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Abstract

This paper documents and provides an explanation for the main stylized facts about net and
gross workers ßows across states in the U.S. While it is generally known that gross ßows of pop-
ulation across locations are signiÞcantly larger in the U.S. than within most European countries,
there is considerable heterogeneity in gross and net ßows across states within the U.S. itself. The
main purpose of the paper is to test whether a general equilibrium model based on Lucas and
Prescott (1974)�s island economy, augmented to allow for gross workers ßows, can account for
the main stylized facts. The key stylized facts are as follows. In the cross-sectional dimension:
(1) Gross inßow rates are more dispersed than net inßow rates, which are more dispersed than
gross outßow rates. (2) Gross inßow and outßow rates are positively correlated. (3) Gross and
net inßow rates are highly positively correlated, while net ßow rates and gross outßow rates are
uncorrelated. In the time-series dimension, there is a large degree of persistence in both gross
and net ßow rates across Census years for a given state. To address these facts, I develop a
general equilibrium model of net and gross workers� ßows across locations. Net ßows are driven
by shocks to local labor demand, while gross ßows are driven by idiosyncratic location-speciÞc
shocks to workers� productivity. In response to shocks to the growth rate of labor productivity
in a location, the model generates artiÞcial data that are generally consistent with the stylized
facts listed above. Using the estimated parameters I Þnd that the contribution of excess workers
ßows to aggregate welfare is about one percent of aggregate output in the benchmark economy.
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1 Introduction

Workers� ßows across U.S. states are the main factor behind the large and persistent dispersion in
states� relative employment growth over time (Blanchard and Katz (1992)). Yet, the process by
which population is reallocated among geographic areas within a country is not well understood.
This paper argues that in order to improve this understanding it is important to consider both
gross and net ßows of workers across states. The analysis of both ßows allows one to determine
the extent to which net gains of employment by some states are due to higher gross inßows or,
alternatively, to lower gross outßows of workers.

This paper has two goals. The Þrst one is to construct empirical measures of net and gross ßows
of workers across states and to characterize the main cross-sectional and time-series stylized facts
in this area. The second goal is to determine whether the main stylized facts can be explained using
a general equilibrium model of workers ßows across locations. The model is a version of Lucas and
Prescott (1974)�s island economy, extended to allow for gross migration ßows.

I start by documenting these facts using the decennial Census of the U.S. for the post-WWII
period. The latter allows one to determine a respondent�s state of residence in the Census year as
well as Þve years before the Census year. This information is used to construct state-level aggregate
gross and net rates of workers ßows. These ßows are adjusted to take into account the different
demographic and industrial composition of the workforce across states and differences in other state
characteristics, such as size.

The key stylized facts are as follows. First, gross ßows of workers are large relative to net ßows.
For example, between 1995 and 2000 the average state gained or lost about 2.2 percent of its 1995
population. In the same period, the average state experienced a combined inßow and outßow of
population of about 17 percent of its 1995 population. Second, most interstate ßows of workers
occur within narrowly deÞned demographic groups. Third, in the cross-sectional dimension: (1)
Gross inßow rates are more dispersed than net inßow rates, which are more dispersed than gross
outßow rates. (2) Gross inßow and outßow rates are positively correlated. (3) Gross and net
inßow rates are highly positively correlated, while net ßow rates and gross outßow rates tend to be
uncorrelated. These facts seem to suggest that reallocation of population within the U.S. occurs
mainly through variations in gross inßows (large in fast-growing states and small in slow-growing
states), rather than in gross outßows. In other words, states that tend to lose population to other
states do so by attracting fewer new workers as opposed to losing more local ones. Fourth, in
the time-series dimension, there is a large degree of persistence in both gross and net ßow rates
across Census years for a given state. Fifth and last, there is a signiÞcantly positive cross-sectional
correlation between average state wages, adjusted by differences in living costs, and net ßow rates.

In order to account for these facts, I consider a model of gross and net ßows. The model
economy is composed by a set of local labor markets (�islands�), that are hit by idiosyncratic labor
demand shocks. Local wages would tend to rise in response to these shocks, but workers� mobility
across islands tends to equalize the price of an efficiency unit of labor across islands. At a point
in time, a location typically experiences both gross inßows and gross outßows. This is because
a worker�s idiosyncratic productivity differs across islands, giving rise to workers� gross ßows. In
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general equilibrium, the value of migration is pinned down by a zero excess demand condition for
aggregate net ßows.

The model�s parameters are estimated using a method of simulated moments. The estimated
model is consistent with the main stylized facts mentioned above. The mechanics of the model
can be better understood by considering an unanticipated positive shock to the growth rate of
local labor productivity. On impact, the workers� net ßow rate rises while the outßow rate remains
virtually constant. This is because gross inßows of workers are expected to arbitrage away the
temporarily higher unit price of labor in the location. In the following periods, outßows rise above
their steady state value, as some of the location�s newly arrived workers are ex-post unlucky and
decide to move again. The persistent nature of innovations to local labor demand shocks implies
that net ßows remain above steady state for several periods. Due to the response of gross outßows,
gross inßows exceed net inßows. Thus, gross inßows are more volatile than net inßows, which, in
turn, are more volatile than gross outßows. Gross inßow and outßow rates are positively correlated
as larger gross inßows of workers are followed by larger gross outßows.

I use the estimated model to assess the contribution to aggregate output of workers� excess ßows
(i.e., gross ßows minus absolute net ßows) across U.S. states. By counterfactually imposing that
workers cannot migrate in order to improve their idiosyncratic match with their state of residence,
I Þnd that excess ßows account for about one percent of aggregate output.

This paper is related to several literatures. The closest literature is the one initiated by Lucas
and Prescott (1974) in their �island� model of the labor market and extended by Jovanovic and
Moffitt (1990) to account for gross ßows.1 Lucas and Prescott develop a model of workers� net
ßows across locations driven by shocks to local labor demand. In a sense the present paper can be
thought of as a version of Lucas and Prescott (1974) in which also workers are hit by idiosyncratic
location-speciÞc productivity shocks, giving rise to gross ßows of workers.

The importance of gross ßows of workers across sectors was Þrst highlighted by Jovanovic and
Moffitt (1990) who considered a simpliÞed version of the Lucas-Prescott model allowing for sector-
speciÞc shocks to workers� productivity. An important insight of this model is that the introduction
of idiosyncratic shocks has implications for the dynamics of sectoral wages. For example, in the
Jovanovic and Moffitt paper net ßows are such that unit wages are always equalized across sectors.
In the original contribution by Lucas and Prescott, instead, the fact that workers are homogeneous
within an island implies that wage differentials across islands are necessary to give rise to net
ßows. In addition to focusing on geographic, as opposed to sectoral, mobility, my paper differs
from Jovanovic and Moffitt (1990) in several important dimensions. First, Jovanovic and Moffitt
do not estimate the parameters of their structural model, but rather tested some of its empirical
implications. Second, in their model workers live for only two periods and can therefore move only
once in their lifetime. This assumption simpliÞes the analysis considerably but it is ill suited to the
empirical application of the model. Third, Jovanovic and Moffitt focus on an equilibrium in which
gross inßows into each sector are always strictly positive, so that unit wages are equalized across
sectors. While this assumption greatly simpliÞes the analysis, its validity is an empirical issue. It
turns out that, in my model, equilibria in which unit wages are equalized cannot reproduce the

1Topel (1986) considers a setting similar to Lucas and Prescott (1974).
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statistical properties of net ßows across U.S. states. In order to account for the latter it is necessary
to take explicitly into account the possibility of corner solutions in which gross inßows are zero.

The paper also builds on the contribution by Blanchard and Katz (1992), who developed a
reduced form model of workers� net ßows across U.S. states, and provide some interesting VAR
evidence on the nature of states� adjustment process to local labor demand shocks. Relative to
Blanchard and Katz, this paper also focuses on gross ßows of workers.2

Finally, this paper is related to the partial equilibrium literature on the determinants of workers�
migration decisions. Kennan and Walker (2005) carefully estimate such model using NLSY data
and use the panel structure of the data to identify wage differences due to location effects.3

The rest of the paper is organized as follows. Section 2 describes the data and the stylized
facts. Section 3 presents the model. Section 4 offers a discussion of some modelling issues. Section
5 evaluates the model in light of the stylized facts of Section 2. Section 7 computes the contribution
to aggregate output of excess ßows of workers across U.S. states. Section 8 concludes. The data
appendix offers a more detailed description of the data and the construction of the ßow variables.

2 Data and Stylized Facts

Data on Workers� Flows. The main data set I use is the U.S. Census of Population for several
decades.4 The Census data have the clear advantage of being a large and comprehensive dataset.
Information on geographic mobility of individuals is available from other sources. For example,
the March Current Population Survey (March CPS) contains such information, but only includes
approximately 60,000 households. Given that, on average only 3 percent of the population leaves its
state of residence in a given year, this amounts to observing less than 2,000 households migrating
across state lines, or, on average, 40 households per state. In contrast, the decennial Census
typically contains information on million of households.

Since 1940, the Census questionnaire has included a question regarding the location (state and
metropolitan area) where an individual was living Þve years before the Census interview. Using
this information, I construct rates of gross and net ßows of population across the 48 contiguous
United States.5 The population ßows always refer to the Þve year period preceding the Census
year, and represent a lower bound on the actual ßows, as some individuals moved more than once

2More recent contributions by macroeconomists to the literature on internal migration of workers include Hassler
et al (2005) and Lkhagvasuren (2005). The former argue that differences in the generosity of unemployment insurance
between the U.S. and Europe can explain higher internal mobility rates in the U.S. The latter paper tries to explain
the existence of persistent differentials in unemployment rates across U.S. states by means of a general equilibrium
matching model with location-speciÞc idiosyncratic productivity shocks. The paper is also related to the traditional
research on the determinants of population ßows within the U.S., surveyed by Greenwood (1975) and more recently
developed by Greenwood and Hunt (1984) and Treyz et al. (1993). The contribution of this paper relatively to this
mostly empirical literature is to develop a tractable structural model of gross workers ßows.

3See also Dahl (2002) and Borjas, Bronars and Trejo (1992).
4This is available online at www.ipums.org/usa.
5The levels of inßow and outßow of population for a given state were standardized by the number of individuals

who were surveyed in the Census year and reported living in that state 5 years before. Net ßow rates were deÞned
as the difference between gross inßow and outßow rates.
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during these Þve years. In order to focus on geographic mobility that is not motivated by college
attendance or retirement, I restrict attention to individuals who were between 27 and 60 years of age
and in the labor force at the time of the Census. The sample includes both U.S. born individuals
as well as foreign-born ones who immigrated to the U.S. at least Þve years prior to the Census
year. This restriction is necessary for aggregate net ßows of workers to equal zero. The appendix
contains more detailed information on issues of sample selection as well as on the construction of
the variables described below. From now on, for simplicity, I will refer to a state�s �population� as
the collection of individuals satisfying the sample selection criteria described in the appendix.

Before proceeding it is necessary to brießy comment on the choice of U.S. states as primary
units of analysis. Since the focus of the paper is the geographic mobility of workers, the ideal unit
of analysis should be a local labor market. The latter concept is intuitive but not simple to deÞne
unambiguously. In practice, a local labor market is often associated with a metropolitan area. In
this paper I have chosen not to take a metropolitan area as the basic unit of analysis for several
reasons. First, the 1970 Census does not report information on an individual�s metropolitan area of
residence in 1965. This information is instead available at the state level.6 This is important because
the information contained in the 1970-2000 Censuses is used below to estimate the stochastic process
for local labor demand shocks. The lack of the 1970 data would further reduce the already short
time-series dimension of the data. Second, about 20 percent of the U.S. population does not
currently live in a metropolitan area. This Þgure has increased by about 10 percentage points since
1970, and it displays a non-trivial geographic variation. Therefore, also in this case there would
be some ambiguity associated with the deÞnition of a local labor market. Third, according to the
Census there are more than 200 metropolitan areas in the U.S. This Þgure makes the estimation
of the model extremely lengthy, while it is feasible, yet long, to work with 48 locations. Last, for
the purpose of policy analysis, many labor market policies (e.g. unemployment insurance) are set
at the state level.

Composition Effects and Heterogeneity Across States. Figures 1-3 report scatter plots of
outßow, inßow and net ßow rates computed using the raw data from the 2000 Census. There
is, of course, considerable heterogeneity among states in at least two dimensions. First, at the
micro level, different states have a different composition of population, in terms of age, education,
industry of employment, etc. When comparing measures of population ßows across states, one
has to make sure to control for possible composition effects. It can, in fact, be that certain states
exhibit higher gross ßows because of the sectoral or demographic composition of their employment
structure. For example, if the gambling industry has a particularly high turnover of workers�, then
we might expect the state of Nevada, in which this industry is particularly large, to feature large
inßows and outßows of workers. To address the micro heterogeneity, I divide the population into
490 demographic groups deÞned by age, education, and industry. Then, I compute gross outßow
and inßow rates for each state and for each demographic group. Last, I compute the state-wide
rates as a weighted average of the groups� rates, using as a weight for each group its relative size
in the U.S. population. It turns out that the gross ßows obtained using this procedure are very

6SpeciÞcally, the Census variable migmet5 (metropolitan area of residence 5 years before) is not available in 1970,
while the variable migplac5 (state of residence 5 years before) is.
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close to the unadjusted ones.7 Thus, composition effects due to cross-state heterogeneity in the
age, education and industry affiliation of the states� population do not seem to play an important
role in explaining differential gross population ßows across states.

At the macro level, states have different sizes, different numbers of large metropolitan areas,
etc. The concern here is that differences in gross ßows might be driven by some of these factors, as
opposed to the economic forces I would like to emphasize. To address this macro heterogeneity, I
have run a cross-sectional regression of inßow and outßow rates (adjusted using the above procedure)
on states� land area, number of metropolitan areas with population above 0.5 million, and year when
the state formally joined the U.S. I have then deÞned the outßow and inßow rates to be the residuals
of this regression, and the net ßow rates as the difference between the two. This second adjustment
has a more sizeable effect on the statistics of interest, but does not affect the basic properties of
the data, either.

Inßows and Outßows in the Cross-Section. Tables 1 and 2 below provides descriptive statistics
regarding inßow, outßow and net ßow rates across U.S. states using data from the Census 2000,
adjusted as described above.8

Table 1
Basic Statistics on Workers Flows (Census 2000)

Mean Median Standard Deviation Minimum Maximum

Outßow Rate 8.86 8.67 1.54 5.46 (Wisconsin) 17.15 (Wyoming)
Inßow Rate 8.86 8.27 3.33 4.03 (North Dakota) 28.26 (Nevada)
Net Flow Rate 0.00 −0.10 2.59 −7.99 (North Dakota) 12.51 (Nevada)

Table 2
Cross-Sectional Correlations (Census 2000)

Outßow Rate Inßow Rate Net Flow Rate
Outßow Rate 1 0.66∗∗∗ 0.25∗

Inßow Rate 1 0.89∗∗∗

Net Flow Rate 1
∗∗∗ denotes signiÞcant at 1% level, ∗ at 10% level

From these two Tables, some interesting facts emerge:

� Gross ßows are large relative to net ßows. Between 1995 and 2000 the average state gained
or lost about 2.2 percent of its 1995 population. In the same period, the average state
experienced a combined inßow and outßow of population of about 17 percent of its 1995
population (Table 1).

7The cross-sectional correlation between adjusted and unadjusted rates in the 2000 Census is always above 0.97.
8The statistics in this and the following tables are computed weighting each state by its relative population.
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� There is a relatively large dispersion across states in outßow, inßow and net ßow rates, with
outßow rates being relatively less dispersed than gross and net inßow rates (Table 1).

� States that experience a relative large gross inßow of population also tend to experience a
relatively large gross outßow of population (Table 2 and Figure 1). For example, the state
of Nevada ranked Þrst in terms of gross inßows (about 28.26 percent) and second in terms
of gross outßows (15.74 percent). Interestingly, the positive correlation between gross inßows
and outßows is apparently a well-known, though not extensively documented, stylized fact
in the literature on internal migration of population (see Greenwood, 1975).9 The correla-
tions in Table 2, particularly the one between gross inßows and gross outßows, are consistent
with two polar situations. One in which the large ßows are symptoms of a changing indus-
try/demographic mix of the state�s workforce, so that the outgoing workers are different from
the incoming ones. The other in which the �same� type of worker moves in and out of the
state. In order to distinguish between these two possibilities, I have used the 490 demographic
groups (indexed by g and described above) and computed, for each state j and for the 2000
Census, the following measure of within demographic group workers� reallocation:10P

g (injg + outjg)−
P
g |injg − outjg|P

g (injg + outjg)−
¯̄̄P

g (injg − outjg)
¯̄̄ . (1)

The denominator of this expression gives the difference between the sum of gross inßow and
outßow from location j and the absolute net ßow. Thus, it represents the excess of workers�
mobility over and above what is needed to accommodate net workers� ßows. To understand
the numerator of equation (1), suppose that inßows and outßows of workers always occurred
between demographic groups. This means that for each group g, we would either have injg > 0
and outjg = 0 or injg = 0 and outjg > 0. In this case the numerator of (1) would be zero,
and so would the measure of within-group reallocation. At the other extreme, if inßows and
outßows were always balanced within groups (injg = outjg), then the index would be equal
to one. The outßows-weighted average of this measure across states for the 2000 Census was
0.91, suggesting that most ßows occur within the demographic/industry groups described
above. A way to consider exclusively within-group ßows when computing the correlations
of Table 2, is to compute the cross-sectional correlation between gross inßows and outßows
for each group separately. Then, the 490 correlation coefficients can be averaged using as
weights the groups� population shares in the U.S. The following Table reports these adjusted

9See, for example, Miller (1967, page 1426, Table 3). She deÞnes locations in terms of metropolitan areas, instead
of states and shows, using 1960 Census data, that this correlation is robustly positive both in the aggregate and
within demographic groups deÞned by sex, race and occupational category.
10This measure has been used, for example, by Davis and Haltiwanger (1992) to decompose aggregate excess

reallocation of jobs into a between-sector and a within-sector component.
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correlation:

Table 3
Adjusted Cross-Sectional Correlations (Census 2000)

Outßow Rate Inßow Rate Net Flow Rate
Outßow Rate 1 0.39 −0.23
Inßow Rate 1 0.79
Net Flow Rate 1

.

Comparing the correlations in Tables 2 and 3, one notices that the latter are smaller. The
signs of the correlations between gross inßows and outßows are the same in both Tables, while
the correlation between outßows and net ßows turns negative in Table 3. These results are
consistent with the view that some of the gross ßows we observe have to do with changes in
the composition of states� workforce. From our perspective, however, it is important that,
even within narrowly deÞned demographic/industry groups, there is a positive correlation
between gross inßows and outßows.11

� Gross and net inßows are highly and positively correlated in the cross-section, while the
correlation between net ßows and gross outßows is in absolute value smaller (Tables 2 and 3
and Figures 2 and 3). This observation, together with the previous two, seems to suggest that
reallocation of population within the U.S. occurs mainly through variations in gross inßows
(large in fast-growing states and small in slow-growing states), rather than in gross outßows,
across states. In other words, states that tend to lose population to other states seem to do
so by attracting fewer new workers as opposed to losing more local ones.

Cross-Sections Over Time and the Time-Series Dimension of Workers� Flows. It is
natural to ask whether the statistics presented in the previous Tables are peculiar to the 2000
Census or not. It is also important to determine how much persistence there is in gross population
ßows for a given state. Both questions can be answered by considering other Census years.

Tables 4 and 5 conÞrm that the salient features of gross and net ßows pointed out above in
relation to the 2000 Census are also present in the 1970-1990 Censuses.12,13

11For consistency, one could also adjust the cross-sectional standard deviation of ßow rates in Table 1 in order to
capture exclusively the dispersion of ßows within demographic groups, and not the cross-groups covariance terms.
By doing so, since the latter covariances tend to be negative, one would obtain higher standard deviations for inßow,
outßow, and net ßow rate. Their ranking does not change, though. For simplicity, I do not carry out this further
adjustment.
12Extending the analysis before 1970 presents some difficulty. The 1960 Census does not report a person�s state of

residence in 1955, but only if the person migrated across states or not. Thus, in 1960 it is only possible to compute
gross inßows, but not gross outßows or net ßows. In the 1950 Census, the migration question pertains to one year
before, rather than 5 years before. I exploit the 1950 Census year in Table 6 below. The 1940 Census does not present
particular problems.
13For simplicity, given that the Þrst type of adjustment mentioned above (for composition effects related to age,

education and industry of employment) did not produce any sizeable effect on the statistics of Tables 1 and 2, in this
Table the data for 1970-2000 are only subject to the second type of adjustment mentioned above. This explains the
difference between the results in Table 1 and the one in this Table for the 2000 Census.
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Table 4
Basic Statistics on Population Flows (Censuses 1970-2000)

2000 1990 1980 1970

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

Outßow Rate 8.59 1.50 9.04 2.01 8.97 1.77 6.89 1.72
Inßow Rate 8.59 3.22 9.04 3.90 8.97 3.86 6.89 2.73
Net Flow Rate 0.00 2.60 0.00 3.84 0.00 3.06 0.00 2.39

Table 5
Cross-Sectional Correlations (Censuses 1970-1990)

Outßow Rate Inßow Rate Net Flow Rate
Outßow Rate

1970 1 0.50∗∗∗ -0.15
1980 1 0.63∗∗∗ 0.22
1990 1 0.29∗∗ -0.23
2000 1 0.60∗∗∗ 0.17

Inßow Rate
1970 1 0.78∗∗∗

1980 1 0.89∗∗∗

1990 1 0.86∗∗∗

2000 1 0.89∗∗∗
∗∗∗ signiÞcant at 1% level. ∗∗ signiÞcant at 5% level.

Do states with relatively high gross and net ßows between 1995 and 2000, also tend to display
relatively high ßows between 1985 and 1990, and before? The answer to this question is affirmative
for both gross and net ßows. The following Table reports, for each type of ßow, its autocorrelation
coefficient across Census years, computed by pooling all state-year data points together.14

14In order to increase the sample size in the time-series dimension, I have included the 1950 Census in these
computations. The 1950 Census asked respondents to report their state of residence in 1949, as opposed to 1945.
The 1 year migration data were converted into 5 year migration data by multiplying the 1 year ßows by 4.538. This
number guarantees that the cross-sectional standard deviation of net ßow rates in 1950 is the same as the average
standard deviation in all the previous Census years. Notice that in Table 6 the difference between t and t − 1 is
equivalent to 10 years.
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Table 6
Autocorrelations of Population Flows (Censuses 1950, 1970-2000)

Autocorrelation Coefficient
t, t− 1 t, t− 2 t, t− 3 t, t− 4 t, t− 5

Outßow Rate 0.66∗∗∗ 0.68∗∗∗ 0.29∗∗∗ 0.49∗∗∗ 0.59∗∗∗

Inßow Rate 0.86∗∗∗ 0.71∗∗∗ 0.56∗∗∗ 0.73∗∗∗ 0.73∗∗∗

Net Flow Rate 0.73∗∗∗ 0.61∗∗∗ 0.55∗∗∗ 0.41∗∗∗ 0.40∗∗∗
∗∗∗ signiÞcant at 1% level.

Notice that all these ßow rates are very persistent over time.

Migration Motives. Not all moves of workers across states are motivated by economic reasons.
The Census survey does not contain any question regarding a worker�s reason for the change of
residence. However, since 1999, the March CPS has asked this question. I have aggregated the
different answers to this question into two categories, according to whether an interstate move is
attributable or not to economic factors. The appendix provides more information about the criteria
used for this assignment. About two thirds of all interstate moves that occurred between 1999 and
2003, according to the March CPS, were of the Þrst kind.

Earnings. Using the 2000 Census I have constructed a measure of a worker�s weekly earnings in
1999. These nominal Þgures were deßated using the ACCRA cost of living index, which measures
the relative price of a given basket of goods and services in a number of U.S. cities.15 Denote the
real weekly earnings of worker i in 1999 by wi. The Census data provides detailed information
regarding a worker�s demographic characteristics, occupation and industry. Let these observables
be summarized by the vector xi. In order to construct measures of average wages within states and
of residual wage inequality, I have run the following regression for log earnings:

lnwi = µ× STATEi + ω ×MOV Ei + xiβ + εi, (2)

where STATEi is a vector of dummy variables recording individual�s i state of residence in 2000,
while MOV Ei is a dummy variable that equals one if worker i moved across state lines sometimes
between 1995 and 2000 and zero otherwise.16 The estimates of this regression reveal two interesting
15See the appendix for more detail on this index. Due to limitations in the availability of this index, the size of

the sample used to carry out the computations of this section is about 50 percent of the original sample size used in
previous sections. However, it still includes about 2.5 million observations.
16As Kennan and Walker (2005) point out, the residual εi can be interpreted as reßecting the inßuence of (at

least) three orthogonal factors on a worker�s earnings: a location match component (which varies across locations
for the same worker, but is constant within locations), a worker�s Þxed effect (which is constant within and across
locations for a given worker), and a transitory effect (which varies both within and across locations for a given
worker). Location-speciÞc effects on earnings are a key determinant of migration decisions, in addition to differences
in average earnings across states. Of course, the cross-sectional nature of the Census data does not allow one to
separately identify the three components of residual wages. Fortunately, Kennan and Walker (2005, page 11) provide
such decomposition using NLSY data. According to their estimates, location effects explain about 16 percent of the
overall inequality in residual earnings among young high school educated workers.

10



facts. First, controlling for observables, the standard deviation of weekly earnings across states is
about 11 percent of average weekly earnings in the U.S.17 Second, the estimate of ω in equation
(2) suggests that the weekly earnings of workers that have moved across state lines in the 5 years
preceding the 2000 Census are about 1.8 percent lower than the weekly earnings of observationally
equivalent workers who did not move during that period and lived in the same location in 2000.
This evidence is consistent with the view that migrating workers are on average less productive
than non-migrating ones in their new location of choice. The model introduced in the next section
is consistent with this evidence.

3 Model

The model presented in this section builds on the island-model of the labor market developed
by Lucas and Prescott (1974). The force that drives the dynamics of the local labor market
in the model is a persistent labor demand shock.18 Relatively high labor demand shocks generate
temporary increases in local wages that are then followed by net inßows of workers. Simultaneously,
idiosyncratic wage shocks give rise to workers� gross ßows. In equilibrium, the value of migrating
from one labor market to another is pinned down by the requirement that aggregate net ßows of
workers are zero.

The economy is populated by a continuum of measure one of locations (islands). A location is
denoted by j ∈ [0, 1] . All locations are ex-ante identical. Ex-post, locations differ because they are
hit by different labor demand shocks, denoted by zjt, where t indexes time.

19 An agent i located
in period t in a location j has earnings υijwjt. The latter are the product of two components.
First, υij is an idiosyncratic component which, as in Kennan and Walker (2005), represents the
efficiency units of labor with which the worker is endowed in the location. These efficiency units
remain the same as long as the agent stays in the same location. Second, wjt represents the unit
price of an efficiency unit of labor in location j. It is common to all workers living in location j
and it changes over time with the local labor market conditions. An agent can freely move across
islands to improve his idiosyncratic match υij and the unit price of labor wjt.

20

In detail, the sequence of events is as follows:

� An agent i is born in a location j at the end of period t− 1.
17This Þgure is calculated as std

©
exp

¡bµj¢ª /E ©exp ¡bµj¢ª . Notice that in computing this number I am imposing
the same vector of observables in all states.
18The next section argues that the model would yield the same implications for workers ßows if it were driven by

shocks to local amenities.
19In this model I abstract from unemployment. The ßow data from the Census describe interstate moves at Þve

years intervals, so a model�s period will represent Þve years. Given that most unemployment spells last only a few
weeks, this would create problems in numerically implementing the model. Lkhagvasuren (2005) considers a model
that explicitly allows for unemployment in order to explain the large observed cross-state differences in unemployment
rates.
20Including an explicit moving cost in the model would be straightforward. The only reason why it is not included

is that the Census data used in this paper would not allow me to identify this parameter.
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� At the beginning of t, the agent draws the idiosyncratic location-match υij from the two-point
distribution (υl,υh) , whose mean is normalized to one. The individual productivity shock
υij and the local unit price of labor wjt determine his wage wijt = υijwjt.

� The agent receives a utility ßow wijt.
� With probability 1 − δ the agent dies and is replaced by another agent that will start his
life in the same location at the beginning of period t + 1. With probability δ < 1 the agent
survives into the next period.

� If the agent survives, he can then decide whether to stay in location j or move to another
location. The information available to the agent when making this choice will be speciÞed
later. He if decides to move he obtains expected utility e.

� At the beginning of period t + 1, if the agent had remained in the same location j in which
he was living in t, he receives momentary utility υijwjt+1. If the agent has moved to a new
location j0, he draws a new idiosyncratic location-match υij0 from the same distribution as
new-born agents.

Production. Aggregate output in location j at time t, denoted by ajt, is produced according to
the following Cobb-Douglas production function:

ajt = zjtl
τ
jt, τ ∈ (0, 1) , (3)

where ljt represents labor, measured in efficiency units and zjt is a shock to the productivity of
labor located in j at time t. This production function embeds the assumption that there is a Þxed
factor of production, e.g. land, that gives rise to decreasing returns to scale at the local level. This
assumption is necessary to guarantee that each location has a Þnite population at each point in
time. The production function (3) is consistent with two alternative (and extreme) assumptions
about capital mobility. SpeciÞcally, physical capital can be thought of as either being permanently
Þxed in all locations or as being perfectly mobile across locations. In the latter case, physical
capital would move to equalize its expected marginal product across locations. The speciÞcation
(3) represents the reduced form taken by the production function after the optimal amount of
physical capital has been replaced back into its original speciÞcation.

The stochastic process {zjt} is assumed to be stationary and takes the form

zjt = z
ψ
jt−1ε

1−ψ
jt , (4)

where ψ ∈ (0, 1) and
εjt = ε

ρ
jt−1ujt, (5)

where ρ ∈ (−1, 1) and ujt is independent and identically distributed both over time and across
locations. Let q(u) denote the density of this shock and normalize its mean to one. The speciÞcation
of the exogenous shocks in equations (4) and (5) is non-standard because it assumes that the
innovations εjt in (4) are persistent, as opposed to being identically distributed over time as in
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standard speciÞcations. Persistence in the process followed by εjt is necessary in order to generate
persistent net ßows in the Lucas-Prescott model. If ρ were equal to zero, net ßows would be
negatively autocorrelated over time, which is strongly at odds with the data.21 The timing of
the model is such that zjt is realized at the beginning of period t, after period t − 1�s migration
decisions have been made. Thus, a migrating agent only knows the expected value of location-
speciÞc productivity shocks.

The efficiency units of labor ljt located in j at time t are:

ljt = yjtυjt,

where yjt represents the measure of workers located in j at the beginning of t and υjt denotes the
efficiency units per worker in that location. SpeciÞcally:

υjt = υlλjt + υh (1− λjt) , (6)

where λjt denotes the fraction of agents located in j at the beginning of t characterized by an
idiosyncratic match value υl.

Firms� optimization yields the market wage rate per efficiency unit of labor:

wjt = τzjtl
τ−1
jt . (7)

Workers� Flows. Let xjt and ojt denote respectively gross inßows and outßows occurring between
t and t + 1, and yjt+1 denotes the population located in j at the beginning of t + 1. With this
notation, we can write the law of motion of population in a location:

yjt+1 = yjt + xjt − ojt. (8)

By deÞnition xjt, ojt ≥ 0. In each period t, there are three categories of workers who might leave
a location j: 1. (1− δ) yjt−1 workers born in j at the end of t − 1, 2. immigrants who arrived in
j at the end of t − 1, 3. residents of j who were also living in j in t − 1. Notice that the only
reason why an agent with idiosyncratic shock υh might leave a location j is to obtain a higher unit
price of labor. Instead, an agent with idiosyncratic shock υl might want to leave to improve his
match and/or to get a higher price of labor. In what follows, I will show how, given the absence of
mobility costs, an agent with shock υl will always Þnd it more convenient to leave a location than
to stay. An agent with shock υh instead will leave only if the price of labor in a location becomes
low enough. In that case he will have to be indifferent between staying and leaving. Let qjt denote
the probability that an agent with match υh leaves a location. Let njt−1 denote the sum of gross
inßows and new born workers:

njt−1 = xjt−1 + (1− δ) yjt−1.
21An alternative way of obtaining persistent net ßows would be to introduce less-than-perfect capital mobility in

the model, as opposed to the current setting in which capital is assumed to be perfectly mobile. The parameter
governing capital adjustment costs would then determine the extent of autocorrelation in net ßows. Given this, I
choose the simpler speciÞcation in which the shock process is characterized by persistent innovations.
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Then, gross outßows from location j between t and t+ 1 are:

ojt = δpnjt−1 + δ (yjt − pnjt−1) qjt, (9)

with qjt ∈ [0, 1] .
Given that individuals with a low match υl always migrate, the measure λjt of agents located

in j at the beginning of t and characterized by an idiosyncratic match value υl is simply:

λjt =
pnjt−1
yjt

. (10)

Recursive Formulation of Individual Mobility Problem. The state vector for an agent
located in a location j is given by

s = (y, n−1, z, ε) ,

where I have dropped the subscript j for simplicity. Then, the value function of a worker charac-
terized by idiosyncratic match υ with the location is given by:

V (s, υ; e) = υw (s) + βδmax
©
E
£
V
¡
s0, υ; e

¢ |s¤ , eª ,
where the expectation on the right-hand side of the Bellman equation is taken with respect to the
endogenous distribution of the state vector s. Using equations (6), (7) and (10), the unit price of
labor is:

w (s) = τz [υlpn−1 + υh (y − pn−1)]τ−1 .
Consider now, agents with a low idiosyncratic component υl. These agents will always want to

migrate to improve their idiosyncratic match. To see this, notice that there is no cost of moving,
so that the only reason to stay in a location for one of these agents is a high unit price of labor.
Locations with the highest unit price of labor will attract migrating workers. The latter have an
expected utility of moving into one such location equal to e. It follows that a worker with match
υl living in such location must have an expected utility lower than e. This implies that he is better
off migrating than staying in that location. Thus, the Bellman equation for this worker is:

V (s, υl; e) = υlw (s) + βδe.

As far as the agents for whom υ = υh are concerned, following Lucas and Prescott (1974), we
need to distinguish among three different cases:

� Case A. Some (or all) of these workers leave and some (or none) remain. In this case, the
remaining workers must obtain at least as much as the departing ones. The latter obtain, in
expectation, e. Thus, in this case:

E
£
V
¡
s0, υh; e

¢ |s¤ ≤ e, (11)

where the endogenous components of s0 are:

n = (1− δ) y,
y0 =

½
y (1− δq (s))− δpn−1 (1− q (s)) if (11) holds with equality,

y (1− δ) if (11) does not hold with equality .

Notice that q (s) ≤ 1 is implicitly deÞned by (11) in case of equality.
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� Case B1. None of the υh workers leave and no new worker arrives. In this case:

E
£
V
¡
s0,υh; e

¢ |s¤ > e, (12)

pE
£
V
¡
s0, υl; e

¢ |s¤+ (1− p)E £V ¡s0,υh; e¢ |s¤ < e. (13)

The Þrst inequality expresses the fact that it is better for a υh type of worker to remain in the
location, while the second inequality expresses the fact that no migrating worker will choose
to migrate to this location. The endogenous components of s0 are:

n = (1− δ) y,
y0 = y − δpn−1.

Notice that, since
E
£
V
¡
s0, υl; e

¢ |s¤ = υlE £w ¡s0¢ |s¤+ βδe,
the two inequalities (12) and (13) can be rewritten as

e < E
£
V
¡
s0, υh; e

¢ |s¤ < e (1− pβδ)− pυlE [w (s0) |s]
1− p .

� Case B2. None of the υh workers leave and some new workers arrive. In this case:

E
£
V
¡
s0,υh; e

¢ |s¤ > e,

pE
£
V
¡
s0, υl; e

¢ |s¤+ (1− p)E £V ¡s0,υh; e¢ |s¤ = e. (14)

The endogenous components of s0 are:

n = (1− δ) y + x (s) ,
y0 = y + x (s)− δpn−1,

where x (s) is implicitly deÞned by equation (14).

Thus, a value function V (s, υh; e) is a solution to the agent�s problem if it satisÞes:

V (s, υh; e) = υhw (s) + βδmax
©
E
£
V
¡
s0, υh; e

¢ |s¤ , eª ,
where s0 is such that

n = (1− δ) y +max {ex (s) , 0} ,
y0 = y +max {ex (s) , 0}− δpn−1,

and ex (s) is the solution to the following equation:
E
£
V
¡
s0, υh; e

¢ |s¤ = e (1− pβδ)− pυlE [w (s0) |s]
1− p (15)
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when s0 is such that

n = (1− δ) y + ex (s) ,
y0 = y + ex (s)− δpn−1.

In words, if ex (s) , implicitly deÞned by condition (15), is negative, it must be that there is no
incentive for migrating workers to choose this location because their expected utility upon receiving
the shock υh (left-hand side of 15) would fall short of what is required to induce a positive gross
ßow (right-hand side of 15). In this case nobody enters the location.

After having found the value function that solves the problem of a worker with shock υh, one
can use equation (15) to solve for gross inßows:

x (s) = max {ex (s) , 0} .
Similarly, one can solve for the probability q(s) that a worker with shock υh leaves a location. In
particular, q(s) = 1 if

E
£
V
¡
s0,υh; e

¢ |s¤ < e,
when

n = y (1− δ) ,
y0 = y (1− δ) .

Instead, if (11) holds with equality:

q (s) = max {eq (s) , 0} ,
where eq (s) solves:

E
£
V
¡
s0,υh; e

¢ |s¤ = e,
for

n = (1− δ) y,
y0 = y (1− δeq (s))− δpn−1 (1− eq (s)) .

Stationary Equilibrium. The solution to the mobility problem in a location determines the
law of motion of the endogenous variables of the state vector s. These laws of motion deÞne the
probability, denoted by Ψ (y0, n|s) , that next period�s population in the location is less than y0 and
gross inßows are less than n, given a state s this period. A stationary distribution of s is then a
cdf Φ (y, n−1, z, ε) that satisÞes the following recursive equation:

Φ
¡
y0, n, z0, ε0

¢
=

Z Z Z Z
I
³
zψ
¡
ε0
¢1−ψ

, z0
´
Q

µ
ε0

ερ

¶
Ψ
¡
y0, n|y, n−1, z, ε

¢
φ (y, n−1, z, ε) dydn−1dzdε,

where I(., .) is the following indicator function:

I
³
zψ
¡
ε0
¢1−ψ´

=

½
1 if zψ (ε0)1−ψ ≤ z0

0 else
,
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and Q is the cdf of the shock u.
The stationary distribution Φ depends on the endogenous variable e. The expected utility of

migration must be such that the sum of population across locations equals the aggregate population:Z
yφy (y) dy = 1, (16)

where φy denotes the marginal density of y.

4 Discussion

Before proceeding it is worth discussing some of the modelling choices that I have made.

Demand vs. Supply Shocks. The Þrst modelling choice is that the driving force of the model
is represented by local labor demand shocks, as opposed to local labor supply shocks. In doing so,
I am not considering the possibility that the high net inßows of population experienced by states
such as Nevada and Arizona in recent decades, might be driven by local amenities (e.g. warm
winters). It turns out that this choice, while being empirically supported, is not restrictive. It is
in fact possible to add amenities to the model of section (3) and show that it gives rise to identical
implications for gross and net ßows as the model driven exclusively by demand shocks. To do
this, let a location j be characterized at time t+ 1 by a vector of amenities kjt+1 which can vary
stochastically over time.22 Assume that amenities affect agents� utility in a multiplicative fashion.
An agent with match shock υ that lives in a location where the wage per efficiency unit of labor
is wjt has instantaneous utility υwjth(kjt). It follows that in this setting h(kjt) can play the same
role as the labor demand shock zjt.

The upshot of this discussion is that the model with amenities produces qualitatively identical
implications for workers� ßows as the model driven by labor demand shocks. In order to solve
this identiÞcation problem, it is necessary to consider the relationship between real earnings and
net ßows. If the driving force of workers� ßows were amenity shocks, one would expect a negative
cross-sectional correlation between real earnings and net ßows of workers.

The available evidence seems, prima facie, to suggest against this hypothesis. Table 7 reports
the cross-sectional correlation coefficients among the following state-level variables: gross inßows,
gross outßows, net ßows, average (log) real weekly earnings (these four variables are from the 2000
Census), annual heating and cooling-degree days.23

22For example, the introduction of air conditioning has signiÞcantly improved living conditions in the South-West
of the U.S. during summer months. This can be interpreted as a change in k.
23I have used the dummy coefficient µj as a measure of average (log) weekly earnings in state j in 1999. The annual

number of cooling and heating degree-days are from the U.S. Historical Climatography Series 5-2 and 5-1. They are
averages over the period 1931-2000. Given that there might be considerable within-state variation in temperature,
the series are constructed using a population-weighted aggregate temperature for each state, with weights given by
the Census 2000 population. The number of annual cooling and heating degree-days for a state j in year t are deÞned
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Table 7
Cross-Sectional Correlations (Census 2000)

Outßow Inßow Net Flow Average Log Cooling Heating
Rate Rate Rate Wages Degree Days Degree Days

Outßow Rate 1 0.66∗∗∗ 0.25∗ −0.17 0.25∗ −0.31∗∗
Inßow Rate 1 0.89∗∗∗ 0.25∗ 0.46∗∗∗ −0.47∗∗∗
Net Flow Rate 1 0.43∗∗∗ 0.44∗∗∗ −0.42∗∗∗

Average Log Wages 1 0.37∗∗∗ −0.25∗
Cooling Degree Days 1 −0.81∗∗∗
Heating Degree Days 1

∗∗∗ signiÞcant at 1% level, ∗∗ signiÞcant at 5% level, ∗ signiÞcant at 10% level.

The Table clearly show how states with larger positive net ßows of workers tend to be character-
ized by relatively higher real earnings (Figure 4).24 These are also the states with better amenities,
as measured by the number of cooling and heating degree-days (Figure 5). These correlations are,
prima facie, inconsistent with theories that postulate the existence of compensating differentials in
earnings across locations (see e.g., Roback (1982)).

Of course, the question of why certain states experience large positive and persistent labor
demand shocks remains open. No attempt is made to answer this difficult question in this paper.
The approach taken here will be to Þrst use these net ßows to back out the underlying local labor
demand shocks. These shocks will then be fed into the model and the latter will be evaluated on
the basis of its cross-sectional implications for the gross ßows of workers.

The Land Market. It is simple to modify the economy of section (3) to include a housing
market. Assume, for example, that agents care about the consumption good c and housing services
h, according to the instantaneous utility function:

u(c, h) = cαh1−α.

The budget constraint of an agent located in j with match υij becomes:

c+ pjth = wjtυij ,

where pjt denotes the price of a unit of housing services. The latter are equal to the amount of land
the agent decides to rent. Land is also used in production. Firms demand land to the point where

as:

cooling degree days =
365X
d=1

max {xjtd − 65, 0} ,

heating degree days =
365X
d=1

max {65− xjtd, 0} ,

where xjtd is the average daily temperature in day d of year t in state j.
24A similar conclusion has also been reached by Topel (1986) and Blanchard and Katz (1992), who Þnd it more

support for local shocks to labor demand as the driving force behind net ßows of workers across states.
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its marginal product equals pjt. In equilibrium, pjt must be such that the demand for land for
residential and business purposes equals its Þxed supply. This version of the model can be solved
along the same lines of the benchmark. Ignoring binding constraints on gross inßows of workers,
for simplicity, the model with land would be characterized by the following key property. Agents
would move across locations to equalize the expected value of unit labor prices wjt deßated by a
measure of the price level. For example, solving the agent�s static optimization problem above and
replacing his optimal choices back in the utility function yields:

wjtυij

p1−αjt

.

Net ßows across locations would then equalize the expected value of wjt+1/p
1−α
jt+1 across locations. In

this version of the model net and gross ßows would have the same properties as in the benchmark.25

Persistent Differences Across States. A crucial aspect of the modelling strategy concerns the
nature of heterogeneity across states. The model above describes a stationary economy in which
all locations are ex-ante identical. Differences across locations are persistent but not permanent. In
particular, a location�s population share and earnings per capita tend to return over time to their
long-run value, which is common across locations. This modelling choice, although convenient for
many reasons, deserves some further comment.

Consider Þrst the evidence concerning per-capita income or wages. Barro and Sala-i-Martin
(1992) and (1991), using state-level data dating back to 1840, have shown how states with lower
initial incomes per capita have subsequently grown faster towards a common income level than
initially richer states.26 Blanchard and Katz (1992) also Þnd strong evidence of convergence of
manufacturing wages across U.S. states in the post-WWII period. Differently from Barro and Sala-
Martin, though, in their empirical and theoretical analysis, Blanchard and Katz specify states�
relative wages as stationary processes around state-speciÞc means.27

Blanchard and Katz (1992, page 5) also document that, for the period 1950-1990, �U.S. states
have experienced large and sustained differences in employment growth rates.� They capture this
observation in a formal way by modelling the growth rates of states� employment shares as stationary
processes with state-speciÞc means. Of course, since a state�s employment share is bounded from
above by one this formalization cannot be taken literally, but just as a convenient way of capturing
the persistent differences in employment growth across states. This speciÞcation is not problematic
for Blanchard and Katz because, in their reduced form model, they never impose the condition that
the employment shares must be smaller than one. In the model above, instead, employment shares,
rather than their Þrst differences, are assumed to be stationary. This is a necessary assumption
for a well-deÞned equilibrium. Of course, it is always possible to set the parameters controlling
the degree of mean reversion to a small enough value, so that in practice it might be impossible to
25In principle, the model�s implications for land prices and nominal wages could be separately tested, a step that

might be taken in future research.
26To be more precise, Barro and Sala-i-Martin�s evidence points to what is usually called in the growth literature

�β-convergence�. The latter denotes the tendency for states with lower incomes per capita to grow faster than states
in which income per capita is relatively large.
27It is worth noticing that both Barro and Sala-i-Martin and Blanchard and Katz cannot control for differences in

price levels across states.
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distinguish one speciÞcation from the other. In summary, both with respect to relative wages and
employment shares, I interpret observed differences across states as stemming from slow transitions,
rather than from time-invariant features.

Firms� Mobility vs. Workers Mobility. The model of the previous section abstracts from
capital. This is without loss of generality. It is easy to introduce perfect capital in the production
function. The latter would then imply the equalization of the marginal product of capital across
locations. This marginal product condition can then be used to solve for the amount of capital
in each location as a function of its efficiency units of labor. The location�s capital stock can be
replaced in the original production function, leading to a new production function that depends
only on labor.28

The Labor Market. In the model of the previous section, two types of agents are active in the
labor market at a point in time. The Þrst one is young individuals that are �just born�, and draw
their Þrst wage shock. The second is movers from other locations who draw new wage shocks. As
in Kennan and Walker (2005), an important assumption here is that there is no search at the local
level, i.e., workers sample from the local wage offer distribution only once. This is a way to capture
the fact that there is a local component to wages. For example, a company�s manager might realize
that he cannot advance in his career in the current location, but can move within the company to
a different location, be promoted and given a salary raise. In the model the worker has to move
to Þnd out what his wage will be in the new location. While this is unlikely to be true in most
cases, the worker is moving to a new job and there is going to be uncertainty regarding the job�s
features (colleagues, working hours, possibility of further advancements, etc.). This uncertainty
generates uncertainty in wages, as the latter might reveal ex-post to be too low, given the job�s
characteristics.

5 Empirical Implementation

The model�s parameters are estimated using the method of simulated moments (see Lee and Ingram,
1991 and Duffie and Singleton, 1993). When bringing the model to the data, one has to keep in
mind that the model assumes the existence of a continuum of locations, and therefore a constant
value of migration e. The empirical and artiÞcial moments were, instead, constructed using data
from 48 U.S. states. The assumption of a continuum of location is mainly for feasibility: allowing
for a Þnite number of locations in the theoretical model would make it virtually impossible to
solve because a worker in a location would have to take into account the full distribution of the

28Lee (2004) provides comprehensive evidence regarding plant relocation in the manufacturing sector for the period
1972-1992. He Þnds (page 17) that, in a Þve-year period, �plant relocations account for about 7 percent of variations
in net employment growth across states. The remaining 93 percent is accounted for by within-state changes such as
employment growth within continuing plants, de novo plant openings, permanent closings without relocation, and
intrastate plant relocation.� This evidence suggests that movements of existing plants play a relatively minor role in
explaining the differential growth of states� employment. It does not rule out, though, that the opening of new plants
could play a much more signiÞcant role. Blanchard and Katz (1992) provide evidence that suggests that neither plant
relocation nor new plant openings play an important role in states� adjustment to local labor demand shocks. They
estimate local labor demand equations and Þnd that local employment reacts strongly to local labor demand shocks,
while job creation responds weakly to movements in local wages.
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state vector s across all other locations when solving his dynamic programming problem. In other
words, e would become a function of the distribution of state vectors s across states. In practice,
this discrepancy between the theory and the empirical implementation of the model is unlikely to be
of any importance for two reasons. First, in the data the cross-sectional properties of gross and net
ßows tend to be very similar across Census decades, as predicted by the model with a continuum
of locations. Second, and more important, the moments computed using the data generated by the
model are robust to an increase in the number of locations above 48.

A period in the model is taken to represent 5 years. The discounting parameters β and δ and
the production function parameter τ are set a-priori. The discount factor β is set equal to 0.82,
implying a yearly interest rate 1/β of 4 percent. An individual�s working life in the data I consider
is about 30 years, or 6 model-periods. Thus, I set the constant probability of survival δ equal to
0.83, so that the average lifetime for an individual in the model is approximately 6 periods. Finally,
the parameter τ is set to 2/3, which corresponds to the income share of labor in Gross Domestic
Product.

The remaining parameters are (ρ,ψ, υl, p) and the parameter of the density q(u). The latter
is taken to be lognormal with mean one and variance exp

©
σ2u
ª − 1. The parameter vector θ =

(ρ,σu,ψ, υl, p) is estimated by matching Þve moments constructed from the Census data.29 The
following table summarizes the model�s parameters and their estimated values:

Table 8
Model�s Parameters

Parameter How it is set Estimate

β discount factor a-priori 0.820
δ probability of death a-priori 0.830
τ labor share in output a-priori 0.670
ψ mean-reversion parameter for zjt estimated 0.992
ρ Þrst order autocorrelation of εjt estimated 0.950
σu volatility of labor demand shock estimated 0.300
υl value of low idiosyncratic shock estimated 0.968
p probability of low idiosyncratic shock estimated 0.364

.

The identiÞcation of the parameters is discussed below. First, ρ, σu and ψ are estimated by
matching some of the cross-sectional and time-series moments of states� net inßow rates. Using
four decades of Census data (1970-2000), I construct a panel of 4 observations on net inßow rates
for each of the 48 contiguous U.S. states. I then consider the following three moments: the cross-
sectional standard deviation of these net inßow rates in the 2000 Census (0.0259) and the Þrst
and second order autocorrelation coefficients of net inßow rates across Census years (0.73 and 0.61,

29The parameter υh is determined from p and υl from the normalization setting the unconditional mean of υ to
zero. The appendix provides a detailed description of the numerical algorithm followed to estimate the parameters
and solve the model.
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respectively).30 When constructing the model counterpart of these moments, it is important to
consider the fact that the Census data are only available every ten years, while a model�s period is
equivalent to Þve years. Thus, in the estimation algorithm, the net inßow rates predicted by the
model must be sampled every two model-periods.

Second, the parameter p determines the probability of drawing a low idiosyncratic shock. Since
agents drawing these shocks always choose to migrate, the parameter p is set to match the observed
interstate migration rate in the U.S. economy, in the 1995-2000 period. From Table 1, this value is
8.86 percent.

Last, the parameter υl determines the relative earnings of migrants and incumbent workers in
a location. Given that workers with low matches always leave a location, the incumbents are all
characterized by a high match υh. Instead, a fraction p of incoming workers is characterized by a
match υl and a fraction 1 − p by υh. The parameter υl is identiÞed by the estimated coefficientbω in the log wage regression (2). Given the simple structure of the model this parameter can be
compute analytically. In fact, from section (2), the wage of migrants was about 1.8 percent percent
lower than the wage of stayers in the location of destination. Thus:

pυl + (1− p) υh
υh

= 0.982. (17)

Recall that the average efficiency units of incoming workers (the numerator of equation 17) have
been normalized to one. Thus, we obtain υh and υl:

υh = 0.982−1,

υl =
1− (1− p) 0.982−1

p
.

6 Results

The following Tables represents the main cross-sectional and time-series statistics produced by the
model. For clarity, I mark in bold the moments that were not targeted in the estimation of the
model:

Table 9
Basic Statistics

Mean St. Deviation Corr. Outßow Corr. Inßow Corr. Av. Wage

Data Model Data Model Data Model Data Model Data Model

Outßow Rate 8.86 8.86 1.54 0.84 1 1 0.39 0.88 −0.17 0.06
Inßow Rate 8.86 8.86 3.33 3.28 0.39 0.88 1 1 0.25 0.11
Net Flow Rate 0.00 0.00 2.59 2.59 −0.23 0.81 0.79 0.99 0.43 0.12

30The Þrst order autocorrelation coefficient has been computed by calculating the correlation between the vector
of net ßow rates in 2000, 1990 and 1980 and the lagged vector containing the net ßow rates in 1990, 1980, and 1970.
The second order autocorrelation coefficient has been computed in an analogous way.

22



Table 10
Autocorrelations of Population Flows

Autocorrelation Coefficients
t, t− 1 t, t− 2 t, t− 3

Data Model Data Model Data Model

Outßow Rate 0.66 0.68 0.68 0.55 0.29 0.46
Inßow Rate 0.86 0.82 0.71 0.66 0.56 0.57
Net Flow Rate 0.73 0.73 0.61 0.61 0.55 0.51

.

The simulated model is generally consistent with the main stylized facts reviewed in section (2).
In particular, in the cross section, gross inßows are predicted to be more dispersed than net inßows
while the latter are predicted to be more dispersed than gross outßows. In addition, gross inßows
and outßows and gross and net inßows are positively correlated in the cross section. However, the
model incorrectly predicts that gross outßows should be positively correlated with net ßows. In
the time-series dimension all ßows are very persistent. Last, states characterized by positive net
ßows also tend to have relatively high average wages, even if the model understates the magnitude
of this correlation. In order to gain a better understanding of the working of the model, it is useful
to consider the impulse response functions of workers ßows to a labor productivity shock.

The Mechanics of Workers� Flows. Figure 6 plots the period-by-period response of outßow,
inßow and net ßow rates (represented as deviations from their steady state values) to a one-time
unanticipated shock uj1 > 1. In detail:

� In period 1 gross outßows stay constant at their steady state level, while at the end of period
1, there is a net inßow of workers who are attracted by the expected positive conditions of the
local labor market for period 2.31 Thus, gross inßows increase by exactly the same amount
as net inßows.

� In period 2, the shock uj2 is back to 1. Net ßow rates, however, are driven by the expected
growth in zjt. Given that the growth rate shock εjt+1 is positively autocorrelated, net ßows
in period 2 are also above their steady state value. Gross outßows tend to rise above steady
state due to the relatively large gross inßow of workers in the previous period. Some of these
workers, in fact, are ex-post unlucky (i.e. they draw an idiosyncratic shock υl) and decide
to migrate again. Notice that the incoming workers leave the location at the same rate as
individuals that are just born in the location. What makes the outßow rate increase is that
the average outßow rate for the local economy as a whole is a weighted average of the outßow
rate of incoming and new born agents (p) and incumbent agents. Since the incumbents�
outßow rate is zero, the average outßow rate increases after an increase in gross inßows. As
a result, the gross inßow rate in period 2 exceeds the net inßow rate.

31Remember that the timing of the model is such that workers cannot, by assumption, move in from other locations
to take advantage of the positive labor market conditions in period 1.
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� The following periods are similar to period 2, with net ßows moving back toward steady state,
gross ßows exceeding steady state, and gross inßows exceeding net inßows.

The response to a negative productivity shock can be of two types. First, if the shock is not
too large, the impulse response is simply the negative of the one plotted in Figure 6, with net ßows
dropping, outßows remaining constant on impact and gross inßows tracking net ßows. Notice that
in this situation, as in the one above, badly matched agents account for the entire gross outßow
from the location. If, however, the negative shock is large enough in absolute value, then gross
inßows go to zero on impact. In this case the local economy reaches a corner solution and highly
matched incumbent workers (i.e. those characterized by idiosyncratic shock υh) might choose to
leave the location. This situation is represented in Figure 7. The Þgure shows a simulation of
gross inßow and outßow rates over time, with inßows hitting zero in period 10. In this case, about
nine percent of the highly matched agents choose to migrate out of the location, giving rise to an
outburst of outßows. Notice that, except for these occasional spikes in outßows, the outßow series
is smoother than the inßow series.

What moments does this adjustment path imply? Compare Þrst the standard deviation of net
inßow, gross inßow and gross outßow rates. On impact, following the positive labor demand shock,
net inßows rise while gross outßows remain constant. Over time gross outßows respond to the higher
inßow of workers. The fact that gross outßows are above steady state in the periods following the
shock implies that gross inßows exceed net inßows. Thus, gross inßows are more volatile than net
inßows, and the latter are more volatile than gross outßows. In terms of correlations, in the period
following the shock all three ßows tend to move together leading to a high correlation between any
two of them. In the data only gross and net inßows are highly correlated. Gross inßows and outßows
are positively correlated, but less than the amount predicted by the model. The latter predicts
that net ßows and gross outßows are positively correlated in the cross-section, while they tend
to be slightly negatively correlated in the data. Finally, gross and net ßows are highly positively
correlated over time in the model and in the data.

Average Wages. Consider now the effect of a positive productivity shock occurring in period 1
on average local wages. The latter can be decomposed into the unit price of labor and the average
efficiency units in the location:

lnwjt| {z }
unit price of labor

+ λjt log υl + (1− λjt) log υh| {z }
average efficiency units

. (18)

First, the unit price of labor in period 1, wj1, rises on impact, because of the unanticipated nature
of the shock. In response to this shock, there will be a gross inßow of workers in the location. This
inßow lowers the marginal product of labor and brings wjt back to its steady state value starting
from period 2. The unit price of labor is shown as the dashed line in Figure 8.

Second, the inßow of workers has also an effect on the average efficiency units in the location
(the second term in equation (18)). The workers that ßow into the location in period 1 (together
with the ones born at the end of period 1) draw idiosyncratic shocks in period 2. The average
idiosyncratic match drawn by this class of workers equals 1. In contrast, due to the selection
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associated with workers� moving decisions, all other workers are characterized, at beginning of
period 2, by a high match υh with the location. It follows that a positive shock to the location�s
productivity in period 1 will induce an increase in the proportion λj2 of low matches and therefore
a fall in the average efficiency units of labor.32 This second effect, represented by the dotted line
in Figure 8, is however quantitatively very small. It follows that the impulse response of average
wages tracks closely the impulse response of the unit price of labor.

7 The Value of Excess Workers� Flows

The estimated parameters can be used to compute the welfare effect of eliminating excess workers
ßows, i.e. the difference between gross ßows and absolute net ßows, in this economy. This exer-
cise parallels Jovanovic and Moffit (1990)�s computation of the value of job-speciÞc information
accumulated by workers. In my model, excess ßows of workers across states are due to workers�
learning about their idiosyncratic productivity in different locations. To measure the contribution
of this information to aggregate output, I consider a version of the model in which workers are all
identical ex-ante and ex-post and characterized by one unit of efficiency. This is just the uncondi-
tional average of υl and υh. By construction, then, all matches between workers and locations are
identical, and workers will only move from a location in order to earn a higher unit price of labor.
The equilibrium in this alternative setting is easy to characterize. Notice, in fact, that there are
no direct mobility costs in this economy. Thus, a worker will always choose to move away from
a location that offers a lower expected unit price of labor than what can be obtained elsewhere.
It follows that in the equilibrium of this alternative model expected unit prices of labor will be
equalized across locations. Formally, an optimal allocation will be characterized by the following
condition:

E
£
w
¡
s0
¢ |s¤ = (1− βδ) e,

where the left-hand side is the expected price of labor in a location characterized by current state s,
and the right-hand side is the ßow value of moving to a different location offering expected utility
e. Replacing in the expression above the new unit price of labor:

w
¡
s0
¢
= τz0

¡
y0
¢τ−1

,

and solving for population y0 yields:

y0 =
·
τE [z0|z, ε]
e (1− βδ)

¸ 1
1−τ

,

where E [z0|z, ε] denotes the expectation of z0 conditional on z and ε.
In order to obtain the equilibrium value of e, it is enough to replace this equation in the

equilibrium condition (16). Aggregate output in the economy can then be easily shown to be equal
to·Z Z ¡

E
£
z0|z, ε¤¢ 1

1−τ Φz,ε (z, ε) dzdε

¸−τ Z Z
zψερ(1−ψ)u1−ψE

£
z0|z, ε¤ τ

1−τ Φz,ε (z, ε) q (u) dzdεdu,

32It follows that the incoming workers will have, on average, lower wages than incumbents. This is consistent with
the evidence of section (2).
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where Φz,ε denotes the stationary density of (z, ε) .

Notice that in the absence of mobility costs, aggregate output is the appropriate measure of
welfare in this economy. This value can be compared to its counterpart in the model of section (3).
Using the estimated parameters suggests that the contribution of excess workers ßows to aggregate
welfare is about 1.16 percent of aggregate output in the economy of section (3).

To understand what�s behind this number, assume for simplicity that the non-negativity con-
straint on gross inßows never binds. This assumption, while literally not true, represents a good
Þrst approximation as, in practice, the constraint on gross inßows rarely binds. Under this cir-
cumstance, the percentage gain on aggregate output from excess ßows can be shown to be equal
to:

1−
·
1− δp
1− δpυl

¸τ
> 0, (19)

where the inequality is due to the fact that υl < 1. Intuitively, the gain from gross ßows is larger
the lower the productivity υl of a bad match, the more often gross ßows occur (i.e. the larger p),
the longer an agent�s lifespan, as indexed by δ, and the larger the income share τ of output. Notice
that the key parameter in (19) is υl, with υl = 1 (i.e. the unconditional expectation of υ) yielding
zero gain from excess ßows. The estimated value of υl is 0.966, which is close enough to one to
lead to relatively small gains from excess migration ßows.33 Of course, given the relative simple
structure of the model and the cross-sectional nature of the earnings data, this Þgure has to be
interpreted cautiously.

8 Conclusions

This paper makes two contributions. First, it presents in a systematic way the main stylized facts
about net and gross ßows of workers across U.S. states. Then, it introduces and estimates a model
of workers� ßows across locations. The model is consistent with the main features of the data.
In particular, it is able to account for the lower cross-sectional dispersion of gross outßow rates
than both gross and net inßow rates. The latter observation points to the importance of gross
inßows, rather than gross outßows, as channel through which the state economy adjusts to local
shocks. The model embeds both kinds of adjustments. In simulations, temporal variations in gross
inßows appear to be the standard channel of adjustment to shocks. The outßow channel is active
intermittently, with outbursts of outßows being followed by long periods of relatively constant ßows.

The estimated parameters of the model are used to compute the gains from workers� excess
reallocation across U.S. states. The latter represent about one percent of output.

I conclude with a few remarks about future research in this area. There are two features
of the data that the model cannot reproduce. First, the model predicts that outßow rates in a
location are highly positively correlated with both gross and net inßows. This is at odds with the
data, as observed outßow rates display a small positive correlation with gross inßows and a small
negative correlation with net inßows. One way to address this problem would be to introduce in the

33Plugging the estimated parameters in (19) yields a gain of 0.9 percent of aggregate output.
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model a shock that affects outßows directly. For example, in the current version of the paper, if an
agent draws an idiosyncratic shock υh, the good match with the location lasts until the agent dies or
voluntarily leave the location. Alternatively, one could assume that the duration of all idiosyncratic
matches in a location is stochastic. In this setting, locations hit by aggregate �destruction� shocks
would experience a gross outßow of workers, which is likely to reduce the correlation between gross
outßows and the other ßows, in addition to making outßows more volatile.

Second, the model can reproduce only a fraction of the observed dispersion in average real
earnings across states and the observed correlation between wages and net ßows. The observed
dispersion of average earnings can be attributed to two potentially complementary causes. On the
one hand, population ßows might be subject to adjustment costs that slow down the process of β-
convergence of earnings across locations. This will result into larger cross-sectional dispersion at a
point in time. On the other hand, differences in real earnings might capture differences in amenities
across locations. As discussed above, it is not easy to determine a-priori which amenities people
value. The positive correlation between real earnings and measures of �good weather� across states
suggests that weather might not be the appropriate amenity to consider. Of course, it could be
that the observed differences in real earnings are due to measurement error because of the difficulty
of accurately measuring the level of prices in different locations. The availability of better data is
crucial for further progress in this area.

More generally, the model introduced here can be naturally extended to evaluate the impact
of international migration (i.e. net inßows of population from outside the aggregate economy) on
the wages and internal mobility of natives. Borjas et al. (1997) carry out such exercise using a
reduced-form model of internal net migration ßows. Extending their analysis to consider gross ßows
would shed light on the process by which states absorb larger external migration. Does the latter
lead to larger outßows of natives or less inßows from other states? Addressing this and related
questions is an interesting topic of future research.
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A Data Appendix

Sample Selection

All the measures of gross and net ßows and the stock of population that are reported in the paper
are computed using a sample of individuals that, at the time of the relevant Census, satisfy the
following restrictions:

� were between 27 and 60 years of age (as of their last birthday);
� were not living in group quarters;
� were in the labor force but not in the armed forces;
� if foreign-born, had immigrated to the U.S. at least 5 years before the Census year;
� were not living abroad 5 years before the Census year;
� were not living in the Census year or 5 years before the Census year, in either Alaska, Hawaii,
or the District of Columbia.

In what follows, I will refer to the selected sample as the �population�. The number of selected
individual observations is , representing million people.

Measures of Flows

In order to construct measures of gross and net ßows I adopt the following procedure. Individual i
is observed living in state j in Census year τ . The same individual is also observed living in state
k in year τ − 5. Construct an indicator function Iiτ (j) for each individual i such that Iiτ (j) = 1 if
individual i was recorded as living in location j in Census year τ and zero otherwise. Also, deÞne
an indicator function Iiτ (j) such that Iiτ (j) = 1 if individual i, interviewed in Census year τ ,
reported living in location j in year τ − 5. Total outßow of population from location j between
τ − 5 and τ is then deÞned as

outjτ =
X
k 6=j

X
i

µiτIiτ (k) Iiτ (j) ,

where µiτ is the person weight (perwt) assigned by the year τ Census to individual i. The total
inßow of population into location j between τ − 5 and τ is analogously deÞned as:

injτ =
X
k 6=j

X
i

µiτIiτ (j) Iiτ (k) .

Let yjτ denote the population living in location j in Census year τ :

yjτ =
X
i

µiτIiτ (j) .
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I also denote by yjτ the total population that was interviewed in year τ
0s Census that was living

in location j in year τ − 5:
yjτ =

X
i

µiτIiτ (j) .

An outßow rate from location j between τ − 5 and τ is then deÞned as follows:

bojτ = outjτ
yjτ

.

Analogously an inßow rate into location j between τ − 5 and τ is deÞned as

bxjτ = injτ
yjτ

.

The net ßow rate into location j between τ − 5 and τ is deÞned as the difference between inßow
and outßow rates: bdjτ = bxjτ − bojτ .
Accounting for Heterogeneity

There are (at least) two sources of heterogeneity I need to worry about. The Þrst concerns het-
erogeneity among locations (U.S. states) in the demographic composition of their population. For
example, if state A has a younger workforce than state B, and, if younger individuals are charac-
terized by higher mobility, then measures of outßows from state A will be higher than from state
B due to these demographic differences. Given that, in the model, all individuals have the same
age I need to control for these differences when constructing measures of outßows and inßows. The
second, equally important, issue is that while in the model all locations are identical in terms of
their �physical attributes�, in the data, instead, different states are characterized by very different
geographic features, sizes, etc. For example, outßow rates might be higher from smaller (size being
measured in terms of land area) states.
In practice, adjusting the data to take into account these concerns is not straightforward, because
while some of the heterogeneity across states can be safely taken as exogenous (e.g., their land
area), other features such as their demographic composition are likely not to be so.
In what follows I proceed in two steps. First, in order to construct measures of population ßows
that are free from potential composition effects, I divide the population in each location (state) in
different cells, deÞned by the following characteristics in the Census year:

� age (age); 7 age groups: 27-31, 32-36, 37-41, 42-46, 47-51, 52-56, 57-60;
� education (educ99); 5 education groups: high-school dropout, high-school diploma, some
college, college degree, above college;
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� industry of employment (ind), including the unemployment state; 14 industries: (1) unem-
ployed, (2) agriculture, Þshing, forestry and mining, (3) utilities, (4) construction, (5) manu-
facturing, (6) wholesale and retail sales, (7) transportation and wharehousing, (8) information
and communication, (9) Þnance, insurance, real estate and leasing, (10) professional, scientiÞc,
management, (11) educational, health, social service, (12) arts, entertainment, recreation, (13)
other services, (14) public administration.

Denote each cell by g and the collection of cells by G. There are 490 cells. For each cell g it is
possible to construct the equivalents of total outßows and inßows deÞned above in the following
way:

outjgτ =
X
k 6=j

X
i∈g
µiτIiτ (k) Iiτ (j) ,

injgτ =
X
k 6=j

X
i∈g
µiτIiτ (j) Iiτ (k) ,

yjgτ =
X
i∈g
µiτIiτ (j) .

Group-speciÞc outßow and inßow rates are then deÞned as

bojgτ = outjgτ
yjgτ

, bxjgτ = injgτ
yjgτ

.

DeÞne the population share of cell g ∈ G over the U.S. population:

υgτ =

P
j yjgτP

j

P
g yjgτ

.

When aggregating the inßow and outßow measures across cells, I use the weight υgτ to control for
composition effects. So, the adjusted outßow and inßow rates for location j are deÞned as:

boadjjτ =
X
g

υgτ × bojgτ ,
bxadjjτ =

X
g

υgτ × bxjgτ .
Similarly, it is possible to deÞne net ßows.
The second step of the procedure consists of controlling for geographical and historical differences
among U.S. states and the effect these might have on population ßows. I do this by running separate
cross-sectional regressions of inßow and outßow rates on the following state-level variables: (1) land
area, (2) year when state joined the U.S., (3) number of metropolitan areas within a state with
population larger than 500,000 (computed including all inhabitants) in the 2000 Census. The inßow
and outßow rates presented in the main body of the paper are the residuals from these regressions.

Real Weekly Earnings
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Data on workers� weekly earnings were computed from the Census 2000 by summing annual wage
income (incwage), business and farm income (incbus00), and welfare income (incwelfr), and
dividing the sum by the number of weeks worked (wkswork1). Each source of income refers to
the year 1999. I have dropped from the sample a very small number of observations for which an
individual reported zero annual earnings but a positive number of weeks worked for 1999. In a
few instances reported earnings by self-employed individuals were negative, and these observations
have been dropped. Given that earnings refer to 1999 and the worker�s labor force participation
status refers to the time of the survey, a small fraction of individuals (about 2.5 percent of the
sample) reported zero annual earnings and zero weeks worked in 1999. I have also dropped these
individuals from the sample.

The earnings data were deßated using the ACCRA Cost of Living index for the third quarter
of 1999. This index measures relative price levels (gross of taxes) for consumer goods and services
(including housing) in a number of U.S. cities.34 This number varies from quarter to quarter, and the
third quarter of 1999 was selected to maximize coverage of locations (330). Using information on the
workers� metropolitan statistical area or PUMA of residence in 2000 (found in the Census), I have
matched workers with a value of the Cost of Living index in their area of residence. Unfortunately,
the limitations in the coverage of the ACCRA index prevent one from being able to do so for all
workers in the Census sample. In particular, only 53 percent of the workers could be matched with
a value of the Cost of Living Index. The results reported in the main text of the paper refer only
to these workers (about 2.5 million individuals).

The logarithm of real weekly earnings was regressed on the following variables: 48 dummies for
workers� state of residence in 2000 (statefip), a measure of workers� experience (computed sub-
tracting years of education from the workers� age) and experience squared, 17 education dummies
(educ99), a workers� sex (sex), 3 race dummies (�white�, �black� and �others�, from raced), 14
sectoral dummies (from ind), and 26 occupational dummies (from occ). The R2 of this regression
was 30 percent.

March Current Population Survey

March CPS data for the years 1999-2003 were used to compute the fraction of individuals moving
across U.S. states for job-related reasons. During these years the March CPS contains a question
regarding an individual�s primary reason for changing residence with respect to the previous year.
The Census does not contain such question. The March CPS questionnaire identiÞes 16 different
primary reasons for moving, with �New job or job transfer� (33 percent of the answers) representing
the most-frequent single answer, followed by �Other family reasons� (13 percent). In order to
compute the fraction of individuals moving for job related reasons I have Þrst applied the sample
selection criteria listed above to the March CPS data. Then, the survey�s different 16 reasons
for moving were aggregated into two categories: job-related and non job-related reasons. The
aggregation is relatively straightforward, with the exception of moves motivated by the desire of
new, better or cheaper housing. I have included those reasons in the job-related move. The rationale

34Given that the index only measures relative price levels, it cannot be used to compare the price level in the same
location over time.
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for this choice is that the wage data used to calibrate the model have been deßated using price
indices that include housing prices.

B Details On Numerical Implementation

This section describes the steps that I followed in solving and estimating the model. The algorithm is
comprised of three loops: one for Þnding the value function conditional on e and θ, one for Þnding
the equilibrium of the model for given θ, and one for Þnding θ in order to match the empirical
moments of interest. Every change in θ entails a new equilibrium e, while a new e requires the
computation of the associated value function.

Step 1 (Guess). Start from an initial guess for the parameter vector θ and for the value of
migration e. The guess for e is updated in Step 3 below, while the guess for θ is updated in Step 4.

Step 2 (Dynamic Programming). Solve the dynamic programming problem described in section
(3). This is the most time-consuming step of the procedure because there are four continuous state
variables in the problem (recall that s = (y, n−1, z, ε)) and because the procedure involves numerical
integration of the value function with respect to the density q(u) of the innovation u. Last, it is
necessary to take into account the possibility that the constraint that keeps gross inßows from
becoming negative binds (x ≥ 0). The solution of the dynamic programming problem yields gross
inßows x(s) and the probability of outßow q(s) for an agent with match υh as functions of the state
vector s. These two functions allow one to recover all the other variables of interest, in particular
the location�s population y(s) conditional on s.

Step 3 (Equilibrium). Solve for the equilibrium value of e by deÞning the function

f(e) =

Z
y(s)Φ (s) ds− 1. (20)

The value e∗ such that f(e∗) = 0 represents the equilibrium value of migration. The integral in
equation (20) is computed by simulating the economy for a very large number of periods (5 million),
obtaining {yt}Tt=1 and approximating the integral in (20) with the sample average:

1

T

TX
t=1

yt.

In practice the zero of (20) is computed using a simple bisection procedure. The function f(e) is
decreasing in e because a higher value of migration must be associated with higher expected wages
which reduce Þrms� demand for labor. Notice that for each candidate value of e it is necessary to
go back to Step 2 and solve the dynamic programming problem again.

Step 4 (Estimation). Given e∗, it is feasible to compute the equilibrium value of all the variables
of interest. The vector θ is estimated by constructing the model counterpart of the six moments
listed in the text (section 5) and choosing θ so that the model-generated moments are exactly equal
to their empirical counterparts. Since there are six parameters and six moments, this is an exactly
identiÞed model. The problem then becomes one of solving six non-linear equations in six unknowns.
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The model-generated moments are constructed by simulating for S = 100 times artiÞcial data for
J = 48 locations for a number of P = 1, 000 periods. For each simulation s = 1, 2, .., S, the data for
all but the last 12 periods are then discarded. The data for the last of the 12 periods are instead
used to compute the cross-sectional moments, while the whole 12 periods are then used to compute
the time-series moments. Recall, though, that each period represents 5 years, while the correlations
of ßows across Census years refer to 10 years, therefore in practice only 6 time-series observations
for each location and simulation are used. Six moments are computed for each of the S simulations.
Each moment is then averaged across simulations and compared with its empirical counterpart. In
order to Þnd a solution for this non-linear system of six equations in six unknowns I have used
Broyden�s algorithm. The latter operates in the following way (for a more detailed description, see
Press et al. (1996), chapter 9). First, it numerically approximates the Jacobian matrix associated
with the non-linear system. It then uses this approximate Jacobian to Þnd an updated vector θ
by implementing the Newton step, which guarantees quadratic convergence if the initial guess is
close to the solution. If the Newton step is not �successful�, the algorithm tries a smaller step by
backtracking along the Newton dimension. When an acceptable step is determined, θ is updated
and the algorithm can proceed in the way described above, once an updated Jacobian has been
obtained. Since the numerical computation of the Jacobian can be costly (and in this model it
is), the Jacobian at the new vector θ is iteratively approximated using Broyden�s formula. The
non-linear solver stops when the maximum percentage difference between the simulated moments
and the empirical moments is smaller than 10−4 in absolute value.
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Figure 1 - Inflow and Outflow Rates
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Figure 2 - Inflow and Net Flow Rates
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Figure 3 - Net Flow and Outflow Rates
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Figure 4 - Net Flow Rates and Average Earnings
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Figure 6: Impulse Responses of Gross and Net Flows to Local Labor Demand Shock
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Figure 7: Time−Series of Outflows and Inflows with Binding Constraint on Gross Inflows
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Figure 8: Impulse Responses of Average Earnings to Local Labor Demand Shock
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