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Abstract
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1 Introduction

In decentralized markets, an economic agent hoping to acquire a bundle of goods often runs

into the following dilemma. One of the goods is available at a price above its standalone

value. Should he buy it or not? The problem is that the prices of the other items in the

bundle are uncertain and may be so high that the total price of the bundle exceeds its

total value. Without a “Walras auctioneer” to coordinate across markets, the agent cannot

postpone his decision on one good to wait for the realization of the prices for its complements.

This dilemma has been crystallized into the exposure problem in auction theory. Mil-

grom (2000) and Bykowsky et al. (2000) have constructed complete-information examples for

this problem. A few authors have analyzed the exposure problem in asymmetric-information

models. The typical setup is that two objects are being auctioned off via two separate auc-

tions simultaneously. Some bidders are local in the sense that they value only one particular

object. The others are global in the sense that they value both objects as complements.

A global bidder faces the exposure problem. Albano et al. (2001, 2006) analyze two vari-

ants of a two-object ascending auction. Krishna and Rosenthal (1996) and Rosenthal and

Wang (1996) consider simultaneous sealed-bid auctions for possibly more than two objects.

The qualitative predictions are typically that various kinds of inefficiency may occur. Some-

times the objects are overconcentrated to a single bidder while efficiency requires that they

go to different bidders, and sometimes the goods may be overdiffused to separate owners

while efficiency requires that a single bidder should own them.1

This paper analyzes the exposure problem by proposing a new model of English auc-

tions to capture their open ascending nature. The idea is that the open transparent nature

of English auctions allows the bidders to signal to one another across auctions, thereby

forming a rational expectation of the prices. A bidder makes his signal credible via jump

bidding, i.e., committing to paying for the good at a pledged price (above its current price)

if he wins immediately.2 Based on this model, a continuation equilibrium is constructed

that eliminates the exposure problem conditional on any event that the problem may arise

(Proposition 2). Given this equilibrium, the exposure problem is eliminated and there is a

1 The exposure problem may arise in circumstances other than complementarity. For example, a bidder
with unit-demand preference may face the exposure problem when he is bidding for multiple homogeneous
units simultaneously. The exposure problem may even be driven by a bidder’s budget constraint, as in the
centralized two-object auction considered by Brusco and Lopomo (2005a).

2 The literature on jump bidding typically assumes that jump bidding occurs only at an exogenous stage.
See for example Avery (1998) and Gunderson and Wang (1998). Recently, Xiong (2007) finds in a single-unit
model a strict incentive for bidders to make a jump bid whose magnitude is a priori determined. In my paper,
the timing of jump bidding is endogenous, and the magnitude of a jump bid varies with the bidder’s type
and furthermore almost surely fully reveals the type.
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clear-cut qualitative “overconcentration” prediction of the auctions (Proposition 3).3

Although sensitive to the two-object assumption, this result conveys the message that,

even without central coordination, economic agents may get to form rational expectations

of prices through signaling to one another.

2 The Primitives

There are two items for sale, A and B, and several bidders. For each bidder i, the values

of winning item A alone, item B alone, and both items are, respectively, ui(A), ui(B), and

ui(AB). There are three kinds of bidders: one global bidder , named bidder γ, who values

items A and B as complements, several A-local bidders who value only item A, and several

B-local bidders who value only item B; a local bidder means an A- or B-local bidder. I.e.,

uγ(AB) ≥ uγ(A) + uγ(B), (1)

ui(AB)− ui(A) = ui(B) = 0 if i is A-local,

ui(AB)− ui(B) = ui(A) = 0 if i is B-local.

For each bidder i, it is commonly known whether i is global, A-local, or B-local, but

the standalone values ui(A) and ui(B), as well as the synergy ui(AB) − ui(A) − ui(B) if i

is the global bidder γ, are only privately known to i and are independently drawn from

distributions Fiα, Fiβ, and (if i = γ) Fγ. These distributions are commonly known and their

supports each have zero as the infimum, with Fγ(0) = 0.

A bidder’s payoff is equal to his value of the package he wins minus his total monetary

payment. He is risk neutral in his payoff.

The two items are auctioned off via separate English auctions that start simultaneously.

To be eligible for an item, a bidder needs to participate in its auction from the start. Once

he drops out from the auction of an item, a bidder cannot raise his bid for it any more. Once

sold, the good is not refundable. Bidders’ actions are commonly observed.

This setup is decentralized in the sense that the auctioneers of the two auctions cannot

coordinate with each other on when to close the auctions.

Thus, when the global bidder can acquire an item say A, he may be still uncertain

about the price of the other item B. When the price for A is higher than its standalone

value, the bidder faces an exposure problem: if he drops out from A now, he foregoes the

probable opportunity of acquiring both items at a profitable total price; if he buys A now,

however, the eventual price for B may turn out to be unprofitably high.

3The open transparent nature of English auctions may also facilitate tacit collusion among bidders. For
example see Brusco and Lopomo (2002, 2005b) and Garratt et al. (2007).
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3 The Exposure Problem under the Clock Model

Let us illustrate the exposure problem when an English auction is modeled by the traditional

“clock model”: For each item k, the price pk starts at zero and rises continuously at an

exogenous positive speed until all but one bidder have quit bidding for k, at which point

item k is immediately sold to the remaining bidder at the current price.4

Let pA and pB denote the current prices for items A and B, respectively. For any x ∈ R,

let (x)+ := max{x, 0}. Let EX [f((X) | g(X) ≥ 0] denote the expected value of the function

f(X) of the random variable X conditional on g(X) ≥ 0.

An undominated strategy for every local bidder is to continue bidding for his desired

item until its price reaches its value. It will be demonstrated that the following strategy for

the global bidder γ is a best reply to the undominated strategy.

a. When pA = pB = 0, participate in both auctions.

b. If neither item has been sold:

i. If vγ(A, pB) > pA and vγ(B, pA) > pB, where vγ(A, pB) and vγ(B, pA) will be

defined later, then continue in both auctions.

ii. If vγ(A, pB) ≤ pA or vγ(B, pA) ≤ pB:

I. If uγ(k) ≤ pk for each item k ∈ {A, B}, then drop out from both auctions.

II. If uγ(k) > pk for some item k, then continue bidding for the item k∗ that

maximizes E(ui(k))i6=γ
[(uγ(k) − maxi6=γ ui(k))+ | maxi6=γ ui(k) ≥ pk] over k ∈

{A, B} and drop out from the other item.

c. If the bidder has dropped out from an item k, then continue in the auction for the

other item, say −k, if and only if p−k < uγ(−k).

d. If the bidder has won an item k, then continue in the auction for the item −k if and

only if uγ(AB)− uγ(k) > p−k.

The strategy described above exhausts all possibilities. It will be well-defined if vγ(A, pB)

and vγ(B, pA) are defined. To define vγ(A, pB), consider the case where global bidder γ has

bought item A at price pA. Then, given any price p̃B for item B, the bidder’s payoff will be

uγ(AB)−pA− p̃B if he also wins B and uγ(A)−pA if he loses B. Thus, having bought A, the

bidder’s optimal action is to continue in the auction for B if and only if uγ(AB)−uγ(A) > p̃B.

4 The model considered in this section is similar to one of the models in Albano at al. (2001, 2006). But
I do not need the two assumptions in their papers: (i) uγ(A) = uγ(B) and uγ −uγ(A)−uγ(B) is commonly
known; (ii) the prices of the two objects rise in the same pace (which they say in Albano at al., 2006, is
restrictive).
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(This explains provision (d) in the above strategy.) It follows that, if bidder γ buys A at

price pA and if the eventual price for B is p̃B, then his ex post payoff is equal to

(uγ(AB)− uγ(A)− p̃B)+ + uγ(A)− pA.

With item A sold to bidder γ, any other bidder j will continue bidding for B up to the

standalone value uj(B), hence

p̃B = u−γ(B) := max
j 6=i

uj(B).

Thus, if bidder γ buys A at price pA, the expected payoff is equal to

Eu−γ(B)

[
(uγ(AB)− uγ(A)− u−γ(B))+ | u−γ(B) ≥ pB

]
+ uγ(A)− pA.

Hence bidder γ’s expected payoff from buying item A at price pA is positive if and only if

Eu−γ(B)

[
(uγ(AB)− uγ(A)− u−γ(B))+ | u−γ(B) ≥ pB

]
+ uγ(A) > pA.

Thus, define

vγ(A, pB) := Eu−γ(B)

[
(uγ(AB)− uγ(A)− u−γ(B))+ | u−γ(B) ≥ pB

]
+ uγ(A). (2)

Analogously, define

vγ(B, pA) := Eu−γ(A)

[
(uγ(AB)− uγ(B)− u−γ(A))+ | u−γ(A) ≥ pA

]
+ uγ(B). (3)

Proposition 1 Assume that the distributions Fiα and Fiβ are atomless for all bidders i.

The global bidder’s strategy (a)–(d), together with the local bidders’ undominated strategy of

bidding for the valued item up to its value, constitutes a perfect Bayesian equilibrium when

each English auction is a clock auction.

Proof By the atomless assumption in this proposition and Eqs. (2)–(3), vγ(A, pB) is con-

tinuous in pB, and vγ(B, pA) is continuous in pA.

The justification for provisions (a), (c), and (d) in the strategy are obvious. Let us

consider the case for provision (b), when neither item has been sold.

First, consider subcase (b.i), where vγ(A, pB) > pA and vγ(B, pA) > pB. By the conti-

nuity of vγ(A, ·) and vγ(B, ·), these strict inequalities will continue to hold for a sufficiently

short interval of time. Thus, if the bidder is to continue bidding for A, his expected pay-

off from staying for item B is positive for at least a while, and the same statement is true

when A and B switch roles. This expected payoff is bigger than the expected payoff from

staying for only a single item, since vγ(k, p−k) > uγ(k) (∀k ∈ {A, B}) by (2)–(3). Hence it
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is suboptimal to drop out from one auction now while continuing in the other auction. It is

also suboptimal to drop out from both auctions, which yields zero payoff.

Second, consider subcase (b.ii). Without loss, suppose vγ(A, pB) ≤ pA. Since vγ(A, pB)

is weakly decreasing in pB and the prices are strictly increasing in time, vγ(A, p′B) < p′A for

any p′B from now on. Thus, by the construction of vγ(A, ·) and vγ(B, ·), it is suboptimal to

continue bidding for both items. That, however, does not mean the bidder should quit both

auctions, because the standalone value of an item may still be above its current price. Hence

the justification for provisions b.ii.I and b.ii.II are obvious.

The next remark says that the above equilibrium exhibits at least two kinds of inef-

ficiency. One is overdiffusion: the two items go to two separate bidders, while uγ(AB) >

maxj uj(A) + maxk uk(B). The second kind is overconcentration: for some distinct local

bidders i and j, bidder γ wins both items while uγ(AB) < ui(A) + uj(B).

Remark 1 If for all bidders i, distributions Fiα and Fiβ have no gap, then at the equilib-

rium constructed above, overdiffusion and overconcentration are events with strictly positive

probability.

The proof is in Appendix A. The intuition is: As long as both auctions are still going on after

the price of an item has reached its standalone value for a global bidder, the bidder will drop

out before the total price of the two items reach their combined value. Hence he “underbids”

before winning any item. If he has won an item, however, with the payment for that item

sunk, the bidder will bid for the other item up to its marginal value, which is greater than the

total value minus his payment for the won item. Hence the bidder “overbids” after winning

an item. Hence both overdiffusion and overconcentration are probable.

4 The Need for an Alternative Model to Capture the

Dynamics of English Auctions

The clock model, albeit widely used in auction theory, has abstracted away most of the

dynamic aspects of English auctions. In actual English auctions, bids may be submitted

through open outcries, hence a bidder may be able to speed up the rising price through

jump-bids and adjust his strategy during the intermission between outcries.

These dynamic aspects of English auctions are important for the presence of the ex-

posure problem. Recall that a bidder faces the exposure problem when he is about to buy

an item at its current price without knowing the eventual price for its complement. If prices

ascend through open outcries, however, the bidder may be able to partially resolve his un-

certainty by making a jump-bid. From the rivals’ responses, he could at least partially infer
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the price of the complement. That information might help the bidder to adjust his actions

before he has to commit to buying the first item.

5 An Alternative Model

For each item, the auction is the clock model with the following amendments.

A1. As in the clock model, each active bidder, who has not dropped out from the

auction, can continue bidding by pressing the button for the item.

A2. Besides “continue,” an active bidder has the option of jump bidding : making a

bid higher than the item’s current price. This action is done in zero second.

A3. An active bidder can drop out from, or briefly quit , and auction. That is done by

either releasing the button (if the price is ascending through the clock) or crying out “quit”

(if the price clock is pausing due to the following amendment).

A4. If a bidder drops out from an auction, the price clock in the auction pauses at

the dropout price for a short interval of time, called a pause. The maximum duration of the

pause is assumed to be exogenously δ seconds.

a1. During the pause, every bidder still active in the auction has three alternative actions:

quitting, staying in the auction, or resuming the auction (by crying out “resume”).

a2. If the pause has lasted for δ seconds and there is at least one active bidder in the

auction, the price clock resumes at the paused level unless there is only one active

bidder, in which case the item is immediately sold to this bidder at the paused price.

a3. During the pause, if an active bidder resumes the auction, then the price clock resumes

immediately without finishing the δ seconds, and if this bidder is the only active bidder

in the auction, the item is immediately sold to this bidder at the paused price.

a4. If every active bidder drops out during the pause, the pause ends without finishing the

δ seconds, and the item is sold according to the tie-breaking rule A6 described below.

A5. If a bidder jump-bids in an auction, the price clock in the auction jumps to the

jump bid instantly and then pauses at the jump bid. The maximum duration of the pause

is δ seconds.5

5 The duration of the pause triggered by a jump bid is assumed to be exogenous just for simplicity.
Our results can be extended to allow the following case of endogenous duration of a pause. The maximum
duration of the pause is equal to the time it takes for the price clock to reach the jump bid level had there not
been the jump bid; i.e, say the price of item k jumps by ∆k and the speed for the price clock is ṗk, then the
duration of the pause is equal to ∆k/ṗk. The endogeneity of the duration of a pause prevents bidders from
slowing down an auction by submitting smaller and smaller “jump” bids, though bidders have no incentive
to do that in the equilibrium constructed here.
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a1. During the pause, every bidder still active in the auction has three alternative actions:

staying, making a higher jump bid, or quitting unless the bidder is the highest jump-

bidder , who has made a jump bid which is highest among all jump bids.

a2. If all but the highest jump-bidder have quit during the pause, the auction ends without

finishing the δ seconds and the highest jump-bidder buys the good at his jump bid.

a3. All jump bids are commonly observed even if they are submitted simultaneously.

a4. If there are multiple active bidders at the end of the pause, the price clock resumes

from the highest jump bid.

A6. A tie occurs if a bidder drops out from an auction and all the other currently active

bidders drop out from the auction either at the same instant or during the pause triggered

by the dropout action. The rule to break such ties is:

a1. Each bidder involved in a tie chooses whether to concede.

a2. If not all bidders concede, then the object is randomly assigned to those who do not

concede with equal probabilities and the selected one buys the good at its current price.

a3. If all bidders concede, then one of them is selected randomly with equal probabilities

and the selected one buys the good at its current price.

6 Avoiding Exposure via Jump Bidding

A decisive event means: (i) in one of the auctions, all the remaining active local bidders

have just dropped out, (ii) at least one local bidder is still active in the other auction, and

(iii) the global bidder is still active in both auctions. When a decisive event occurs we will

say that the auction is in a paused phase if it is the one where all the remaining active local

bidders have just dropped out, as its price clock pauses according to amendment A4. If an

auction is not in a paused phase and has not ended, we will say it is in an active phase.

Proposition 2 Assume that no local bidder bids for an item above its standalone value.

Conditional on any decisive event up to which the current posterior distributions of all bid-

ders’ types are commonly known, there exists a continuation equilibrium such that the fol-

lowing event occurs almost surely: the global bidder knows whether he can profitably acquire

both items before he buys any item.

The idea is that the global bidder can, before making a purchase commitment in the

paused auction, find out the eventual total price for the two items by making a jump bid in
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the active auction. Like an equilibrium bid in a first-price auction, the bidder’s jump bid

reveals his type, i.e., his maximum willingness to pay in the active auction given that he

is to win the paused auction at the paused price. Seeing the jump bid, those local bidders

whose types are lower than the global bidder’s immediately quit, and those with higher types

immediately respond with jump bids. They prefer to signal their types through jump bids

because the global bidder’s maximum willingness to pay in the active auction would jump if

he has made a purchase commitment in the paused auction. If all local bidders immediately

quit, the global bidder wins at a price equal to his jump bid. Else he learns that the price in

the active auction will be too high for him to acquire both items profitably, so he immediately

stops bidding for both items. In this case, if he wants, the global bidder can drop out from

the paused auction and, during tie-breaking, concede the good to the local bidder whose

dropout triggered the pause. Hence the global bidder suffers no exposure problem.

6.1 The Interim Types and Jump Bids during the Pause

Consider a decisive event. Without loss of generality, let the paused auction be the auction of

item A (briefly auction A), with the price paused at pA. Let us calculate the global bidder γ’s

valuation of winning in the other auction, the auction for item B (briefly auction B), during

the pause of auction A. The proofs of the lemmas in this subsection are in Appendix B.

If uγ(A) ≥ pA, bidder γ’s decision is straightforward. He would immediately resume

auction A, thereby ending the pause and buying item A. Having bought A, bidder γ’s

valuation of winning B becomes uγ(AB)−uγ(A), which will be his dropout price in auction B.

The case of uγ(A) < pA is more complicated, which includes the following two subcases:

If uγ(B) ≥ uγ(AB)− pA, bidder γ’s optimal action is to bid for item B alone:

Lemma 1 If uγ(B) ≥ uγ(AB) − pA, then global bidder γ prefers buying item B alone to

buying both items or buying A alone.

If uγ(B) < uγ(AB)− pA, bidder γ wants to acquire both items up to a certain point:

Lemma 2 If uγ(B) < uγ(AB)−pA and uγ(A) < pA, then it is dominated for global bidder γ

to buy item B alone and, during the pause, it is profitable for him to buy item B if and only

if it is profitable for him to buy both items, i.e., if and only if uγ(AB)− pA > pB.

Thus, the only nontrivial case for bidder γ during the pause of auction A is “uγ(B) <

uγ(AB) − pA and uγ(A) < pA.” In this case, the global bidder’s maximum willingness to

pay for item B during the pause, by Lemma 2, is equal to

tγ := uγ(AB)− pA. (4)
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Also denote

ti := ui(B) ∀i 6= γ. (5)

Call ti the interim type of bidder i for any i still active during the pause of auction A.6

For every bidder i active at the start of the pause, initialize Gi to be the distribution

function of ti, derived from Fiα, Fiβ and Fγ, conditional on the history of the game up to

the start of the pause. Let Ti denote the support of Gi. Let G−i := (Gj)j 6=i. Let

t
(1)
−i := max{tj : j 6= i},

and let T
(1)
−i denote the support of the random variable whose realizations are denoted by t

(1)
−i .

For any ti ∈ Ti, define

βi,G−i
(ti) := E

t
(1)
−i

[
t
(1)
−i

∣∣∣ t
(1)
−i ≤ ti; G−i

]
, (6)

i.e., the expected value of the highest rival’s interim type conditional on its not exceeding

i’s interim type, given the distributions G−i. Let

β−1
i,G−i

(xi) :=
{
ti ∈ Ti : βi,G−i

(ti) = xi

}
.

Lemma 3 The function βi,G−i
is weakly increasing. Furthermore, if inf Ti ≥ inf T

(1)
−i and

β−1
i,G−i

(xi) 6= ∅, then for any j 6= i and almost every tj (relative to Gj),

tj ≤ inf β−1
i,G−i

(xi) or tj > sup β−1
i,G−i

(xi). (7)

6.2 The Proposed Jump-Bidding Equilibrium

Here is a continuation equilibrium starting from the beginning of the pause of auction A at

the paused price pA.

1. If (global) bidder γ drops out from auction A during the pause, the local bidder i whose

dropout triggered the pause does not concede item A to γ.

2. The strategy of bidder γ is:

a. if uγ(A) ≥ pA,

i. immediately resume auction A, thereby buying A and ending the pause,

ii. and bid for item B if and only if the price pB of B is below uγ(AB)− uγ(A);

6 Although global bidder γ’s private information has three dimensions, uγ(A), uγ(B), and uγ(AB), his
behavior is tractable because, given one auction pausing and the other auction expected to finish within the
pause, his private information is reduced to only one dimension, uγ(AB)− pA.
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b. if uγ(B) ≥ uγ(AB)− pA and uγ(A) < pA,

i. drop out from auction A immediately,

ii. concede A to the local bidder(s) whose dropout triggered the pause,

iii. continue in auction B as long as uγ(B) > pB;

c. if uγ(B) < uγ(AB)− pA and uγ(A) < pA,

i. immediately submit a jump bid equal to βγ,G−γ (tγ) for item B,

ii. if bidder γ has submitted a jump bid xγ, then during the pause of auction B

triggered by the jump bid,

A. if a local bidder i drops out or does not respond with a jump bid xi such

that sup β−1
i,G−i

(xi) > inf β−1
γ,G−γ

(xγ), the posterior distribution Gi of ti is

updated by ti ≤ inf β−1
γ,G−γ

(xγ),

B. if every local bidder i either drops out or does not respond with a jump

bid xi such that sup β−1
i,G−i

(xi) > inf β−1
γ,G−γ

(xγ), and if xγ = βγ,G−γ (tγ),

then bidder γ immediately takes actions 2.a.i and 2.a.ii,

C. if a local bidder i submits a jump bid xi such that inf β−1
i,G−i

(xi) ≥ tγ,

then bidder γ immediately drops out of auction B and takes actions 2.b.i

and 2.b.ii,

D. if some local bidder i jump-bids but there is no jump bid xi from any

local bidder i such that tγ ≤ inf β−1
i,G−i

(xi), then bidder γ plays strategy b

in the equilibrium constructed in §3.

3. The strategy of any active local bidder i (i 6= γ) is:

a. unless bidder γ has made a jump bid, stay in auction B without jump-bidding

and quit at pB = ui(B),

b. if bidder γ has made a jump bid xγ during the pause of auction A,

i. if ti ≤ inf β−1
γ,G−γ

(xγ), drop out immediately,

ii. else immediately make a jump bid equal to βi,G−i
(ti), with G−i being the

posterior distributions updated by bidder γ’s jump bid,

A. if ti ≤ inf β−1
j,G−j

(xj) given the jump bid xj from some local bidder j 6= i,

drop out immediately unless ti = β−1
j,G−j

(xj) = maxk β−1
k,G−k

(xk), in which

case i drops out if and only if i < j (so that not all local bidders quit),

B. else stay in auction B without jump-bidding and quit at pB = ui(B).
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6.3 The Proof of Proposition 2

On the path of the proposed equilibrium, global bider γ almost surely resolves his price

uncertainty. To show that, recall Lemma 3. It implies that, from bidder γ’s jump bid

βγ,G−γ (tγ), every local bidder i almost surely can tell (i) tγ ≥ ti apart from (ii) tγ < ti. In

case (i), bidder i immediately drops out. In case (ii), bidder i immediately makes a jump

bid βi,G−i
(ti) based on the updated posteriors G−i.

If all local bidders belong to case (i), bidder γ wins item B at the known price βγ,G−γ (tγ)

before the pause of auction A ends. Since βγ,G−γ (tγ) ≤ tγ by definition of the jump bid, the

bidder knows, by definition of tγ, Eq. (4), that it is profitable for him to buy both items.

If some local bidder i belongs to case (ii), upon seeing i’s jump bid, bidder γ knows

that almost surely tγ < ti ≤ t
(1)
−γ and hence the price for B will be greater than tγ if bidder γ

does not drop out (contingent plan 3.b.ii.B). I.e., bidder γ knows that it is almost surely

unprofitable for him to buy both items. Again he learns that during the pause of auction A.

(Aside: The contingency in plan 2.c.ii.D is a zero-probability event if bidder γ’s jump bid

was equal to the proposed βγ,G−γ (tγ).)

We still need to verify every bidder’s incentive to follow the proposed equilibrium.

6.3.1 The Incentive for Contingent Plans 1, 2.a, and 2.b

Plan 1 follows from the fact that each local bidder’s profit from buying item A is nonnegative,

as his dropout price does not exceed his standalone value of the item, according to the

assumption of the proposition.

Contingent plan 2.a has been justified by the second paragraph of §6.1.

Contingent plan 2.b follows from Lemma 1, which implies that bidder γ would take

actions 2.b.i and 2.b.ii, quitting from auction A and conceding A to the local bidders. Since

the local bidders do not concede (plan 1), bidder γ frees himself from any obligation of

buying A. With only item B to consider, the optimality of plan 2.b.iii is obvious.

6.3.2 The Global Bidder’s Incentive for Contingent Plan 2.c

Under the contingency of plan 2.c, uγ(B) ≥ uγ(AB) − pA and uγ(A) < pA, so Lemma 2

applies. Then by the definition of tγ, Eq. (4), bidder γ buys both items if he knows that the

price pB of item B is less than or equal to his interim type tγ, and he buys neither item if

he knows that pB is greater than tγ.

Contingent plan 2.c.ii.B is optimal, because the updating rule 2.c.ii.A coupled with

bidder γ’s obedience to the jump bid function (xγ = βγ,G−γ (tγ)) implies that tγ ≥ t
(1)
−γ ≥ pB.

Hence bidder γ buys both items by taking actions 2.a.i and 2.a.ii according to plan 2.c.ii.B.

12



Contingent plan 2.c.ii.C is optimal because the contingency inf β−1
i,G−i

(xi) ≥ tγ under

this plan, coupled with bidder γ’s expectation that other players abide to the jump bidding

function, implies that tγ ≤ t
(1)
−γ. Then pB will be greater than or equal to tγ if bidder γ does

not drop out (contingent plan 3.b.ii.B). Hence it is optimal for bidder γ to drop out of both

auctions by following plan 2.c.ii.C.

Claim: Under the contingency of plan 2.c, bidder γ prefers making a jump bid to

not doing so. If he does not jump bid, the continuation play is the equilibrium presented

in §3, as the local bidders will stay without jump bidding until the price reaches their values

(plan 3.a). Then bidder γ will follow strategy b in that equilibrium. His expected payment

upon winning in this continuation equilibrium is the same as the one if he jump-bids, because

in both cases, pA has been fixed, and the price for item B will be equal to t
(1)
−i in expectation.

The events in which bidder γ wins are different in the two cases. If bidder γ makes a jump bid

equal to βγ,G−γ (tγ), the event where he wins is exactly the event where his profit is positive

conditional on winning. In contrast, if the global bidder does not jump-bid and hence follows

the equilibrium in §3, the event where he wins is not aligned with the event where his profit

is positive conditional on winning, because overdiffusion and overconcentration are both

probable. Thus, bidder γ would rather jump-bid according to the proposed equilibrium.

Lemma 4 If bidder γ is to make a jump bid, his optimal jump bid is equal to βγ,G−γ (tγ).

Proof First observe, by definition of interim types, tγ − pB = uγ(AB) − pA − pB is equal

to bidder γ’s payoff if he wins in auction B at price pB during the pause of auction A.

Second, observe that making a jump bid is equivalent to the action of picking a point

t̂γ ∈ Tγ and announcing:

My interim type is equal to t̂γ such that t̂γ = inf{t′γ ∈ Tγ : βγ,G−γ (t
′
γ) =

βγ,G−γ (t̂γ)}, hence my payment is equal to βi,G−i
(t̂γ) if I win immediately.

The lemma is proved if it is optimal for bidder γ to pick t̂γ = tγ.

Suppose t̂γ < tγ. If t
(1)
−γ ≤ t̂γ, bidder γ wins immediately (contingent plan 3.b.i); if

t
(1)
−γ > t̂γ, bidder γ cannot win immediately, and given local bidders’ response 3.b.ii.B if γ

does not quit, the best he can hope for is that he wins if and only if t
(1)
−γ ≤ tγ and he pays t

(1)
−γ

upon winning. (He cannot do better than that if the price uncertainty is not resolved within

the pause of auction A.) Thus, in picking t̂γ < tγ, the expected payoff for bidder γ is less
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than or equal to

Prob
{

t
(1)
−γ ≤ t̂γ

}(
tγ − βγ,G−γ (t̂γ)

)
+ E

t
(1)
−γ

[(
tγ − t

(1)
−γ

)
1

t̂γ<t
(1)
−γ≤tγ

]
= Prob

{
t
(1)
−γ ≤ t̂γ

}(
tγ − E

t
(1)
−γ

[
t
(1)
−γ | t

(1)
−γ ≤ t̂γ

])
+ E

t
(1)
−γ

[(
tγ − t

(1)
−γ

)
1

t̂γ<t
(1)
−γ≤tγ

]
= tγProb

{
t
(1)
−γ ≤ tγ

}
− E

t
(1)
−γ

[
t
(1)
−γ

(
1

t
(1)
−γ≤t̂γ

+ 1
t̂γ<t

(1)
−γ≤tγ

)]
= Prob

{
t
(1)
−γ ≤ tγ

}(
tγ − βγ,G−γ (tγ)

)
,

which is equal to bidder γ’s expected payoff from picking t̂γ = tγ.

Suppose t̂γ ≥ tγ. Then bidder γ wins if and only if t
(1)
−γ ≤ t̂γ. That is because if

t
(1)
−γ ≤ t̂γ, he wins immediately (contingent plan 3.b.i); if t

(1)
−γ > t̂γ, even if bidder γ does not

drop out, the price for item B will be t
(1)
−γ (contingent plan 3.b.ii.B), which is greater than

t̂γ ≥ tγ. Since βγ,G−γ is weakly increasing, bidder γ’s winning probability

qγ(t̂γ) := Prob
{

t
(1)
−γ : t̂γ ≥ t

(1)
−γ

}
is weakly increasing in his announced type t̂γ. Furthermore, when he announces t̂γ, bidder γ’s

expected payment is equal to his winning probability times his jump bid, i.e.,

qγ(t̂γ)βi,G−γ (t̂γ) = qγ(t̂γ)Et
(1)
−γ

[t
(1)
−γ | t

(1)
−γ ≤ t̂γ] by Eq. (6)

= E
t
(1)
−γ

[
t
(1)
−γ1t

(1)
−γ≤t̂γ

]
by definition of qγ

=

∫ t̂γ

0

zdqγ(z)

= t̂γqγ(t̂γ)−
∫ t̂γ

0

qγ(s)ds integration by parts.

Thus, the payment scheme induced by the jump-bidding strategy satisfies the envelope for-

mula for all alleged interim types t̂γ ≥ tγ.

It follows that it is optimal for bidder 1 to reveal his interim type tγ truthfully by

submit the jump bid βγ,G−γ (tγ).

Thus, we have shown bidder γ’s incentive to follow strategy 2.c.

6.3.3 A Local Bidder’s Incentive for Contingent Plan 3

The optimality of plan 3.a is obvious, since the global bidder does not jump bid. Ac-

tion 3.b.ii.B is dominant. Action 3.b.ii.A is a best reply because bidder i has learned that

some other local bidder j 6= i has a higher value than he does. With local bidder j following

contingent plan 3.b.ii.B, the price for item B will be higher than the value for i.
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Let us verify the incentive to follow the jump-bidding strategy 3.b.ii. Consider the

contingency under 3.b.ii, i.e., bidder γ has made a jump bid xγ.

Claim 1: Conditional on not dropping out, a local bidder i prefers making a jump

bid that signals ti > inf β−1
γ,G−γ

(xγ) to not doing so. Expecting the global bidder to buy

item A immediately if no local bidder responds with a jump bid that signals the above event

(contingent plan 2.c.ii.B), if bidder i does not make a jump bid in this manner, there is a

positive probability with which the global bidder buys A immediately, thereby raising the

global bidder’s valuation of item B from uγ(AB)−pA to uγ(AB)−uγ(A) (since uγ(A) < pA)

and hence reducing bidder i’s winning probability, which by the envelope formula, reduces i’s

expected payoff. Thus, bidder i prefers to submit a jump bid that signals ti > inf β−1
γ,G−γ

(xγ).

Claim 2: If bidder γ’s jump bid reveals to local bidder i that ti > inf β−1
γ,G−γ

(xγ), then

local bidder i does not want to drop out. That is because there is a positive probability with

which i wins with positive profits.

Claim 3: If a local bidder i will respond with a jump bid in the contingency under

plan 3.b.ii, it is optimal for i to represent his type ti truthfully in the jump bid, i.e., to make

a jump bid equal to βi,G−i
(ti) given the updated posterior G−i. The proof is the same as

that for Lemma 4, with the substitutions t̂γ → t̂i, t
(1)
−γ → t

(1)
−i , qγ → qi, and G−γ → G−i.

We now show that the jump-bidding strategy 3.b.ii is a best reply for any local bidder i.

Under the contingency of 3.b.ii, ti > inf β
(1)
γ,G−γ

(xγ), so Claim 2 says that bidder i does not

drop out immediately, Claim 1 implies that he would make a jump bid to signal the event

“ti > inf β
(1)
γ,G−γ

(xγ),” and Claim 3 implies that his jump bid signals his type truthfully.

Finally, contingent plan 3.b.i is a best reply for any local bidder i, because under the

contingency of 3.b.i, bidder γ’s jump bid xγ has revealed to i that ti ≤ inf β−1
γ,G−γ

(xγ). If

bidder i does not drop out immediately, Claim 1 implies that bidder i would make a jump

bid to signal “ti > inf β−1
−1,G−γ

(xγ).” But this signal is not truthful, so it is suboptimal for the

bidder according to Claim 3. It follows that it is optimal for bidder i to drop out immediately

as recommended by 3.b.i.

7 Overconcentration

If the continuation equilibrium in Proposition 2 is expected, the global bidder in the simul-

taneous auctions can bid for both items without the risk of negative profits, and he has no

price uncertainty when buying any item. That effectively allows the global bidder to bid for

the package {A, B}. Analogous to the case in a single-object English auction with private

values, the next lemma follows. Its proof is in Appendix C.

Lemma 5 If the continuation equilibrium constructed in Proposition 2 is played once any

decisive event occurs, then in any perfect Bayesian equilibrium of the simultaneous-auction
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game and before any decisive event occurs,

i. if the global bidder γ loses both auctions simultaneously then almost surely

uγ(AB) ≤ max
i6=γ, j 6=γ

{ui(A) + uj(B)} , (8)

ii. if γ loses the auction for item k ∈ {A, B} while he is continuing for the other item −k,

then almost surely

uγ(−k) ≥ uγ(AB)−max
i6=γ

ui(k). (9)

This lemma, coupled with Proposition 2, implies that the global bidder does not give up

bidding for an item until he knows for sure that his valuation of the item cannot exceed those

of his rivals. The local bidders, in contrast, may choose to stop bidding for an item, thereby

risking a positive probability of losing the item, even when there is a positive probability

with which his valuation is higher than the global bidder’s. For instance, when an A-local

bidder becomes the only one competing with the global bidder for item A while the auction

for item B is still going on, if the local bidder drops out at a price pA, he may still get to buy

item A at price pA because the B-local bidders may outbid the global bidder, who would

then concede item A to this A-local bidder. Hence a local bidder may free ride the others.7

While the local bidders cannot overcome the incentive constraint for them to cooperate fully

in their competition against the global bidder, the global bidder can overcome the exposure

problem due to the jump-bidding signals. That implies the overcentration prediction.

Proposition 3 Assume that the distributions of the bidders’ valuations are atomless and

that (8) does not almost surely hold according to the prior distributions. If the continuation

equilibrium constructed in Proposition 2 is played once any decisive event occurs, then in any

perfect Bayesian equilibrium of the simultaneous-auction game, overconcentration occurs with

a positive probability and overdiffusion occurs with zero probability.

Proof Consider any perfect Bayesian equilibrium specified by the hypothesis of the propo-

sition. Claim (i) of Lemma 5, coupled with Proposition 2, implies that overdiffusion occurs

with zero probability at this equilibrium.

To establish the overconcentration claim, consider the following event, denoted by EA:

At some current prices, global bidder γ is active for both items, some bidder α is

the only active bidder for item A (the other A-local bidders either have dropped

out a while ago or have just dropped out with bidder α deciding whether to drop

out immediately), and for some m = 1, 2, . . ., bidders i1, . . . , im are the B-local

bidders active for item B.

7 This is the threshold problem typically attached to package auctions.
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Analogously, let EB denote the event such that items A and B switch roles (hence the A-local

bidder α is replaced by a B-local bidder β).

The event EA ∪ EB occurs with strictly positive probability. Otherwise, the global

bidder would have zero probability of winning both items. Then Claim (i) of Lemma 5

implies that (8) holds almost surely according to prior distributions, which is impossible by

the hypothesis of the proposition.

Therefore, to prove the overconcentration claim, it suffices to prove that, conditional on

event EA (resp., EB), there is a positive probability with which bidder α (resp., β) drops out

at a price below uα(A) (resp., uβ(B)). Let us see why that suffices. By symmetry, consider

only the case of EA. If bidder α drops out at a price pA < uα(A), then a decisive event

occurs and by the continuation equilibrium in Proposition 2, the two items are allocated

efficiently except that the dropout price pA is taken as bidder α’s valuation of A, hence

overconcentration occurs with strictly positive probability.

Thus, consider event EA and let uα(A) be the value of item A for the remaining A-local

bidder α. By the previous paragraph, the proof is complete if at the equilibrium there is a

positive measure of prices pA < uα(A) such that bidder α quits when the price of item A

reaches pA under event EA. Hence suppose that bidder α’s equilibrium strategy requires him

to stay active until the price reaches uα(A) as long as the auction of item B is still going on.

We shall prove a contradiction by showing that the bidder strictly prefers deviating from

such equilibrium strategy when the current price of item A is sufficiently close to uα(A).

Suppose bidder α drops out at the current price pA, then a decisive event occurs and

in its continuation equilibrium, global bidder γ eventually loses item A if and only if one of

the following two events occurs:

pA > uγ(A) and pA + maxk=1,...,m uik(B) > uγ(AB) and uγ(B) < uγ(AB)− pA,(10)

or pA > uγ(A) and uγ(B) > uγ(AB)− pA. (11)

(Condition (10) corresponds to the event that bidder γ loses both items in the jump-bidding

equilibrium, and (11) the event that γ loses item A because winning both items is worse-off

than winning only B.) Upon winning item A, local bidder α pays pA. Hence the expected

payoff for bidder α to drop out now is equal to

(uα(A)− pA)Prob{A → α | (pA, pB)},

where Prob{A → α | (pA, pB)} is equal to a positive fraction (which is equal to one if no

other bidder has just dropped out from item A at the current price pA) of the probability of

max {uγ(A), uγ(AB)−maxk=1,...,m uik(B)} < pA < uγ(AB)− uγ(B)

or max {uγ(A), uγ(AB)− uγ(B)} < pA
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conditional on the current history. There is a positive-probability set of valuation functions

such that the conditional probability Prob{A → α | (uα(A), pB)} is a positive number. Thus,

for any pA < uα(A) sufficiently close to uα(A), Prob{A → α | (pA, pB)} is bounded from

below by some M > 0, so the expected payoff for bidder α to drop out at the current price pA

is bounded from below by

(uα(A)− pA)M = O(uα(A)− pA).

Compare this to the expected payoff for bidder α if α follows the equilibrium strategy

of not dropping until the price of A reaches uα(A). For any tα ∈ [pA, uα(A)], consider the

event in which bidder α wins item A with a nonnegative payoff if his true type is tα instead

of uα(A) and if he follows the equilibrium strategy. Bidder α achieves such an outcome only

if the global bidder γ drops out from the auction for A during the interval when its price

rises from the current pA to bidder α’s valuation tα. If bidder γ does so, γ quits either (i)

before or (ii) after a decisive event occurs.

In case (i), Lemma 5 implies that

uγ(AB) ≤ tα + max
k=1,...,m

uik(B) or uγ(B) ≥ uγ(AB)− tα,

which implies that

tα ≥ min

{
uγ(AB)− max

k=1,...,m
uik(B), uγ(AB)− uγ(B)

}
= uγ(AB)−max

{
max

k=1,...,m
uik(B), uγ(B)

}
.

In case (ii), since bidder α abides to the equilibrium strategy of not dropping out until

the price of item A reaches tα as long as auction B is still going on, the decisive event must

be triggered by the B-local bidders at some price p′B of item B. Then by Proposition 2, with

the roles of A and B switched, bidder α’s winning event is

uγ(B) ≥ p′B, uγ(AB)− uγ(B) ≤ tα, or

uγ(B) < p′B, uγ(A) ≥ uγ(AB)− p′B, uγ(A) ≤ tα, or

uγ(B) < p′B, uγ(A) < uγ(AB)− p′B, uγ(AB) ≤ p′B + tα.

The first line implies that tα ≥ uγ(AB)− uγ(B); the second and third lines each imply that

tα ≥ uγ(AB)− p′B. This, coupled with the fact that p′B ≤ maxk=1,...,m uik(B), implies that

tα ≥ min {uγ(AB)− p′B, uγ(AB)− uγ(B)}

≥ min

{
uγ(AB)− max

k=1,...,m
uik(B), uγ(AB)− uγ(B)

}
= uγ(AB)−max

{
max

k=1,...,m
uik(B), uγ(B)

}
.
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Thus, if bidder α with type tα follows the equilibrium strategy, then he wins A only if

uγ(AB)−max

{
uγ(B), max

k=1,...,m
uik(B)

}
≤ tα.

Let

qα(tα | pA) := Prob

{
uγ(AB)− max

{
uγ(B), max

k=1,...,m
uik(B)

}
≤ tα

∣∣∣∣ H(pA, pB)

}
, (12)

where H(pA, pB) denotes the event that both auctions have been continuing up to the current

prices (pA, pB), with global bidder γ active in both auctions and local bidders i1, . . . , im active

in auction B. In particular, H(pA, pB) implies that

uγ(AB)−max

{
uγ(B), max

k=1,...,m
uik(B)

}
≥ pA, (13)

otherwise bidder γ would have quit from auction A by now.

By the above calculation, qα(tα | pA) is the upper bound of the probability with which

bidder α wins item A by following the equilibrium, given uα(A) = tα, conditional on the

current history H(pA, pB). Since the random variable

uγ(AB)−max

{
uγ(B), max

k=1,...,m
uik(B)

}
is independent of the equilibrium under consideration, with the prior distributions atomless,

the probability for this random variable to be bounded between pA and tα is in the order of

tα − pA. Thus,

qα(tα | pA) = O(tα − pA). (14)

By the Milgrom-Segal envelope theorem, bidder α’s equilibrium expected payoff is less than

or equal to∫ uα(A)

pA

qα(tα | pA)dtα = (uα(A)−pA)qα(τα | pA) ≤ (uα(A)−pA)O(uα(A)−pA) = o(uα(A)−pA).

for some τ between tα and pA. Thus, for any pA < uα(A) sufficiently close to uα(A),

bidder α’s expected payoff from following the equilibrium is less than his expected payoff

from dropping out at the current price pA. Thus, local bidder α is better-off quitting slightly

before the price reaches his value. This contradiction proves the desired assertion.

8 Conclusion

Due to the open transparent nature of an English auction, it should not be surprising that the

simultaneous auctions analyzed above may admit multiple equilibria. An open question is
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whether there exists an equilibrium where the exposure problem is not eliminated or partially

mitigated. While addressing this question is beyond the scope of this paper, it can be noted

that the answer may vary with the fine details of the model. For example, when the last

A-local bidder drops out, the global bidder may somehow expect that the remaining B-local

bidders would never jump bid, hence he would buy good A immediately without waiting

for their signals. In that case, the exposure problem is not mitigated at all. However, if we

slightly modify the model so that no one can buy the item in a paused auction until the

exogenous δ-second pause expires, then one can show that this exposure-prone equilibrium

cannot survive, because a remaining B-local bidder would then have time to signal through

jump bids.

The main point of this paper is not that the exposure problem can be mitigated if

the decentralized simultaneous auctions are modified to allow jump bidding. Rather, the

message is that if we build models that capture the dynamic details of English auctions, we

can construct new self-enforcing arrangements in which economic agents signal and forecast

prices without relying on any central coordination.

A The Proof of Remark 1

Without loss of generality, suppose there are only three distinct bidders, an A-local bidder α,

a B-local bidder β, and the global bidder γ. Suppose that

uα(A) > uγ(A) > 0, uβ(B) > uγ(B) > 0,

which is an event with positive probability because Fβ and Fα have no gap. In this event,

the eventual prices for A and B for bidder γ are respectively uα(A) and uβ(B) if γ does not

quit.

We claim that, within this event, overconcentration and overdiffusion are each possible

with strictly positive probability.

To prove that, pick (uγ(AB), uγ(A), uγ(B)) such that uγ(AB)− uγ(A) and uγ(AB)−
uγ(B) are interior points of the supports of Fβ and Fα, respectively. There is a positive

probability of such (uγ(AB), uγ(A), uγ(B)). By the choice of (uγ(AB), uγ(A), uγ(B)) and

the assumption that Fα and Fβ have no gap, we know that if 0 ≤ pB < uγ(AB)−uγ(A) and

0 ≤ pA < uγ(AB)− uγ(B),

0 < Euβ(B) [(uγ(AB)− uγ(A)− uβ(B))+ | uβ(B) ≥ pB] < uγ(AB)− uγ(A)− pB,(15)

0 < Euα(A) [(uγ(AB)− uγ(B)− uα(A))+ | uα(A) ≥ pA] < uγ(AB)− uγ(B)− pA.(16)

Overdiffusion: By Eqs. (2)–(3) and the second inequality of (15) and that of (16),

vγ(A, pB) < uγ(AB) − pB and vγ(B, pA) < uγ(AB) − pA if 0 ≤ pB < uγ(AB) − uγ(A) and
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0 ≤ pA < uγ(AB) − uγ(B). It then follows from provision (b) of the equilibrium strategy

that, conditional on both auctions still going on, bidder γ will drop out from at least one

auction when the price trajectory reaches some (p∗A, p∗B), with uγ(AB) < p∗A + p∗B. Thus,

it is probable to have (uγ(AB), uα(A), uβ(B)) such that uγ(AB) > uα(A) + uβ(B) and

“vγ(A, uβ(B)) < uα(A) or vγ(B, uα(A)) < uβ(B),” i.e., overdiffusion.

Overconcentration: By Eq. (2) and the first inequality of (15), vγ(A, pB) > uγ(A)

if 0 ≤ pB < uγ(AB) − uγ(A). Thus, p∗A > uγ(A) for the aforementioned dropout price

for bidder i. By the no-gap assumption of Fα, there is a positive probability with which

p∗A > uα(A) > uγ(A). Because p∗A > uα(A), bidder γ wins item A. Consequently, he bids

for item B up to uγ(AB) − uγ(A). With a positive probability, uβ(B) < uγ(AB) − uγ(A)

(hence bidder γ also wins B) and uβ(B) > uγ(AB)− uα(A) (so it is more efficient to award

the items separately to bidders α and β). Hence this is an overconcentration event.

B The Proofs of Lemmas 1–3

Lemma 1 Let pB denote the eventual price for item B. By uγ(B) ≥ uγ(AB)− pA,

uγ(B)− pB ≥ uγ(AB)− pA − pB. (17)

Then bidder γ would rather bid only for item B than bid for both items. Furthermore,

coupled with (1), Ineq. (17) implies that uγ(B) − pB ≥ uγ(A) + uγ(B) − pA − pB, hence

0 ≥ uγ(A)− pA, so bidder γ does not want to buy item A alone.

Lemma 2 By the hypothesis uγ(B) < uγ(AB)− pA,

uγ(B)− pB < uγ(AB)− pA − pB,

hence the payoff from buying both items is greater than the payoff from buying item B alone.

Also, it is unprofitable to buy A alone since uγ(A) < pA. Thus, during the pause, bidder γ

chooses between two goals: (i) to buy both items, which if realized would yield a payoff

equal to uγ(AB)−pA−pB; (ii) to buy none, which if realized would yield zero payoff. Thus,

during the pause, the valuation of winning item B is equal to the valuation of buying both

items, i.e., uγ(AB)− pA − pB, as asserted.

Lemma 3 By definition (6), the function βi,G−i
is weakly increasing. Suppose it is not

strictly increasing, then for some ti, t
′
i ∈ Ti with ti < t′i, βi,G−i

(ti) = βi,G−i
(t′i). Then (6)

implies that t
(1)
−i has zero mass in (ti, t

′
i], i.e.,∏

j 6=i

Gj(t
′
i) =

∏
j 6=i

Gj(ti). (18)
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Note ti ≥ inf Ti ≥ inf T
(1)
−i . For any x > ti,

∏
j 6=i Gj(x) > 0. Thus,

∀x > ti ∀j 6= i Gj(x) > 0. (19)

Pick any k 6= i. If tk ∈ (ti, t
′
i], then (19), applied to x = tk, implies that there is a positive

probability with which tk is the realized t
(1)
−i . Then (18) implies Prob{ti < tk ≤ t′i} = 0,

hence (7).

C The Proof of Lemma 5

First, in any (perfect Bayesian) equilibrium of any single-unit English auction game with

private values, the allocation is ex post efficient. That is because, when the current price

has exceeded a bidder’s valuation of the good, the unique best response for this bidder is to

drop out. Thus, if a bidder is to win the English auction, the price he pays does not exceed

the highest value of his rivals. Therefore, a bidder would avoid any action that results in

losing with a positive probability if his posterior belief still assigns a positive probability to

the event that his value is higher than his rivals’. With all actions commonly observed, his

posterior belief is the same as the (commonly known) equilibrium posterior belief. Thus, the

equilibrium probability for inefficient allocation is zero.

Second, in our simultaneous auctions game, once the global bidder γ has lost at least

one of the two auctions, the allocation of any continuation equilibrium is ex post efficient in

the sense that each item goes to a bidder whose standalone value of the good is the highest

among all the bidders remaining active for that item. This follows from the first assertion

because, once the global bidder is no longer active in both auctions, each auction becomes

an independent single-unit English auction, with each active bidder’s private value being the

bidder’s standalone value.

Third, for any local bidder i who values only item k ∈ {A, B}, if the total current price

of all the items that he is bidding for has exceeded ui(k), then the unique best response

for i is to drop out from all the items that he is bidding for. (We allow the possibility for a

local bidder to bid for the item that he does not value.) Then, if the global bidder γ is to

win both items, the total price of the two items does not exceed the right-hand side of (8).

Thus, as in the first assertion, as long as (8) does not almost surely hold, γ would not take

any action that with strictly positive probability results in losing both items simultaneously.

Therefore, claim (i) of the lemma holds.

To prove claim (ii), consider bidder γ’s options before any decisive event occurs. If he

loses in auction k ∈ {A, B} while continuing in the other auction −k, then it follows from

the second assertion that his expected payoff is E[(uγ(k) − maxi6=γ ui(k))+]. If he continues

for both items until either (8) holds or a decisive event occurs, then by Proposition 2 and
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individual rationality of the local bidders, his expected payoff is greater than or equal to

E
[
max

{
0, uγ(A)−max

i6=γ
ui(A), uγ(B)−max

i6=γ
ui(B), uγ(AB)−max

i6=γ
ui(A)−max

i6=γ
ui(B)

}]
.

(20)

By Jensen’s inequality and the fact that max{x, y, z} is a convex function of (x, y, z), (20) is

greater than or equal to E[(uγ(k)−maxi6=γ ui(k))+] for each k ∈ {A, B}, and the inequality

is strict unless bidder γ knows that almost surely

uγ(k)−max
i6=γ

ui(k) ≥ uγ(AB)−max
i6=γ

ui(k)−max
i6=γ

ui(−k),

i.e., (9) holds almost surely, as asserted by claim (ii).
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