead to
consistent estimates of the parameters of interest.
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Unlike in the linear case, we will put restrictions on the latent variables and de-
rive orthogonality and identi�cation conditions implied on observed variables. These
conditions are summarized in the proposition below.

Proposition 2 For i = 1; :::; n; t = 4; :::; T; let
zit �

�
yi0; : : : ; yit�3; di0; : : : ; dit�3; x

p
i1; : : : ; x

p
it�2; x

e
i1; : : : ; x

e
iT ; zi1; : : : ; zit�2; z

1
i ; ditdit�1 = 1

	
.

Under Assumptions 2.1 and 2.3, the following holds:

E[(4yit � �04yit�1 �4xit�0 �4�0(vit; vit�1; vit�2; z1i ) j zit] = 0:

Identi�cation of the parameters (�0; �0;4�0) conditional on (�0; �1; ) is not as
straightforward as in the standard linear model, because 4yit�1 and vit are endoge-
nous with respect to 4"it. This endogeneity arises as both 4yit�1 and vit are functions
of y�it�1: Moreover, y

�
it�1 is a function of "

�
it�1; of which 4"it is a function. Also in the

presence of predetermined variables, xpit and z
p
it may be functions of "�it�1. If vit was

not a function y�it�1 and hence 4yit�1 and 4x
p
it were the only endogenous variables in

the model, we could use the standard instrument variable conditions for identi�cation.
However, since 4�0 is a nonparametric function of endogenous variables it becomes a
problem of semiparametric identi�cation with endogeneity (see Darolles, Florens and
Renault, 2002 and Newey and Powell, 2003 for a discussion of the problem). In order to
obtain identi�caton we will impose the following conditions:

Assumption 2.4 (8 i = 1; :::; n; t = 3; :::; T ):

1. The distribution of (4yit�1; xpit; vit) conditional on

ezit � � yi0; : : : ; yit�3; x
p
i1; : : : ; x

p
it�2; x

e
i1; : : : ; x

e
iT ; z

p
i1; : : : ; z

p
it�2;

xpi1; : : : ; x
p
iT ; z

p
i1; : : : ; z

p
iT ; z

1
i ; di0 � : : :� dit = 1

�
forms a complete family of distribution in the sense of Newey and Powell (2003).

2. 4�0 (:) 2 �p2c2 with p2 > 1; E[4�0(vit; vit�1; vit�2; z1i )jezit] =2 linear span (4yit�1;4xit)
and E[ezitez0it] is �nite positive de�nite.2

Proposition 3 Under Assumptions 2.1, 2.3, 2.4 and for vit; vit�1and vit�2 known,
(�0; �0; �0(:)) is identi�ed.

Assumption 2.4.1 states that the conditional distribution of the endogenous vari-
ables in the model is complete conditional on the instruments. This assumption places
restrictions on the joint distribution of the errors terms and the predetermined variables.

2�pc is a H
..
older ball, this controls the smoothness of the functional space to which 4�0 may belong.

We will formally de�ne a H
..
older ball in the next section .
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Consider the simple case where xit and zit contains only strictly exogenous variables
with respect both ("�it; uit) so that the only predeterminedness comes from y�it�1. Let
f"u(y

�
it�1; u) be the density of ("

�
it; uit). Then a su¢ cient condition for Assumption 2.4.1

to hold is that the cumulative distribution function associated with the density

(29) f(y�it�1jezit) �
�0+�1y

�
it�1+zit+�iZ
�1

f"u(y
�
it�1; u)du

+1Z
�1

264 �0+�1y
�
it�1+zit+�iZ
�1

f"u(y�it�1; u)du

375 dy�it�1
;

forms a complete family of distribution. Assumption 2.4.2 is the same as those imposed
by Cosslett (1991) and Newey (1999) in the cross-section sample-selection context and
Robinson (1988) in the selection version of the additive semiparametric regression. The
proof of Proposition 3 follows from checking appropriate conditions of Theorem 4.3 of
Newey and Powell (2003). Note that we could relax the completeness assumption to a
bounded completeness assumption. This would restrict the nonparametric function to
be bounded and at the same time would broaden the class of distributions (see Blundell,
Chen and Kristensen, 2004 for details).

3 Estimation

We consider a three-step estimator, where the �rst step is a nonparametric estimator of
the individual conditional probability of being observed in the sample each period, the
second and third step are semiparametric minimum-distance estimators. In a sense, the
estimators are analogous to Heckman�s (1976) two-step procedure for the cross-sectional
Gaussian disturbance model. The di¤erence is that the selection equation is estimated
by a distribution-free method that depends on a preliminary nonparametric estimator
rather than by a Probit, and a nonparametric approximation of the selection correction
function, 4�0(:), is used instead of the inverse Mills ratio. In this regard, our estimator
is similar to Newey�s (1999) two-step procedure for the cross-sectional case, except that
we have a preliminary nonparametric estimate of the conditional selection probability.
Our estimator is closest to Chen�s (1998) three-step procedure for the static panel-
sample-selection model. However, he did not introduce lagged-dependent and other
predetermined variables, he used a least-square regression in the second and third steps,
whereas we have conditional moment restrictions, which lead to di¤erent estimators.
We will use sieve-extremum estimation methods to estimate our model. There is a

growing literature on this topic with important theoretical contributions by Shen and
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Wong (1994), Shen (1997), Chen and Shen (1998), Chen, Linton, Van Keilegom (2003),
Ai and Chen (2003), among many others. See also Chen (2005) for an extensive survey
on the sieve estimation literature. The most important consideration in choosing a
sieve�s space for an approximation is how well it approximates a given class of functions.
Restricting our attention to functions that belong to a Hölder space, we �rst introduce a
measure of the approximation error that will play an important role in the large-sample
properties of our estimator.
Suppose that X = X1 �X2 � � � � � Xd is the Cartesian product of compact intervals

X1; : : : ;Xd. Let 0 < � � 1. A real-valued function } on X is said to satisfy a Hölder
condition with exponent � if there is a positive number c such that j}(x)� }(y)j �

c kx� yk�E for all x; y 2 X , where kxkE =
�Pd

l=1 x
2
l

� 1
2
is the Euclidean norm of x =

(x1; : : : ; xd) 2 X . Given a d-tuple � = (�1; : : : ; �d) of nonnegative integers, set [�] =
�1 + � � �+ �d and let D� denote the di¤erential operator de�ned by

(30) D� = @[�]

@x�11 : : : @x
�d
d

:

Let ' be a nonnegative integer and set p = '+ � . A real-valued function h on X is said
to be p-smooth if it is ' times continuously di¤erentiable on X and D� satis�es a Hölder
condition with exponent � for all � with [�] = '. More generally, a real valued function
h(x; �) is said to be Hölder continuous in � 2 � if there exists a constant � 2 (0; 1] and
a measurable function c(x) with E(c(x)2) bounded and such that jh(x; �1)� h(x; �2)j �
c (x) k�1 � �2k�s for all x 2 X , �1, �2 2 � where k:ks is a norm such as the sup or the
L2-norm. Denote the class of all p-smooth real-valued functions on X by �p(X ) and
the space of all '-fold continuously di¤erentiable real-valued functions on X by C'(X ).
De�ne a Hölder ball with smoothness p = '+ � as

(31) �pc(X ) =
(
} 2 C'(X ) : sup

x2X :
j}(x)j � c; sup

[�]='

sup
x;y2X , x 6=y

��D�}(x)�D�}(y)��
kx� yk�E

� c
)
:

We restrict all our nonparametric functions to belong to a Hölder ball because these
functions are well approximated by linear sieves,3 which we choose in this paper.
Let us denote by � a generic real-valued function with bounded domain X � Rd, let

k�k1 � sup
x2X

j�(x)j be the L1 norm, and k�k2;leb �
�R

X [�(x)]
2dx=vol(X )

	 1
2 be the scaled

L2 norm relative to the Lebesgue measure on X . The sieve approximation errors to
�0 2 �pc(X ) in L1(X ; leb)-norm and L2(X ; leb)-norm are de�ned as

e1n � inf
}2�n

k}� �0k1 and e2n � inf
}2�n

k}� �0k2;leb :

3A sieve is called a linear sieve if it is a linear span of �nitely many known basis functions.
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3.1 Selection Equation Estimation

Let !it � (dit�1; yit�1; z
0
it; z

1
i )
0 be the vector of observed variables that a¤ect the prob-

ability of selection. Let (�00; 0) denote the true value of (�0; ). In order to obtain ap
n-consistent estimator of the �nite-dimensional parameters in the outcome equation,

a su¢ cient condition is to require that any estimator of (�0; �1; )
0 be asymptotically

equivalent to the sample average that depends only on !it. In particular, let there exist a
function 	(!) such that

p
n((b�0; b�1; b)0-(�00; �10; 0)0) =Pn

i=1	(!i)=
p
n+ op(1), where

!i = (!i1; : : : ; !iT )
0, E(	(!i)) = 0 then E(	(!i)	(!i)0) exists and is nonsingular. This

is the same requirement as in Newey (1999) in the cross-section context. However, while
in the cross-section context there are a number of distribution-free estimators that have
this property, in the context of our speci�c selection equation, there are none to the
best of our knowledge. The closest distribution-free estimator that could be used in our
context is in Honore and Lewbel (2002), but as pointed out in Section 2 above, this
would require us to fundamentally change our identi�cation assumptions. What we will
do instead is to develop an example of how one such an estimator can be constructed.
The estimator of the selection parameters (�0; �1; )

0 is derived from the relationship
between the conditional probability of selection and the selection parameters themselves
over the full sample of observations. Conditional on !it, the probability of selection is
P (!it) � E[dit j !it]. Equation (3) implies that 8i = 1; :::; n; t = 1; :::; T;

(32) P0(!it) = Pr
�
uit < �0dit�1 + �1yit�1 + zit + �(z

1
i ) j !it

�
:

Therefore, an alternative representation of the conditional probability of selection is

(33) P0(!it) = Fu(�0dit�1 + �1yit�1 + zit + �(z
1
i )):

Under Assumption 2.2.5, Fu(:) is a strictly monotone increasing function, therefore its
inverse exists and we obtain the following relationship between the conditional selection
probability P (!it) and the parameters in the selection equation (�0; �1; )

0:

(34) F�1u (P0(!it)) = �0dit�1 + �1yit�1 + zit + �(z
1
i ):

Suppose there exists a consistent estimator of P0(!it); say bP (!it). By taking a mean
value expansion of F�1u ( bP (!it)) around the true selection probability, P0(!it), we obtain
(35) F�1u ( bP (!it)) = �0dit�1 + �1yit�1 + zit + �(z1i ) + �it + �it,
where P�(!it) lies between bP (!it) and P0(!it). Let fu(:) be the density of Fu(:), then
�it =

1
fu[F

�1
u (P0(!it))]

( bP (!it) � P0(!it)) and �it = �
1

fu[P�(!it)]
� 1

fu[F
�1
u (P0(!it))]

�
( bP (!it) �

P0(!it)). The terms �it and �it are weighted discrepancy measures between the true

13



conditional selection probability and the estimated one. If bP (!it) is a consistent estima-
tor, then �it and �it are asymptotically zero. Equation (35) then approximately de�nes a
heteroscedastic transformation model of which we can take �rst di¤erences to eliminate
the unknown nuisance function, �(z1i ), which gives

(36) 4F�1u ( bP (!it); bP (!it�1)) � �04dit�1 + �14yit�1 +4zit +4�it +4�it.
As discussed in section 2 (see Manski, 1987 or Ichimura, 1993 for details), we normalize
the parameter of the continuous lagged outcome �1 to�1, 4 so that (36) can be expressed
as

4yit�1 � �04dit�1 +4zit �4F�1u ( bP (!it); bP (!it�1)) +4�it +4�it.
Finally, to estimate the selection parameters, one need to �nd a consistent nonpara-

metric estimator of the conditional selection probability. Among many types available
in the nonparametric literature, we will choose the kernel density estimator

(37) bP (!it) = nX
j=1

djtKh(!jt � !it)Pn
k=1Kh(!jt � !it)

,

where h is a positive smoothing parameter that goes to zero as the sample size increases,
Kh(u) =

1
hd!
K(u

h
) for a given kernel K (with compact support S!) and d! is the number

of continuous variables in !it.

To ease the exposition, the following additional notations are required. De�ne !i =
f!isgTs=1 ; !i�1 = f!is�1gTs=1 ; !i�2 = f!is�2gTs=2 ; 4!i = f!isgTs=2 ;4!i�1 = f!isgT�1s=1 .
We de�ne the same way the variables yi; yi�1; yi�2; di; di�1; di�2; zi; zi�1; zi�2; vi; vi�1;
vi�2, 4yi; 4yi�1; 4yi�2; 4di; 4di�1; 4di�2; 4zi; 4zi�1; 4zi�2; 4vi;4vi�1; 4vi�2.
Let P (!i) � fP (!is)gTs=2 and P (!i�1) � fP (!is)gT�1s=1 : Let �1 � (�0; ;4F�1(:))0

2 �1 denote the vector of parameters to be estimated where the in�nite-dimensional
parameter space �1 � �1 �H1 can be decomposed into a �nite-dimensional space, �1,
and an in�nite-dimensional space H1 with (�0; ) 2 �1 and 4F�1(:) 2 H1.
Let

(38) `(�1; !i; bP (!i); bP (!i�1)) = �1
2

�
[ \4�i +4�i]0[ \4�i +4�i]

�0
;

where \4�i +4�i = 4yi�1 � �04di�1 �4zi +4F�1( bP (!i); bP (!i�1)). We then de�ne
our Least Squared (LS) estimator of �1 as

(39) sup
�12�1

Q1n(�1; bP (!i); bP (!i�1)) = sup
�12�1

1

n

nX
i=1

`(�1; !i; bP (!i); bP (!i�1)):
4Note that we could alternatively normalize any other continuous variable in zit.
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However, since H1 is in�nite dimensional, maximizing over �1 may not be well de-
�ned; even if the maximizer exists, it will generally be too di¢ cult to compute. Instead,
the maximization will be restricted to a sequence of approximating spaces, �1n, such
that

S
n

�1n is dense in �1. These types of estimators are called sieve LS in the economet-

ric literature (see Chen, 2005, for a comprehensive survey of this literature). Following
this literature, the selection equation estimator can be rede�ned as

(40) b�1 = argmax
�12�1n

Q1n(�1; bP (!i); bP (!i�1));
where �1n � �1 �H1n such that

S
n

H1n is dense in H1.

We will restrict our analysis to linear sieve spaces that are compact, nondecreasing
(i.e., H1n � H1n+1 � : : : ;� H1). We provide below the example of two univariate linear
sieves, which bivariate extensions will be used to estimate 4F�1(P (!i); P (!i�1)). Since
P (!i) lies in the interval [0; 1], let Pol(Jn) denote the space of polynomials on [0; 1] of
degree Jn or less; that is,

(41) Pol(Jn) =

�
JnP
k=0

akx
k, x 2 [0; 1] : ak 2 R

�
:

Let TriPol(Jn) denote the space of trigonometric polynomials on [0; 1] of degree Jn or
less; that is

(42) TriPol(Jn) =

(
a0
2
+

JnX
k=1

ak cos(2k�x) + bk sin(2k�x); x 2 [0; 1] : ak; bk 2 R
)
:

Since we will assume that4F�10 (P (!i); P (!i�1)) belongs to a Hölder space, say �p1c1
�
[0; 1]2

�
;

it will be well approximated by the bivariate versions of both Pol(Jn) and TriPol(Jn):
We will consider the tensor product linear sieve space H1n; which is constructed as
a tensor product space of the univariate linear approximating spaces H1n1;H1n2: Let
dim (H1n) = k1n and [p] be the biggest integer satisfying [p] < p1: Then, the approxima-

tion error rates for polynomials or orthogonal wavelets for 4F�10 are of order O(k
� p1

2
1n )

(see Timan, 1963).

3.2 Outcome Equation Estimation

For notational ease, the following additional notations will be required. Let E[g(�2; Zi) j
zi] � fE[gs(�2; Zis) j zis]gTs=4 where �2 � (�; �;4�(:)),
Zis � (dis; dis�1;4yis;4yis�1;4xis; vis; vis�1; vis�2; z1i ), Zi � fZisgTs=4, zi � fzisgTs=4
and

(43) gs(�2; Zis) � disdis�1(4yis � �4yis�1 �4xis� �4�(vis; vis�1; vis�2; z1i )).
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From Proposition 2, we have a set of conditional moment restrictions, which can be
expressed as

(44) E[g(�20; Zi) j zi] = 0;

where �20 is the true value of �2.
Let bm(�2;zi) � fbms(�2;zis)gTs=4, where bms(�2;zis) is a consistent nonparametric

estimator of the sth element of the vector E[g(�2; Zi) j zi]. Following Ai and Chen
(2003), our third-step estimator can be expressed as

(45) inf
�22�2n

bQ2n(�2) = inf
�22�2n

1

n

nX
i=1

bm(�2;zi)0[b�o(zi)]�1 bm(�2;zi),
where �2n = �2�H2n; b�o(zi) �! �o(zi) in probability and �o(zi) is a positive de�nite
weighting matrix of the same dimension as E[g(�2; Zi) j zi]. We restrict our analysis to
linear sieve spaces that are compact, nondecreasing (i.e., H2n � H2n+1 � : : : ;� H2).
Let boj(zis); j = 1; 2; : : : ; ks;ng be a sequence of known basis functions that approx-

imate any real-valued L2-functions of zis well as ks;n �! 1. Denote by Bks;n(zis) =
(bo1(zis); : : : ; boks;n(zis))0 andBs = (Bks;n(z1s); : : : ; Bks;n(zns))0. Following Ai and Chen
(2003),5 a series LS estimator of the conditional expectation E[gs(�2; Zis) j zis] is

(46) bms(�2;zis) =
1

n

nX
j=1

gs(�2; Zjs)B
ks;n(zjs)0(B0sBs)�1Bks;n(zis)

As with the standard GMM type estimator, in order to implement the above esti-
mator, one needs to be able to estimate �o(zi). One method is to use a nonparametric
conditional-variance estimator of the moment restrictions calculated from a preliminary
consistent estimator of �2 (see Robinson, 1987, for example). We use a LS estimator of
the conditional variance, �o(zi) as b�o(zi) � b�o(zi;e�2) � f�0st(zis;e�2)gs;t=2;:::;T , where
(47)

�0st(zis;e�2) � � 1
n

Pn
j=1 gs(

e�2; Zjs)gt(e�2; Zjt)Bks;n(zjs)0(B0sBs)�1Bks;n(zis) for s=t
0 otherwise

and e�2 is a preliminary consistent estimator, normally obtained by minimizing
(48)

1

n

nX
i=1

bm(�2;zi)0 bm(�2;zi):
5Note that any consistent nonparametric estimator of E[g(�2; Zi) j zi] could be used. However, we

follow Ai and Chen (2003) because of the possible large dimension of zi.
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The line in (47) follows from the fact the zis � zis+1 in conjunction with Proposition 1.
At this stage, we will use the multivariate version of Pol(Jn) or TriPol(Jn) for estimating
4�(:) and corresponding tensor product sieves for the estimation of bm(�2;zi) and b�o(zi)
(see Chen, 2005).

4 Large-Sample Properties

Recall that !i � f!isgTs=1 : Let d = dim(!i): For ease of exposition, we rede�ne the
�rst-step kernel estimator as a component of

(49) bp(!i) � �bp1 (!i)0 ; bp2 (!i)0�0 � nX
j=1

edjKh(!j � !i),

where edj = [1;dj]0 so that bp(!i) is the kernel estimate of p0(!i) � (p001; p002)0 � f!(!i)E[edi j
!i] and f!(:) denotes the marginal density of !. In particular, bP (!i) = bp2(!i)bp1(!i) . This no-
tational change for the conditional expectation6 eases the exposition in the results that
follow. The conditions summarized in Assumption 4.1 below, ensure that bp is close to
p0 for n large enough (see Newey and McFadden, 1994).

Assumption 4.1 (8i = 1; :::; n):

1. There is a version of p0(!i) that is continuously di¤erentiable of order q (> r)
with bounded derivatives on an open set,7 and p01(!i) = f!(!i) is bounded away
from 0 on S!, the compact support of !i.

2. K(u) is di¤erentiable of order q, K(u) is zero outside a bounded set,
R
K(u)du = 1,

and there is a positive integer L, such that for all j < L,
R
K(u)(

jN
l=1

u)du = 0.

3. There is p�4 such that E
�edip� <1 and E

�edip j!i� f! (!i) is bounded.
4. The bandwidth h satis�es h(n)! 0 and n1�

2
ph(n)d lnn!1.

Assumption 4.2 (8i = 1; :::; n):

1. �1n � �1n+1 � � � � � �1 compact for all n � 1 and for any �1 2 �1 there exists
�n�1 2 �1n such that k�1 � �n�1k = o(1) as n gets large.

6Now E[dj !] = p02(!)=p01(!) = f!(!)E[ ed j !]=f!(!).
7Note that r is the dimension of the continuous components of !.
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2. �21(P0; !i) = Ef(4�i)2 j P0; !ig <1.

3. 4F�1(:) 2 H1 = �p1c1 [sl; su]2, with p1 > d=2 and [sl; su] � [0; 1].

Theorem 1: Under Assumptions 2.1, 2.2, 4.1 and 4.2, if k1n = O(n1=(2p1+d)) thenb�1 � �10 = Op(n�p1=(2p1+d)).
Assumption 4.1 is standard in the nonparametric literature (see Newey, 1994, and

Newey and McFadden, 1994, for a proof and discussions of this result).
Assumption 4.2.1 is the regularity condition on the sieve space (see Chen and Shen,

1998). Assumption 4.2.2 is standard, bounding the second conditional moments. As-
sumption 4.2.3 imposes a smoothness condition on the class of functions. Theorem 1 is
a consistency and rate of convergence result, which is an application of Theorem 1 in
Chen and Shen (1998).8

To study the asymptotic distribution of b�1, we use a linear approximation of the
criterion di¤erence by the corresponding derivatives and the degree of smothness of g(:),
where g(�1) is a real functional of �1: We will show that the sieve estimator has a nor-
mal distribution and is e¢ cient when the empirical criterion satis�es certain stochastic
equicontinuity conditions. The degree of smoothness of g(:) can compensate for the
slowness of the convergence rate of the estimate.
Let Pi � (P (!i) ; P (!i�1)) and Pi0 � (P0 (!i) ; P0 (!i�1)) : Let ! � (d�1; y�1; z0; z1)0 �

f!igni=1 ; P � fPigni=1 and P � fPi0gni=1 and all other relevant variables in the same
manner:
Let

(50) Du�1
(!)0 �

�
4d�1
4z

�
� u�1(P0);

where u�1(P ) solves the following programming problem

(51) inf

u1:E

24������
24 4d�1
4z

35�u1 (Pi0)
������
2

e

35>0
E

���
4d�1
4z

�
� u1(Pi0)

���
4d�1
4z

�
� u1(P0)

�0�
.

Assumption 4.3 (8i = 1; :::; n):

1. (�00; 0) 2 int(�1).
8These results are summarized in Chen (2005).
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2. E[Du�1
(!i)

0Du�1
(!i)] is positive de�nite; �1(!i) = E

�
(4�i +4�i)

2 j!i
�
is positive

de�nite.

3. Each element of u�1(Pi) belongs to the Hölder space �
p11 with p11 > d

2
.

Theorem 2: Under Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3, if k1n = O(n1=(2p1+d)),
thenp
n[(b�0; b)0-(�00; 00)0] =) N(0;
1), where


1 = E[Du�1
(!i)

0Du�1
(!i)]

�1E[Du�1
(!i)

0�1(!)Du�1
(!i)]E[Du�1

(!i)
0Du�1

(!i)]
�1:

Assumption 4.3 is a standard regularity condition in sieve estimation (see Shen, 1997,
Chen and Shen, 1998, and Chen, 2005, for discussions of these conditions). Note that
as with the standard Berkson minimum chi-square estimation in standard binary-choice
models, the asymptotic variance of the estimator depends only on the variance of 4�i
and not on that of 4�i (see Amemiya, 1994, p. 277 for an example). Let k2n denote the
dimension of the approximating sieve space, H2n. Let

�o(zi) �

0@ �22(zi2) ::: o
: :
0 �2T (ziT )

1A
where �22(zis) = E[gs(�20; Zis)2 j zis]:

Assumption 4.4 (8i = 1; :::; n):

1. �i and z1i are i.i.d over individuals:

2. The support of fxit; zit; y�io; �i; "�it g
T
t=1 is compact with nonempty support.

3. (�; �; �0; �1; ) 2 �1 � �2, with �1; �2 are compact with nonempty interior and
j�j < 1; j�0j < 1:

4. The density of fxit; zit; y�io; dio; �i; "�it; uitg
T
t=1 is bounded and bounded away from

zero.

5. Either Bks;n(zis) is a tensor product of Fourier series with ks;nk2n ln(n)=
p
n = o(1)

or a tensor product power series with k2s;nk2n ln(n)=
p
n = o(1); where k2n is de�ned

in (70).

6. dim (g(:)) ks;n � 1 + dim(xit) + k2n; k
� p3
dim(z)

s;n = o(n�
1
4 ) and k

� p2
3+dim(z1)

2n = o(n�
1
4 ).
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7. The smallest and largest eigenvalues of EfBks;n(zis)Bks;n(zis)0g are bounded and
bounded away from zero for all ks;n.

8. (i) �22(zi; �2) > 0 and �o(zi; �2) is �nite positive de�nite uniformly over zi 2 =;
�2 2 Non; (ii) each element of g(�2; Zi)g(�2; Zi)0 satis�es an envelope condition
and is Hölder continuous in �2 2 No; (iii) Each element of �o(zi; �2) is in �p�c�
with p� > dF

2
for all �2 2 Non:

9. 4�0(:) 2 H2 = �p2c2 (R3+dim(z
1)) with p2 > 1 and E[(1+(vi; vi�1; vi�2; z1i )

0(vi; vi�1; vi�2; z
1
i )
a j

zi] is bounded for some a > p2:

10. E[dd�14yi j zi = f ], E[dd�14xi j zi = f ], E[dd1qk2n(vi; vi�1; vi�2; z1i ) j zi =
f ] 2 �p3c3 (=), p3 > (dim(zi))=2.

11. (i) E(j4yij4) <1; (ii) E(k4yikE j zi] <1, E(k4yi�1kE j zi] <1, E(k4xikE j
zi] <1 and E(sup�12�1

4�0(vi(�1); vi�1(�1); vi�2(�1); z1i )E j zi] <1.
Let v denote (vis; vis�1; vis�2; z1i ) for i = 1; :::; n; s = 3; :::; T . Let z � fzigni=1

and denote by dm(z;�20)
d�2

[�21 � �22] the �rst pathwise derivative of m (:) at the direction
[�21 � �22] evaluated at �20:
Theorem 3: For any �2; �21; �22 2 �2; de�ne

k�21 � �22k =
s
E

�n
dm(z;�20)

d�2
[�21 � �22]

o0
�(z; �2)�1 dm(z;�20)d�2

[�21 � �22]
�
:Under As-

sumptions 2.1-2.4 and 4.1�4.4,
b�2 � �20 = op(n� 1

4 ).

Assumptions 4.4.1-4.4.10 are standard in the sieve minimum-distance literature (see
Ai and Chen, 2003, for a complete discussion on the importance of these regularity
conditions). Assumption 4.4.11 is an additional boundedness condition needed to ensure
that our moment conditions are continuous in the preliminary estimates of the selection
equation.

Let u�2 = (u
�
21; : : : ; u

�
2;1+dim(x)) be the solution to

(52) min
u�212U

Ef[4y�1 � Efu�21(v; v�1; v�2; z1) j zg]2g

and

(53) min
u�2;1+j2U

Ef[4xj � Efu�21(v; v�1; v�2; z1) j zg]2g (j = 1; : : : ; dim(x))

20



Let Du�2
(z) = [4y�1;4x]� Efu�2(v; v�1; v�2; z1) j zg,

H1 = E
h
Du�2

(z)0�0(z; �20)�1dd�1
n
@�0(v;v�1;z1)

@v
(d�1; z)

0 +
@�0(v;v�1;z1i )

@v
(d�2; z�1)

0
oi
,


2 = EfDu�2
(z)0�0(z; �20)�1Du�2

(z)g and
H2 = EfDu�2

(z)0�0(z; �20)�1Du�2
(z)g.

Assumption 4.5:

1. (�0; �0)2 �2.

2. (i) For j=1,. . . ,dim(�) + 1,
E [u�2j(v; v�1; v�2; z

1) j z = f ] 2 �p4c4 (=), for p4 > (dim(z))=2; (ii) H1 is bounded.

Theorem 4: Under Assumptions 2.1-2.4, 4.1�4.5,
p
n[(b�; b�)0�(�0; �0)0] =) N(0; V ),

where V = H�1
2 [
2 +H1
1H

0
1]H2

�1.

Assumptions 4.5.1 and 4.5.2(i) are standard in the sieve minimum-distance literature
(see Ai and Chen, 2003). Assumption 4.5.2 (ii) is an additional condition needed to
correct the asymptotic variance for the preliminary estimates of the selection equation.
It is important to note that as the number of variables in z increases, the smooth-

ness requirement on E[4y j z = f ] and E[qk2n(v; v�1; v�2; z1) j z = f ] where qk2n is
de�ned as in (70), increases as well. This suggests that if we use less instruments in our
estimation, it may have better small-sample properties. This is not new in this literature
as it was pointed out by Ahn and Schmidt (1995) in linear panel-data models. To this
end it may be practical to use less variables in the conditioning set when estimating
E[g(�2; Z) j z].

5 Monte Carlo Study

In this section, we present simulation results illustrating the performance of the esti-
mation procedure described in the preceding sections. We consider two models: the
�rst illustrates how our complete model (including both exogenous and predetermined
variables in the selection equation) performs in a limited Monte Carlo study estimating
both the selection and outcome equations. The second compares the performance of our
estimator of the outcome equation to that of Kyriazidou (2001). However, because her
estimator cannot handle predetermined variables in the selection equation, we do not
include any such regressors in the second model.
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5.1 Model 1 : Predetermined Variable in the Selection Equa-
tion

Data for the Monte Carlo experiment of this model are generated for t = 0; 1; 2; 3
according to the following speci�cation.
For i = 1; : : : ; n; t = 1; 2; 3;

y�it = �y
�
it�1 + xit� + �i + "

�
it;

yit = dity
�
it;

dit = If�0dit�1 + �1yit�1 + 1z1it + 2z2it + �i + uit � 0g:
In the selection equation, the predetermined variables are generated so that z1it =

6 + 0:5y�it�1 + vit, with vit independently distributed as U(0; 1), whereas the strictly
exogenous variables z2it are distributed as N(0; 1) and are the same strictly exogenous
latent variables as those of the outcome equation, xit. The individual-speci�c e¤ect
�i =

1
3
(z2i1 + � � � + z2i3) + 2� � 0:75, where � is an independently distributed U(0; 1),

whereas the time-varying error term, uit, is distributed as N(0; 0:5). In order to satisfy
the scale normalization needed for identi�cation of parameters in the selection equation,
we normalized 2 = 1 in the estimation. Finally for simulation purposes, we assume
that �0 = �1 = 0:5; 1 = 1. In the main equation, �i = 1

3
(z2i1 + � � � + z2i3) and

"�it = 0:8�� + 0:6 (uit � E (uit)), where �� is an independent standard normal vector.
The initial observation, yi0, is generated as yi0 = di0y

�
i0, where y

�
i0 is N(�2; 1) and

di0 is generated according to a binomial distribution. We investigate the small-sample
properties of the estimators of � and �, whereas their true values are respectively assumed
to be � = 0:5; � = 3. Three sample sizes, n, are considered: 500, 1000, 2000.
We �rst estimate our selection equation. In all cases that follow, the approximation

of unknown functions with power or Fourier series, respectively, use the results of the
small-sample experiment of our selection equation estimator, displayed in Table 1 for
100 replications. For the design under investigation, we note that, in general, estimation
using Fourier series leads to better mean and variance estimates than does the power
series. We use the normal multivariate kernel with the bandwidth as the Silverman�s
rule of thumb. We trimmed the upper and low 2.5% of the data.
We nonparametrically estimate4F�1( bP (!it); bP (!it�1)) for t = 2; 3 and all i by using

the the bivariate Fourier and power series basis functions. We use an order of ten for
n=2000 (i.e. k1;2000 = 10), an order of seven for n=1000 (i.e. k1;1000 = 7), and an order
of �ve for n=500 (i.e.k1;500 = 5). The results are reported in Table 1 below. As can been
seen from the results, our estimator performs well in this limited Monte Carlo.
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table 1
finite-sample performance of the second-step estimator

Sample
Size

500 1000 2000

Power
Series

Fourier
Series

Power
Series

Fourier
Series

Power
Series

Fourier
Series

�0 Mean 0.456 0.473 0.466 0.483 0.491 0.492
Std Dev. 0.0122 0.107 0.092 0.079 0.031 0.025
RMSE 0.012 0.010 0.007 0.006 2e-3 1e-3

�1 Mean 0.473 0.482 0.483 0.505 0.492 0.498
Std Dev. 0.118 0.093 0.067 0.053 0.032 0.019
RMSE 0.0113 0.0112 0.005 0.004 8e-3 1e-4

1 Mean 0.943 0.963 0.973 0.978 1.003 1.001
Std Dev. 0.145 0.134 0.076 0.091 0.008 0.006
RMSE 0.011 9.4e-3 5.6e-3 0.003 8e-3 7e-4

2 Mean - - - - - -
Std Dev. - - - - - -
RMSE - - - - - -

In order to estimate the structural parameters � and � of our model we use two
versions of our estimator. The �rst version of our estimator is what we will call the
sieve instrumental variable (SIV) estimator. This estimator is obtained by noting that
the conditional moment restrictions can be written as an increasing sequence of uncon-
ditional moment restrictions. Using the identity matrix as the weighting matrix, our
conditional moment restrictions imply the following unconditional moment restrictions

E[b0j(Fit)gt(�20; Zit)] = 0

for t = 2; :::; T and j = 1; :::; kt;n: The model can now be estimated using any standard
instrumental variable or two stage least square method with fb0j(Fit)gkt;nj=1 as the instru-
ments (see Ai and Chen, 2003 and Chen, 2005 for details). The second version of our
estimator is the standard sieve minimum distance (SMD) described in the text.
In this version of the Monte Carlo simulation, we have two moment restrictions for

g3 (�2; Zi3) = di3di2[�yi3 � ��yi2 ��xi3� ��� (vi3; vi2; z2i)];

and
g2 (�2; Zi2) = di2di1[�yi2 � ��yi1 ��xi2� ��� (vi2; vi1; z2i)];

where
vi3 = �0di2 + �1yi2 + 1z1i3 + 2z2i3;
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vi2 = �0di1 + �1yi1 + 1z1i2 + 2z2i2;

vi1 = �0di0 + �1yi0 + 1z1i1 + 2z2i1;

and
z2i =

1

3
(z2i1 + z2i2 + z2i3):

The conditioning sets becomes

Fi2 = fyi0; di0; xi1; xi2; z1i1; z2i; di2di1 = 1g

and
Fi3 = fyi0; yi1; di0; di1; xi1; xi2; xi3; z1i1; z2i; di3di1 = 1g.

The series LS estimator of the conditional expectation, E[g(�2; Zi) j zi] used in the
SMD estimator is

(54) bm(�2;zi) = fbmt(�2;zit)gt=2;3 ;

where

(55) bmt(�2;zit) =
nX
j=1

gt(�2; Zjt)B
kt;n(zjt)0(B0tBt)�1Bkt;n(zit)

and the LS estimator of the conditional variance �o(zi) as b�o(zi) � f�0ts(zit)gt;s=2;3,
where
(56)

�0st(zis) �
� Pn

j=1 gs(
e�2SIV ; Zjs)gt(e�2SIV ; Zjt)Bkt;n(zjs)0(B0tBt)�1Bks;n(zis) t = s

0 otherwise

where e�2SIV is the estimator from the SIV estimation above.

As mentioned above, we use both the multivariate Fourier and power series for our
estimation. Furthermore, we increase the number of approximating basis functions with
the sample size. Table 2 reports the results for the Mean, Standard Deviation, and Root
Mean Squared Error of the estimates of � and � for 100 replications. For the design
under investigation, we note that, both the power and Fourier series do a very good job
of approximation. As is expected the SMD has much smaller standard deviation that
the SIV. In all cases, however,the RMSE of the proposed estimators decreases as sample
size increases at rate at least equal to

p
n.
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table 2
finite-sample performance of the third-step estimator

(� = 0:5 and � = 3)
Sample
Size

500 1000 2000

Power
Series

Fourier
Series

Power
Series

Fourier
Series

Power
Series

Fourier
Series

SIV � Mean 0.493 0.496 0.514 0.499 0.496 0.499
Std Dev. 0.069 0.038 0.066 0.006 0.066 0.005
RMSE 0.002 0.002 7.4e-4 1.1e-4 4.4e-4 1.6e-5

� Mean 3.026 2.999 3.095 3.000 3.002 3.000
Std Dev. 0.710 0.019 0.459 0.002 0.020 0.001
RMSE 0.013 5.8e-5 2.7e-3 5.7e-6 1.5e-5 2.4e-7

SMD � Mean 0.485 0.485 0.485 0.485 0.478 0.483
Std Dev. 0.059 0.057 0.045 0.044 0.033 0.037
RMSE 0.027 0.026 0.015 0.015 0.009 0.009

� Mean 2.940 2.956 2.974 2.991 2.968 2.976
Std Dev. 0.173 0.198 0.136 0.127 0.094 0.101
RMSE 0.082 0.090 0.043 0.040 0.022 0.023

5.2 Model 2: No Predetermined Variable in the Selection Equa-
tion

In order to see how our estimator performs in a small sample study, we compared our
SMD estimator to the three estimators proposed in Kyriazidou (2001). Since Kyri-
azidou�s (2001) estimator does not apply to the case in which there are variables in
the selection that are predetermined with respect to the outcome we use the following
framework for this study.
For i = 1; : : : ; n; t = 1; 2; 3

y�it = �y
�
it�1 + �i + "

�
it;

yit = dity
�
it;

dit = If1z1it + �i + uit > 0g;
where z1 is strictly exogenous and normally distributed N(0; 1). Individual-speci�c
e¤ects as well as the time-varying error terms and initial observations follow the same
structure and distributional assumptions as the one used in our model above. Namely
�i =

1
3
(z1i1 + z1i2 + z1i3) + 2� � 0:75, where � is independently distributed U(0; 1),

uit is distributed as N(0; 0:5). In the main equation, �i = 1
3
(z2i1 + z1i2 + z2i3) and
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"�it = 0:8�� + 0:6 (uit � E (uit)), where �� is an independent standard normal vector.
The initial observation, yi0, is generated as yi0 = di0y

�
i0, where y

�
i0 is N(�2; 1) and di0

is generated according to a binomial distribution. In both cases, we report the small-
sample properties of the structural estimator, b�, for the true selection parameter 1 = 1.
Again we consider three sample sizes of 500, 1000, and 2000.
In this version of the Monte Carlo study, we have two moment restrictions associated

to
g3 (�2; Zi3) = di3di2[�yi3 � ��yi2 ��� (vi3; vi2; z2i)]

and
g2 (�2; Zi2) = di2di1[�yi2 � ��yi1 ��� (vi2; vi1; z2i)];

where
vi3 = �0di2 + �1yi2 + 1z1i3 + 2z2i3;

vi2 = �0di1 + �1yi1 + 1z1i2 + 2z2i2;

vi1 = �0di0 + �1yi0 + 1z1i1 + 2z2i1;

and
z2i =

1

3
(z2i1 + z2i2 + z2i3):

The conditioning sets becomes

Fi2 = fyi0; di0; z1i1;z1i2; z1i3; z2i; di2di1 = 1g

and
Fi3 = fyi0; yi1; di0; di1; z1i1;z1i2; z1i3; z2i; di3di1 = 1g.

Below we specify the kernel weighted moment restrictions used in Kyriazidou (2001):

(57)
1

n

nP
i=1

di0di1di2yi0 (�yi2 � ��yi1)!i2,

(58)
1

n

nP
i=1

di0di1di2di3yi0 (�yi3 � ��yi2)!i3,

(59)
1

n

nP
i=1

di1di2di3yi1 (�yi3 � ��yi2)!i3,

(60)
1

n

nP
i=1

di0di1di2di3 (yi3 � �yi2) (�yi2 � ��yi1)!i2,
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(61)
1

n

nP
i=1

di0di1di2
�
(yi2 � �yi1)2 � (yi1 � ��yi0)2

�
!i2,

and

(62)
1

n

nP
i=1

di1di2di3
�
(yi3 � �yi2)2 � (yi2 � ��yi1)2

�
!i3,

where !ij are the kernel weights constructed using a standard normal kernel with band-
width parameter h = n�

1
5 . We report here only estimates using the optimal weighting

matrix. IV refers to the estimation using only moment restrictions (57), (58) and (59).
GMM1 refers to the estimation where moment restriction (60) is added to those used
in the IV estimation. Finally, GMM2 refers to the estimation using all the moment
restrictions, (57)-(62).

table 3
finite-sample performance of sieve estimators

Sample
Size

500 1000 2000

�0= :5
Power
Series

Fourier
Series

Power
Series

Fourier
Series

Power
Series

Fourier
Series

SMD Mean 0.493 0.467 0.487 0.468 0.486 0.460
Std Dev. 0.070 0.099 0.057 0.087 0.036 0.050
RMSE 0.031 0.047 0.018 0.029 0.009 0.014

table 4
finite-sample performance of weighted kernel estimators

Sample
Size

500 1000 2000

�0= :5
IV Mean 0.5020 0.5017 0.5019

Std Dev. 0.0844 0.0616 0.0447
RMSE 0.0755 0.0390 0.0200

GMM1 Mean 0.5032 0.5020 0.5022
Std Dev. 0.0858 0.0644 0.0457
RMSE 0.0767 0.0407 0.0204

GMM2 Mean 0.5041 0.5003 0.5004
Std Dev 0.0880 0.0653 0.0462
RMSE 0.0787 0.0413 0.0206

As expected, our estimator performs as well if not better than Kyriazidou�s (2001)
estimators in terms of a smaller RMSE.
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6 Conclusion

In this paper we consider the problem of identi�cation and estimation in panel-data
sample-selection models with a binary selection rule when the latent equations contain
possible predetermined variables, lags of the dependent variables, and unobserved in-
dividual e¤ects. The selection equation contains lags of the dependent variables from
the latent equations and other possible predetermined variables relative to the latent
equations. We derive a set of conditional moment restrictions that are then exploited to
construct a three-step sieve extremum estimator for the parameters of the main equa-
tion including a nonparametric estimator of the sample-selection term. In the second
step, the unknown parameters of the selection equation are consistently estimated using
a transformation approach in the spirit of Berkson�s minimum chi-square sieve method
and a �rst-step kernel estimator for the selection probability. This second step esti-
mator is of interest in its own right: it can be used to semiparametrically estimate a
panel-data binary-response model with a nonparametric individual speci�c e¤ect with-
out making any other distributional assumptions. We show that both our second- and
third-step estimators are

p
n-consistent and asymptotically normal. This has not been

previously established for this class of dynamic sample-selection models. Our frame-
work is also more general than the ones previously studied in that ours can estimate
equations derived from an intertemporal utility maximization problem, whereas the al-
ternative estimators in the literature cannot. The major limitation of our model is that
it imposes an individual speci�c e¤ect structure similar to Altug and Miller (1998) in
the selection equation; however, it is still general enough since we do not make any
parametric assumption about the functional form of either the mean component or the
distribution function. Even this restriction can be relaxed further at the expense of
making a exclusion-independence assumption. Our estimators perform well in a limited
Monte Carlo study and does better that Kyriazidou�s estimator in small sample.

7 Appendix

In this appendix, the letters c and C will denote diverse constants, not necessarily the
same, and diverse occurences.

Proof of Proposition 1. First, note that for i = 1; :::; n; t = 4; :::T;

E[(4yit � �4yit�1 �4xit� �4�(vit; vit�1; vit�2; z1i )) j zit] = E[4"it j zit]:

From (28),

(63) E[4"it j zit] = E["�it � �(vit; vit�1; z1i ) j zit]� E["�it�1 � �(vit�1; vit�2; z1i ) j zit]:
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Furthermore,

E["�it � �(vit; vit�1; z1i ) j zit] = E[E["�it � �(vit; vit�1; z1i ) j � it;zit] j zit](64)

= E[E["�it � �(vit; vit�1; z1i ) j � it] j zit]:(65)

The second equality follows from the independence of zit=� it from "�it (see Assump-
tions 2.1�2.2). Finally from (23),

(66) E["�it � �(vit; vit�1; z1i ) j � it] = 0;

which implies that

(67) E["�it � �(vit; vit�1; z1i ) j zit] = 0:

A similar reasoning on the second term of the right-hand side of (63) leads to

(68) E["�it�1 � �(vit�1; vit�2; z1i ) j zit] = 0:

Finally, Equations (67) and (68) prove that (63) is equal to zero.

Proof of Theorem 1. First, by Assumption 2.3, fxit; zit; �i; �i; "�it; uitg
T
t=1 is an i.i.d

sample drawn from a distribution that satis�es (1)-(3). We observe a random sample
f(yi0; di0)gni=1 from a distribution that satis�es (2) where di0 and y�i0 take values on a
subset of the real line. Assumptions 2.4 and 4.4.1 imply that y�it are i.i.d over individuals.
From equation (3) and by Assumptions 2.1-2.2, 4.4.1 and 4.4.2 we obtain that di �
fditgTt=1 are i.i.d over individuals. Therefore, by de�nition of !it � (dit�1; yit�1; z0it; z1i )0;
!i = f!itgTt=1 are i.i.d..
Let �1 (4d�1;4z; P ) � �04d�1+4z�4F�1(P ); and b�1 (4d�1;4z; P ) � b�04d�1+

4zb � \4F�1(P ): Let d2(�1; �10) = k�1 � �10k2 = Ef[�0 � �00]4d�1 + 4z[ � 0] �
[4F�1(P0)�4F�10 (P0)]g2. Consistency of �1 is established using the following decom-
position: b�1 � bP�� �10 �

b�1 (P0)� �10+ b�1 � bP�� b�1 (P0)
� A+B:

Rate of Convergence of A.
The rate of convergence of A is obtained by application of Theorem 3-2 in Chen

(2005). For clarity, these conditions are recalled here:
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(C05)1.1: Q1(�1; Po) � E [`(�1; !; P0)] is uniquely maximized on �1 at �10 2 �1.
(C05)1.2 : �1n � �1n+1 � � � � � �1 for all n � 1 and for any �1 2 �1 there exists
�n�1 2 �1n such that k�1 � �n�1k = o(1) as n gets large. (C05)1.3: The criterion
Q1(�1; P0) is continuous in �1 2 �1 with respect to d(.). (C05)1.4: The sieve spaces �1n
are compact under d(.). (C05)1.5: plimn!1sup�12�1n jQ1n(�1; P0)�Q1(�1; P0)j = 0:
(C05)1.6 : f!igni=1 are i.i.d. (C05)1.7: There is C1 > 0 such that for all small " > 0;
sup�12�1n V [`(�1; !; P0)� `(�10; !; P0)] � C1"2. (C05)1.8: For any � > 0; there exists a
constant s 2 (0; 2) such that

sup
�12�1n

j`(�1; !; P0)� `(�10; !; P0)j � �sU (!) ;

where E ([U (!)]) � C2 for some  � 2. (C05)1.9 : Let

Fn = f`(�1; !; P0)� `(�10; !; P0) : d (�1; �10) � �; �1 2 �1ng

and for some constant b; there exists �n 2 (0; 1) such that

�n = inf

(
� 2 (0; 1) : 1

p
n�2

�R
b�2

q
H[](s;Fn; k:k2)ds � const:

)
:

(C05)1.1 is a direct consequence of Proposition 1. (C05)1.2 is assumed in 4.2.1.
(C05)1.3 follows from the properties of scalar products. Assumption 4.2.1 guaranties
that the sieve spaces �1n are compact, hence (C05)1.4 is satis�ed. (C05)1.5 follows
from the continuity (C05)1.3, from simple convergence of Q1n and (C05)1.4. (C05)1.6 is
implied by Assumption 2.3. The remaining of the proof consists in checking conditions
(C05)1.7, (C05)1.8 and (C05)1.9 controlling for the rate of convergence. To simplify
notations, we denote by 4F�1 = 4F�1u (P0) and 4F�10 = 4F�1u0 (P0): Note that
`(�1; !; P0)� `(�10; !; P0)

= �1
2

�
[4y�1 � �04d�1 �4z +4F�1]

0
[4y�1 � �04d�1 �4z +4F�1]

�
�
4y�1 � �004d�1 �4z0 +4F�10

�0 �4y�1 � �004d�1 �4z0 +4F�10 � �
= �1

2

�
(�00 � �0)4d�1 +4z (0 � ) +4F�1 �4F�10

�0
�
�
24y�1 � (�00 + �0)4d�1 +4z (0 + ) +4F�1 +4F�10

�
=
�
(�0 � �00)4d�1 +4z ( � 0) +4F�10 �4F�1

�0
�
h
(4� +4�) + (�0��00)

2
4d�1 +4z (�0)2

+
4F�10 �4F�1

2

i
;

and by Assumption 4.2.2,
E[`(�1; !; P0)� `(�10; !; P0)]2

� 2C k�1 � �10k2+E

26664
� �

(�0 � �00)4d�1 +4z ( � 0) +4F�10 �4F�1
�0

�
�
(�0 � �00)4d�1 +4z ( � 0) +4F�10 �4F�1

� �0
�
� �

(�0 � �00)4d�1 +4z ( � 0) +4F�10 �4F�1
�0

�
�
(�0 � �00)4d�1 +4z ( � 0) +4F�10 �4F�1

� �0
37775 :
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Let D denote the second term on the right hand side of this inequality.

D � sup�12�1n
� �

(�0 � �00)4d�1 +4z ( � 0) +4F�10 �4F�1
�0

�
�
(�0 � �00)4d�1 +4z ( � 0) +4F�10 �4F�1

� �
�E

� �
(�0 � �00)4d�1 +4z ( � 0) +4F�10 �4F�1

�0
�
�
(�0 � �00)4d�1 +4z ( � 0) +4F�10 �4F�1

� � :
Using Theorem 1 of Gabushin (1967) and Lemma 2 in Chen and Shen (1998), by

Assumption 4.2.3 we have for any p1 > 0; k�1 � �10k1 � C k�1 � �10k2p1=(2p1+d) ; where
d = dim(!): Therefore, D � C2 k�1 � �10k2(1+2p1=(2p1+d)) � C2 k�1 � �10k2 and (C05)1.7
is satis�ed.
Moreover,
j`(�1; !; P0)� `(�10; !; P0)j

� k�1 � �10k1
�
j4� +4�j+ 1

2
(k�1k1 + k�10k1)

�
a.s.

� C k�1 � �10k2p1=(2p1+d)
�
j4� +4�j+ 1

2
(k�1k1 + k�10k1)

�
a.s.

Using Lemma 2 in Chen and Shen (1998), we have that (C05)1.8 is also satis�ed for
s = 2p1= (2p1 + d),  = 2 and U (!) = j4� +4�j+ 1

2
(k�1k1 + k�10k1) :

Finally, in order for b�1 to converge to �10 at a fast rate, not only does the approxi-
mation error d(�0; �n�0) have to approach zero suitably fast, the sieve space must not be
too complex. More precisely, we denote by H[](s;Fn; k:k2) the logarithm of the minimum
number of closed intervals denoted by N[](s;Fn; k:k2) and of the form ff : g � f � hg
that cover Fn for g and h given such that kh� gkr � s: In R2 for example; these in-
tervals are rectangles whose lower left and upper right summits are respectively g and
h: Determination of the �nal convergence rate is obtained by setting �n � d (�10; �n�10).
To calculate �n from (C05)1.9, an upper bound of H[:] (s;Fn; k:k2) su¢ ces.
Note that k�10 � �n�10k � const:

�F�10 � �n�F�10

1. By Lemma 2.1 in Os-

siander (1987), H[:] (s;Fn; k:k2) � logN[:] (s;H1n; k:k2) : Let C =
q
E [U (!)]2; then

H[:] (s;Fn; k:k2) � logN[:]
�
s
C
;H1n; k:k1

�
: By Lorentz (1966),

4F�10 (P0)� �n4 F�10 (P0)
 =

O (k�p1n ) for H12�p1c1 : By Lemma 2.5 of Van de Geer (2000), logN[:]
�
!
C
;H1n; k:k1

�
�

const:kn log
�
1 + 4c1

!

�
and �n solves

1
p
n�2n

�nR
b�2n

q
H[](s;Fn; k:k2)ds � 1

p
n�2n

p
kn

�nR
b�2n

log

�
1 +

4c1
s

�
ds

� 1
p
n�2n

p
kn�n � const:

The solution is �n �
q

kn
n
where � means "bounded above and below". Finally,

by Theorem 3.2 in Chen (2005), k�1 (P0)� �10k = Op
�
max

�q
kn
n
; O (k�p1n )

��
and for
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kn = O
�
n

1
2p1+d

�
; k�1 (P0)� �10k = Op

�
n
� p1
2p1+d

�
:

Rate of convergence of B.
By Lemma 8-10 in Newey and McFadden (1994) relying on Assumptions 4.1.1-4.1.3,

we have
p
n kbp (!)� p0 (!)k2 ! 0: By Assumptions 4.1.1-4.1.4, Newey (1994) shows

that
kbp� p0kS = Op �(lnn) 12 �nhd+2q�� 1

2 + hL
�
:

Hence, we obtain that
 bP � P0

S
= Op

�
(lnn)

1
2

�
nhd+2q

�� 1
2 + hL

�
; where k:kS is the

Sobolev norm de�ned as kPkS � max
l�q

sup
!2W

@P (!)@!l

 :
Finally, using the fact that �n are uniformly Lipschitzian, we have

b�1 � bP�� b�1 (P0) =�n4 F�1( bP )� �n4 F�1 (P0) � C  bP � P0p1
S
.

Hence, if
P � bP

S
= O (k�1n ) ; then

�n4 F�1( bP )� �n4 F�1 (P ) = O (k�p1n )

and
b�1 � bP�� b�1 (P0) = Op �n� p1

2p1+d )
�
:Recall that

 bP � P0
S
= Op

�
(lnn)

1
2

�
nhd+2q

�� 1
2 + hL

�
and note that (lnn)

1
2

�
nhd+2q

�� 1
2 + hL � (lnn) 12

h�
nhd+2q

�� 1
2 + hL

i
.

We choose the optimal bandwith h� such that
�
nhd+2q

�� 1
2 = hL; that is h� =

n�
1

2L+d+2q) . Finally,
�
n (h�)d+2q

�� 1
2
+(h�)L = n�

L
2L+d+2q , so that

P � bP = Op �(lnn) 12n� L
2L+d+2q)

�
and

b�1 � bP�� b�1 (P0) = Op �(lnn) p12 n� L
2L+d+2q)

�
.

Finally, we can choose q and L large enough such that L
2L+d+2q)

> p1
2p1+d

and
b�1 � bP�� �0 =

Op

�
n
� p1
2p1+d

�
:

Proof of Theorem 2. All computations being computed at the true value of the
selection probability P0, we will de�ne l (�1; !; P0) � l (�1; !) for the remaining of the
proof. For all �1 2 �1 and all !; there exists l0�0 [� � �0; !] such that the remainder in
the linear approximation is

r (�1 � �10; !) = l (�1; !)� l (�10; !)� l0�0 [� � �0; !] ;

where l0�0 [� � �0; !] = lim
t!0

[l (�1 (�10; t) ; !)� l (�10; !)] =t is the pathwise derivative of l
at �0 and �1 (�10; t) 2 �1 is a path in t connecting �10 to �1 such that �1 (�10; 0) = �10 and
�1 (�10; 1) = �1: Suppose that L2 norm de�ned above induces an inner product h:; :i on the
completion of the space spanned by �1��10 denoted V: Let "n denote any sequence sat-
isfying "n = o

�
n�

1
2

�
and let �n (g (!)) = 1

n

nP
i=1

(g (!i)� E0 (g (!i))) denote the empirical
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process indexed by the function g(:): Let K (�10; �1) � n�1
nP
i=1

E0 [l (�10; !i)� l (�1; !i)] :

The proof consists in checking the following conditions (see Chen, 2005).
(C05)2.1: Suppose the functional of interest f has the following smoothness proper-

ties, (i) there is a � > 0 such that
��f (�1)� f (�10)� f 0�10 [�1 � �10]�� = O (k�1 � �10k�)

uniformly in �1 2 �1n with k�1 � �10k = o (1); (ii) sup
f�12�1n:k�1��10k>0g

jf 0�10 [�1��10]j
k�1��10k < 1;

(iii) there is �nv� 2 �1n such that k�nv� � v�k
b�1 � �10 = op �n� 1

2

�
. (C05)2.2:

sup
f�2�n:k�1��10k��ng

�n
�
l (�1; !)� l ((�1 � "n�nv�) ; !)� l0�10([�"n�nv

�; !]
�
= Op

�
"2n
�
:

(C05)2.3: K
�
�10;b�1��K ��10;b�1 � "n�nv�� = �"n Db�1 � �10; �nv�E+o (n�1). (C05)2.4:

(i) �n
�
l0�10 [�nv

� � v�; !]
�
= op

�
n�

1
2

�
; (ii) E[l0�10 [�nv

�; !]] = o
�
n�

1
2

�
. (C05)2.5:

n
1
2�n

�
l0�10 [v

�]
�
! N (0; �2v�) where �

2
v� � V ar0

�
l0�10 [v

�]
�
> 0 for i.i.d data.

By the Riesz representation theorem, there exists v� 2 V such that for any �1 2 �1

f 0�10 [�1 � �10] = h�1 � �10; v
�i

if and only if
g0�10 <1.

Let f (�1) = �
0
�
�0


�
where � is a unit vector in Rd�0+ : Then, (C05)2.1 is satis�ed

for any arbitrary large � since

��f (�1)� f (�10)� f 0�0 [�1 � �10]�� = �0 � �0
�
� �0

�
�00
0

�
�
�
�0 � �00
 � 0

�0
� = 0:

Moreover,

f 0�102 = sup
f�12�1n:k�1��10k>0g

��
�0 � �00
 � 0

�0
�

�2
k�1 � �10k2

= sup8<:(b;u1):
b0
24 4d�1
4z

35�u1 (Pi)
>0

9=;
fb0�g2

b0E

���
4d�1
4z

�
� u1(P )

���
4d�1
4z

�
� u1(P )

�0�
b

= �0E
�
Du�1

(!)0Du�1
(!)
��1

� = �0��1� �;
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where Du�1
(!) �

�
4d�1
4z

�
� u1(P ) solves

inf0@u1:

24 4d�1
4z

35�u1 (P )
>0

1A
E

���
4d�1
4z

�
� u1(P )

���
4d�1
4z

�
� u1(P )

�0�
:

Using the de�nition of the norm above, we have�
��(�0;); �

�
F

�
=
�
��1� �;�u�1��1� �

�
:

Assumption 4.3 ensures that the denominator is di¤erent from zero, hence that
f 0�10

is bounded and (C05)2.1 (ii) is satis�ed. Since
b�1 � �10 = O �n� p1

2p1+d

�
; therefore, by

Assumption 4.3.3, (C05)2.1(iii) is satis�ed. In order to check (C05)2.2, note that

l (�1; !)� l(�1�"n�nv�; !)� l0�10 [�"n�nv
�; !] = r (�1 � �10; !)�r (�1 � "n�nv� � �10; !) ;

with

r (�1 � �10; !) =
�
(�0 � �00)4d�1 +4z ( � 0)�4F�1(P0) +4F�10 (P0)

�2
and

r (�1 � "n�nv� � �10; !) =
�
(�0 � �00)4d�1 +4z ( � 0)
�
�
4F�1 �4F�10

�
� "n�nv�

�2
.

Therefore,

l (�1; !)� l(�1� "n�nv�; !)� l0�10 [�"n�nv
�; !] = �1

2

�
�2 (�1 � �10) "n�nv� � ("n�nv�)2

�
:

Finally, let Sn = f(�1 � �10) v� : k�1 � �10k � �n; �1 2 �1g : It follows fromKolmogorov
and Tihomirov (1961) and by Lemma 4 of Shen and Wong (1994) that the convergence
rate of the empirical process

sup
f�12�1:k�1��10k��ng

n�
1
2�n ((�1 � �10) v�)

is of order Op
�
n
� 2p1
2p1+d

�
; and (C05)2.2 holds for p1 > d

2
:

Note that `(�1; !)� `(�10; !) =
�
(�0 � �00)4d�1 +4z ( � 0) +4F�10 �4F�1

�0
�
h
(4� +4�) + (�0��00)

2
4d�1 +4z (�0)2

+
4F�10 �4F�1

2

i
.
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Therefore, E [`(�1; !)� `(�10; !)] = 1
2
k�1 � �10k2 = K (�10; �1) and

K
�
�10;b�1��K ��10;b�1 � "n�nv��

=
1

2

D
�10 � b�1; �10 � b�1E� 1

2

D
�10 � b�1 � "n�nv�; �10 � b�1 � "n�nv�E

= �1
2

�
2"n

D
�10 � b�1; �nv�E�� "2n h�nv�; �nv�i

= �"n
D
�10 � b�1; �nv�E+ op �n�1� ;

and (C05)2.3 is satis�ed. Furthermore,

l0�10 [�1 � �10; !] = (4� +4�)
�
(�0 � �00)4d�1 +4z ( � 0) +4F�10 �4F�1

�
:

Hence the expectation of this term is equal to zero and (C05)2.4 (ii) is satis�ed.
Moreover,

1

n

nP
i=1

l0�10 [�nv
� � v�; !i] =

1

n

nP
i=1

(4�i +4�i) f�nv�F � v�Fg :

Using Chebyshev�s inequality, for any real number �,

P

����� 1n nP
i=1

l0�10 [�nv
� � v�; !i]

���� > n�� �
nP
i=1

f�nv�F � v�Fg
2 V (4�i +4�ij!)

n2�+2
:

Therefore, by Assumption 4.2.2, (C05)2.4(i) is satis�ed for � = �1
4
.

We know that

l0�10 [�nv
�; !] = (4� +4�)

��
4d�1
4z

�
��(�0;) + �nv

�
F (P )

�
:

Hence, (C05)4.2(ii) is trivially satis�ed.Using the expression above for ��(�0;) and v
�
F (P ) ;

we obtain that �
��(�0;); �

�
F

�
=
�
��1� �;�u�1��1� �

�
and

l0�10 [v
�; !] = (4� +4�)

��
4d�1
4z

�
��1� �� u�1��1� �

�
= (4� +4�)Du�1

(!) ��1� �:
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(C05)2.5 is satis�ed under Assumption 4.3.1. Finally,

V
�
l0�10 [v

�; !]
�
= E

�
�0��1� Du�1

(!)0 V (4� +4�j!)Du�1
(!) ��1� �

�
;

= �0E
�
Du�1

(!)0Du�1
(!)
��1

E
�
Du�1

(!)0 V (4� +4�j!)Du�1
(!)
�

�E
�
Du�1

(!)0Du�1
(!)
��1

� > 0:

The result follows from Theorem 1 and a direct application of Theorem 4.2 in Chen
(2005).

Proof of Theorem 3. As for the selection equation, we decompose the proof in
successive stages:b�2 �b�1; b�o(e�2)�� �20 �

b�2 (�10;�0(�20))� �20
+
b�2 �b�1;�o(�20)�� b�2 (�10;�0 (�20))

+
b�2 �b�1; b�o(e�2)�� b�2 �b�1;�0 �e�2��

+
b�2 �b�1;�0 �e�2��� b�2 �b�1;�0 (�20)� ;

� A0 +B0 + C 0 +D0:

We �rst �nd the rate of convergence of A0 and e�2. This is done by verifying Assump-
tions 3.1-3.9 necessary to apply Theorem 3.1 of Ai and Chen (2003) for the respective
weighting matrices �0(�20) and the identity I. For clarity, we recall these assumptions in
the context of our model. We then show that the set of primitive Assumptions 4.1-4.11
are su¢ cient for these conditions to hold. Let us introduce the following norm:

(69) k�2ks = k(�; �)0kE + sup
v2R3

��4�(v)� (1 + kvk2E)�a
2

�� or some a > p2:
(AC03)3.1: (i)The data fZi;zigni=1 are i.i.d.; (ii) the support of z; = is compact

with a nonempty interior; (iii) the density of z is bounded and bounded away from
zero; (AC03)3.2: (i) The smallest and largest eigenvalues of EfBks;n(z)Bks;n(z)0g are
bounded and bounded away from zero for all ks;n; (ii) for any f(:) with E[f(z)2] <
1, there exists a Bks;n(z)0� such that E

n�
f(z)�Bks;n(z)0�

�2o
= o(1); (iii) for any

f(:) 2 �c (=) with  > dz=2 , there exists Bks;n(z)0� 2 �c (=) such that

Sup
z2=

��f(z)�Bks;n(z)0��� = O(k�=dzs;n )

and k�=dzs;n = o(n�
1
4 ): (AC03)3.3: �20 2 �2 is the only �2 2 �2 satisfying E[g(�2; Z)jz] =

0. (AC03)3.4: (i) �o(z) is �nite positive de�nite uniformly over z 2 =; (ii) b�o(z) =
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�o(z) + op(n�
1
4 ) uniformly over z 2 =. (AC03)3.5: (i) There is a metric k:ks

such that �2 � �2 � H2 is compact under k:ks; (ii) for any �2 2 �2, there ex-
ists �n�2 2 �2n � �2 � H2n with k�n�2 � �2ks = o(1); (iii) there is a constant
�1 > 0 such that for any �2 2 �2, there exists �n�2 2 �2n � �2 � H2n such that
k�n�2 � �2ks = O(k

��1
2n ), and k

��1
2n = o(n�

1
4 ). (AC03)3.6: (i) E[jg(�20; Z)j2 jjz] is

bounded; (ii) g(�2; Z) is Hölder continuous in � 2 A ; (iii) each element of g(�2; Z)
satis�es an envelope condition over �2 2 �2n that is, there exists a measurable function
c(Z) with E [c(Z)4] <1 such that jg(�2; Z)j � c(Z) for all Z and �2 2 �2n; (iv) each el-
ement of m(:; �2) � E (g(:; �2)jz) 2 �c (=) with  > dz=2 for all �2 2 �2n. (AC03)3.7:
(i) dgks;n � d1+dim(x) + k2n, k2n ! 1 and ks;n=n ! 0: Let �0n � sup

z2=

Bks;n(z)
E
,

which is nondecreasing in ks;n. Denote N(r;�2; k:ks) as the minimal number of radius
r covering balls of H2n under k:ks. (ii) k2n � lnn � �

2
0n � n�

1
2 = o(1). (AC03)3.8:

ln[N("1=�;�2n; k:ks)] � const: � k2n � ln(k2n="). (AC03)3.9: (i) �2 is convex in �20,
and g(�2; Z) is pathwise di¤erentable at �20; (ii) for some C1; C2 > 0

C1Efg(z; �2)0�(z)�1g(z; �2)g � k�2 � �20k2 � C2Efg(z; �2)0�(z)�1g(z; �2)g

for all �2 2 �2n with k�2 � �20ks = o(1):
As is standard we need to show that the criterion function is continuous in the �rst

step estimator. This is done by adding a boundedness condition in 4.4.7 that ensures
that our moment conditions are continuous in the preliminary estimates of the selection
equation. Given the de�nition of Zis and zis, the data fZi;zigni=1 are i.i.d (see proof of
Theorem 1) and (AC03)3.1(i) is satis�ed. Assumptions 4.4.2, 4.4.3, 4.4.4 directly imply
that the support of fzigni=1 is compact with a nonempty interior and (AC03)3.1 (ii) is
satis�ed. (AC03)3.1(iii) is directly assumed in Assumption 4.4.4. (AC03)3.2(i) is di-
rectly assumed by Assumption 4.4.7. Note that (AC03)3.2(i) is satis�ed with the linear
sieves satisfying Assumption 4.4.5 (see Newey (1997) for details). Note that 3.2 (ii) is
implied by Assumptions 4.4.5, while (AC03)3.2(iii) is implied by Assumptions 4.4.5 and
4.4.6 (ii). Propositions 2 and 3 ensure that �2 is identi�ed, hence (AC03)3.3 is satis�ed.
Note that (AC03)3.4(ii) and (iii) are trivally satis�ed with an identity weighting matrix
or for the true value �0. Otherwise Assumptions 4.4.8 (ii) and (iii) are su¢ cient to
satisfy this condition. By Assumptions 4.4.3 and 4.4.9, �2 is compact under the norm
k�2ks = k(�; �)kE + sup

v2R3+dim(z1)

��4�(v)� (1 + kvk2E)�a
2

�� for some a > p2: From Chen,

Hansen and ScheinKman (1997) for any �2 2 �2, k�n�2 � �2ks =
�n4��4�1;$ =

sup
�

����n4�(�)�4�(�)�$(�)�� � C(k2n)� p2
3+dim(z1) , where $(�) = (1+kvk2E)�

a
2 for some

a > p2: Hence (AC03)3.5(i) is satis�ed by Assumption 4.4.6. By the same argument
(AC03)3.5(iii) is satis�ed with �1 = p2= (3 + dim(z

1)) : (AC03)3.6(i) is satis�ed by As-
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sumptions 4.4.2, 4.4.3 and 4.4.8 while for any �21,�22 2 �2;

jg(�21; Z)� g(�22; Z)j � jdd�14y�1(�1 � �2)j+ jdd�14x(�1 � �2)j
+
��dd�1(4�1(v)�4�2(v))��

� kdd�14y�1kE k�1 � �2kE + kdd�14xkE k�1 � �2kE
+[$(v)]�1 kdd�1k1

4�1 �4�21;$
� C(Z) k�21 � �22ks ;

whereC(Z) = kdd�14y�1kE+kdd�14xkE+[$(v)]�1 kdd�1k1 andE[C2(Z)jz] <1.
Therefore, (AC03)3.6(ii) for � = 1 by Assumptions 4.4.2, 4.4.9 and 4.4.11(ii). For any
�2 2 �2n � � � H2n, with H2n,being the sieve space for the tensor product of Fourier
or power series of the form

(70) H2n =

�
4�(v; v�1; v�2; z1) = qk2n (v; v�1; v�2; z1)0 �

for all � satisfying
4�

�p2
� c

�
;

we have

sup
�22�2n

jg(Z; �2)j � jdd�14yj+ jdd�14y�1j+ sup
�2�2

jdd�14x�j

+ jdd�1j sup
4�2Hn

��4�(v)�� � C(Z)
with C(Z) = j4yj+j4y�1j+sup

�
j4x�j+ sup

4�2Hn

��4�(v)��. Hence (AC03)3.6(iii) is satis�ed
by Assumptions 2.2, 4.4.11(i) and 4.4.2-4.4.4. Note that

m(z; �2) = E[dd�14y j z]� �E[dd�14y�1 j z]
�E[dd�14xjz]� � E[dd�14�(v)jz]:

Therefore (AC03)3.6(iv) is satis�ed by Assumption 4.4.10. The �rst part of (AC03)3.7(i)
directly assumed by Assumption 4.4.6(i), (AC03)3.7(ii) is trivially implied by Assump-
tion 4.4.5 and 4.4.6(ii). Consider the case of power series. From Newey (1997), if
a) var(g(�20; Z)jz] is bounded; b) The support of z is compact with nonempty inte-
rior with probability density bounded away from zero and c) m(z; �) 2 �c (z); then
�0n � ks;n: Note that a) is satis�ed by Assumption 4.4.8, b) was shown above when
proving (AC03)3.1(ii) while c) was just veri�ed by (AC03)3.6(ii). We now have

k2n � lnn� �20n � n�
1
2 � k2n � lnn� k2s;n � n�

1
2 = o(1)

where the �nal equality comes from Assumption 4.4.5. In the case of Fourier Series (see

Ai and Chen (2003) pp. 1807), �0n = k
1
2
s;n; therefore

k2n � lnn� �20n � n�
1
2 = k2n � lnn� ks;n � n�

1
2 = o(1)
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where the last equality comes from Assumption 4.4.5. From Shen and Chen (1998) and
Shen and Wong (1994), for � = 1 and the linear sieves space in Assumption 4.4.5,

ln[N(";�2n; k:ks)] � const:� ln(1=") � const:� k2n � ln(k2n=")

Note that g(�2; Z) is linear and continuous in �20, hence di¤erenciable. As noted in Ai
and Chen (2003), when g(Z; �2) is linear in �2 then k�2 � �20k2 = Efm(z; �2)0�(X)�1m(z; �2)g.
Assumption 3.9(ii) is satis�ed and by Theorem 3.1 in Ai and Chen (2003), we have

k�2 (�0 (�20))� �20k = op

�
n�

1
4

�
;
e�2 (I)� �20 = op

�
n�

1
4

�
. By Assumption 4.4.1-

4.4.8 and application of Lemma A1(A and B) in Ai and Chen (2003), we obtain

b�o(z; �2) = �o(z; �2) + op(n� 1
4 ) uniformly over z 2 =; �2 2 Non:

Finally for �2n � �2n+1 � : : : � �2 with �2 2 �p2c2 ; we obtainb�2 �b�1; b�o(e�2)�� �20 = op

�
n�

1
4

�
+Op

�
n
� p2p1
2p1+d

�
+ op

�
n�

p2
4

�
+ op

�
n�

p2p�
4

�
= op

�
n�

1
4

�
;

for p2 > 1; p� � 1 and p1 > d
2
, where the �rst equality follows from the fact thatb�1 � �10 � b�1 � �10

2
for all �1 2 �1:

Proof of Theorem 4. This theorem is proved by �rst verifying Assumptions 4.1�
4.6 of Theorem 4.1 in Ai and Chen (2003) given that all the conditions in Theorem
3 are satis�ed: (AC03)4.1: (i) EfDu�2

(z)0�0(z)�1Du�2
(z)g is positive de�nite; (ii)

(�0; �0) 2 int(�2); (iii) �0(z) � var [g(�20; Z)jz] is positive de�nite for all z 2 F .
(AC03)4.2: There is v�n =

�
v��2 ;��nu

�
2v
�
�2

�
2 �2n� �20 such that kv�n � v�k = O

�
n�

1
4

�
:

Let Non �
n
�2 2 �2n : k�2 � �20ks = o(1); k�2 � �20k = o(n�

1
4 )
o
and No is de�ned the

same way with �2n replaced by �2: Denote
dg(�2;Z)
d�2

� dg(Z;�2+�v)
d�

a.s. Z and dm(z;�2)
d�2

[v] �
E
n
dg(�2;Z)
d�2

[v] jz
o
a.s. z. (AC03)4.3: (i) For all �2 2 No, the pathwise derivative

dg(Z;�2(t))
d�2

[v] exists a.s. Z 2 Z. Moreover, each element of dg(Z;�2)
d�2

[v�n] satis�es an enve-

lope condition and is Hölder continuous in �2 2 Non; (ii) each element of
dm(z;�2)
d�2

[v�n]

is in �c with  >
dz
2
for all �2 2 No; (AC03)4.4: Uniformly over �2 2 Non;

E

"dm (z; �2)d�2
[v�n]�

dm (z; �20)
d�2

[v�n]

2
E

#
= o

�
n�

1
2

�
:
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(AC03)4.5: Uniformly over �2 2 No; �2 2 Non;

E

24 n
dm(z;�20)

d�2
[v�]
o0
�0(z)�1

�
n
dm(z;�2)
d�2

�
�2 � �20

�
� dm(z;�20)

d�2

�
�2 � �20

�o
35 = o�n� 1

2

�
:

(AC03)4.6: For all �2 2 Non, the pathwise second derivative
d2g(Z;�2+�v�n)

d�2

���
�=0

exists a.s.

Z 2 Z and is bounded by a measurable function c (Z) with E [c2 (Z)] <1:
Assumption (AC03)4.1(i) is implied by Proposition 3 and Assumption 2.4.2. As-

sumptions (AC03)4.1(ii) and (iii) are assumed directly in Assumptions 4.5.1 and 4.4.8.
Assumption (AC03)4.2 is satis�ed with Assumption 4.4.10 and Assumption 4.5.2(i). As-
sumption (AC03)4.3(i) is implied by Assumptions 4.4.1-4.4.4 and 4.5.2(i). Assumption
(AC03)4.3(ii) is satis�ed with Assumptions 4.5.2(i) and 2.4.2. Conditions (AC03)4.4 and
(AC03)4.5 are trivially satis�ed and, since the second derivative of g(�2; Zi) is always
zero, (AC03)4.6 is automatically satis�ed. This implies that we can write

p
n[(b�; b�)0 � (�0; �0)0] = f� 1p

n

nX
i=1

Du�2
(zi)0�0(zi)�1g(�20( b�0; b); Zi)g

� EfDu�2
(zi)0�0(zi)�1Du�2

(zi)g�1 + op(1):(71)

Taking a �rst-order Taylor series expansion of g(�20( b�0; b)) around (�00; 0) gives us
p
n[(b�; b�)0 � (�0; �0)0] = � 1p

n

nX
i=1

Du�2
(zi)0�0(zi; �20)�1fg(�20(�00; 0); Zi)

+
@g(�20(�00; 0); Zi)

@�020

@�20(�00; 0)

@(�0; )
0 [( b�0; b)0 � (�00; 0)0]g

� EfDu�2
(zi)0�0(zi; �20)�1Du�2

(zi)g�1

� 1p
n

nX
i=1

Du�2
(zi)0�0(zi; �20)�1o(

( b�0; b)0 � (�00; 0)0)
� EfDu�2

(zi)0�0(zi; �20)�1Du�2
(zi)g�1 + op(1):(72)

From Theorem 2,

(73)
p
n
h
( b�0; b)0 � (�00; 0)0i = 1p

n

nX
i=1

(4�i)Du�1
(!i)EfDu�1

(!i)
0Du�1

(!i)g�1 + op(1):
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Hence, we have

1

n

nX
i=1

Du�2
(zi)0�0(zi)�1

@g(�20(�00; 0); Zi)

@�020

@�20(�00; 0)

@(�0; )
0

�! E

�
Du�2

(zi)0�0(zi)�1
@g(�20(�00; 0); Zi)

@�020

@�20(�00; 0)
0

@(�0; )
0

�
:(74)

In our framework,

@g(�20(�00; 0); Zi)

@�020

@�20(�00; 0)

@(�0; )
0 = didi�1f

@�0(vi; vi�1; z
1
i )

@vi
(di�1; zi)

0

+
@�0(vi; vi�1; z

1
i )

@vi
(di�2; zi�1)

0g:(75)

Therefore by substituting Equations (73), (74) and (75) into Equation (72) and
applying a standard CLT for i.i.d. data and the Generalized Slutsky�s Theorem, we
obtain Theorem 4.
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