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Non-Technical Summary 

The technology of a firm determines the maximum possible output that can be 

produced given a bundle of inputs and can be represented by the production function. 

Once the functional form and the parameters of this function are known, one may 

evaluate the technological and managerial efficiency of a company by measuring the 

distance between its realised production and the relevant position on the production 

curve. Under weak conditions the principle of duality applies and thus the production 

function is directly related to the cost function. A cost function relates the minimum 

cost incurred for producing a certain mix and level of outputs given the input prices. 

The purpose of this note is to provide a regression technique for estimating the 

unknown parameters of the production or cost function when pooled cross-sections 

and time series, so-called panel data, are available. 

Estimating technology functions requires non-standard regression techniques. The 

reason for this is that we look at the minimum costs incurred (or the maximum output 

produced) instead of the average costs (average output). In this paper we adopt an 

estimation method which takes into account that deviations from the cost or 

production function, the so-called frontier, may emerge due to inefficiency but also 

due to other temporary firm specific reasons (for example, re-organisation costs) or 

simply bad and good luck or measurement errors. Distinguishing between 

randomness and efficiency however is not trivial. Stochastic or thick frontier 

approaches1 have to impose assumptions that determine how random effects can be 

separated from other (wasting) effects. The main problem with the traditional methods 

is that these assumptions are, whether feasible or not, difficult to test. This is a serious 

weakness because the distinction between randomness and inefficiency remains in 

this way somewhat arbitrary. 

The method that we propose, the Recursive Thick Frontier Approach (RTFA), is less 

vulnerable to the criticism mentioned above. Instead of making the usual 

distributional assumptions when applying the Stochastic Frontier Approach (SFA) we 

assume that the probability of an efficient firm of being at either side of the cost 

frontier is equal to one half. This assumption can be tested for a selected sample of 

                                                           
1 The frontier is called stochastic or thick in order to indicate that best practice firms are allowed to be 
positioned close to the frontier but not necessarily at the frontier. 
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best practice or so-called X-efficient companies. We therefore consider a selection 

criterion that sorts the sample into a group of X-efficient and a group of X-inefficient 

companies. The cost frontier is estimated using only the observations of the former 

group. If our test statistic rejects that on average the probability for a firm to be above 

or below the regression line is ½, then we reduce this group of firms by eliminating 

those companies which are relatively far positioned above the regression line (i.e. 

with relatively high costs) in the case one estimates a cost function. Our method is 

only suitable for panel data. The time dimension of panel data enables to require 

information on the persistence of some firms of having lower cost than others, and 

this is obviously not available in analyses of single cross-sections. Therefore, we 

argue that it will be always difficult to distinguish between luck or efficiency if only 

single cross-sections are used to estimate the frontier. 

To investigate the performance of RTFA, we simulate a panel data model where half 

of the observations are drawn from best practice firms and the other half from X-

inefficient firms. Although the data seems to perfectly suit SFA, our results show that 

RTFA produces considerably more reliable parameter estimates. 
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Abstract 

 

The traditional econometric techniques for frontier models, namely the Stochastic 

Frontier Approach (SFA), the Thick Frontier Approach (TFA) and the Distribution 

Free Approach (DFA) have in common that they depend on a priori assumptions that 

are, whether feasible or not, difficult to test. This paper introduces the Recursive 

Thick Frontier Approach (RTFA) to the estimation of technology parameters when 

panel data is available. Our approach is based on the assertion that if deviations from 

the frontier of X-efficient companies are completely random then one must observe 

for this group of firms that the probability of being located either above or below the 

frontier is equal to one half. This hypothesis can be tested for panel data sets but 

requires sorting of the full sample into a group of X-inefficient firms and a group of 

X-efficient (best practice) firms. The cost frontier is estimated using only the 

observations of the latter category. 

 

 

JEL Classification Numbers: C13, C23, C40 
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1. The Problem: Choosing Between Randomness and Differences in Efficiency 

The technology of a firm determines the maximum possible output that can be 
produced given a bundle of inputs and can be represented by the production function. 
Once the functional form and the parameters of this function are known, one may 
evaluate the technological and managerial efficiency of a company by measuring the 
distance between its realised production and the relevant position on the production 
curve. Under weak conditions the principle of duality applies and thus the production 
function is directly related to the cost function. A cost function relates the minimum 
cost incurred for producing a certain mix and level of outputs given the input prices. 
The purpose of this note is to provide a regression technique for estimating the 
unknown parameters of the production or cost function when pooled cross-sections 
and time series, so-called panel data, are available. 

If one discerns that measurement errors in the output variables may arise or that 
production may fluctuate due to factors which are beyond the control of the firm’s 
management then one must allow that part of the differences in the measured output 
among firms are caused by random effects rather than differences in management 
efficiency or technology. The econometric approaches to estimating frontier models 
make this distinction between randomness and efficiency in contrast with the 
mathematical approach where, roughly speaking, any deviation from the frontier is 
assumed to reflect inefficiency. The Stochastic Frontier Approach (SFA), the 
Distribution Free Approach (DFA), and the Thick Frontier Approach (TFA) belong to 
the group of econometric techniques2 while Data Envelopment Analyses (DEA) is the 
common name for the mathematical programming approach. 

When applying the econometric methods we need to adopt, one way or the other, a 
rule (or impose an assumption) that determines how random effects can be separated 
from other (wasting) effects. The main problem with the traditional econometric 
frontier methods is that they depend on a priori assumptions that are, whether feasible 
or not, difficult to test. This is a serious weakness because the distinction between 
randomness and inefficiency remains in this way somewhat arbitrary. 

In this paper we develop the Recursive Thick Frontier Approach (RTFA). Our method 
is based on the assertion that if deviations from the frontier of X-efficient, i.e. best 
practice, companies are completely random then one must observe for this group of 
firms that the probability of being located either above or below the frontier is equal 
to one half.3 This hypothesis can be tested for panel data sets but requires sorting of 
the full sample into a group of X-inefficient firms and a group of X-efficient firms. 
The cost frontier is estimated using only the observations of the latter category. 

In the following section we review the commonly applied approaches to estimating 
the production or cost frontier before defining our panel data model in section 3 and 
introducing RTFA in section 4. In section 5 we discuss under which circumstances 
RTFA may go wrong and how to prevent such a situation. Section 6 contains an 
                                                           
2 See Aigner, Lovell and Schmidt (1977), Berger (1993) and Berger and Humphrey (1992) 
respectively. 
3 A similar assumption is made when applying the Distribution Free Approach. In this case, the random 
effects to the production of a specific firm are assumed to cancel each other out over time. However, 
Berger and Humphrey (1992) additionally assume that inefficiency is persistent over time. The latter 
rather strong assumption does not have to hold for successful application of the RTFA. 
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Figure 1 Two extreme choices for the production function (DEA versus OLS)a 
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aSee Figure 1-1, Charnes, Cooper, Lewin and Seiford (1994). 

 

illustrative example where the performance of both the traditional SFA and RTFA in 
a simulated panel data model is evaluated. Finally, section 7 concludes. 

2. A Brief Overview of Frontier Analysis 

2.1 Data Envelopment Analyses (DEA) 
Figure 1 plots the observations on input-output combinations of some firms. 
Mathematical programming techniques can be employed in order to find the close 
fitting frontier which envelops all data points (see the solid line in Figure 1). In this 
case, the production function is completely determined by the most “efficient” 
companies in the sample. In Figure 1, the frontier is allowed to be discrete and 
piecewise linear. Evidently, other functional forms can be chosen. Data envelopment 
analysis was introduced by the pioneers Charnes, Cooper and Rhodes in 1978.4 

Note however that the production function is constructed on the basis of the 
information contained in the data. Therefore, only relative efficiency measures are 
considered. According to our definition given in the previous section, however, the 
production function is defined by an absolute efficiency criterion. We thus have to 
make the implicit assumption that some of the firms in the data set are efficiently 
operating. 

2.2 Stochastic Frontier Approach (SFA) 

                                                           
4 Finding parametric production functions by using mathematical programming techniques already 
began with the work of Aigner and Chu in 1968. 
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Two main criticisms of using mathematical programming techniques are mentioned in 
the existing literature on frontier analysis. First, the methods are extremely sensitive 
to outlying observations. Only one observation may cause a shift in the frontier. This 
observation however might emerge from a measurement error and as a consequence 
might overstate the technological capacity of the industry. Second, any observation 
which lies below the frontier is marked as a relatively inefficient company. Such an 
indication only makes sense under the assumption that the management of the firm 
has perfect control over any factor that may affect total output. If, on the contrary, 
there are measurement errors, unobservable shocks or factors which are beyond the 
sphere of influence of the management, then we must allow companies to fluctuate 
around the frontier without necessarily being inefficient. A firm can be efficient in the 
sense that its management makes rational and optimal decisions under uncertainty but 
at the same time, after revelation of the state of nature, it may not be positioned on the 
production function. An extreme opinion would be to say that all deviations from the 
frontier are due to bad or good luck and measurement errors. In this case, the best 
course we can follow to estimate the production function is to apply a standard 
regression technique such as OLS (see the dashed line in Figure 1). 

In response to these arguments, Aigner, Lovell and Schmidt (1977) develop a 
stochastic frontier production model by appending a random disturbance term to the 
production function. The error term is assumed to be the sum of two random 
components, a noise term which is symmetrically distributed around zero (to model 
measurement errors and unobservable shocks) and an error component which is 
strictly negative (to measure inefficiency). The model can be written as  
 

iiii vuxfy ++= );( β   (1) 
 
where iy  is the output, );( βixf  is the production function with unknown parameter 
vector β , iv  represents the symmetric disturbance and iu  determines the inefficiency 
of company i )0( ≤iu . Usually the production function is chosen to be log linear in its 
arguments, iv  is assumed to be independently and identically distributed (iid) 
following the normal distribution and independently generated from the inefficiency 
terms iu  which, in turn, are also iid and assumed to follow, for instance, a truncated 
normal or an exponential distribution. Maximum likelihood procedures are used to 
estimate the unknown parameters of model (1). Jondrow, Lovell, Materov and 
Schmidt (1982) show how to disentangle the inefficient component from the entire 
error term iii vu +=ε  by considering the expected value of iu  conditional on iε . 

Although the Stochastic Frontier Approach (SFA) provides a solution to the second 
criticism mentioned above it is still vulnerable to outlying observations. The classical 
Maximum Likelihood estimators have a breakdown point of zero, i.e. only one 
observation may cause the estimator to return any outcome.5 In this paper we will 
consider a regression technique which is less sensitive to outliers. 

Another argument that was brought up to criticise the SFA is the arbitrary choice of 
the distributional assumption concerning the inefficiency component of the error term. 
                                                           
5 The maximum fraction of data contamination which leaves the estimator determinate defines its 
breakdown point (see Donoho and Huber (1983)).  
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Not so much this assumption in itself as the lack of a testing procedure makes SFA 
questionable.6 Moreover, in a panel data framework, it may occur that the SFA 
regression residuals are approximately normally distributed for each single cross-
section.7 In this case, the researcher would be tempted to conclude that the one-sided 
error component is negligible and therefore the companies in the sample are equally 
efficient. However, when comparing the separate cross-section results, one may find 
that the observations of many companies are at the same tail side of the normal 
distribution for each year of the sample period. If the time horizon is long enough, 
then it seems wrong to ascribe this result to bad and good luck. In other words, while 
not being revealed by SFA, there are substantial differences in production efficiency. 
Some companies have persistently higher production than others. This does not 
necessarily induce asymmetric errors in the frontier model. Although for a single 
cross-section we cannot do more than accepting the SFA efficiency hypothesis, SFA 
does clearly not provide an appropriate procedure for distinguishing best practice 
from inefficient firms if the full panel data set is to be taken into account. 

2.3 Distribution Free Approach (DFA) 
When both cross-sections and time-series are available then solutions to circumvent 
restrictive distributional assumptions are at hand. For instance, Berger (1993) calls his 
method “distribution free” since no specific distribution for the inefficiency 
component iu  is chosen. However, Berger assumes that managerial inefficiency is 
persistent and constant over time and thus in a panel data context one can write 

iti uu = . On the other hand, the random error tiv  will cancel out over the years. DFA 
involves estimation of the panel data model: 
 

tiiitittti vuwYCTC lnln),(lnln ++=    (2) 
 
where TC  is the total costs of firm i  in period t , tC  is the industry cost function in 
period t, tiY  is the output vector and tiw is a vector of input prices and ln represents the 
natural logarithm. Zellner’s Seemingly Unrelated Regression (SUR) estimator is used 
to estimate model (2) with composite disturbance tiiti vu lnln +=ε . The average of 
the regression residuals per cross-sectional unit i  is then computed to estimate iuln . 

The following conditions must hold to successfully apply DFA: [ )∞∈ ,1iu , 
[ ] 0ln =tivE  and the usual orthogonality condition must be satisfied. If the cost 

function contains a constant then no unbiased estimate of the inefficiency component 
iuln  can be obtained. However, the relative X-efficiency measure: 

                                                           
6 Kopp and Mullahy (1990) introduce a Generalized Method of Moments (GMM) estimation procedure 
for frontier models which enables various degrees of distributional flexibility and provides moment-
based specification tests. Rather than imposing a arbitrarily chosen distribution for the inefficiency 
component iu , a parametric relationship between the first and third moments of iu  need to be 
specified. This specification is ad hoc in itself but an important aspect of Kopp and Mullahy’s 
procedure is that it enables to test the validness of the distribution of the one-sided error component. 
7 This result was found in a study of the cost efficiency of almost 2000 European banks by Schure and 
Wagenvoort (1999). 
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*

*
min**

min )lnexp(ln
i

ii u
uuuXEFF =−=   (3) 

is still accurate in this case. *
minlnu  is the minimum of *ln iu  where the latter is the 

estimate of iuln . X-efficiency refers to a measure of managerial/operational 
efficiency and can be contrasted with scope or scale efficiencies. The measure iXEFF  
is equal to 1 for an efficient firm and takes lower values otherwise. 

2.4 Thick Frontier Approach (TFA) 
Although DFA is less dependent on a priori distributional assumptions than SFA, it 
relies on the strong assumption that X-efficiencies are constant over time. If there are 
changes in X-efficiency, then one can only predict the average inefficiency over the 
past for a certain firm. 

Berger and Humphrey (1992) consider another distribution free way of estimating 
cost frontiers using panel data, the so-called “Thick Frontier” Approach (TFA). This 
method starts with sorting of the data on the average costs.8 It proceeds with the 
estimation of two “thick-frontiers”, one for the lowest and one for the highest average 
costs quartile of firms. These regressions are independently executed for each year in 
the sample. Average inefficiency of the highest quartile companies is then computed 
by comparison of the two thick frontiers (see Berger and Humphrey (1992) for 
details). Even if the errors associated with those separate cost functions are not drawn 
from a random variable which is symmetrically distributed around zero, i.e. the lowest 
quartile may still contain some inefficient firms (not only randomness) then TFA may 
still provide a useful comparison of high and low cost firms. On the other hand, only 
in rare cases the actual production frontier can be found in such a way. As a 
consequence, results regarding the average production inefficiency within the sector 
will usually be biased downward, i.e. efficiency will be overstated. 

In this paper we consider a TFA type of regression technique. The main problem of 
the frontier approaches mentioned so far is that the choice between random error or 
inefficiency remains somewhat arbitrary: DEA ignores randomness from the very 
beginning, SFA results depend on a priori distributional assumptions, DFA makes 
strong assumptions on the evolution of X-efficiency over time and last, TFA sorts the 
data in arbitrarily selected groups of firms, i.e. instead of quartiles other quantiles can 
be chosen. Therefore we suggest to apply a formal test in order to reveal whether the 
frontier lies in a cloud of observations which belong to relatively efficient firms. With 
respect to this group of companies any deviation from the frontier must be random. If 
the test statistic, i.e. the Lagrange Multiplier (LM) test of Breusch and Pagan (1980) 
or a “Binomial test” statistic, rejects randomness of the error terms then a smaller 
quantile is chosen and a new frontier is computed. The algorithm is called Recursive 
Thick Frontier Approach (RTFA) and uses the Trimmed Least Squares (TLS) 
estimator (see Koenker and Bassett (1978)). 

In the subsequent section we discuss the assumptions of our panel data model and 
argue why these conditions bring forward to consider Breusch and Pagan (1980) LM 
test or a “Binomial test”. 

                                                           
8 Berger and Humphrey (1992) define average costs as total costs divided by total assets. 
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3. Assumptions of the Model 

Suppose there are n  cross-sectional units ( )ni ,..,1=  and T  time periods ( )Tt ,..,1= . 
Thus the full sample contains nT  observations. Consider the linear panel data model 

,tititi xy εβ +=  Ei ∈   (4) 

which describes the relationship between output tiy  and a k-dimensional input bundle 

tix .9 As usual, β  is a k-dimensional column vector of unknown parameters and tiε  is 
the error term associated with firm i  in period t . Note that equation (4) is only 
expected to hold for the most efficient companies in the sample, i.e. for companies 
with subscripts i  which belong to the set .E  Not all n  companies are necessarily in 

.E  Here efficiency is defined in terms of X-efficiency rather than scale or scope 
efficiency. Thus, given the output mix and level of inputs the management of the firm 
optimally allocates the firm’s resources. 

If there are companies which are included in the integer set E  and at the same time 
are persistently located above or below the production curve defined by relationship 
(4) then the set E  has not been well defined. In this case, relatively efficient firms are 
then the firms with positive errors in all periods in comparison to relatively inefficient 
firms with concomitant negative errors. For the right choice of ,E  however, 
observations on the same cross-sectional unit are expected to be randomly distributed 
around the frontier. Evidently, especially for panel data with short time series, this 
does not imply that the regression residuals of a certain company can be incidentally 
of the same sign. The probability of finding a positive or negative residual however 
must be equal. To conclude, by definition, the disturbances of model (4) are random 
and do not reflect managerial inefficiencies. 

We assume that the following conditions must hold for panel data model (4): 

Assumptions: 
(A.1) tiε  are independent and identically distributed with symmetric 
distribution function F around zero, [ ] 0=tiE ε , for .Ei ∈  
(A.2) The covariance matrix of the joint disturbance vector ε , [ ] Ω='εεE , is 
diagonal, i.e. [ ] 0=sitiE εε  for ,st ≠  ,Ei ∈  and [ ] 0=tjtiE εε  for ,ji ≠  

., Eji ∈  
(A.3) The orthogonality condition [ ] 0=titi xE ε holds for .,..,1 ni =  

Note that assumptions A.1-A.2 do not hold for the errors (defined with respect to 
relationship (4)) associated with firms which do not belong to the set ,E  i.e. the 
relatively inefficient firms. 

In section 4 the algorithm RTFA is presented and a X-efficiency measure is discussed. 

                                                           
9 Our exposition follows the estimation of a production function. Evidently, the proposed method can 
be used for the estimation of a cost function. 
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4. A Recursive Algorithm for the Computation of the Stochastic Frontier in 
Panel Data Models 

A procedure for testing the diagonality of the covariance matrix Ω  (assumption A.2) 
was proposed, among others, by Breusch and Pagan (1980), assuming normality of 
the disturbances in equation (4). They show that, under the null hypothesis of zero 
autocorrelation (more precisely, under assumption (A.2)), the Lagrange Multiplier 
statistic 

��
=

−

=

=
T

t

t

s
tsLM rn

2

1

1

2λ   (5) 

has asymptotically a 2χ -distribution with 2/)1( −TT  degrees of freedom, where the 
correlation coefficient 

**

*

sstt

ts
tsr

ωω
ω

=    (6) 

is computed with the estimated covariances ))((1 **

1

* ββω sisiti

n

i
tits xyxy

n
−−= �

=

 and 

*β  is an estimate of .β  

RTFA begins with an Ordinary Least Squares regression using the full sample of 
observations. On the 1% significance level, the computed LM statistic indicates 
whether all companies in the data set can be considered as equally efficient. If not, 
then we reduce the set .E  In practice, %δ  of the firms with the lowest mean (over 
time) of the residuals are left out from the sample. Then we repeat the regression and 
computation of the LM statistic for the reduced sample until assumption A.2 cannot 
be rejected, i.e. the largest possible group of relatively efficient firms has been 
identified. Details of the algorithm are summarised in the annex. 

Although RTFA will eliminate step by step the relatively inefficient companies, 
including the outlying observations which lie far below the production frontier, 
outliers which are positioned above the production frontier may still push the 
regression line too far up. In order to obtain outlier robust estimates we employ an 
one-sided Trimmed Least Squares (TLS) estimator to estimate .β 10 Those 
observations with concomitant value of the standardised regression residual, 

** /)( σβtiti xy − , that is lower than the first percentile of the standard normal 
distribution (-2.54) are left out after the initial OLS regression. A robust estimate, *σ , 
of the standard deviation of the regression residuals is computed with the help of the 
Median Absolute Deviation (MAD) estimator:11 

6745.0/))(()( rmedrmedrMAD −=   (7) 

Two remarks are called for. First, note that we select the efficient firms on the basis of 
their distance to the regression line instead of their average costs as was suggested by 
                                                           
10 Strictly speaking, the TLS estimator does not possess the desired robustness properties of having a 
good breakdown point or a bounded influence function. We therefore recommend to use other outlier 
robust estimators such as a HBP GM technique (see for instance, Hinloopen and Wagenvoort (1997)) 
instead of the TLS. Due to restrictions on available computing time we do not apply those more 
computing intensive estimators.  
11 See, among others, Rousseeuw and Leroy (1987), p.45. 
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Berger and Humphrey (1992). The latter approach will omit relatively small 
companies if there are increasing returns to scale, even when they efficiently allocate 
their resources. Since we are primarily interested in X-efficiencies, our selection 
criterion more appropriately sorts the data. Second, even in the case where the 
observations of both the inefficient and efficient companies are drawn from a normal 
distribution it is unlikely that the computed residuals of the regression equation are 
exactly normally distributed. This can be imputed to the fact that when discarding 
observations corresponding to inefficient companies, some data points associated with 
efficient firms may be discarded as well (due to bad luck X-efficient companies). That 
is, after convergence of the RTFA algorithm, the distribution of the RTFA residuals 
will be truncated from below.12 The LM statistic requires normality of the regression 
residuals. Therefore, we also consider another test which is less dependent on the 
distribution of the regression residuals. 

Another way of formulating the assumption that efficient companies are randomly 
distributed around the frontier is to assume that the conditional probability of being 
positioned either above )0( >tiε or below )0( <tiε  the frontier is equal to 0.5 given 
any value for the lagged tiε  instead of assuming (A.2): 

Assumption: (A.4) 5.0)1,..,1,0Pr()1,..,1,0Pr( =−=<=−=> tsts sitisiti εεεε . 

Now we define the following random variable 

�
=

=
n

i
iindicZ

1

,   (8) 

where 1=iindic  if the event “ 1−T  or T  of the residuals tir  are positive” occurs or 
the event “ 1−T  or T  of the residuals tir  are negative” occurs, 0=iindic  otherwise. 
The random variable Z  has a binomial distribution with probability p  that the 
indicator function iindic  returns 1.13 For large samples (in n ) and when probability 
p is not too small, the binomial distribution approximates to the normal distribution. 

Therefore, we suggest to compute the following “Binomial test” statistic 
( )

)1(

2

pnp
npZ

B −
−=λ   (9) 

in order to test assumption (A.4). Bλ  is asymptotically chi-squared distributed with 
one degree of freedom. 

Once the frontier is established, X-efficiency is computed as:  

,/ *
TLStititi xyXEFF β=   (10a) 

in the case of the production approach. In the case of the cost function approach, the 
numerator and denumerator of formula (10a) are swapped: 

                                                           
12 Strictly speaking this distribution will also be truncated from above since we apply the TLS 
estimator.  
13 For 5=T , 375.05.0*12 5 ==p . 
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,/*
tiTLStiti yxXEFF β=   (10b) 

To reduce the effect of randomness, average values per cross-sectional unit (or per 
time period) can be calculated. 

5. Pitfalls 

Two pitfalls however have to be taken into account. First, when technological 
progress is relevant the Breusch and Pagan (1980) Lagrange Multiplier test and the 
Binomial test will reject assumption A.2 and A.4 respectively, even for the sample of 
relatively efficient firms. In this case, observations on those companies will lie below 
the production frontier as defined in (4) for early periods and above the production 
curve for later episodes. This problem can be solved by the introduction of time 
dummies to measure technological improvement or by introducing for each time 
period t  a different parameter vector tβ  in model (4). The second pitfall concerns the 
adjustment for outlying observations. If there are only a few efficient companies in 
the full sample then it may happen that RTFA detects a frontier which is still 
relatively far positioned from these outlying observations. As a consequence, the 
researcher must further investigate the nature of the reported outliers before 
ascertaining the industry production technology. Note however that outlier robust 
regression techniques are indispensable for the detection of these anomalous 
observations in the first place. If the number of observations around the frontier is 
sufficiently high then RTFA provides correct estimates of the technology parameters 
even in the presence of outliers.14 

6. An Example: Estimation of the Production Function 

This section contains a simulation experiment. Figure 2 is a typical diagram of a pool 
of efficient (crosses) and less efficient (triangles) firms among 500 competitors in the 
industry over five years. The picture shows, at least for the crosses, a linear positive 
relationship between output and input. 

The data of Figure 2 was generated by the following Data Generating Process (DGP): 

,10 titix η+=  ,500,..,1=i  5,..,1=t  
,5 tiiti vu +−−=ε  ,250,..,1=i  1=t  
,4 tiiti vu +−−=ε  ,250,..,1=i  2=t    (11) 
,3 tiiti vu +−−=ε  ,250,..,1=i  3=t  
,2 tiiti vu +−−=ε  ,250,..,1=i  4=t  
,1 tiiti vu +−−=ε  ,250,..,1=i  5=t  

,titi v=ε  ,500,..,251=i  5,..,1=t  

tititi xy ε+=  

where tiη  and tiv  are independent and standard normally distributed and iu  is drawn 
from a standard half normal distribution. Note that the set of efficient firms  

                                                           
14 The number of best practice firms must exceed at least the total number of firms in the sample times 
the applied significance level of the LM or Binomial test. 
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Figure 2 Scatter Diagram of DGP (11)a 

aCrosses indicate relatively efficient companies whereas triangles indicate the inefficient ones. Output 
and input are on the y- and x-axes respectively. 

}500,..,251{=E  contains 250 companies. The inefficient companies })250,..,1{( ∈i  
partly catch up with the others from period 1 to period 5 since the the added negative 
inefficiency component increases from )5( iu−−  to ).1( iu−−  Note that the data 
generated by (11) seems to suit with the SFA estimation technique. 

Table 1 contains the estimation results of both SFA and RTFA.15 

The performance of SFA is clearly unsatisfactory because Classical Maximum 
Likelihood regression returns an estimate (1.129) which is relatively far from the 
parameter 1=β  (t-value of 229.24). This parameter estimate is biased because half of 
the observations are generated by a process which does not include the half normal 
distribution and because the mean of the added negative inefficiency component 
changes over time. This example highlights the extreme sensitivity of SFA to the 
distributional assumptions made by the researcher. Although the inefficiency terms 
are indeed generated by the half-normal distribution, model (1), even when it is 
specified with a half-normal component iu  and a normal error term iv , does not 
exactly describe the data generating process (11). Evidently, in practice one cannot 
know the generating mechanism and this, together with a lack of powerful testing  

                                                           
15 Our SFA algorithm uses the Newton-Raphson procedure when maximizing the likelihood function. 
These results can be reproduced by choosing the seed of the GAUSS random number generator equal 
to one. 
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Table 1 SFA and RTFA Estimation Resultsa 

 SFA RTFA (Stop when 
)10(2

01.0
* χλ <LM ) 

Breusch-Pagan Test 

RTFA (Stop when 
)1(2

01.0
* χλ <B ) 

Binomial Test 
*β  1.129 

(229.24) 
0.985 

(334.05) 
0.979 

(322.08) 
*
LMλ   21.24 27.79 
*
Bλ   4.84 3.27 

No. of firms on 
the frontier 

 280 287 

 Average X-efficiency 
Period 1  0.721 0.725 
Period 2  0.770 0.774 
Period 3  0.821 0.826 
Period 4  0.869 0.874 
Period 5  0.919 0.925 
at-values are in parentheses, ,63.6)1(2

01.0 =χ .21.23)10(2
01.0 =χ  

procedures, makes SFA questionable in real data applications. In our simulation 
experiment, the average inefficiency of the firms will be over-estimated with 13 per 
cent due to a dramatic decay of SFA. 

RTFA however produces a reliable parameter estimate close to one. Note that the 
concomitant standard error is smaller than in the case of SFA. However, a Monte 
Carlo experiment could provide a decisive answer to the question whether RTFA is 
more efficient than SFA and whether it outperforms SFA when measuring against the 
Mean Squared Error. The Lagrange Multiplier test and the “Binomial test” statistic 
correctly reject that all observations in the sample follow a similar pattern. It takes up 
to 38 (40) iterations until RTFA identifies a group of relatively efficient firms which 
contains 287 (280) members in the case that the “Binomial test” (LM test) is applied. 
The latter number is reasonably close to the number of elements in E  according to 
DGP (11). That is, DGP (11) is generated with 250 relatively efficient companies. 
Note that the moving averages of the inefficiency component in DGP (11) do not 
obscure RTFA. Indeed, the average X-efficiency is correctly estimated since the 
computed average value of measure (10a) climbs from about 0.7 in period 1 to 0.9 in 
period 5. 

7. Conclusion and agenda for future research 

We conclude that our Recursive Thick Frontier Approach provides a reliable 
alternative to the classical Stochastic Frontier Approach to estimating production or 
cost functions. RTFA is less dependent on a priori distributional assumptions 
regarding the inefficiency component of the disturbances than SFA and thus is to be 
preferred to SFA in applied studies where it is usually difficult to make a distinction 
between randomness and inefficiency. Furthermore RTFA provides powerful testing 
procedures for the underlying assumptions of the model. 
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The RTFA procedure, as outlined in this paper, remains an ad hoc solution to 
estimating inefficiency as we did not elaborate on the questions whether RTFA may 
not converge or converge in wrong directions. It is for future research to formulate 
precise conditions under which RTFA can successfully be applied. 
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Annex An Algorithm for the Recursive Thick Frontier Approach 

RTFA 
 
Initialisation:  
 
Step 1: Set 0=j  and choose the speed of the data reduction process (for instance 

01.0=δ , i.e. in step 4 the data set is reduced with %100*Tδ ). 
 
Iteration: 
 
Step 2: Robust Estimation 

Compute the TLS estimates for %100*)**1( Tj δ− of the data. 
 
Step 3: Test on Autocorrelation (or compute the Binomial test statistic Bλ ) 

Compute Breusch and Pagan (1980) Lagrange Multiplier test statistic for the 
regression residuals associated with the TLS regression of step 2. If 

)2/)1((01.0 −< TTCHILMλ (99th percentile of the chi-squared distribution with 
)2/)1(( −TT  degrees of freedom) then stop the iterations and report the last 

TLS regression results. Otherwise go to step 4. 
 
Step 4: Selecting the Relative Efficient Firms 

Compute the mean of the residuals *βtititi xyr −=  for each cross-sectional 
unit i , )),..,(( 1 Tiii rrmeanm = . Sort the data on im . Set 1+= jj . Discard 

%100*** Tj δ  of the observations by selecting %100**δj  of the cross-
sectional units with the smallest (largest) im  in case of the production (cost) 
function. Repeat steps 2-4. 
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