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Abstract

This paper reviews both theoretical and empirical studies of financial transmission
rights (FTRs) in the major U.S. wholesale power markets and provides a simple il-
lustrative two-stage model to study the competitive behaviors of electricity generators
(wholesale power sellers) and load serving entities (LSEs)(wholesale power buyers) and
the welfare effects of FTRs in the restructuring U.S. wholesale power market frame-
work. The analysis focuses on a competitive two-node electricity network model where
there is one generator and one LSE in each node with linear marginal cost and demand
function, supervised by an independent system operator (ISO). In the first-stage of
modeling, a no-rights benchmark model is developed to solve for the optimal quantity
of power production and consumption and derive the locational marginal price for each
node, which serve as the building blocks to solve for the optimal FTR hedge positions
in the second-stage model. Once a stochastic shock is introduced, the second-stage
model shows that the acquisition of optimal FTRs by the risk averse generators and
LSEs will increase and in general will strictly increase the social welfare compared with
the case where there is no FTRs available. This result presents a counterexample to
the somewhat negative views about FTRs held by other economists in the literature
and provides some economic explanations to the fact that FTRs are widely adopted as
a financial hedge instrument in the major U.S. wholesale power markets.
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1 Introduction

As the largest regulated energy industry in the United States, the U.S. electric power industry

has undergone a tremendous change to become more competitive (U.S. Department of Energy

2000). One of the central components in the competitive electricity market is to have open

access to the transmission system. In the U.S., the major transmission system can be roughly

divided into three regions, the East and West Interconnections and the Electricity Reliability

Council of Texas (ERCOT) as shown in Figure 1.

Figure 1: Three major U.S. interconnected transmission systems

Electricity as an economic good has its unique features. The most distinct one is that its

storage cost is enormously high such that almost all the electric power is delivered through

transmission lines for immediate consumption once it is produced. As indicated in a recent

National Transmission Grid Study (2002), there is now a tendency for U.S. transmission

lines to get congested and thus create substantial impact on the locational pricing system

and overall reliability of U.S. wholesale power market (see Stoft 2002 and Wilson 2002). The

U.S. Federal Energy Regulatory Commission (FERC) responds to this issue by calling a new

independent institutional entity to manage and handle transmission assets, i.e., Independent

System Operator (ISO). By the nature of ISO, it is a non-profit organization whose purpose

is to monitor the power flow, collect generator’s supply offers and load serving entity (LSE)’s

demand bids, and calculate the optimal power dispatch taking into account various network

2



constraints such as energy balancing constraint and thermal limit constraint.

To address the above congestion issue, it is a common practice in the U.S. wholesale

power market for ISO to issue financial transmission rights (FTRs). According to ISO

New England Manual (2003a), an FTR is a financial instrument that entitles the holder to

receive compensation for transmission congestion costs that arise when the transmission grid

is congested in the day-ahead market. The amount of compensation is based on differences

in day-ahead locational marginal prices (LMPs) result from the dispatch of generators to

relieve the congestion. FTR entitles its holders to a share of the congestion rents collected

in the day-ahead energy market, thus provides the holder a financial hedge in the day-ahead

market for the nodal price difference between a node of receipt (source) to a node of delivery

(sink).

In the literature four types of FTRs have been proposed 1, namely, point-to-point(PTP)

obligation, PTP option, flowgate (FG) obligation, and FG option (see Hogan 2002 and

2003). An FTR option entitles its holders to revenue when day-ahead congestion occurs in

the desired direction. In contrast,an FTR obligation entitles it holders to a revenue when

day-ahead congestion occurs in the desired direction and obligates holders to a payment

when day-ahead congestion is in the opposite direction. When using PTP FTRs, market

participants can obtain any collection of FTRs corresponding to a feasible power flow in the

transmission system. When using FG FTRs, market participants can only obtain FTRs on

pre-determined transmission lines (flowgates), which are considered most at risk should the

lines get congested.

The definition of a PTP FTR obligation can be more clearly illustrated in the following

example. Suppose there are two nodes in the transmission network, node A where power

is injected into the transmission network and node B where power is withdrawn from the

transmission network. Assuming no transmission losses, the PTP FTR entitles the holder

to the difference in day-ahead LMP between node A and B. By its obligation nature, the

FTR holder receives a positive payment (LMP(B)-LMP(A)) from the ISO if LMP(B) exceeds

LMP(A). On the other hand, the FTR holder is obligated to pay the ISO (LMP(A)-LMP(B))

if LMP(A) exceeds LMP(B). Thus the wholesale power market participants’s risks associated

with different LMPs are in principle decreased by purchasing FTRs.

To date, FTRs have been widely used to hedge against the potential loss in the transmis-

sion congestion in major U.S. wholesale power markets. For example, FTR was introduced

in the PJM (Pennsylvania, New Jersey and Maryland) Interconnection since April 1998, in

1As recommended in WPMP by FERC (2003), the U.S. electricity industry have favored PTP FTRs due
to its simplicity to implement and its successes in the early restructuring markets such as PJM and New
York.
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New York since September 1999, in California since February 2000, and in New England

since March 2003. Note that FTRs have been known under different names in different U.S.

power markets. For instance, in PJM FTRs are referred to as Fixed Transmission Rights,

in New York Transmission Congestion Contracts (TCCs), in California Firm Transmission

Rights, in New England Financial Transmission Rights, and in Texas Transmission Conges-

tion Rights (TCRs).

In spite of the fact that FTR has been widely used in the major U.S. electricity market,

it is still a new market instrument that needs theoretical and empirical evaluations. There

are issues remaining questionable such as to what extent, if there is any, can FTRs help

facilitate the market to generate orderly, fair, and efficient outcomes despite attempts by

market participants to gain individual advantage through strategic behavior? In addition,

does the introduction of FTRs create an appropriate incentive for individual firms to invest

in the transmission infrastructure?

Although many theoretical models have been proposed and empirical evidences have been

discussed in the literature, no attempt has been made to summarize the previous findings

about FTRs. The contribution of this paper is to first provide a comprehensive review of

various FTR findings from both theoretical and empirical perspectives, and then to better

illustrate economic efficiency improvement of introducing FTR in the presence of uncertainty,

a simple economic network model is presented and results are discussed. Therefore, this paper

is organized as follows. The second section conducts a literature review on both theoretical

and empirical studies of FTRs in the U.S. wholesale power market. Section three presents

the no-rights benchmark model, which is essentially the competitive equilibrium framework

applied to the economic dispatch model in a simple 2-node electricity network. Section four

then uses the economic dispatch solution from the benchmark model as the building block to

construct a 2-node FTR model where uncertainty is introduced as stochastic shocks to both

demand and supply sides. Section five discusses the conclusions and potential extensions of

future work.

2 FTRs in Theory and Practice

2.1 Theoretical Studies of FTRs

FTRs and market power

Although FTR advocates argue that tradable FTRs should facilitate electricity trade in
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the short run through the alleviation of transmission bottlenecks caused by congestion (see

Hogan(2003)), in the current economic literature, people hold more negative views toward

FTRs.

For example, in a well-known study, Joskow and Tirole (2000) reach a negative conclusion

about FTRs. In their two-node network model with cheap cost generators in the north node,

expensive cost generators in the south node, and a transmission line linking the North and

the South that has a fixed thermal capacity, they argue that the acquisition of financial rights

may enhance the market power in the South if the generators in the South are owned by a

monopoly firm. In addition, they carry out a welfare comparison and show that the social

welfare derived from the absence of transmission rights is at least as high as and in general

higher than the social welfare derived from the system with the financial transmission rights.

This striking result clearly indicates the negative views about FTRs held by the authors.

Responding to Joskow and Tirole’s result, Hogan (2000) provides an example which shows

that introducing financial rights enhances monopoly profits but it increases efficiency as well.

This is in contrast to Joskow and Tirole’s result which implies that the no-rights solution

is always the most efficient one. The case in Hogan’s comment differed from Joskow and

Tirole in that the monopolist controls generation at more than one location and some of

its generation is at low cost. The detailed derivation is in Cardel, Hitt and Hogan (1997).

This example shows the complex nature of the deregulated U.S. electricity market structure

such as having significant different results and policy implications due to different network

configurations.

By using a Cournot model of competition in a congested transmission network, Oren

(1997) illustrates that even in the absence of market concentration, the expectation of con-

gestion and passive transmission rights can lead to implicit collusion among generators and

departure from marginal cost pricing. This invalidates the key premise underlying the in-

direct implementation of transmission rights trading through optimal dispatch by the ISO.

The author concludes that passive transmission rights (in the form of transmission congestion

contracts (TCCs)) will be preempted by the active traders who will adjust their prices so as

to capture the congestion rents. Price distortions due to congestion and passive transmission

ownership can result in short and long term inefficiency.

By re-investigating the issues in Oren (1997), Stoft (1999) demonstrates that financial

transmission rights such as TCCs allow their owners to capture at least a portion, and

sometimes all, of the congestion rents, and thus is shown to be effective in reducing market

power. Moreover, the extent to which TCCs can reduce the market power depends on the

extent to which total generation capacity exceeds the capacity of the largest generator. This
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result is in contrast with Oren’s. The author states the reasons why his conclusions differ

from Oren’s in two perspectives. First, he points out that in Oren’s second example, which

is intended to be a Cournot model, is mistakenly constructed as a Bertrand model and

then mis-analyzed. When the model is re-built along Cournot lines, Oren’s conclusion is

refuted. Second, in Oren’s model, it is assumed that generators could not purchase financial

transmission rights while in Stoft’s model, this assumption is relaxed.

In another paper, Bushnell (1999) expresses his concern that transmission rights can be

manipulated by its owners to reduce transmission capacity made available to the competitive

market during hours in which there would otherwise be no congestion. In the short run, such

withholding behavior could prove profitable for firms in several ways such as increasing the

value of local generators and the value of the transmission rights themselves. The author

illustrates his point by using a simple two-node network case with one fixed marginal cost

generator at one node and a downward-sloping demand at the other node. Lastly the author

argues that due to the concerns about transmission capacity withholding and the inherent

network uncertainties, the initial offering of transmission rights in California was to be limited

to a level below the full transmission capacity available to the California ISO.

Using human-subject experiment, Kench (2004) conducts an interesting study to test the

theoretical results in Joskow and Tirole (2000). Specifically, the author carries out a double-

oral auction (DOA) experiment to test the predictions of Joskow and Tirole’s theoretical

results for a radial electricity market without transmission rights, with financial transmis-

sion rights, and with physical rights. The author found that physical rights lead to more

”right” market signals, decrease some market power, and remove an uncertainty about elec-

tricity transmission congestion better than financial rights or the absence of rights. However,

the author also pointed out that one should be very cautious in trying to interpret his exper-

imental results into policy implications because the stylized market setting in his paper does

not capture many intricacies (such as the ”loop flow effect”) of real world electricity markets.

FTRs and auction design issue

Bautista and Quintana (2005) develop a methodology to screen and discriminate FTRs

that may exacerbate the market power for some monopoly market participants. The pro-

posed methodology is based upon the use of relative hedging position ratios. These ratios

comprise the network configuration, market outcomes, and the participants position in the

market, and quantify the relationship between the positions of an FTR bidder in the energy

market and in the transmission rights allocation. The authors also point out that since an
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FTR scheme has a reduced liquidity, which may be worsened if a discrimination such as in

this study is introduced. Due to the potential complexity for carrying out any regulatory

intervention on FTRs ownership, the authors suggest to build the FTRs framework upon

their allocation to other entities, such as LSEs or traders, rather than generators.

Mendez and Rudnick (2004) propose a new congestion management system under nodal

and zonal dispatches with implementation of fixed transmission rights (FTR) and flowgate

rights (FGR), respectively. Using a static simulation model, which implements marginal

theory where congestion components are introduced in the pricing model, they show that

the FTR model is suitable for congestion management in deregulated centralized market

structures with nodal dispatch, while the FGR is suitable for decentralized markets. Their

application indicates that FGR presents advantages over FTR regarding signals on grid use,

but its application is too complicated to make its implementation attractive.

In a related study trying to accommodate both point-to-point and flowgate transmission

rights, O’Neill et al (2002) propose a ”joint energy and transmission rights auction” (JE-

TRA) to allow transmission users to specify which type of transmission rights, point-to-point

or flowgate, they prefer to use and reconfigure them over time. JETRA is able to simultane-

ously accommodate flowgate and point-to-point options and obligations, along with energy

production and consumption futures. Under certain conditions, the authors prove that the

auction is revenue adequate for the market operator in the sense that payments to rights

holders cannot exceed congestion revenues.

FTRs and transmission investment/expansion

In another set of papers several authors address the issues of transmission investment or

expansion in the hope to find the best way to attract investment for the long-term expansion

of an electricity transmission network.

Joskow and Tirole (2003) examine the performance of a ”merchant transmission” model

in which investment in electric transmission capacity rely upon competition and free entry to

exploit profitable transmission investment opportunities rather than on regulated monopoly

transmission companies. Under strict assumptions, the authors show that the merchant

investment model is able to solve the natural monopoly problem traditionally associated

with electricity transmission networks. However, when the authors extend their model by

introducing assumptions that more accurately reflect the physical and economic attributes

of transmission networks, many attractive properties of the merchant model disappear and

inefficient transmission investment decisions are made.
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In a related study, Kristiansen and Rosellon (2004) propose a merchant mechanism to

expand electricity transmission based on long-term FTRs. As the authors argue, the system

operator needs a protocol for awarding incremental FTRs that maximize investor’s prefer-

ences, and preserves certain unallocated FTRs (or proxy awards) so as to maintain revenue

adequacy. They define a proxy award as the best use of the current network along the same

direction as the incremental awards, and develop a bi-level computational model for allocat-

ing long-term FTRs according to this rule and apply it to different network topologies. They

find that simultaneous feasibility for a transmission expansion project crucially depends on

the investor-preference and the proxy-preference parameters.

In another interesting study, Rudkevich (2004) investigates the investment and bidding

strategies for firm transmission rights. The study first addresses the applicability of the

Markowitz portfolio theory to investing in firm transmission rights (FTRs) or transmission

congestion contracts (TCCs) typical for Northeastern U.S. electricity market. Specifically,

the author uses the principal component analysis to select subsets of statistically independent

FTRs/TCCs and obtain the necessary and sufficient conditions for arbitrage opportunities.

In the second part of paper, the author analyzes the profit-maximizing bidding strategies for

large players with significant Auction Revenue Rights (ARRs).

In a survey study on the topic of transmission expansion, Rosellon (2003) studies the

three existing approaches to electricity transmission expansion, i.e., transmission expansion

through long-term FTRs, through regulatory mechanisms and through strategic behavior of

generators (market power). The first approach relies on the auction of long-term FTRs by an

independent system operator (also known as the merchant approach). The second approach

is to provide a Transco with the incentive to expand transmission by making it confront

the social cost of transmission congestion. The last approach defines optimal expansion of

the transmission network according to the strategic behavior of generators. After comparing

each approach’s advantage and disadvantage, the author concludes that there is no single

mechanism that guarantees the optimal expansion of the electricity transmission network,

and suggest that there may exists the second-best approach which is to combine the merchant

and the regulated transmission model.

The vast literature of theoretical FTRs studies is be summarized in Table 1.

2.2 Empirical Studies of FTRs

Siddiqui et al. (2003) analyze the public data from 2000 and 2001, and find out that New

York transmission congestion contracts (TCCs) provides market participants with a poten-

tially effective hedge against volatile congestion rents. However, the prices paid for TCCs

8



Table 1: Overview of Theoretical Studies in FTRs

FTRs and Market Power FTR Auction Design Transmission Investment

Joskow and Tirole (2000) Bautista and Quintana (2005) Joskow and Tirole (2003)

Hogan (2000) Mendez and Rudnick (2004) Kristiansen and Rosellon (2004)

Oren (1997) O’Neill et al (2002) Rudkevich (2004)

Stoft (1999) Rosellon (2003)

Bushnell (1999)

Kench (2004)

systematically diviated from the associated congestion rents for distant locations and at high

prices. Based on their analyses, the authors suggest that there exist an infficient market for

TCCs due to the fact that the price paid for the hedge not being in line with the congestion

rents, i.e., unreasonably high risk premiums are being paid. The authors then offer two

possible explanations to their empirical finding. One is the low liquidity of TCC markets

and the other is the deviation of TCC feasibility requirements from actual energy flows.

In response to Siddiqui et al. (2003) regarding the inefficient pricing of TCCs in New

York market, Deng et al. (2004) try to investigate further on the question that whether

the price deviations are due to price discovery errors which will eventually vanish or due to

inherent inefficiencies in the auction structure. They show that even with perfect foresight

of average congestion rents the clearing prices for the FTRs depends on the bid quantity

and therefore may not be priced correctly in the FTR auction. The authors conclude that

price discovery alone would not remedy the discrepancy between the auction prices and the

realized values of the FTRs, and secondary markets or frequent reconfiguration auctions are

necessary in order to achieve such convergence.

In a practical study, Lyons et al. (2000) use simple numerical examples to show how

the FTRs work in a two-node case network model and give a gentle introduction of various

aspects of FTRs such as property rights and transmission expansion, price hedging, and

allocation of FTRs. Also the authors conduct a market-wise study and show how various

FTRs are handled in PJM, New York and California markets. Their results are summarized

and extended in Table 2. Finally, the authors stress that although there is no universally

superior model for FTRs, they are still very useful tools in electricity markets with locational

pricing.

In another survey study, Kristiansen (2003) investigates how FTRs are acquired and

implemented in a range of markets such as PJM, New York, New England, California,
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Texas, and New Zealand. In each market, the author describe in detail the features of

FTRs, some design issues, strength and weakness, and the market performances in different

FTR markets. His result along with Lynos et al.(2000) is summarized in Table 2.

Denton and Waterworth (2002) did a comprehensive practical study about how FTRs

could be introduced in Australian National Electricity Market (NEM)2. The Settlements

Residue Auction (SRA) was established shortly after NEM to help market participants

manage risks. The authors start their report by stating the rationale for changing the

SRA process to create a better environment for implementing FTRs. They compare the

FTRs in the U.S. markets such as PJM and New England. Then they introduce a workable

FTR solution in line with the modified SRA and discuss how the proposed FTR solution

addresses the critical issues in the Australian electricity market.

2.3 The Illustrative Two-stage FTR Study

Although the current literature expresses a mixed feeling about FTRs, it is not unfair to say

more negative views are held toward FTRs (Joskow and Tirole 2000, Oren 1997, Bushnell

1999, Siddiqui et al. 2003, Deng et al. 2004, etc). While FTRs are widely adopted as a

financial hedging instrument to help market participants to reduce their risks in the major

U.S. wholesale power market, it seems not working very well. Why? Is it because of the

complicated wholesale power market structure, or because the market participants are still

learning how to place the bids and offers more efficiently, or because there is something

fundamentally wrong about it?

Some close examination of previous work might give us some clues. For example, in

the influential paper by Joskow and Tirole (2000), we found that although the authors

demonstrated that introducing FTRs can decrease the overall efficiency, enhance the market

power and reduce the welfare, their model seems to be too restrictive in the sense that there

is no uncertainty involved. Since FTR, by construction, is used as a financial instrument to

hedge against uncertain profit, if there is no uncertainty, the only conclusion that can be

drawn is that FTR at most won’t do any good and may in general do worse than the case

where there are no FTRs available. In fact, Joskow and Tirole’s welfare comparison shows

that the social welfare under the absence of FTRs is as high as and in general strictly higher

than that with FTRs in the case of no uncertainty.

In this paper, the goal is to illustrate how a simple two-stage FTR model can work to

2Although their report mainly focuses on the application in Australian national electricity market, there
are indeed many similarities between Australian market and major U.S. markets such as PJM, New York
and New England.

10



Table 2: Comparison of FTRs in Major U.S. Wholesale Power Market (Source: Kristiansen
2003, Lyons et al. 2000, NEPOOL FTR manual 2003b, MISO FTR manual 2005)

PJM New York New England
Name Fixed Transmission Rights Transmission Congestion Contracts Financial Transmission Rights

Contract Obligations & options , Obligations, no hedge against Obligations, no hedge against
no hedge against losses losses losses

Duration Monthly auction, annual 6 months and 1, 2 and 5 year Monthly auction
network integration auction, monthly reconfiguration
service FTRs

Acquisition Network integration service, Centralized TCC auction, Auction, secondary market,
firm point-to-point service, direct sales, and secondary transmission updates, entities
auction, secondary market market paying congestion charges

Auction Monthly, single-round, Seasonal (multi-round), Monthly, single-round,
design uniform-price auction monthly reconfiguration uniform-price auction

uniform-price auction

Congestion Excess rents distributed to Excess rents offset transmission Excess rents distributed to
rents deficiencies in other periods, system cost, deficit rents covered FTR holders, deficit rents

deficient rents reduce by the transmission owners reduce payments
payments proportionally proportionally

Distribution FTR auction revenues are All revenues received by FTR auction revenues
of revenues allocated among the regional transmission owners from the sale are distributed to sellers

transmission owners in of TCCs and excess auction of FTRs and auction
proportion to their revenues, are credited against the revenue rights recipients
transmission revenue transmission owner’s cost of
requirements service to reduce the transmission

service charge

Website http://www.pjm.com/ http://www.nyiso.com/ http://www.iso-ne.com/

California Texas Midwest
Name Firm Transmission Rights Transmission Congestion Rights Financial Transmission Rights

Contract Option-like, no hedge Inter-zonal option Obligation, phase in option
against losses in the future

Duration Annual auction Monthly and annual auction 3 months or 1 year auction

Acquisition Auction, secondary market, Auction, secondary market Auction, secondary market,
hour-ahead market allocated based on existing

transmission rights

Auction Annual, multi-round Annual, monthly, single-round, Annual, seasonal(3 months),
design uniform-price auction 24 simultaneous combinatorial monthly auction

auction

Congestion Excess rents partly cover Any rent shortfall is uplifted Excess rents redistributed
rents the fixed costs of the grid to load and any surplus is to FTR holders

deficient rents reduce credited against other uplift
payments proportionally to load

Distribution The auction proceeds go Credited to load entities in To be determined
of revenues to the participating proportion to their load

transmission owners. Each ratio share
of them credits its FTR
auction proceeds against
its access charge

Website http://www.caiso.com/ http://www.ercot.com/ http://www.midwestiso.org/
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improve social welfare should there is any uncertainty. Specifically, we would like to address

the following fundamental question: when we introduce uncertainty, does FTR matter now?

In addition we want to conduct a welfare comparison in the uncertainty case to see if intro-

ducing FTRs is able to improve the social welfare or not. We start in section three (Stage

1) by constructing a benchmark model, which focuses on a two-node electricity network

where there is one generator and one LSE in each node with parameterized marginal cost

and demand functions, supervised by an independent system operator (ISO). This is essen-

tially the competitive equilibrium (CE) case. By solving this benchmark model as the usual

CE case, we obtain a security-constrained economic dispatch solution. Section four (Stage

2) presents the FTR model with stochastic shocks. Using the results from the benchmark

model as building blocks, we then solve for the optimal FTR hedge solutions, and show

that once uncertainty (even in a very simple form) is introduced, the acquisitions of optimal

FTRs by the risk averse generators and LSEs increase and in general strictly increase the

social welfare compared with the case where there are no FTRs available. This result thus

serves as an counterexample to the somehow negative views of FTRs by other economists

in the literature and provides some economic explanations to the fact that FTRs are widely

adopted as a financial hedge instrument in the major U.S. wholesale power markets.

3 The No-rights Benchmark Model

The benchmark model consists of a simple two-node electricity network connected by a

transmission line with a thermal limit. There is only one good in this model: electricity

power, which is supplied by a group of unregulated generating companies (generators for

short), wholesale power suppliers, and demanded by a group of Load Serving Entities(LSEs),

wholesale power buyers. LSEs can be thought of as the distribution companies that can buy

the ”bundled” electricity power in the wholesale market and resell it to downstream end-

user consumers. There is also an Independent System Operator (ISO) that operates the

transmission network and manages the energy market. So there are three types of agents in

this model: generators, LSEs and ISO.

Furthermore, each LSE has a price-sensitive and downward sloping demand curve. Each

generator supplies the real power with a non-decreasing marginal cost. To obtain a dis-

patched quantity of power, all generators submit their supply offers and all LSEs submit

their demand bids to ISO in the wholesale power market. ISO by its nature is a not-for-

profit organization and behaves like a ”social planner” to maximize the total net benefit of

generators and LSEs based on their submitted offers and bids information by solving the
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optimal quantities of power supply and demand for each generator and LSE subject to the

physical network constraints 3.

3.1 Model Specifications and Assumptions

To make this benchmark model simple, we make the following specifications and assumptions:

• There are only 2 nodes, namely node 1 and node 2, in this electricity network, which

implies that power may either flow from node 1 to node 2 or node 2 to node 1 through

the transmission line with the maximum power flow equal to the thermal limit capacity

T (T > 0). Also assume there is no loss during power transmission.

• For simplicity, suppose there is only one generator at each node, i.e., G1 at node 1 and

G2 at node 2. Let QG1 and QG2 be the power supply quantities (injections) at node 1

and 2, respectively. The total cost function TCi(QGi), variable cost function V Ci(QGi),

and marginal cost function MCi(QGi) for generator Gi (i = 1, 2) are specified as follows:

TC1(QG1) = f1 + bS
1 QG1 +

1

2
aS

1 Q2
G1 (1)

TC2(QG2) = f2 + bS
2 QG2 +

1

2
aS

2 Q2
G2 (2)

V C1(QG1) = bS
1 QG1 +

1

2
aS

1 Q2
G1 (3)

V C2(QG2) = bS
2 QG2 +

1

2
aS

2 Q2
G2 (4)

MC1(QG1) = bS
1 + aS

1 QG1 (5)

MC2(QG2) = bS
2 + aS

2 QG2 (6)

where parameters (aS
i , bS

i , fi) are all positive for i = 1, 2.

• For simplicity, suppose there is only one LSE at each node, i.e., LSE1 at node 1 and

LSE2 at node 2. Let QL1 and QL2 be the power demand quantities (withdrawals) at

node 1 and 2, respectively. The demand function Dj(QLj) and gross consumer surplus

GCSj(QLj) for LSEj (j = 1, 2) are specified as follows:

D1(QL1) = bD
1 − aD

1 QL1 (7)

3This modelling framework is a simplified version of Standard Market Design(SMD) implemented by ISO
New England since March 2003. See ISO New England (2003a) for detailed descriptions.

13



D2(QL2) = bD
2 − aD

2 QL2 (8)

GCS1(QL1) = bD
1 QL1 −

1

2
aD

1 Q2
L1 (9)

GCS2(QL2) = bD
2 QL2 −

1

2
aD

2 Q2
L2 (10)

where parameters (aD
j , bD

j ) are all positive for j = 1, 2. After purchasing QLj amount

of power in the wholesale market, each LSEj can then sell the QLj amount of power

to its local downstream consumers and receive resale revenue equal to Rj
4

• There are no learning and bidding strategies for either generators or LSEs. Each gener-

ator bids his true marginal cost function and each LSE bids his true demand function.

The information set consisting of each generator’s TC, V C,MC, each LSE’s GCS and

demand functions, and the structure parameter vector (aD
j , bD

j ; aS
i , bS

i , fi; T ) > 0 for

i, j = 1, 2 is known to public. Moreover, the structure parameter vector is fixed and

given in the model. So there is no uncertainty and no private information in this model.

• After collecting the information through generators’ supply offers and LSEs’ demand

bids, ISO solves a Security-Constrained Economic Dispatch (SCED)5 problem by max-

imizing the total net benefit subject to a set of physical power network constraints

in the day-ahead power market6 to solve for the optimal dispatch quantities for all

generators and LSEs and derive the associated locational marginal prices7(LMPs) for

each node. Consequently, each generator produces QGi amount of power at the ISO’s

dispatch and is paid by ISO the LMP per unit of its produced power for i = 1, 2, while

each LSE purchases QLj amount of power at the ISO’s dispatch and pays ISO the

LMP per unit of purchased power for j = 1, 2. Recall that since there is a transmission

line connecting the two nodes, the total power produced at a local node does not have

4The downstream resale revenue for LSEj could be specified as Rj(QLj) = (βj −αjQLj)QLj for j = 1, 2,
where βj and αj are the parameters of aggregate demand function in the resale market at node 1 (j = 1)
and node 2 (j = 2).

5See the following section for a discussion of this SCED problem formulation.
6According to ISO New England Standard Market Design (SMD), the real U.S. wholesale power market is

a complicated two-settlement system which consists of consists of several submarkets including Day-Ahead,
Real-Time, Supply Re-offers, FTR, and bilateral markets to reduce uncertainty for market participants and
ensure orderly, fair, and efficient market outcomes. For simplicity, assume the dispatched quantities of powers
committed in the Day-Ahead market are exactly carried out in the Real-Time market (Real-Time market
is just a duplicate of Day-Ahead market and thus negligible), all generators submit their true marginal cost
(so no Supply Re-offer market is needed), and assume bilateral trades are prohibited. Thus in this paper
only the Day-Ahead (in this section) and FTR (in the next section) (sub)markets are considered.

7Roughly stated, location marginal price at any given node is the minimum incremental cost of providing
one additional unit of power at that node.
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to match up with its local demand. For example, some low-cost generator may pro-

duce more than its local demand and transfer the ”overproduced” power through the

transmission line to fulfill the residual demand at a high-cost generator node. How-

ever the power flow through the transmission line has an upper limit equal to the line

thermal capacity T . When the power flow reaches that upper limit T , we call the

line is congested. One important consequence of congestion is that the LMPs will no

long be the same across all nodes. Assuming no loss during power transmission, the

separation of LMPs creates the congestion rent(CR) (difference between LMP1 and

LMP2 multiplied by T ), which is accrued to ISO.

• To further simplify the model, assume the minimum production capacities for G1 and

G2 are both zero implying that it is feasible for generators to stop producing power

while bearing the fixed cost. And assume the maximum production capacities for

G1 and G2 are both infinitely large so that the generators can meet arbitrarily high

demands in the power market. Therefore the locational marginal prices for node 1

and 2, LMP1 and LMP2, are the last unit marginal cost for Generator 1 and 2 or the

marginal unit of willingness to pay for LSE 1 and LSE 2 when the thermal constraint

T is binding; LMP1 and LMP2 become the same and are equal to the market clearing

price of the aggregate demand and supply functions when the thermal constraint is

not binding.

• The benchmark model can best summarized in Figure 2.

3.2 Model Setup

Based on the above assumptions and specifications, this benchmark model boils down to a

Security-Constrained Economic Dispatch (SCED) problem 8. As detailed in Stoft (2002),

dispatch is the process of determining generator output level for the servicing of LSEs. Eco-

nomic Dispatch means that the dispatch process is efficient. Security-Constrained Economic

Dispatch (SCED) means that constraints are imposed in the economic dispatch problem

to ensure that the power on each node of the transmission line is within the balancing,

non-negative and thermal limits.

The objective of this SCED problem is then to maximize the ’total net benefit’ (TNB)

subject to the balancing, non-negativity, and thermal limit constraints. The balancing con-

straint should be respected because it represents the physical aspect of the electricity net-

work, which is essentially stated in the Kirchhoff’s law: total power injections should be

8SCDE is essentially a constrained optimization problem.
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Figure 2: The two-node electricity benchmark model.

equal to total power withdrawals at any time in the electric network. In our benchmark

model, this requires that the power supplies by G1 and G2 should be equal to power de-

mands by LSE1 and LSE2. The non-negativity constraint holds naturally since we only

allow the real power production and purchasing in this model 9, and exclude the speculative

behaviors such as taking a short position in the day-ahead power market. Lastly the thermal

limit constraints have to be respected due to the physical aspect of the transmission line,

i.e., the power flow between two nodes simply cannot exceed the thermal capacity limit of

the transmission line.

When the thermal constraint becomes binding, it might be necessary to supply a next

unit of power by dispatching the relatively expensive local generation out of merit order,

i.e., in place of the other generation with lower marginal cost. Locational marginal prices

(LMPs) reflect the cost of this out-of-merit-order dispatch. A separate LMP is calculated for

each pricing location (node). Technically, the LMP at any node k is defined to be the change

in total system variable costs that would result if one more unit of power were to be serviced

at node k. In our simple benchmark model, LMPk then reduces to the marginal cost of the

last unit of power for Gk at node k, for k = 1, 2. In the absence of binding thermal limit

constraint, and assuming no transmission losses, each node has the same LMP. Otherwise,

however, price separation can occur, meaning that different nodes can have different LMPs.

9This is also the case in the real world wholesale power markets such as New England (ISO New England
(2004)).
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TNB is defined as the sum of all LSE surpluses and all generator surpluses. In the

benchmark model, TNB is just the sum of surpluses from LSE1, LSE2, G1, G2. Geomet-

rically, TNB represents the summed area under the demand curve less the area under the

supply curve (marginal cost curve) over two nodes. Formally the model is set up as follows:

Maximize

TNB =

∫ Q

0

[D1(QL1) − MC1(QG1)]dQ +

∫ Q

0

[D2(QL2) − MC2(QG2)]dQ (11)

= [GCS1(QL1) − V C1(QG1)] + [GCS2(QL2) − V C2(QG2)] (12)

where

GCS1(QL1) − V C1(QG1) = (bD
1 QL1 −

1

2
aD

1 Q2
L1) − (bS

1 QG1 +
1

2
aS

1 Q2
G1) (13)

GCS2(QL2) − V C2(QG2) = (bD
2 QL2 −

1

2
aD

2 Q2
L2) − (bS

2 QG2 +
1

2
aS

2 Q2
G2) (14)

with respect to QG1, QG2, QL1, QL2

subject to:

QG1 + QG2 = QL1 + QL2 (balancing constraint) (15)

QG1 ≥ 0, QG2 ≥ 0, QL1 ≥ 0, QL2 ≥ 0 (non-negativity constraint) (16)

−T ≤ QG1 − QL1 ≤ T (thermal constraint for node 1) (17)

−T ≤ QG2 − QL2 ≤ T (thermal constraint for node 2) (18)

In this SCED problem, we want to solve for the vector

s∗ = (Q∗

G1, Q
∗

G2, Q
∗

L1, Q
∗

L2)

which maximizes (11) or (12) subject to (15) - (18). Based on this solution we can then derive

LMP1 and LMP2
10. Note that the SCED solution vector s∗ is ISO’s dispatch quantities in

the day-ahead market, and LMP1 and LMP2 are the locational marginal price applied to

node 1 and node 2, respectively.

10By definition, the locational marginal price (LMP) at node k is the minimum incremental cost of produc-
ing one additional unit of power at node k. Recall in this benchmark model, we assume the zero minimum
production and infinitely large maximum production capacity, the minimum incremental cost of producing
one more unit of power is just the marginal cost at that node. Furthermore, as we will show in the Appendix
1 and 2, LMP is indeed captured by the Lagrangian multiplier associated with the balancing constraint.
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3.3 The SCED Solution

To present the solution to this SCED problem in a more orderly fashion, it is proposed in

this paper to solve the SCED problem in two steps. In the first step, assume the thermal

limit T is so large that the thermal constraints will never get binding (thus the two thermal

constraints are ignored), which simplifies the problem at hand to be a standard maximization

problem. Then use the solved optimal solution to check if the thermal limit constraints are

actually binding or not. If not binding, then we are done; if binding, then proceed to step

2. In step 2, resolve the SCED problem by adding one of the thermal limit constraint as the

equality constraint. The formal procedure of solving this model is presented as follows:

3.3.1 Step 1: Thermal constraint T is NOT binding

In this step, suppose the thermal limit T is so large that the thermal constraint will never

get binding. According to the model setup section, this is a standard optimization problem

with one equality constraint (the balancing constraint) and four inequality constraints (the

non-negativity constraints for QG1, QG2, QL1 and QL2). Use µ as the multiplier for equality

constraint and λ’s as the multipliers for inequality constraints, and formulate the Lagrangian

equation:

L = (bD
1 QL1 −

1

2
aD

1 Q2
L1) − (bS

1 QG1 +
1

2
aS

1 Q2
G1) + (bD

2 QL2 −
1

2
aD

2 Q2
L2) − (bS

2 QG2 +
1

2
aS

2 Q2
G2)

+µ(QG1 + QG2 − QL1 − QL2) + λG1QG1 + λG2QG2 + λL1QL1 + λL2QL2 (19)

For simplicity, only consider the case where all dispatched quantities are positive, i.e., all

non-negativity constraints are not binding 11, we obtain the following non-thermal-constraint

solution (denoted with a hat). (The detailed derivation is provided in Appendix 1):

Q̂G1 = (G1 + B1)/A (20)

Q̂G2 = (G2 + B2)/A (21)

Q̂L1 = (L1 + C1)/A (22)

Q̂L2 = (L2 + C2)/A (23)

11To be exhaustive, we find 9 other possible solution cases, i.e., (1) QG1 = 0; (2) QG2 = 0; (3) QL1 = 0;
(4) QL2 = 0; (5) QG1 = QL1 = 0; (6) QG1 = QL2 = 0; (7) QG2 = QL1 = 0; (8) QG2 = QL2 = 0; (9)
QG1 = QG2 = QL1 = QL2 = 0.
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where

G1 = D2B1 + aD
1 aS

2 B2, B1 = aD
1 A2C1, L1 = (D2 + aS

1 A2)B1 − aS
1 aS

2 B2, C1 = aS
1 A2C2;

G2 = D1B2 + aS
1 aD

2 B1, B2 = aD
2 A1C2, L2 = (D1 + aS

2 A1)B2 − aS
1 aS

2 B1, C2 = aS
2 A1C1;

A = D1A2 + D2A1;

A1 = aD
1 + aS

1 , B1 = bD
1 − bS

1 , C1 = bS
2 − bS

1 , D1 = aD
1 aS

1 ;

A2 = aD
2 + aS

2 , B2 = bD
2 − bS

2 , C2 = bS
1 − bS

2 , D2 = aD
2 aS

2 .

Now we solved the non-thermal-constraint SCED problem and need to examine the so-

lution (Q̂G1, Q̂G2, Q̂L1, Q̂L2) closely to determine whether the thermal limit constraints are

actually binding or not. Before proceeding further, we formally define the term thermal

constraint is not binding, binding from 1 to 2 and binding from 2 to 1 as follows:

Definition 1 In this two-node electricity network model, after solving the non-thermal-

constraint SCED problem and obtaining the solution vector (Q̂G1, Q̂G2, Q̂L1, Q̂L2), regarding

the thermal limit T, we say,

• T is binding from 1 to 2 if Q̂G1 − Q̂L1 > T or Q̂G2 − Q̂L2 < −T ;

• T is binding from 2 to 1 if Q̂G2 − Q̂L2 > T or Q̂G1 − Q̂L1 < −T .

• T is not binding if |Q̂G1 − Q̂L1| ≤ T or |Q̂G2 − Q̂L2| ≤ T ;

Remarks: this definition elaborates the relationship between the optimal SCED solution

and network physical condition. Recall in this step we assume the thermal constraint will not

be binding and proceed to solve the SCED problem, and its solution is the actual dispatched

quantity that each generator will produce and each LSE will purchase. If the SCED solution

requires what Generator 1 produces (Q̂G1) be greater than what LSE 1 purchases (Q̂L1), then

the power flow will transport Q̂G1 − Q̂L1 amount of power from node 1 to node 2 through

the transmission line to meet the residual demand, which is equal to Q̂L2 − Q̂G2
12, at node

2. However the power flow is not allowed to exceed the upper limit of thermal capacity (T )

of the transmission line. So if that does happen, that is, Q̂G1 − Q̂L1 > T or equivalently,

Q̂L2 − Q̂G2 > T , we call the thermal constraint is binding with power flowing from node 1

to node 2, or use the definition, T is binding from 1 to 2. In this case, the non-thermal-

constraint SCED solution is not appropriate any more, and we will need to continue on to

Step 2.

12Note that the balancing constraint is observed here, i.e., extra production meets residual demand im-
plying ˆQG1 − Q̂L1 = Q̂L2 − ˆQG2, which is equivalent to the balancing constraint ˆQG1 + ˆQG2 = Q̂L1 + Q̂L2
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If, on the other hand, the SCED solution requires what Generator 2 produces (Q̂G2)

be greater than what LSE 2 purchases (Q̂L2), then the power flow will transport Q̂G2 −

Q̂L2 amount of power from node 2 to node 1 through the transmission line to meet the

residual demand, which is equal to Q̂L1 − Q̂G1 at node 1. By the similar argument, the

thermal constraint is binding with power flowing from node 2 to node 1, or use the definition,

T is binding from 2 to 1. In this case, the non-thermal-constraint SCED solution is not

appropriate any more, and we will need to continue on to Step 2.

If the power flow in the above two cases indeed does not exceed thermal limit T , i.e.,

|Q̂G1 − Q̂L1| ≤ T or |Q̂G2 − Q̂L2| ≤ T , we call T is not binding13. In this case, the non-

thermal-constraint SCED solution is the right solution we seek, i.e., the solution vector is

s∗ = (Q∗

G1, Q
∗

G2, Q
∗

L1, Q
∗

L2)

where

Q∗

G1 = Q̂G1

Q∗

G2 = Q̂G2

Q∗

L1 = Q̂L1

Q∗

L2 = Q̂L2

LMP1 = LMP2 = (D2E1 + D1E2)/A

where A, D1, D2 are as previously specified and E1 = aD
1 bS

1 + aS
1 bD

1 , E2 = aD
2 bS

2 + aS
2 bD

2

By the nature of this problem, since the thermal constraint is not binding, each generator

and LSE are bidding their true marginal cost and demand functions, ISO acts as a ”social

planner” trying to maximize the total net benefit taking into account of all generator’s

production cost and all LSE’s willingness to pay, there is no strategic behaviors and any

other system distortions. From the standard microeconomics point of view, this is both the

competitive equilibrium and Pareto optimal outcome and LMPs are the same across two

nodes as a result of aggregate market (node) clearing process 14.

13In this two-node benchmark model, there is small likelihood that the SCED solution requires what
Generator 1 produces happen to be the same as what LSE 1 purchases. Then by the balancing constraint,
this implies that what Generator 2 produces has to be the same as what LSE 2 purchases. So there is zero
power flow between node 1 and node 2. This case certainly falls into the category of ”T is not binding”.

14It is worth mentioning that when thermal constraint is not binding, the SCED solution can also be
obtained through the market clearing point of the aggregate supply (marginal cost) and aggregate demand
curves, i.e., finding the aggregate market clearing price (the common LMP) and referring it back to the
individual demand and supply curves to obtain the SCED solution.
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3.3.2 Step 2: Thermal constraint T is binding

Based on Step 1, if we know T is binding from 1 to 2, i.e., Q̂G1 − Q̂L1 > T , we can set

QG1 − QL1 = T , the SCED problem does not change from Step 1 other than adding one

more constraint QG1 − QL1 = T . Denoting µ’s as the multipliers for equality constraints

and λ’s as the multipliers for inequality constraints, and form the Lagrangian equation as

follows:

L = (bD
1 QL1 −

1

2
aD

1 Q2
L1) − (bS

1 QG1 +
1

2
aS

1 Q2
G1) + (bD

2 QL2 −
1

2
aD

2 Q2
L2) − (bS

2 QG2 +
1

2
aS

2 Q2
G2)

+µB(QG1+QG2−QL1−QL2)+µT (T−QG1+QL1)+λG1QG1+λG2QG2+λL1QL1+λL2QL2 (24)

For simplicity, only consider the case where all dispatched quantities are positive, i.e.,

all non-negativity constraints are not binding 15, we obtain the following thermal-constraint-

binding solution (Q∗

G1, Q
∗

G2, Q
∗

L1, Q
∗

L2) (The detailed derivation is provided in Appendix 2):

Q∗

G1 = (B1 + aD
1 T )/A1 (25)

Q∗

G2 = (B2 − aD
2 T )/A2 (26)

Q∗

L1 = (B1 − aS
1 T )/A1 (27)

Q∗

L2 = (B2 + aS
2 T )/A2 (28)

LMP1 = (E1 + D1T )/A1 (29)

LMP2 = (E2 − D2T )/A2 (30)

where

A1 = aD
1 + aS

1 , B1 = bD
1 − bS

1 , D1 = aD
1 aS

1 , E1 = aD
1 bS

1 + aS
1 bD

1 ;

A2 = aD
2 + aS

2 , B2 = bD
2 − bS

2 , D2 = aD
2 aS

2 , E2 = aD
2 bS

2 + aS
2 bD

2 .

Similarly, if, from Step 1, we know T is binding from 2 to 1, i.e., Q̂G2 − Q̂L2 > T ,

we can set QG2 − QL2 = T , and obtain the following thermal-constraint-binding solution

(Q∗

G1, Q
∗

G2, Q
∗

L1, Q
∗

L2):

Q∗

G1 = (B1 − aD
1 T )/A1 (31)

Q∗

G2 = (B2 + aD
2 T )/A2 (32)

15To see the complete solutions, refer to Appendix 2.
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Q∗

L1 = (B1 + aS
1 T )/A1 (33)

Q∗

L2 = (B2 − aS
2 T )/A2 (34)

LMP1 = (E1 − D1T )/A1 (35)

LMP2 = (E2 + D2T )/A2 (36)

3.4 Solution Discussion

Based on the two-step SCED solution and the associated locational marginal prices LMP1

and LMP2, we can obtain the following propositions:

Proposition 1 In the two-node electricity network, when thermal constraint T is binding,

power flows from node 1 to node 2 (or node 2 to node 1) if and only if LMP2 > LMP1 (or

LMP1 > LMP2)(assuming the dispatched quantities are all positive in the SCED solution).

Furthermore,

(∗1) T is binding from 1 to 2 ⇔ LMP2 > LMP1 ⇔ Ω > T (37)

(∗2) T is binding from 2 to 1 ⇔ LMP2 < LMP1 ⇔ Ω < −T (38)

(∗3) T is NOT binding ⇔ LMP2 = LMP1 ⇔ −T ≤ Ω ≤ T (39)

where
Ω = (A1E2 − A2E1)/(D1A2 + D2A1);

A1 = aD
1 + aS

1 , D1 = aD
1 aS

1 , E1 = aD
1 bS

1 + aS
1 bD

1 ;

A2 = aD
2 + aS

2 , D2 = aD
2 aS

2 , E2 = aD
2 bS

2 + aS
2 bD

2 .

Proposition 1 has shown the relationship between the power flow direction and magnitude of

LMPs under the condition that the thermal constraint is binding in the two-node electricity

network 16. Recall that if the thermal constraint is not binding, even if there is power

flow, the LMPs will be the same across two nodes (see the Step 1 SCED solution). So this

proposition basically asserts that whenever the thermal constraint T is binding, the power

(which is equal to T ) always flows from low LMP node to high LMP node. This result can be

derived mathematically from the SCED solution and thermal constraint binding conditions

in this benchmark model. The detailed proof of Proposition 1 is provided in Appendix 4.

16However, as the counter example in Kirschen and Strbac (2004) shows, the result in this proposition
does not generalized to the case where the number of nodes is greater than or equal to three due to the
externality brought by the ”loop flow” effect.
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The economic intuition behind this proposition is that the generator at the high LMP

node has a high marginal cost and the generator at the low LMP node has a low marginal

cost 17. So when ISO, acting as a TNB maximizer, dispatches the high cost generator to

produce less than its local demand and the low cost generator to produce more than its local

demand and transfer the excess supply (which is equal to T ) over the transmission line to

meet the excess demand (which is equal to T ) in the high LMP node, the power is indeed

flowing from low LMP node to high LMP node. As we will see in the later section, this

proposition serves as the crucial foundation to derive FTR values,

Proposition 2 In the two-node electricity network, the SCED solution guarantees each gen-

erator’s profit has a function form as:

πGk =
1

2
aS

k Q2
Gk − fk , ∀ k = 1, 2 (40)

and each LSE’s profit has a function form as:

πLk = Rk(QLk) − LMPkQGk ∀ k = 1, 2 (41)

Proof: As the SCED solution suggests, in the benchmark model, regardless whether thermal

constraint is binding or not, each generator submitting its true marginal cost function pro-

duces the dispatched quantity QGk and receives revenue equal to LMPkQGk while incurring

a total cost equal to fk + bS
k QGk + 1

2
aS

k Q2
Gk. Also recall that LMPk is equal to the last unit

marginal cost of generator k for k = 1, 2. The profit function of generator k is:

πGk = LMPkQGk − TCk(QGk)

= (bS
k + aS

k QGk)QGk − (fk + bS
k QGk + 1

2
aS

k Q2
Gk)

= 1
2
aS

k Q2
Gk − fk , ∀ k = 1, 2

Similarly, each LSE submitting its true demand function gets the dispatched quantity QLk

and receives revenue equal to Rk(QLk) from downstream consumers while paying a total

amount of LMPkQLk for purchasing the power energy. The profit function of LSE k is:

πLk = Rk(QLk) − LMPkQGk ∀ k = 1, 2

This proposition shows that in the benchmark model, if generator Gk gets dispatched

it will produce QGk to cover its fixed cost fk. Note that if a generator does not get any

17Recall LMP is defined as the last unit marginal cost of the generator at the local node
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dispatch, then Gk must bear the negative profit equal to its fixed cost −fk. Similarly, if

LSEk gets demand dispatch it will purchase QLk to meet its downstream consumer demand

and acquires profit equal to its resale revenue less its payment.

Proposition 3 In this two-node electricity model, the social welfare can be measured by total

net benefit (TNB), and TNB increases as the thermal limit T increases, provided that the

thermal constraint is still binding. The comparative statics are shown as follows:

∂TNB

∂T
=





E2

A2

− E1

A1

−
(

D1

A1

+ D2

A2

)
T > 0 iff T is binding from 1 to 2;

E1

A1

− E2

A2

−
(

D1

A1

+ D2

A2

)
T > 0 iff T is binding from 2 to 1.

(42)

where
A1 = aD

1 + aS
1 , D1 = aD

1 aS
1 , E1 = aD

1 bS
1 + aS

1 bD
1 ;

A2 = aD
2 + aS

2 , D2 = aD
2 aS

2 , E2 = aD
2 bS

2 + aS
2 bD

2 .

The proof is provided in Appendix 4. This proposition has a rich economic meaning

and important policy implications. It states that if the thermal limit of transmission line

T can be increased it will increase TNB 18 and thus lead to a more efficient production

and a higher social welfare, provided that T is still binding. (Once the thermal constraint

T becomes non-binding, according to the SCED solution, we’ve already obtained the first-

best outcome in the sense that it’s both competitive and Pareto optimal solution. Further

investment in the transmission line will thus be a waste of resources, provided that there

is no uncertainty.) However, expanding the capacity of transmission line (so as to increase

the thermal limit T ) involves issues such as ’free ride’ due to its public good feature. So

how to create incentives for market participants to make transmission investment remains

an important and yet challenging concern to ISO.

To finish the benchmark model and proceed to the next section, we define a useful

definition of congestion rent.

Definition 2 In the two-node electricity network, when thermal constraint is binding, i.e,

the transmission line is congested, ISO acquires the congestion rent (CR) as its revenue,

18Recall that total net benefit (TNB) consists of two components, consumer surplus (CS) and producer
surplus (PS). This proposition only shows that TNB increases when thermal limit T increases. It does not
indicate the individual effect of CS and PS. As a matter of fact, in one of their examples, Kirschen and
Strbac (2004) shows that when the thermal limit T increases, in some circumstances, CS will decrease and
then increase while PS is monotonically increasing. So the policy implication is that to promote the idea of
transmission investment may improve the payoffs of generators at the cost of worsening the payoff of LSEs
(for some range of thermal capacity T ) although the total net effect is Pareto improvement.
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which is equal to the difference in LMPs multiplied by T , that is,

CR = |LMP2 − LMP1|T (43)

Remarks: (a) When the thermal constraint T is binding from 1 to 2, i.e., T amount of

power flowing from node 1 to node 2, the nature of the SCED problem must lead to ISO to

dispatch QG1 for G1, QL1 for LSE1 and QG2 for G2, QL2 for LSE2. At node 1, G1 receives

revenue LMP1 ∗ QG1 from ISO and LSE1 makes payment LMP1 ∗ QL1 to ISO. Since T is

binding from 1 to 2, QG1−QL1 = T . Therefore ISO has a revenue deficit equal to −LMP1∗T .

Conversely, in node 2, G2 receives revenue LMP2 ∗QG2 from ISO and LSE2 makes payment

LMP2 ∗ QL2 to ISO. Since T is binding from 1 to 2, QL2 − QG2 = T . Therefore ISO has a

revenue surplus equal to LMP2 ∗ T . The ISO’s clearing process can be expressed as:

ISO’s revenue = −LMP1QG1 + LMP1QL1 − LMP2QG2 + LMP2QL2

= −LMP1T + LMP2T

= (LMP2 − LMP1)T

So the ISO’s revenue (congestion rent) is equal to (LMP2 − LMP1)T . This congestion rent

is positive since LMP2 > LMP1 when T is binding from 1 to 2 by Proposition 1.

(b) On the other hand, when the thermal constraint T is binding from 2 to 1, i.e., T

amounts of power flowing from node 2 to node 1, by the similar argument, the congestion

rent that is accrued to ISO is equal to (LMP1 − LMP2)T . This congestion rent is positive

since LMP1 > LMP2 when T is binding from 2 to 1 by Proposition 1.

Hence by (a) and (b) we conclude that when thermal constraint is binding the congestion

rent accrued to ISO is equal to |LMP2 − LMP1|T . This is a natural consequence of having

a binding thermal constraint. In other words, the fact that thermal constraint is binding

implies that the more expensive generation has been dispatched locally which could otherwise

be serviced by the less expensive generation had the thermal constraint were not binding.

Note that the congestion rent can be related to the tariff issue in the international trade

literature with the difference that tariff is imposed by government to purposely protect

domestic producers while congestion rent is the natural outcome of having a congested

transmission line. Just like in international trade, decreasing the tariff would increase total

social welfare, decreasing the congestion rent, thus increasing thermal limit T , would also

enhance total net benefit (TNB) in this two-node electricity network (see Proposition 3).
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4 The FTR Model with Stochastic Shocks

Since the benchmark model depends exclusively on the structural parameters (aD
j , bD

j ; aS
i , bS

i , fi;

T ∀ i, j = 1, 2) that are fixed and known to public, there is no uncertainty and no private

information, which implies that the SCED solution derived from the benchmark model is

already the competitive equilibrium (first-best) outcome. Therefore there is no incentive

for agents to purchase FTRs, and introducing FTRs can at best do no good to the model

economy. Indeed as Joskow and Tirole (2000) indicate in their model, the existence of FTRs

in the absence of uncertainty will only decrease social welfare compared with the case there

is no FTRs available. However, the benchmark model is very important because the SCED

solution and corresponding propositions serve as the building blocks to solve for the FTR

model in this section.

Since the absence of uncertainty dooms the fate of FTRs, we are now interested to see

whether introducing uncertainty into this model would create an incentive for agents to

purchase FTRs, and if yes, to what extent could FTRs possibly help enhance the social

welfare.

Based on the benchmark case, we will introduce a simple source of uncertainty into

the model: the parameter values that characterize the cost attributes of generators and

demand attributes of LSEs are now under stochastic shocks so that the direction of power

flow and the magnitude of LMPs are no longer known in advance. This should create

an incentive for both generators and LSEs to hedge against their uncertain profit streams

through purchasing FTRs. We will develop a formal model to investigate this hypothesis

and analyze the associated welfare effects.

Recall that a financial transmission right (FTR) is a financial hedging instrument that

entitles the holder to receive compensation for transmission congestion costs that arise when a

transmission line is congested. The Wholesale Power Market Platform (WPMP) proposed by

FERC (2003) recommends that transmission congestion be managed by the ISO through the

issuance of point-to-point (PTP) FTRs obligation in the day-ahead power market. Holders

of PTP FTR obligations would be charged or credited based on the congestion components

in day-ahead market LMPs.

Two issues here need to be clarified before we proceed further on. First, recall that

there are four types of FTRs (PTP obligation, PTP option, FG 19 obligation, and FG

option) currently available in the U.S. wholesale power markets. For simplicity, this model

investigates only the first one, namely, the PTP FTR obligation. Hereafter if not stated

19FG stands for flowgate, which is mainly implemented by ERCOT in Texas and partly implemented by
CAISO in California.
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explicitly, FTR means PTP FTR obligation. The second issue is concerned with the time

horizon of the model. Recall that in this model, generators and LSEs can purchase FTRs to

hedge against their future profit in the day-ahead power market. So the FTR market works

like a forward market (denoted with time t = 0), and day-ahead power market works like

a spot market 20 (denoted with time t = 1). Hence terms such as FTR forward market or

day-ahead spot market should not cause any confusions.

4.1 Model Specifications and Assumptions

• This model consists of two markets, one is FTR forward market and the other is day-

ahead power market. The basic day-ahead power market structure remains the same

as in the benchmark model, i.e., the two-node electricity network with one generator

and one LSE at each node and an ISO in the middle to manage the transmission

network and collect the congestion rent if the line is congested. All the cost and

demand function forms also remain the same as those in the benchmark model. Also

for simplicity, assume the dispatched quantities are all positive from the SCED problem

in the benchmark model.

• To make the case of FTR interesting, assume the thermal limit constraint T is so small

that it is always binding. The justification is that if the thermal constraint is not

binding, there will be no price separation, i.e., LMP1 = LMP2, which directly implies

that the value of FTR based on the difference of LMPs becomes zero for sure regardless

whether is uncertainty or not. Therefore to preclude this trivial case, T is assumed to

be binding all the time.

• Introduce a stochastic shock to the two-node electricity network with a binding thermal

limit constraint T : in the FTR forward market (t=0) all agents know they will be in

one of the two states, state 1 or state 2, in the day-ahead power spot market (t=1)

such that if in state 1, T is binding from node 1 to node 2 with probability prob; if in

state 2, T is binding from node 2 to node 1 with probability 1 - prob. Then according

20The actual flow of activities in the U.S. wholesale power markets shows that the FTR market is usually
operated once a month and the day-ahead market is operated once a day. In fact, day-ahead market is
operated one day ahead of real-time market. But since in this paper we have assumed that there is no
changes of power supplies and demands between day-ahead market and real-time market, day-ahead market
and real-time market collapse to be one market. See ISO New England (2004) for details.
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to Proposition 1, we have:

{
state 1 : T is binding from 1 to 2 ⇔ LMP2 > LMP1 ⇔ Ω > T with prob;

state 2 : T is binding from 2 to 1 ⇔ LMP2 < LMP1 ⇔ Ω < −T with 1 - prob.

To differentiate the notations in two states, denote the realized values of parameters

in state 1 with a ′ and state 2 with a ′′, that is, all the structure parameters except

thermal limit T are random variables denoted by a ˜such that

ãZ
k =

{
aZ′

k with prob;

aZ′′

k with 1 - prob, ∀ k = 1, 2; Z = D,S.

b̃Z
k =

{
bZ′

k with prob;

bZ′′

k with 1 - prob, ∀ k = 1, 2; Z = D,S.

f̃k =

{
f ′

k with prob;

f ′′

k with 1 - prob, ∀ k = 1, 2.

{
state 1 : T is binding from 1 to 2 ⇔ LMP ′

2 > LMP ′

1 ⇔ Ω′ > T with prob;

state 2 : T is binding from 2 to 1 ⇔ LMP ′′

2 < LMP ′′

1 ⇔ Ω′′ < −T with 1 - prob.

In reality, the shocks may come from various sources. For example, the changing

weather may suddenly increase/decrease LES’s demand attributes. Or the changing

price of raw material for producing electricity such as coal or oil may suddenly in-

crease/decrease generator’s cost attributes. Since these kinds of changes are really out

of control of any market participants, it may be reasonable to introduce these random

shocks into the model to create a simple form of uncertainty.

• Introduce two types of FTRs in this model, FTR12 and FTR21. (a) Define FTR12 as

the PTP FTR obligation that obligates the owner to get paid if thermal constraint T

is binding from 1 to 2 or get charged if thermal constraint T is binding from 2 to 1.

The total amount of payments or charges are equal to the number of FTR contracts

times LMP2 − LMP1. (b) Similarly, define FTR21 as the PTP FTR obligation that

obligates the owner to get paid if thermal constraint T is binding from 2 to 1 or get

charged if thermal constraint T is binding from 1 to 2. The total amount of payments

or charges are equal to the number of FTR contracts times LMP1 − LMP2.

• In this model, it is ISO who has the authority to issue these two types of FTRs at

pre-announced prices. Generators and LSEs can choose to buy these FTR contracts
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from ISO by paying the corresponding FTR prices and benefit from its payoffs. On the

other hand, ISO receives the FTR sales revenue while paying for its associated payoffs

to generators or LSEs. Recall that ISO still receive some amount of congestion rent

(CR) (what differs from the benchmark model is that now ISO does not know exactly

how much CR it will obtain in at time t = 0, but it can use the expected CR as an

approximation). So the ISO’s revenue adequacy condition is respected in expectation.

Lastly, ISO also gets to set the maximum amounts of FTRs for sale.

• Relying on the literature of corporate risk management, which argues that firms could

benefit from hedging market risks (Smith and Stulz (1985), Stulz (1990), Bessembinder

(1991), Froot et al. (1993)), it is argued in this study that firms (generators and LSEs)

in the electric power market are risk averse and are likely to benefit from reducing

the risk of their profits. Therefore, we assume generators and LSEs are risk averse

with a constant relative risk aversion (CRRA) utility function. Furthermore, to make

the calculation simpler, assume all generators and LSEs possess a logarithmic utility

function.

• Finally in this model, assume generators and LSEs can only buy FTRs (can take

long positions) but they cannot sell them (cannot take short positions), i.e., the FTR

secondary market is not available in this model. Furthermore, assume G1 and LSE2 can

only buy FTR12 and G2 and LSE1 can only buy FTR21. The reason is that since the

agents are all assumed to be risk averse, they will not be willing to purchase a financial

instrument that will increase the risk of their profits even higher. For example, if G1

can buy FTR21, it will only make its profit stream more volatile, that is, when G1 buys

FTR21, if LMP1 > LMP2, FTR12 can bring LMP1 − LMP2 amount of per contract

profit to G1, but G1 is already enjoying the high LMP1; similarly, if LMP1 < LMP2,

G1 will incur LMP1 − LMP2 amount of per contract loss for buying FTR21 , but G1

is already suffering the low LMP1. So purchasing the FTR12 will only make the G1’s

profit even riskier. Similar arguments apply to G2, L1 and L2 too.

4.2 Model Setup

Generator’s and LSE’s total profits come from two parts: profit from power supply (or

demand) and profit from purchasing FTRs.

Denote Gk’s profit from power production as the random variable π̃Gk. Then by Propo-
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sition 2, we have:

π̃Gk =

{
π′

Gk = LMP ′

kQ
′

Gk − TCk(Q
′

Gk) = 1
2
aS′

k Q′2
Gk − f ′

k with prob;

π′′

Gk = LMP ′′

k Q′′

Gk − TCk(Q
′′

Gk) = 1
2
aS′′

k Q′′2
Gk − f ′′

k with 1 - prob, ∀ k = 1, 2.

(44)

Denote LSEk’s profit from purchasing wholesale power from generator and reselling it to

downstream consumers as the random variable π̃Lk. Then by Proposition 2, we have:

π̃Lk =

{
π′

Lk = Rk(Q
′

Lk) − LMP ′

kQ
′

Lk with prob;

π′′

Lk = Rk(Q
′′

Lk) − LMP ′′

k Q′′

Lk with 1 - prob, ∀ k = 1, 2.
(45)

where Q′

Gk and Q′

Lk are the Step 2 thermal-constraint-binding SCED solution (binding

from 1 to 2) in the benchmark model, and Q′′

Gk and Q′′

Lk are the Step 2 thermal-constraint-

binding SCED solution (binding from 2 to 1) in the benchmark model. Furthermore, to

make the case interesting, it is reasonable to assume 1
2
aS′

k Q′2
Gk > f ′

k and 1
2
aS′′

k Q′′2
Gk > f ′′

k so

that π̃Gk > 0. This means in either state, the generator has a positive production profit

thus does not go to bankrupt. For the similar reason, assume Rk(Q
′

Lk) > LMP ′

kQ
′

Lk and

Rk(Q
′′

Lk) > LMP ′′

k Q′′

Lk so that π̃Lk > 0.

Denote FTR12’s per contract payoff function as the random variable H̃12. By the defini-

tion of an FTR and LMP solutions from Step 2 benchmark model, we have:

H̃12 =

{
H ′

12 = LMP ′

2 − LMP ′

1 =
(A′

1
E′

2
−A′

2
E′

1
)−(D′

2
A′

1
+D′

1
A′

2
)T

A′

1
A′

2

> 0 with prob;

H ′′

12 = LMP ′′

2 − LMP ′′

1 =
(A′′

1
E′′

2
−A′′

2
E′′

1
)+(D′′

2
A′′

1
+D′′

1
A′′

2
)T

A′′

1
A′′

2

< 0 with 1 - prob.
(46)

Denote FTR21’s per contract payoff function as the random variable H̃21. By the defini-

tion of an FTR, we have H̃21 = −H̃12.

At this point, it may be of some interest to know the relationship between the FTR

payoff spread and the thermal limit T . Define the FTR payoff spread (FTRSP ) as the net

difference in the realized FTR payoffs in two states (|H ′ − H ′′|). The following proposition

will show that the increasing thermal limit T will always decrease the FTR payoff spread

FTRSP .

Proposition 4 Define the FTR payoff spread as the net difference in the realized FTR

payoffs in two states, that is, FTRSP
12 = H ′

12 −H ′′

12 and FTRSP
21 = H ′′

21 −H ′

21. Then we have

the following:
∂FTRSP

12

∂T
< 0,

∂FTRSP
21

∂T
< 0, (47)
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Proof: From the definition of FTR payoff function and FTR payoff spread, we have:

∂FTRSP
12

∂T
=

∂H ′

12

∂T
−

∂H ′′

12

∂T

= −
D′

2A
′

1 + D′

1A
′

2

A′

1A
′

2

−
D′′

2A
′′

1 + D′′

1A
′′

2

A′′

1A
′′

2

< 0 (since all parameters are positive)

∂FTRSP
21

∂T
=

∂H ′′

21

∂T
−

∂H ′

21

∂T

= −
D′′

2A
′′

1 + D′′

1A
′′

2

A′′

1A
′′

2

−
D′

2A
′

1 + D′

1A
′

2

A′

1A
′

2

< 0 (since all parameters are positive)

Q.E.D.

Now let’s look at ISO’s revenue components. Similar to generators and LSEs, ISO’s total

revenue comes from two parts too: one part from collecting the congestion rent and the other

part from selling FTRs.

Denote the congestion rent that accrues to ISO as the random variable C̃R. Then by

Definition 2, we have:

C̃R =

{
CR′ = (LMP ′

2 − LMP ′

1)T with prob;

CR′′ = (LMP ′′

1 − LMP ′′

2 )T with 1 - prob.
(48)

So the total profits for G1, G2, LSE1, and LSE2 and the total revenue for ISO can be

expressed as random variables Π̃G1, Π̃G2, Π̃L1, Π̃L2, and Π̃ISO, respectively, that is,

Π̃G1 = π̃G1 + (H̃12 − η12)FTR12(G1) (49)

Π̃G2 = π̃G2 + (H̃21 − η21)FTR21(G2) (50)

Π̃L1 = π̃L1 + (H̃21 − η21)FTR21(L1) (51)

Π̃L2 = π̃L2 + (H̃12 − η12)FTR12(L2) (52)

Π̃ISO = C̃R + (η12 − H̃12)FTR12 + (η21 − H̃21)FTR21 (53)

where η12 and η21 are the ISO pre-announced prices of FTR12 and FTR21 at beginning

of FTR market, i.e, at time t = 0. To make the case interesting, assume H ′

12 > η12 and

H ′′

21 > η21, that is, ISO sets the FTR price below its positive payoff so that generators and

31



LSEs know that if they buy FTRs they are not losing money for sure. To see this, suppose

H ′

12 < η12and take generator G1 for example. If G1 is in state 1, FTR’s total payoff is

(H̃12 − η12)FTR12(G1) = (H ′

12 − η12)FTR12(G1) < 0; if G1 is in state 2, FTR’s total payoff is

(H̃12 − η12)FTR12(G1) = (H ′′

12 − η12)FTR12(G1) = [(LMP ′′

2 − LMP ′′

1 ) − η12]FTR12(G1) < 0.

Since there is no private information, G1 knows for sure that he will lose money if he purchases

FTR12(G1). Similar argument applies to H ′′

21 > η21. FTR12 and FTR21 are the maximum

amounts of FTR12 and FTR21 that are available to sell.

Recall in the benchmark model, the main problem is for ISO to maximize the TNB

subject to a set of constraints in the day-ahead spot market while generators and LSEs have

no control at all. In this model, however, the main problem is for generators and LSEs in

the FTR forward market to choose their optimal numbers of FTR contracts to hedge against

the profit risks in the day-ahead spot market in order to maximize their expected utility of

profit21. The total number of FTRs must satisfy ISO’s revenue adequacy constraint (RAC),

which in turn will ensure ISO passes the simultaneous feasibility test (SFT) (see Hogan

(2002)).

Finally, to illustrate the point that FTRs really serve as hedging instruments in the sense

that FTRs can shrink the total profit spread of agents in two states and thus risk averse

agents are willing to pay some amount of premium to buy FTRs, let’s look at the case for

G1.

With probability prob, G1’s total profit becomes Π′

G1 such that

Π′

G1 = π′

G1 + (H ′

12 − η12)FTR12(G1)

= LMP ′

1Q
′

G1 − TCG1(Q
′

G1) + (LMP ′

2 − LMP ′

1 − η12)FTR12(G1)

We see that with probability prob, G1 is in state 1 where LMP ′

1 is less than LMP ′

2 which

makes FTR12 bring positive profit to G1, but G1 was suffering from receiving the low LMP ′

1

(relative to LMP ′

2), which directly decreases its production profit π′

G1. Thus in this case,

the FTR compensates G1 for being in its unfavorable state by paying G1 a positive amount

of profit.

On the other hand, with probability 1 - prob, G1’s total profit becomes Π′′

G1 such that

Π′′

G1 = π′′

G1 + (H ′′

12 − η12)FTR12(G1)

= LMP ′′

1 Q′′

G1 − TCG1(Q
′′

G1) + (LMP ′′

2 − LMP ′′

1 − η12)FTR12(G1)

21After generators and LSEs make their FTR purchasing decision in the forward market, they wait until
the states get revealed. At that time they will be in the day-ahead spot market and everything follows the
results derived from benchmark model.
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We see that with probability 1 - prob, G1 is in state 2 where LMP ′′

2 is less than LMP ′′

1

which makes FTR12 bring negative profit to G1, but G1 was enjoying in receiving the high

LMP ′′

1 (relative to LMP ′′

2 ), which directly increases its production profit π′′

G1. Thus in this

case, the FTR penalizes G1 for being in its favorable state by taking away part of G1’s

production profit.

So whether in state 1 or state 2, FTR12’s profit stream will always be in the opposite

direction of G1’s production profit to fulfill its hedging purpose. Similar argument applies to

G2, LSE1 and LSE2. Therefore, FTRs are indeed hedging instruments for generators and

LSEs to reduce their systematic profit risks.

4.3 FTR Solutions

Assume all generators and LSEs possess logarithmic utilities and maximize their expected

utility of total profit 22 by choosing the optimal FTR contracts, i.e., optimal hedge positions

subject to the ISO’s revenue adequacy constraint (RAC). Then G1, G2, LSE1 and LSE2’s

problem can be expressed as follows:

G1 : Max E[U(Π̃G1)] = prob log(Π′

G1) + (1 − prob) log(Π′′

G1) w.r.t. FTR12(G1) (54)

G2 : Max E[U(Π̃G2)] = prob log(Π′

G2) + (1 − prob) log(Π′′

G2) w.r.t. FTR21(G2) (55)

LSE1 : Max E[U(Π̃L1)] = prob log(Π′

L1) + (1 − prob) log(Π′′

L1) w.r.t. FTR21(L1) (56)

LSE2 : Max E[U(Π̃L2)] = prob log(Π′

L2) + (1 − prob) log(Π′′

L2) w.r.t. FTR12(L2) (57)

subject to:

FTR12(G1) + FTR12(L2) ≤ FTR12

FTR21(G2) + FTR21(L1) ≤ FTR21

E(Π̃ISO) = E(C̃R) + (η12 − E(H̃12))FTR12 + (η21 − E(H̃21))FTR21 ≥ 0 (RAC)

Solving for the first order conditions (FOCs), we obtain the following FTR optimal hedge

solutions (OHSs):

(OHS1) FTR∗

12(G1) =
prob(H ′

12 − η12)π
′′

G1 + (1 − prob)(H ′′

12 − η12)π
′

G1

(H ′

12 − η12)(η12 − H ′′

12)
(58)

22Since the underlying parameters are not normally distributed, the expected utility is not linear in
expected profit and the variance of profit. Thus the usual mean-variance analysis does not work well here.
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(OHS2) FTR∗

21(G2) =
prob(H ′

21 − η21)π
′′

G2 + (1 − prob)(H ′′

21 − η21)π
′

G2

(H ′′

21 − η21)(η21 − H ′

21)
(59)

(OHS3) FTR∗

21(L1) =
prob(H ′

21 − η21)π
′′

L1 + (1 − prob)(H ′′

21 − η21)π
′

L1

(H ′′

21 − η21)(η21 − H ′

21)
(60)

(OHS4) FTR∗

12(L2) =
prob(H ′

12 − η12)π
′′

L2 + (1 − prob)(H ′′

12 − η12)π
′

L2

(H ′

12 − η12)(η12 − H ′′

12)
(61)

First we derive the following important proposition:

Proposition 5 In a two-node electricity network model facing the uncertain parameter

shocks, all risk averse agents, i.e., generators and LSEs (assuming log utilities), will hold a

positive amount of FTRs if and only if the shock probability satisfies the following regularity

condition (RC):

max{probG1, probL2} < prob < min{probG2, probL1} (RC) (62)

where

probG1 =
(η12 − H ′′

12)π
′

G1

(H ′

12 − η12)π′′

G1 + (η12 − H ′′

12)π
′

G1

probG2 =
(η21 − H ′′

21)π
′

G2

(H ′

21 − η21)π′′

G2 + (η21 − H ′′

21)π
′

G2

probL1 =
(η21 − H ′′

21)π
′

L1

(H ′

21 − η21)π′′

L1 + (η21 − H ′′

21)π
′

L1

probL2 =
(η12 − H ′′

12)π
′

L2

(H ′

12 − η12)π′′

L2 + (η12 − H ′′

12)π
′

L2

This proposition states that when there is a stochastic shock in this two-node electricity

network, the risk-averse generators and LSEs will hold a positive amount of FTRs to hedge

against the uncertain profit in the energy spot market, provided that the shock probability

satisfies the regularity condition.

Proof:

Recall that π̃Gk > 0 and π̃Lk > 0 implies π′

Gk > 0, π′′

Gk > 0, π′

Lk > 0 and π′′

Lk > 0, for k = 1, 2.
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Then from (OHS1)—(OHS4) we have the following:

FTR∗

12(G1) =
prob(H ′

12 − η12)π
′′

G1 + (1 − prob)(H ′′

12 − η12)π
′

G1

(H ′

12 − η12)(η12 − H ′′

12)
> 0

⇐⇒ prob(H ′

12 − η12)π
′′

G1 + (1 − prob)(H ′′

12 − η12)π
′

G1 > 0 (∵ H ′

12 − η12 > 0, H ′′

12 − η12 < 0)

⇐⇒ prob >
(η12 − H ′′

12)π
′

G1

(H ′

12 − η12)π′′

G1 + (η12 − H ′′

12)π
′

G1

∈ (0, 1) (∵ π′

G1 > 0, π′′

G1 > 0)

= probG1

FTR∗

21(G2) =
prob(H ′

21 − η21)π
′′

G2 + (1 − prob)(H ′′

21 − η21)π
′

G2

(H ′′

21 − η21)(η21 − H ′

21)
> 0

⇐⇒ prob(H ′

21 − η21)π
′′

G2 + (1 − prob)(H ′′

21 − η21)π
′

G2 > 0 (∵ H ′

21 − η21 < 0, H ′′

21 − η21 > 0)

⇐⇒ prob <
(η21 − H ′′

21)π
′

G2

(H ′

21 − η21)π′′

G2 + (η21 − H ′′

21)π
′

G2

∈ (0, 1) (∵ π′

G2 > 0, π′′

G2 > 0)

= probG2

FTR∗

21(L1) =
prob(H ′

21 − η21)π
′′

L1 + (1 − prob)(H ′′

21 − η21)π
′

L1

(H ′′

21 − η21)(η21 − H ′

21)
> 0

⇐⇒ prob(H ′

21 − η21)π
′′

L1 + (1 − prob)(H ′′

21 − η21)π
′

L1 > 0 (∵ H ′

21 − η21 < 0, H ′′

21 − η21 > 0)

⇐⇒ prob <
(η21 − H ′′

21)π
′

L1

(H ′

21 − η21)π′′

L1 + (η21 − H ′′

21)π
′

L1

∈ (0, 1) (∵ π′

L1 > 0, π′′

L1 > 0)

= probL1

FTR∗

12(L2) =
prob(H ′

12 − η12)π
′′

L2 + (1 − prob)(H ′′

12 − η12)π
′

L2

(H ′

12 − η12)(η12 − H ′′

12)
> 0

⇐⇒ prob(H ′

12 − η12)π
′′

L2 + (1 − prob)(H ′′

12 − η12)π
′

L2 > 0 (∵ H ′

12 − η12 > 0, H ′′

12 − η12 < 0)

⇐⇒ prob >
(η12 − H ′′

12)π
′

L2

(H ′

12 − η12)π′′

L2 + (η12 − H ′′

12)π
′

L2

∈ (0, 1) (∵ π′

L2 > 0, π′′

L2 > 0)

= probL2

Therefore, to ensure that FTR∗

12(G1) > 0, FTR∗

21(G2) > 0, FTR∗

21(L1) > 0, and FTR∗

12(L2) >

0, we need to have prob > probG1, prob > probL2, prob < probG2, and prob < probL1, which

is equivalent to max{probG1, probL2} < prob < min{probG2, probL1}. Q.E.D.

Furthermore, when we investigate how the optimal FTR hedge positions change with the

change of shock probability prob, we have the following proposition:

Proposition 6 In a two-node electricity network model facing uncertain parameter shocks,
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the optimal FTR12 increases with increasing prob while the optimal FTR21 decreases with

increasing prob, provided that prob satisfies the regularity condition. The comparative statics

are shown as follows:

∂FTR12(G1)

∂prob
> 0,

∂FTR12(L2)

∂prob
> 0,

∂FTR21(G2)

∂prob
< 0, and

∂FTR21(L1)

∂prob
< 0. (63)

The economic intuition behind this proposition is straightforward. Recall that prob is the

probability that the transmission line is congested from node 1 to node 2. Increasing prob

thus implies that the transmission line is more likely to get congested from node 1 to node

2. Since congestion from node 1 to node 2 makes FTR12 bring positive profit to its owner

but makes FTR21 bring negative profit to its owner, the agents who own FTR12 (G1 and

L2) will tend to buy more of FTR12 while the agents who own FTR21 (G2 and L1) will tend

to buy less of FTR21. The formal proof is provided below.

Proof:

Recall that H ′

12 − η12 > 0, H ′′

12 − η12 < 0 and H ′

21 − η21 < 0 H ′′

21 − η21 > 0.

∂FTR12(G1)

∂prob
= [(H ′

12 − η12)π
′′

G1 + (η12 − H ′′

12)π
′

G1]/[(H
′

12 − η12)(η12 − H ′′

12)] > 0;

∂FTR12(L2)

∂prob
= [(H ′

12 − η12)π
′′

L2 + (η12 − H ′′

12)π
′

L2]/[(H
′

12 − η12)(η12 − H ′′

12)] > 0;

∂FTR21(G2)

∂prob
= [(H ′

21 − η21)π
′′

G2 + (η21 − H ′′

21)π
′

G2]/[(H
′

21 − η21)(η21 − H ′′

21)] < 0;

∂FTR21(L1)

∂prob
= [(H ′

21 − η21)π
′′

L1 + (η21 − H ′′

21)π
′

L1]/[(H
′

21 − η21)(η21 − H ′′

21)] < 0; Q.E.D.

Now we are in a position to establish the most important proposition in this paper, that

is, to show that the existence of FTRs actually increases the social welfare in this two-node

electricity network model under stochastic parameter shocks.

Proposition 7 In a two-node electricity network model facing uncertain parameter shocks,

the acquisition of optimal FTRs by the risk averse generators and LSEs increases and in

general strictly increases the social welfare compared with the case where there is no FTRs.

Social welfare function W can be measured by generators and LSEs’ total expected utilities.

Denote the welfare under optimal FTRs as WF and the welfare without FTRs as W0. Then,

WF ≥ W0 (64)

The economic intuition behind this proposition is that since there is uncertainty in this
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model, generators and LSEs are not sure about their future profits: they may enjoy high

profits in one state or suffer low profit in the other state. However they know ISO is issuing

a financial instrument, namely FTR, which can be used to hedge against their risky profit

by reducing the profit spread between the two states. The risk averse generators and LSEs

are thus willing to pay some premium to buy FTRs in order to maximize their expected

utilities of future profits. If all generators and LSEs maximize their expected utilities by

purchasing FTRs, then we can say FTRs increase the social welfare which is measured by

total expected utilities. The formal proof of the proposition is provided in Appendix 5.

This proposition has important economic implications. First, it shows that in this simple

two-node electricity network, once we introduce uncertainty (even in a very simple form),

the acquisition of FTRs by risk averse agents can increase total social welfare. Moreover, as

the proof shows, this result is strong and robust in the sense that regardless whether agents

take long or short positions 23, the social welfare with FTRs is higher and in general strictly

higher than that without FTRs. This result thus refutes the far more negative views of FTRs

by other economists such as Joskow and Tirole (2000), and provides an economic explanation

to the fact that FTRs are widely used in the major U.S. wholesale power markets.

Finally, in an attempt to endogenize the prices of FTRs, η12 and η21, consider an ISO’s

problem. Since all information is public, that is, ISO knows that generators and LSEs will

purchase FTRs to hedge against their risky profit in the energy spot market. Then ISO can

solve generators and LSEs’ problems to get the optimal FTR hedge solutions and substitute

them into ISO’s revenue adequacy constraint (RAC):

E(Π̃ISO) = E(C̃R) + (η12 − E(H̃12))FTR12 + (η21 − E(H̃21))FTR21 ≥ 0

where

FTR12 = FTR∗

12(G1)+FTR∗

12(L2) =
prob(H ′

12 − η12)(π
′′

G1 + π′′

L2) + (1 − prob)(H ′′

12 − η12)(π
′

G1 + π′

L2)

(H ′

12 − η12)(η12 − H ′′

12)

FTR21 = FTR∗

21(G2)+FTR∗

21(L1) =
prob(H ′

21 − η21)(π
′′

G2 + π′′

L1) + (1 − prob)(H ′′

21 − η21)(π
′

G2 + π′

L1)

(H ′′

21 − η21)(η21 − H ′

21)

E(C̃R) = prob CR′+(1−prob)CR′′ = prob(LMP ′

2−LMP ′

1)T +(1−prob)(LMP ′′

1 −LMP ′′

2 )T

E(H̃12) = prob H ′

12 + (1 − prob)H ′′

12 = prob(LMP ′

2 − LMP ′

1) + (1 − prob)(LMP ′′

2 − LMP ′′

1 )

E(H̃21) = prob H ′

21 + (1 − prob)H ′′

21 = prob(LMP ′

1 − LMP ′

2) + (1 − prob)(LMP ′′

1 − LMP ′′

2 )

23Even if taking short position of FTRs is not allowed in this model.
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Now ISO has several options to proceed. (a) The simplest option is to adjust η12 and

η21 so that the RAC becomes binding. Then the relationship between η12 and η21 can be

obtained as an implicit function denoted as g1() such that g1(η12, η21) = 0. (b) The more

complicated option that ISO can adopt is to adjust η12 and η21 so that it can extract a

maximum amount of residual congestion rent (RCR). Then ISO invests this RCR to expand

the transmission line, i.e., increase thermal limit T , which will reduce the uncertain profit

spread, enhance efficiency, and increase social welfare. In this option, ISO can also get

another set of relationship between η12 and η21 in an implicit function denoted as g1() such

that g1(η12, η21) = 0.

To possibly obtain a unique solution for η12 and η21, we need to turn around and look

at the problem from generators and LSEs’ point of views. Since all generators and LSEs

are assumed to be risk averse, they must be willing to pay certain amount of premiums to

reduce the profit risks. Then in equilibrium the risk premiums are equivalent to the price of

FTRs multiplied by the corresponding FTR contracts, that is, we have,

U [E(π̃G1 + H̃12FTR12(G1)) − η12FTR12(G1)] = E[U(π̃G1 + H̃12FTR12(G1))] (65)

U [E(π̃G2 + H̃21FTR21(G2)) − η21FTR21(G2)] = E[U(π̃G2 + H̃21FTR21(G2))] (66)

U [E(π̃L1 + H̃21FTR21(L1)) − η21FTR21(L1)] = E[U(π̃L1 + H̃21FTR21(L1))] (67)

U [E(π̃L2 + H̃12FTR12(L2)) − η12FTR12(L2)] = E[U(π̃L2 + H̃12FTR12(L2))] (68)

With the logarithmic utilities, in principle we can solve for FTR∗∗

12(G1), FTR∗∗

21(G2), FTR∗∗

21(L1),

and FTR∗∗

12(L2) such that:

E(π̃G1) + (E(H̃12) − η12)FTR∗∗

12(G1) = (π′

G1 + H ′

12FTR∗∗

12(G1))
prob(π′′

G1 + H ′′

12FTR∗∗

12(G1))
1−prob

E(π̃G2) + (E(H̃21) − η21)FTR∗∗

21(G2) = (π′

G2 + H ′

21FTR∗∗

21(G2))
prob(π′′

G2 + H ′′

21FTR∗∗

21(G2))
1−prob

E(π̃L1) + (E(H̃21) − η21)FTR∗∗

21(L1) = (π′

L1 + H ′

21FTR∗∗

21(L1))
prob(π′′

L1 + H ′′

21FTR∗∗

21(L1))
1−prob

E(π̃L2) + (E(H̃12) − η12)FTR∗∗

12(L2) = (π′

L2 + H ′

12FTR∗∗

12(L2))
prob(π′′

L2 + H ′′

12FTR∗∗

12(L2))
1−prob

where E(H̃12) and E(H̃21) are as defined as above and E(π̃)’s are defined as follows:

E(π̃G1) = prob π′

G1 + (1 − prob)π′′

G1;

E(π̃G2) = prob π′

G2 + (1 − prob)π′′

G2;
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E(π̃L1) = prob π′

L1 + (1 − prob)π′′

L1;

E(π̃L2) = prob π′

L2 + (1 − prob)π′′

L2.

After substituting the FTR∗∗ solutions into the ISO’s RAC and let ISO adjust η12 and

η21. Regardless whether ISO chooses option(a) or option(b), we can, in principle, derive

another relationship between η12and η21 in an implicit function denoted as g2() such that

g2(η12, η21) = 0.

Hence by solving the system of equation for η12 and η21,

{
g1(η12, η21) = 0;

g2(η12, η21) = 0.

in principle we can solve for the equilibrium FTR price vector η∗ = (η∗

12, η
∗

21) such that

{
g1(η

∗

12, η
∗

21) = 0;

g2(η
∗

12, η
∗

21) = 0.

5 Conclusions and Extensions

In this paper, we’ve studied the competitive behaviors of electricity generators and LSEs,

and analyzed welfare effects of financial transmission rights (FTRs) in a restructured U.S.

wholesale power market model. The analysis focuses on a competitive two-node electricity

network model where there is one generator and one LSE in each node with parameterized

marginal cost and demand function, supervised by an independent system operator (ISO).

In the first part of the paper, a no-rights benchmark model is developed to solve for the

optimal quantity of power production and consumption (the SCED solutions) and derive

the locational marginal prices for each node, which serve as the building blocks to solve

for the optimal FTR hedge positions in the second model. Then in the second model, we

introduce a stochastic parameter shock into the two-node electricity network model, and

manage to show that in the absence of market power the acquisition of optimal FTRs by the

risk averse generators and LSEs increases and in general strictly increases the social welfare

compared with the case where there is no FTRs available. This result refutes the somehow

negative views of FTRs by other economists in the literature and provides the economic

explanations to the fact that FTRs are widely adopted as a financial hedge instrument in

the major U.S. wholesale power markets.

This study can be extended in several ways. First, we can extend the model to have

an arbitrary number of generators and LSEs in each node. Admittedly, this extension adds
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the burden of calculations, but it does not change the essence of the solution. Mainly what

we should be concerned about is to obtain an aggregate marginal cost (supply) function

ASk(Gk) and an aggregate demand function ADk(Lk) for each node k = 1, 2. Then proceed

to solve the model as if there were one ’representative’ generator and one ’representative’

LSE. After the aggregate solution is acquired, the solution quantities can be referred back

through LMPs to get the individual dispatched quantities. Although the process of solving

the problem is more tedious, the essence of the solution algorithm in this paper remains.

We expect that including multiple generators and LSEs at each node will not have dramatic

effects on the solution outcomes.

Second, we can extend our two-node electricity network model to three nodes or more.

Then we will be introducing an important feature of real world electricity network, the ”loop

flow effect”, which considerably increases the modeling complications. Basically, the ”loop

flow effect” is associated with the fact that electrons follow the path of least resistance.

In an electric network with a transmission grid consisting of multiple connection lines, the

patterns of electricity flows follow the famous Kirchhoff’s laws in physics. For example, in

a three-node network, if there is a power injection Q at one node, say node 1 and an equal

amount of withdrawal at another node, say node 2, then depending on the reactance of line

1-2, line 1-3 and line 2-3, a proportion amount of power, say αQ flows from node 1 to node

2 while the rest (1 − α)Q flows from node 1 to node 3 then to node 2. For instance, if the

line reactance is the same for all three lines, then α = 2/3. In this case, we need to add one

more variable, the phase angle (φ), in order to control the power flows between transmission

lines 24. Although there is significant amount of work involved when we model the three-node

case, the result is expected to be closer to reality than the two-node case.

Third, in our two-node model, we assume generators and LSEs always submit their true

marginal cost and true demand function to ISO, so we always get the competitive solution

which is also Pareto optimal 25. But what if we relax this assumption so that generators and

LSEs can strategically submit their marginal cost and demand functions in the hope that

they can gain individual advantages through strategic behaviors.

Fourth, how about extending the static two-node model into a dynamic model with

multiple periods, where in each period, generators and LSEs submit their strategic bids and

offers in a double auction framework in both FTR and day-ahead power markets. They

could be endowed with an initial wealth, and if they don’t make enough profits within

several periods, then they are forced to bankrupt. Moreover, these generators and LSEs can

24Technically, we need to model the 3-node case using a Direct Current (DC) power flow formulation.
25In the 3-node case, it becomes unclear that the outcome will still be Pareto optimal because of externality

brought by ”loop flow” effect.
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’learn’ what is the best strategies for them over time. The learning methods may include

reinforcement learning and anticipatory learning, etc.

With these complicated extensions, it seems almost impossible to proceed with analyt-

ical tools. A natural candidate that may fit very well for this purpose is the agent-based

computational approach. For a comprehensive introduction of Agent-based Computational

Economics (ACE), see the ACE survey by Tesfatsion (2003). The next stage of this study is

to extend the static and competitive two-node electricity model into a dynamic multi-node

electricity model with learning agents bidding through double auction markets in a sequel

paper using agent-based computational approach.
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Appendix 1

The non-thermal-constraint SCED solution in Step 1 is derived as follows:

In step 1, when the thermal limit T never binds, the SCED problem is to maximize

the ’total net benefit’(TNB) subject to the balancing and non-negativity constraints. This is

just a standard optimization problem with one equality constraint (the balancing constraint)

and four inequality constraints (the non-negativity constraints for QG1, QG2, QL1 and QL2).

Using µ’s as the multipliers for equality constraint and λ’s as the multipliers for inequality

constraints, and formulate the Lagrangian equation:

L = (bD
1 QL1 −

1

2
aD

1 Q2
L1) − (bS

1 QG1 +
1

2
aS

1 Q2
G1) + (bD

2 QL2 −
1

2
aD

2 Q2
L2) − (bS

2 QG2 +
1

2
aS

2 Q2
G2)

+µ(QG1 + QG2 − QL1 − QL2) + λG1QG1 + λG2QG2 + λL1QL1 + λL2QL2

Derive the first order conditions (FOCs):

∂L

∂QL1

= bD
1 − aD

1 QL1 − µ + λL1 = 0

∂L

∂QG1

= −bS
1 − aS

1 QG1 + µ + λG1 = 0

∂L

∂QL2

= bD
2 − aD

2 QL2 − µ + λL2 = 0

∂L

∂QG2

= −bS
2 − aS

2 QG2 + µ + λG2 = 0

∂L

∂µ
= QG1 + QG2 − QL1 − QL2 = 0

QG1 ≥ 0, λG1 ≥ 0, λG1QG1 = 0

QG2 ≥ 0, λG2 ≥ 0, λG2QG2 = 0

QL1 ≥ 0, λL1 ≥ 0, λL1QL1 = 0

QL2 ≥ 0, λL2 ≥ 0, λL2QL2 = 0

For simplicity, only consider the case where all dispatched quantities are positive, i.e.,

all non-negativity constraints are not binding (λG1 = λG2 = λL1 = λL2 = 0)26. Thus from

26To be exhaustive, we find 9 other possible solution cases, i.e., (1) QG1 = 0; (2) QG2 = 0; (3) QL1 = 0;
(4) QL2 = 0; (5) QG1 = QL1 = 0; (6) QG1 = QL2 = 0; (7) QG2 = QL1 = 0; (8) QG2 = QL2 = 0; (9)
QG1 = QG2 = QL1 = QL2 = 0.
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FOCs we have:





aS
1 QG1 + aD

1 QL1 = bD
1 − bS

1 ;

aS
1 QG1 + aD

2 QL2 = bD
2 − bS

1 ;

aS
2 QG2 + aD

2 QL2 = bD
2 − bS

2 ;

QG1 + QG2 = QL1 + QL2 ;

µ = bS
1 + aS

1 QG1 .

Notice the last equation shows that the Lagrangian multiplier associated with balancing

constraint is equal to the marginal cost, which by the nature of this SCED problem is also

the LMP. Solving 5 unknown variables for 5 equations, we obtain the Step 1 non-thermal-

constraint SCED solution:

Q̂G1 =
aD

2 aS
2 (bD

1 − bS
1 ) + aD

1 aS
2 (bD

2 − bS
2 ) + aD

1 (aD
2 + aS

2 )(bS
2 − bS

1 )

aD
1 aS

1 (aD
2 + aS

2 ) + aD
2 aS

2 (aD
1 + aS

1 )

Q̂G2 =
aD

1 aS
1 (bD

2 − bS
2 ) + aS

1 aD
2 (bD

1 − bS
1 ) − aD

2 (aD
1 + aS

1 )(bS
2 − bS

1 )

aD
1 aS

1 (aD
2 + aS

2 ) + aD
2 aS

2 (aD
1 + aS

1 )

Q̂L1 =
(aD

2 aS
2 + aS

1 aD
2 + aS

1 aS
2 )(bD

1 − bS
1 ) − aS

1 aS
2 (bD

2 − bS
2 ) − aS

1 (aD
2 + aS

2 )(bS
2 − bS

1 )

aD
1 aS

1 (aD
2 + aS

2 ) + aD
2 aS

2 (aD
1 + aS

1 )

Q̂L2 =
(aD

1 aS
1 + aD

1 aS
2 + aS

1 aS
2 )(bD

2 − bS
2 ) − aS

1 aS
2 (bD

1 − bS
1 ) + aS

2 (aD
1 + aS

1 )(bS
2 − bS

1 )

aD
1 aS

1 (aD
2 + aS

2 ) + aD
2 aS

2 (aD
1 + aS

1 )

LMP1 = LMP2 = µ̂ = bS
1 + aS

1 Q̂G1 =
aD

2 aS
2 (aD

1 bS
1 + aS

1 bD
1 ) + aD

1 aS
1 (aD

2 bS
2 + aS

2 bD
2 )

aD
1 aS

1 (aD
2 + aS

2 ) + aD
2 aS

2 (aD
1 + aS

1 )

which can be expressed as:

Q̂G1 = (G1 + B1)/A

Q̂G2 = (G2 + B2)/A

Q̂L1 = (L1 + C1)/A

Q̂L2 = (L2 + C2)/A

LMP1 = LMP2 = µ̂ = bS
1 + aS

1 Q̂G1

where

G1 = D2B1 + aD
1 aS

2 B2, B1 = aD
1 A2C1, L1 = (D2 + aS

1 A2)B1 − aS
1 aS

2 B2, C1 = aS
1 A2C2;

G2 = D1B2 + aS
1 aD

2 B1, B2 = aD
2 A1C2, L2 = (D1 + aS

2 A1)B2 − aS
1 aS

2 B1, C2 = aS
2 A1C1;

A = D1A2 + D2A1;
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A1 = aD
1 + aS

1 , B1 = bD
1 − bS

1 , C1 = bS
2 − bS

1 , D1 = aD
1 aS

1 ;

A2 = aD
2 + aS

2 , B2 = bD
2 − bS

2 , C2 = bS
1 − bS

2 , D2 = aD
2 aS

2 .

Appendix 2

The binding-thermal-constraint SCED solution in Step 2 is derived as follows:

(a) Based on Step 1 non-thermal-constraint SCED solution, if we know T is binding from

1 to 2, i.e., Q̂G1 − Q̂L1 > T or Q̂L2 − Q̂G2 > T . We can set either QG1 − QL1 = T or

QL2 −QG2 = T . But one of them is redundant due to the fact that the balancing constraint

(QG1 +QG2 = QL1 +QL2) always holds in this two-node electricity network. So without loss

of generality, let QG1 − QL1 = T .

This is a standard optimization problem subject to two equality constraints (balancing

and thermal constraint) and four inequality constraints (the non-negativity constraints for

QG1, QG2, QL1 and QL2). Using µ’s as the multipliers for equality constraints and λ’s as the

multipliers for inequality constraints, and formulate the Lagrangian equation:

L = (bD
1 QL1 −

1

2
aD

1 Q2
L1) − (bS

1 QG1 +
1

2
aS

1 Q2
G1) + (bD

2 QL2 −
1

2
aD

2 Q2
L2) − (bS

2 QG2 +
1

2
aS

2 Q2
G2)

+µB(QG1 + QG2 −QL1 −QL2) + µT (T −QG1 + QL1) + λG1QG1 + λG2QG2 + λL1QL1 + λL2QL2

Recall all the parameters are positive, i.e., T > 0, aD
j > 0, bD

j > 0,, and aS
i > 0, bS

i > 0

for i, j = 1, 2. Derive the FOCs:

∂L

∂QL1

= bD
1 − aD

1 QL1 − µB + µT + λL1 = 0

∂L

∂QG1

= −bS
1 − aS

1 QG1 + µB − µT + λG1 = 0

∂L

∂QL2

= bD
2 − aD

2 QL2 − µB + λL2 = 0

∂L

∂QG2

= −bS
2 − aS

2 QG2 + µB + λG2 = 0

∂L

∂µB

= QG1 + QG2 − QL1 − QL2 = 0

∂L

∂µT

= T − QG1 + QL1 = 0

QG1 ≥ 0, λG1 ≥ 0, λG1QG1 = 0
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QG2 ≥ 0, λG2 ≥ 0, λG2QG2 = 0

QL1 ≥ 0, λL1 ≥ 0, λL1QL1 = 0

QL2 ≥ 0, λL2 ≥ 0, λL2QL2 = 0

Rearranging the FOCs w.r.t QL1 and QG1, the FOCs w.r.t QL2 and QG2, and the FOCs

w.r.t µB and µT , we have:





aS
1 QG1 + aD

1 QL1 = bD
1 − bS

1 + λL1 + λG1 ;

aS
2 QG2 + aD

2 QL2 = bD
2 − bS

2 + λL2 + λG2 ;

QG1 − QL1 = T ;

QL2 − QG2 = T .

Solving four unknown variables for four equations , we have:

QG1 =
bD
1 − bS

1 + aD
1 T + λL1 + λG1

aD
1 + aS

1

QG2 =
bD
2 − bS

2 − aD
2 T + λL2 + λG2

aD
2 + aS

2

QL1 =
bD
1 − bS

1 − aS
1 T + λL1 + λG1

aD
1 + aS

1

QL2 =
bD
2 − bS

2 + aS
2 T + λL2 + λG2

aD
2 + aS

2

Now to tackle the corner solution, first let the solutions be all positive, i.e., QG1 >

0, QG2 > 0, QL1 > 0, QL2 > 0, so λG1 = λG2 = λL1 = λL2 = 0. We then can get the

following:

QG1 =
bD
1 − bS

1 + aD
1 T

aD
1 + aS

1

QG2 =
bD
2 − bS

2 − aD
2 T

aD
2 + aS

2

QL1 =
bD
1 − bS

1 − aS
1 T

aD
1 + aS

1

QL2 =
bD
2 − bS

2 + aS
2 T

aD
2 + aS

2

For the solutions indeed to be all positive, the parameters (bD
j , aD

j , bS
i , aS

i , T , for i, j =

1, 2) must satisfy the following conditions (in other words, any violations to the following
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conditions will lead to corner solutions):

(∗1) bD
1 − bS

1 + aD
1 T > 0 or QG1 > 0

(∗2) bD
2 − bS

2 − aD
2 T > 0 or QG2 > 0

(∗3) bD
1 − bS

1 − aS
1 T > 0 or QL1 > 0

(∗4) bD
2 − bS

2 + aS
2 T > 0 or QL2 > 0

Close examination on the above conditions indicates that Condition (*1) and (*4) will

not be violated here because in this case the thermal constraint is binding from node 1 to

node 2, i.e., node 1 as the net export node (NEN) and node 2 as the net import node (NIN).

Recall in the simplifying assumptions we assume that there is only one generator and one

LSE in each node. So node 1 as the NEN and node 2 as the NIN would imply that G1 has

to supply a positive amount of power over the transmission line and LSE2 has to demand a

positive amount of power sent from G1 in this two-node electricity network. Hence the total

power supply by G1, QG1, and the total power demand by LSE2, QL2, must be greater than

zero, which in turn proves that (*1) and (*4) will always hold in this case.

Then the Complementary Slackness Conditions (CSCs) for QG1 and QL2 will give us

λG1 = 0 and λL2 = 0.

In summary, the general solution (GS) would look like:

(GS1) QG1 =
bD
1 − bS

1 + aD
1 T + λL1

aD
1 + aS

1

(GS2) QG2 =
bD
2 − bS

2 − aD
2 T + λG2

aD
2 + aS

2

(GS3) QL1 =
bD
1 − bS

1 − aS
1 T + λL1

aD
1 + aS

1

(GS4) QL2 =
bD
2 − bS

2 + aS
2 T + λG2

aD
2 + aS

2

Since Condition (*1) and (*4) will always hold, we only need to examine Condition (*2)

and (*3) to get the SCED solutions. There are four cases to consider, i.e., [i] both (*2) and

(*3) hold; [ii] (*2) holds while (*3) is violated; [iii] (*3) holds while (*2) is violated; [iv] both

(*2) and (*3) are violated.

Case I: Both (*2) and (*3) hold (interior solution)
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When (*2) and (*3) hold, i.e., QG2 > 0 and QL1 > 0, the CSCs for QG2 and QL1 will give

us: λG2 = 0 and λL1 = 0.

Then the Step 2 SCED solution vector is simply s∗ = (Q∗

G1, Q
∗

G2, Q
∗

L1, Q
∗

L2), where

Q∗

G1 =
bD
1 − bS

1 + aD
1 T

aD
1 + aS

1

Q∗

G2 =
bD
2 − bS

2 − aD
2 T

aD
2 + aS

2

Q∗

L1 =
bD
1 − bS

1 − aS
1 T

aD
1 + aS

1

Q∗

L2 =
bD
2 − bS

2 + aS
2 T

aD
2 + aS

2

LMP1 = bS
1 + aS

1 Q∗

G1 =
aD

1 bS
1 + aS

1 bD
1 + aD

1 aS
1 T

aD
1 + aS

1

LMP2 = bS
2 + aS

2 Q∗

G2 =
aD

2 bS
2 + aS

2 bD
2 − aD

2 aS
2 T

aD
2 + aS

2

Case II: (*2) holds while (*3) is violated

When (*2) holds, i.e., QG2 > 0, then the CSC for QG2 will give us λG2 = 0. Then from the

general solution (GS2) and (GS4), we know that Q∗

G2 and Q∗

L2 are the same as in Case I.

When (*3) is violated, i.e., QL1 < 0, then by the non-negativity constraint for QL1 we have

Q∗

L1 = 0. From (GS3) we have Q∗

L1 =
bD
1
−bS

1
−aS

1
T+λ∗

L1

aD
1

+aS
1

= 0. Solving for λ∗

L1 = bS
1 − bD

1 + aS
1 T

and substituting it into (GS1), we have Q∗

G1 = T

So the Step 2 SCED solution vector is s∗ = (Q∗

G1, Q
∗

G2, Q
∗

L1, Q
∗

L2), where

Q∗

G1 = T

Q∗

G2 =
bD
2
−bS

2
−aD

2
T

aD
2

+aS
2

Q∗

L1 = 0

Q∗

L2 =
bD
2
−bS

2
+aS

2
T

aD
2

+aS
2

LMP1 = bS
1 + aS

1 Q∗

G1 = bS
1 + aS

1 T

LMP2 = bS
2 + aS

2 Q∗

G2 =
aD
2

bS
2
+aS

2
bD
2
−aD

2
aS
2

T

aD
2

+aS
2

Case III: (*3) holds while (*2) is violated

When (*3) holds, i.e., QL1 > 0, then the CSC for QL1 will give us λL1 = 0. Then from the

general solution (GS1) and (GS3), we know that Q∗

G1 and Q∗

L1 are the same as in Case I.

When (*2) is violated, i.e., QG2 < 0, then by the non-negativity constraint for QG2
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we have Q∗

G2 = 0. From (GS2) we have Q∗

G2 =
bD
2
−bS

2
−aD

2
T+λ∗

G2

aD
2

+aS
2

= 0. Solving for λ∗

G2 =

bS
2 − bD

2 + aD
2 T and substituting it into (GS4), we have Q∗

L2 = T .

So the Step 2 SCED solution vector is s∗ = (Q∗

G1, Q
∗

G2, Q
∗

L1, Q
∗

L2), where

Q∗

G1 =
bD
1
−bS

1
+aD

1
T

aD
1

+aS
1

Q∗

G2 = 0

Q∗

L1 =
bD
1
−bS

1
−aS

1
T

aD
1

+aS
1

Q∗

L2 = T

LMP1 = bS
1 + aS

1 Q∗

G1 =
aD
1

bS
1
+aS

1
bD
1

+aD
1

aS
1

T

aD
1

+aS
1

LMP2 = bD
2 − aD

2 Q∗

L2 = bD
2 − aD

2 T

Case IV: Both (*2) and (*3) are violated

When (*2) is violated, i.e., QG2 < 0, then by the non-negativity constraint for QG2 we have

Q∗

G2 = 0. QL2 is the same as in Case III, i.e., Q∗

L2 = T . When (*3) is violated, i.e., QL1 < 0,

then by the non-negativity constraint for QL1 we have Q∗

L1 = 0. QG1 is the same as in Case

II, i.e., Q∗

G1 = T

So the Step 2 SCED solution vector is s∗ = (Q∗

G1, Q
∗

G2, Q
∗

L1, Q
∗

L2), where

Q∗

G1 = T

Q∗

G2 = 0

Q∗

L1 = 0

Q∗

L2 = T

LMP1 = bS
1 + aS

1 Q∗

G1 = bS
1 + aS

1 T

LMP2 = bD
2 − aD

2 Q∗

L2 = bD
2 − aD

2 T

So the Step 2 SCED solutions can be summarized as follows:

Step 2 SCED Solution (T is binding from 1 to 2)

Case I Case II Case III Case IV

Q∗

G1 =
B1+aD

1
T

A1

Q∗

G1 = T Q∗

G1 =
B1+aD

1
T

A1

Q∗

G1 = T

Q∗

G2 =
B2−aD

2
T

A2

Q∗

G2 =
B2−aD

2
T

A2

Q∗

G2 = 0 Q∗

G2 = 0

Q∗

L1 =
B1−aS

1
T

A1

Q∗

L1 = 0 Q∗

L1 =
B1−aS

1
T

A1

Q∗

L1 = 0

Q∗

L2 =
B2+aS

2
T

A2

Q∗

L2 =
B2+aS

2
T

A2

Q∗

L2 = T Q∗

L2 = T

LMP1 = E1+D1T
A1

LMP1 = bS
1 + aS

1 T LMP1 = E1+D1T
A1

LMP1 = bS
1 + aS

1 T

LMP2 = E2−D2T
A2

LMP2 = E2−D2T
A2

LMP2 = bD
2 − aD

2 T LMP2 = bD
2 − aD

2 T
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where

A1 = aD
1 + aS

1 , B1 = bD
1 − bS

1 , D1 = aD
1 aS

1 , E1 = aD
1 bS

1 + aS
1 bD

1 ;

A2 = aD
2 + aS

2 , B2 = bD
2 − bS

2 , D2 = aD
2 aS

2 , E2 = aD
2 bS

2 + aS
2 bD

2 .

(b) If, on the other hand, we know T is binding from 2 to 1 based on Step 1 non-thermal-

constraint SCED solution, i.e., Q̂G2 − Q̂L2 > T or Q̂L1 − Q̂G1 > T . We can set either

QG2 − QL2 = T or QL1 − QG1 = T . But one of them is redundant due to the fact that

the balancing constraint (QG1 + QG2 = QL1 + QL2) always holds in this two-node electricity

network. So without loss of generality, let QG2 − QL2 = T .

Using the same procedure as in (a), we can derive another set of Step 2 SCED solutions:

Step 3 SCED Solution (T is binding from 2 to 1)

Case I Case II Case III Case IV

Q∗

G1 =
B1−aD

1
T

A1

Q∗

G1 =
B1−aD

1
T

A1

Q∗

G1 = 0 Q∗

G1 = 0

Q∗

G2 =
B2+aD

2
T

A2

Q∗

G2 = T Q∗

G2 =
B2+aD

2
T

A2

Q∗

G2 = T

Q∗

L1 =
B1+aS

1
T

A1

Q∗

L1 =
B1+aS

1
T

A1

Q∗

L1 = T Q∗

L1 = T

Q∗

L2 =
B2−aS

2
T

A2

Q∗

L2 = 0 Q∗

L2 =
B2−aS

2
T

A2

Q∗

L2 = 0

LMP1 = E1−D1T
A1

LMP1 = E1−D1T
A1

LMP1 = bD
1 − aD

1 T LMP1 = bD
1 − aD

1 T

LMP2 = E2+D2T
A2

LMP2 = bS
2 + aS

2 T LMP2 = E2+D2T
A2

LMP2 = bS
2 + aS

2 T

Appendix 3

Proof of Proposition 1:

First we want to show LMP2 > LMP1 ⇔ Ω = (A1E2 − A2E1)/(D1A2 + D2A1) > T .

Recall in Step 2 SCED solution, we know LMP1 = E1+D1T
A1

and LMP2 = E2−D2T
A2

. Then

LMP2 > LMP1 ⇔
E2 − D2T

A2

−
E1 + D1T

A1

> 0

⇔
A1E2 − A2E1 − (D1A2 + D2A1)T

A1A2

> 0

⇔
A1E2 − A2E1

D1A2 + D2A1

> T (since A1, A2, D1, D2 > 0)

Next, let B1 = bD
1 −bS

1 , B2 = bD
2 −bS

2 and C = bS
2−bS

1 and we want to show T is binding from 1 to 2 ⇔
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A1E2−A2E1

D1A2+D2A1

> T . Recall in the Step 1 SCED solution and Definition 1,

T is binding from 1 to 2 ⇔ Q̂G1 − Q̂L1 > T, where

Q̂G1 =
D2B1 + aD

1 aS
2 B2 + aD

1 A2C

D1A2 + D2A1

Q̂L1 =
(D2 + aS

1 aD
2 + aS

1 aS
2 )B1 − aS

1 aS
2 B2 − aS

1 A2C

D1A2 + D2A1

Q̂G1 − Q̂L1 > T ⇔
aS

2 B2A1 − aS
1 B1A2 + A1A2C

D1A2 + D2A1

> T

⇔
aS

2 (bD
2 − bS

2 )A1 − aS
1 (bD

1 − bS
1 )A2 + A1A2(b

S
2 − bS

1 ) > T

D1A2 + D2A1

> T

⇔
A1(a

S
2 (bD

2 − bS
2 ) + bS

2 (aD
2 + aS

2 )) − A2(a
S
1 (bD

1 − bS
1 ) + bS

1 (aD
1 + aS

1 )) > T

D1A2 + D2A1

> T

⇔
A1(a

S
2 bD

2 + aD
2 bS

2 ) − A2(a
S
1 bD

1 + aD
1 bS

1 )

D1A2 + D2A1

> T

⇔
A1E2 − A2E1

D1A2 + D2A1

> T

⇔ Ω > T

Since we showed T is binding from 1 to 2 ⇔ Ω > T and LMP2 > LMP1 ⇔ Ω > T , we’ve

proved (*1) in Proposition 1. Similar procedures can easily be applied to prove (*2) and

(*3), and thus is omitted here. Q.E.D.

Appendix 4

Proof of Proposition 3:

(i) T is binding from node 1 to node 2

Recall in the benchmark model total net benefit (TNB) is defined as the total net surplus

for all generators and LSEs, that is,

TNB = (bD
1 QL1 −

1

2
aD

1 Q2
L1)− (bS

1 QG1 +
1

2
aS

1 Q2
G1) + (bD

2 QL2 −
1

2
aD

2 Q2
L2)− (bS

2 QG2 +
1

2
aS

2 Q2
G2)
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∂TNB

∂T
= (bD

1

∂QL1

∂T
− aD

1 QL1
∂QL1

∂T
) − (bS

1

∂QG1

∂T
+ aS

1 QG1
∂QG1

∂T
)

+ (bD
2

∂QL2

∂T
− aD

2 QL2
∂QL2

∂T
) − (bS

2

∂QG2

∂T
+ aS

2 QG2
∂QG2

∂T
)

= −
aS

1 bD
1

A1

+
aD

1 aS
1 QL1

A1

−
aD

1 bS
1

A1

−
aD

1 aS
1 QG1

A1

+
aS

2 bD
2

A2

−
aD

2 aS
2 QL2

A2

−
aD

2 bS
2

A2

−
aD

2 aS
2 QG2

A2

=
aS

2 bD
2 + aD

2 bS
2

A2

−
aS

1 bD
1 + aD

1 bS
1

A1

−
aD

1 aS
1 (QG1 − QL1)

A1

−
aD

2 aS
2 (QL2 − QG2)

A2

=
E2

A2

−
E1

A1

− (
D1

A1

+
D2

A2

)T

=⇒
∂TNB

∂T
> 0 ⇔

E2

A2

−
E1

A1

− (
D1

A1

+
D2

A2

)T > 0

⇔
A1E2 − A2E1

A1A2

>
(D1A2 + D2A1)T

A1A2

⇔
A1E2 − A2E1

D1A2 + D2A1

> T (since A1, A2, D1, D2 > 0)

From Proposition 1 we know that

T is binding from 1 to 2 ⇔
A1E2 − A2E1

D1A2 + D2A1

> T

Therefore

∂TNB

∂T
=

E2

A2

−
E1

A1

−

(
D1

A1

+
D2

A2

)
T > 0 ⇔ T is binding from 1 to 2;

(ii) T is binding from node 2 to node 1

Very similar, we can show

∂TNB

∂T
=

E1

A1

−
E2

A2

−

(
D1

A1

+
D2

A2

)
T > 0 ⇔ T is binding from 2 to 1.

Q.E.D.

Appendix 5

Proof of Proposition 7:

By a definition of social welfare, we have WF = E[U(Π̃G1)] + E[U(Π̃G2)] + E[U(Π̃L1)] +

E[U(Π̃L2)] and W0 = E[U(π̃G1)] + E[U(π̃G2)] + E[U(π̃L1)] + E[U(π̃L2)].
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We can prove WF −W0 = ∆G1+∆G2+∆L1+∆L2 ≥ 0 if we can show (i)–(iv) are satisfied.

(i) ∆G1 ≥ 0;

(ii) ∆G2 ≥ 0;

(iii) ∆L1 ≥ 0;

(iv) ∆L2 ≥ 0.

where

∆G1 = E[U(Π̃G1)] − E[U(π̃G1)];

∆G2 = E[U(Π̃G2)] − E[U(π̃G2)];

∆L1 = E[U(Π̃L1)] − E[U(π̃L1)];

∆L2 = E[U(Π̃L2)] − E[U(π̃L2)].

We’ll prove (i)–(iv) one by one as follows:

Part (i), denote p ≡ prob, then,

∆G1 = E[U(Π̃G1)] − E[U(π̃G1)]

= pU(π′

G1 + (H ′

12 − η12)FTR12(G1)) + (1 − p)U(π′′

G1 + (H ′′

12 − η12)FTR12(G1))

− pU(π′

G1) − (1 − p)U(π′′

G1)

= p log

(
1 +

(H ′

12 − η12)FTR12(G1)

π′

G1

)
+ (1 − p) log

(
1 +

(H ′′

12 − η12)FTR12(G1)

π′′

G1

)

= p log

(
1 +

p(H ′

12 − η12)π
′′

G1 + (1 − p)(H ′′

12 − η12)π
′

G1

(η12 − H ′′

12)π
′

G1

)

+ (1 − p) log

(
1 +

p(H ′

12 − η12)π
′′

G1 + (1 − p)(H ′′

12 − η12)π
′

G1

(η12 − H ′

12)π
′′

G1

)

= log

(
pp(1 − p)1−p

[
1 +

(H ′

12 − η12)π
′′

G1

(η12 − H ′′

12)π
′

G1

]p [
1 +

(η12 − H ′′

12)π
′

G1

(H ′

12 − η12)π′′

G1

]1−p
)

= log

(
pp(1 − p)1−p [1 + XG1]

p

[
1 +

1

XG1

]1−p
)

where

XG1 ≡
(H ′

12 − η12)π
′′

G1

(η12 − H ′′

12)π
′

G1

> 0
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Then in order to show ∆G1 ≥ 0, we need to show

pp(1 − p)1−p [1 + XG1]
p

[
1 +

1

XG1

]1−p

≥ 1

For notation simplicity, let x ≡ XG1 > 0, and A ≡ pp(1−p)1−p > 0, and define a function

f(·) such that

f(x) = A(1 + x)p(1 +
1

x
)1−p

Notice that when x = 1
p
− 1, f(1

p
− 1) = 1. So to prove f(x) ≥ 1 is equivalent to prove

the function f(x) is monotonically decreasing over the domain (0, 1
p
− 1) and monotonically

increasing over the domain (1
p
− 1, +∞). Rewrite f(x) as follows:

f(x) = A(1 + x)xp−1

f ′(x) = Axp−1 + A(1 + x)(p − 1)xp−2

= Axp−2[p(1 + x) − 1]

= Axp−2p[x − (
1

p
− 1)]

⇒ f ′(x)





< 0 if x < 1
p
− 1;

> 0 if x > 1
p
− 1;

= 0 if x = 1
p
− 1.

That is, f(x) has a global minimum at x = 1
p
− 1. The minimum is:

f(
1

p
− 1) = 1

Hence, f(x) ≥ 1, ∀ x ∈ (0,∞), or f(p) ≥ 1, ∀ p ∈ (0, 1). Notice if the regularity

condition is satisfied we have

1 > prob > probG1 =
(η12 − H ′′

12)π
′

G1

(H ′

12 − η12)π′′

G1 + (η12 − H ′′

12)π
′

G1

=
1

(H′

12
−η12)π′′

G1

(η12−H′′

12
)π′

G1

+ 1
=

1

XG1 + 1

⇔ p ∈ (
1

1 + x
, 1) ⊆ (0, 1) (Recall p ≡ prob, x ≡ XG1)

So when the regularity condition is satisfied, i.e., G1 is taking long positions in the FTR

market, we certainly have f(p) > 1, which directly implies ∆G1 > 0. If, on the other hand,

the regularity condition is not satisfied, it can be easily shown that it corresponds to the case
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where p ∈ (0, 1
1+x

) and G1 is taking short positions (although it is not allowed in this model)

in the FTR market, which also implies ∆G1 > 0. Finally, in the degenerate case where p

happens to be 1
1+x

, then G1 takes zero position in the FTR market and ∆G1 = 0. Therefore

regardless whether G1 takes long, short or zero position in the FTR market, ∆G1 ≥ 0.

It is straightforward to verify that (ii), (iii) and (iv) are true using the exactly same

procedures as in (i). Since we have showed that (i)–(iv) are all satisfied, we’ve proved the

proposition result, WF ≥ W0. Q.E.D.
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